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Soliton relaxation in magnets
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An equation set describing the evolution of the integrals of motion of solitons, induced by relaxation
processes of both a relativistic and exchange nature is obtained within the framework of the phenomenological
theory. Two-parameter one-dimensional ferromagnetic and antiferromagnetic solitons and two- and three-
dimensional ferromagnetic precession solitons are analyzed. The corresponding integral curves are plotted, and
the time dependences of the soliton parameters at various relaxation stages are discussed.
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I. INTRODUCTION scribes a magnetization distribution approaching its equilib-

rium state. In Ref. 1 the dissipative tefhas been chosen
Relaxation processes are known to play a very importanin the form
role in physics of magnetically ordered crystals. These pro- )
cesses are usually studied by means of two main approaches: R=AgMH;, H=[M[H,M]}/M*, 12

microscopic and phenomenological. An advantage of the Mighere M=|M|, H, has the meaning of the effective field
croscopic approach is that it enables one to find differentomponent perpendicular to the magnetization veletok is
dependences of relaxation characteristics on temperature aggh sole dimensionless relaxation constant appearing in the

on parameters of the magnet under consideration. Howevefiyeory. Taking into consideration that the vecky can be
when applied to investigation of nonlinear waves, the miCroeyxpressed by

scopic approach appears to be rather intricate and, in fact, it
can be uced to analyze only the_simplest kink-typel solitons Ht=[M,M]/(g M2), (1.3
or domain walls(DW). A description of more complicated o . ) )

on non-one-dimensional excitations, etc., in the framework N

cf the microscopic approach is a nontrivial problem because R=—[M ,M], G
it requires one to know an exact spectrum and wave func- M

tions of magnons on the soliton background, while the Iatte'Both forms ofR Egs.(1.2) and (1.4) are equivalent to one

are known for a moderate number of one-dimensional SYSanother.

ten_:_sh. h logical h din the classi The equation of motior(1.1) with Landau-Lifshitz Eq.
e phenomenological approach, suggested in the classly ») o the Gilbert Eq(1.4) dissipative term, as it is easy to
cal work by Landau and Lifshitzwell before the micro- see, conserves the length of the vedttr|M| =const. So, as

scopic approach began to be developed, does not yield SMas outlined in Ref. 1, Eql.)) is, in fact, the equation for

comprehensive characteristics of relaxation processes. Ne};q | nit vectorm=M/M. As a matter of fact. it is precisely

er_theless, I en_ables one to describe a whole picture of rela>{he vectorm that describes the magnetization distribution in
ation of a nonlinear excitation. In the framework of the phe-, magnet. Besides, it was noted in Ref. 1 that such dissi-

nomen?Igglcatl aé)prcach,lan r:[z.ner?y dlss_lptatlgn IS t?ke“ IntBative terms correspond to relaxation processes connected
account by introducing refaxation terms into dynamic €quay, iy, re|ativistic interactions only. Really, calculating the en-

tions of motion (Landau-Lifshitz equations In particular, ergy dissipation rataV——20Q, Q is the so-called dissipa-

the equation of motion for a magnetization vedibrin one- : : : .
sublattice ferromagnetéFM) has been proposed to be as tive function, using Eqs(1.2) or (1.4}, one obtains

follows: 1 ) 1 A )
=—— =—— =— 2
| Q= 5 fdrHM 5 fdrHR 29MofdrM .
M=-g[M,H]+R, (1.9

Consequently, the energy dissipation takes place for a homo-
geneous precession of magnetization. Since only relativistic
whereH is the effective fieldH=—6W/SM, W is the en- interactions result in relaxation of the homogeneous magne-
ergy of the FM g is the gyromagnetic ratio, the point means tization motion, the dissipative terfR in the form of Eg.
the time derivative. (1.2) or (1.4 has the relativistic origin.

The first term in the right-hand side of E(..1) describes Starting from Eq(1.1) andR in the form of Eq.(1.2) or
the dynamics of the vectdvl whereas the second one de- (1.4), it is rather easy to obtain such important relaxation
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characteristics of a magnet as a width of a ferromagneticelaxation term can be written in the fotfh Nk im=
resonance(FMR) line, Aw=\wgy, (wgy is the FMR fre- —\ 6 dm (the sign “minus” is chosen for convenience in
quency, a dynamic slow-down coefficient of DW,! a spin  such a way thah .>0).

wave decremeritand so on. However, detailed comparison  The tensor;, (more precisely, its symmetric paxf)

of these results with experimental data and with microscopigjescribes a contribution of different interactions of relativis-
calculations revealed some significant ~contradictionstic origin into dissipative processes. The formxdp) is de-

Among them it should be primarily noted an erroneous defined by the symmetry of the magnet, e.g., in a rhombic
pendence of the spin-wave decrement on the wave Vecigpagnet the tensak (Y is diagonal(in the main axes A
k(y(k)~k?) whereas the microscopic calculation, made in:diag()\l Naohs). ' '
Refs. 4 and Ssee also Re21‘s. 1 arld,ﬁglves, for shortwave g, s anisotropic structure of the relaxation term leads to
magnons kxo>1)y(k) ~ (k) ~k" In FM_S_ of the easy-  hat not only a FMR frequency, but a FMR linewidth as
plane type an absurd result is obtained: in the long-wavge|| turns out to be dependent of an orientation of the mag-
limit (k—0), whenw(k)~[k|—0, a calculation by means atization vector in the ground state of a FRef. 14 (dif-
of Eq. (1.2) or (1.4 gives y(k)—const0, i€, ferent orientations of the vectdd can be obtained by apply-
[v(K)/w(k)]— atk—0 [the mIcroscopic analysis leads 10 jng an external magnetic field aligned with different
the hydrodynamic resul(k) ~ (k) ~k* (Refs. 4 and B.  principal axes of the magnetThis effect enables one to
It should be noted that values of the relaxation constant getermine the values of relaxation constants experimentally
obtained from the experimental data on FMR linewidth andhy means of measuring FMR linewidth at different orienta-
on DW mobility in high-quality ferrite films can diverge tions of an external fieldsee details in Ref. 24
considerably. Furthermore, the microscopic calculation of A dynamic symmetry is of considerable importance in
the coefficient (Refs. 8 and showed that a DW slow-  getermining the structure of the tensgg.. In particular, in
down is affected by processes of not only relativistic butine exchange approximation, the existence of the integral of
exchange origin as well. Thus, the contradictions meni,otion M leads to the condition = 0. In the model of an
tioned testifies that the phenomenological description of;niaxial magne(symmetryC..), one of the components of
some relaxation processes in magnets by means of the disgj;o vectorM, namely, M, (Z is the anisotropy axjsis an
pative t.e_"“(l-z) or (1.4 1S inadequate. integral of motion. It follows that in an uniaxial magnej;
Significant progress in the development of the phenom-—_ diagl\;,\4,0) (the equality of the constants, and\, fol-
enological approach has been achieved in Refs. 10-13. I8,,s from the equivalence of the ax¥sandY). Y
these works a form of the dissipative term has been pro- e incjusion of an anisotropy in the basal plane changes

relativistic and exchange origins. Besides, it was shown thaﬁ
a symmetry of a crystal and a hierarchy of different interac—t

. I h f dissinati d the hi hat of interactions breaking the mentioned invariance, then
tions affect the structure of dissipative terms and the hierarg;q,j,, hierarchy takes place for corresponding relaxation
chy of relaxation constants.

: RN . constants, the tensar, having the fornTA theory with two
To obtain the dissipative terms, in Refs. 10 and 11 On 1k 9 m y

different relaxation constants was proposed by Bldckee

sager equations have been used with components of the VeSiso Ref. 16 for description of magnetic relaxation in mag-

tor M. as gengralized coqrdinates, components of the effeq"'netically disordered systems. Relaxation timesand 7, ,
tive field H being generahzeq fo_rces. According to Ref. 10, introduced in Ref. 15, correspond to relaxation of longitudi-
Fhe equation for the magnetization vectdr can be written nal and transverséwith respect to an external magnetic
in the form field) components of magnetization vectdf. However,
24, Bloch'’s theory does not take into consideration a symmetry
. (1.5 of the crystal and a hierarchy of interactions. Only in some
IX10%m special cases it turns out to be possible to compare our re-
The antisymmetric about the indicésand k parts of the laxation constants and Bloch relaxation times. A detailed
tensors\;, Nk m define the dynamics of the vectd comparison of the present approach and Bloch’s theory is
whereas the symmetric ones describe an energy dissipatiofarried out in Ref. 17.
A spatial dispersion of the system, described by the tensor
Nik.im Under small gradients d¥l, should naturally be taken Nik=diag A1, 1,N3), A3<<hq. 1.7
into consideration only in the exchange approximation. A

higher symmetry of this approximation results in the conser-  From the aforesaid, the dissipative function of the FM can
vation law for the total magnetic moment of the system:  pe represented as follow&?!?

Mi:)\ik(M)Hk+)\ik,lm(M)

M(t)=f drM (r,1). (1.6 1 ) )

QZE J drgM{)\ikHin-l—)\ea (VH) }, (18)

In this case the corresponding term in Ef5) must have

the form of a divergence. Besides, in the exchange approxiwhere the factorgM anda? (a is the lattice constaptare
mation, the spin indices, k in the tensor\; ;,, must not introduced for convenience in order that the relaxation con-
“mix” with the coordinate indiced, m (the tensoi;y , is  stants\;,,\ be dimensionless. The equation of motion for
symmetric about the latterTaking also into account isot- the vectorM with a relaxation term corresponding to such a
ropy of the media about the spatial indices, the exchangdissipative function takes the form
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M=—g[M,H]+gM{\,H.e—\a2AH}. (1.9 equation of motion for the magnetization veckrEq. (1.9).

OIM HI+gMiNiH e e I The relaxation term in a uniaxial FM has the fdfm
It is easy to verify that in the exchange approximatian, (
=0) and in case of an uniaxial FM, the dissipative tein®) R=gM{\;H, —\.a%AH}, (2.1
leads to the correct dependence of the spin-wave decremevr%,lere H,=H-n(nH) is the component of the effective
on the wave vector in the long-wave approximation: this. Lo : : P . :

o : ; field perpendicular to the anisotropy axibe axisZ, n is the
dependence is identical to that obtained by means of th(Lemit vector along this axjs A, and A, are exchange and
microscopic calculations. Besides, twor morg different elativistic relaxagt]ion constht?s res elctivel (\ <1§ As
relaxation constants presented in the theory make it possibfe : ants, resp B (A1 '
to fit experimental data on FMR linewidth and on DW was noted in the Introduction, if one takes into account small

interactions breaking the uniaxiality of the magnet, then the

slowdown:*® Z component of the dissipative vectBrbecomes nonzero
Similar relaxation terms and a dissipative function, which P P '
takes into account a symmetry of the magnet and the ex- R=gM{\;H, + AsH,n—\.a2AH!. 2.2

change relaxation, for two-sublattice antiferromagnets has

been obtained in Refs. 11 and 13. Such magnets are known As it will be shown below, the constait, even though
to be convenient to describe in terms of vectbtsandL, it is small in comparison with ;(A3<<\,) is required when
M=(M;+My)/2, L=(M;—My)/2, M, ; are the magnetiza- analyzing nonlinear wave relaxation.

tion vectors of the sublattices. Starting from the Onsager Thus, the equation of motiofi.1) in uniaxial FM with a
equations with components of the vectdsandL as gen-  small deviation from uniaxiality has the form

eralized coordinates and the effective fields: — SW/ M, )
F=— 6WI/ 4L as generalized forces, the following dissipative M=—gM[M,H]+gM{\;H, +\3H,n—\.a?AH}
function has been fountt: (2.3

1 and the dissipative functio® is equal to
Q=3 J drg|L[{\iHiH+ N ea®(VH)?+\oF?},

(1.10 Q=1 f drgM{\{H? + \gH2+ A a2 (VH)Z. (2.9
' 2 g 171 3z e . .

where the tensok; is of a relativistic origin, whereas the ]
relaxation constanta, and Ao are of an exchange origin. ~ According to Eq.(2.3), the modulus of the vectoM
Relaxation terms in the equations of motion for the vector$hanges due to the relaxation terms. Multiplying E43) by
M and L are defined by the relationship®,=5Q/sH, M, one obtain&

R,= 6Q/ 5F (see below.

It is important to note once more that the equation of
motion (1.9) does not conserve the length of the magnetiza-
tion vector, |M|#const. Besides, the dissipative function
(1.9 includes all the components of the effective figid

M=gM{X\,(m,H,)+AsmH,—\a2(m,AH)}. (2.5

Combining Egs.(2.3) and (2.5), it is easy to write the
equation for the unit vectam:

and not just its componertd; [see Eq.(1.2)]. These two m=—g[m,H]+g{\[H, —m(m,H,)]+\s[H,n
circumstances complicate the analysis of the relaxation in the
system substantially. —m(mH,)]—Na [AH—m(m,AH)]}. (2.6

In the present work the main attention will be paid to the )
investigation of soliton relaxation in uniaxial magnets. 't should be noted that in the casg=A—0 |M|
Smallness of the relaxation constants involved enable one tg const, and the magnetization dynamics are entirely de-
develop the perturbation theory to describe the evolution ofcribed by Eq(2.6) for the unit vectom. As shown in Ref.
soliton’s parameters. For solitons in completely integrable?2, @ nonconservation dM| leads to an existence of the
systems, there exist a specific form of the perturbatiorf0-called dissipative linear spin mode. .
theory, based on the inverse scattering probleng., see To calculate an energy dissipation rate in the linear ap-
Refs. 18 and 10 We shall use a more simple version of the Proximation with respect to the relaxation constafus re-
perturbation theory, based on the construction of evolutior$trict ourselves to this approximatiprthe effective fieldH
equations for integrals of motion of an undisturbed systemin the dissipative functio should be calculated in the main
These equations describe a slow evolution of parameters ¢£€rQ approximation with respect to the these constants. In
an initial excitation due to dissipation. The simplest variantthe nondissipative approximation, the perpendiculanto
of such an approach has been used in Ref. 20 when studyirg@mponent of the effective fieltd, can be readily found
fluxons damping in Josephson’s contacts in the framework dfsee Ed.(1.3)]. But, as mentioned in the Introduction, one
a sine-Gordon equation. An advantage of this approach igore peculiarity of Egs(2.3) and (2.6) is that these equa-
that it can be used even in the case when an injtiaper- ~ tions contain not only, but the collinear component of the

turbed equation is not completely integrable, e.g., when anagffective fieldHy, as well, Hn=mH,, Hy=(mH). This
lyzing two- or three-dimensional solitons. component cannot be found from the nondissipative equation

of motion and must be obtained independently.
So, the choice of the dissipative tefin the form(1.9)
[or in the special case E(R.2)] leads to that the equation for
To describe phenomenologically dissipation processes dhe normalized magnetization becomes insufficient to de-
nonlinear excitations in ferromagnets, we start from thescribe a magnetization distribution. Naturally, one may ana-

Il. RELAXATION IN FERROMAGNETS
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lyze Eq.(2.3) for the magnetization vectdvl as such, butall term in Eq.(2.10 in H,,, although the value of. is small,
soliton solutions are constructed on the basis of @), can be rather essential due to the presence of the large coef-
and when analyzing their relaxation, it is also more convef{icient Xu_l> 1.
nient to start from the similar equation modified by its relax-  To calculateH,, and , it is necessary to use E@.5).
ation part properly. Taking into account the relationship betwedp and u, one

To construct an equation for the collinear fietd,, we  obtains the equation for the collinear fiett, :
use the explicit expression for the FM energy:

Xio, 2 N3 X oW
W Hm—)\ea AHm+)\(r,t)Hm— - — (M, W)
W=fdr{f(|v|2)+w(|v|)}. 2.7) 9Mo 9
+A(r,t),
Here the ternf(M?) describes the isotropic exchange inter-
action which defines for the most part the length of the mag- )\_(r,t):)\lmf + N am2+ A a2(Vm)2,
netization vectortM =|M|. The termw(M) corresponds to
the inhomogeneous exchange interaction, the anisotropy en- A= X3 _ \a? _
ergy, the interaction with an external magnetic field, etc.: A(r,t)= m,[m,m],+ e (m,A[m,m]).
8 (2.11)

o
w(M)= = (VM)2+ = M2 —H(M—Mg). (2.8

Equation(2.1)) is a linear homogeneous equation of the
_ S . diffusion-type with a right-hand side part. In combination
HereMy is the magnetization in the ground stak&; is the  with Eq. (2.6) for the unit vectorm and with relationship

2

external magnetic field. (1.3 for the quantityH,, Eq.(2.11) completes the construc-
It is easy to show thaH,=—6W/6M. From Eq.(2.8)  tion of the closed system of equations describing relaxation
one obtains of different dynamic excitations in FM in the linear, with
respect to relaxation constants, approximation. This system
H ——2M daf m ow 2.9 written in terms ofm andH , is more convenient for analysis
m dm? M’ ' than that written in the variable® and w, sinceu—0 at

) ) ) x;— 0 whereas the quantityl ,, remains finite.

Note, th.at ifw(M) is a homogeneous function of the second ~ p general solution of Eq(2.11) without the right-hand
order with respect to the components of the vedforthen  sjde describes the relaxation K, to the equilibrium value
the second term in Eq2.9) reduces to ¥~ 'w(M). H,,=0, the characteristic relaxation timg is of the order

Under temperatures not very close to Curie temperaturgy;gM,/y,) "%, and aty,—O it is very small® The same
Tc, the function f(M?) has a sharp maximum av®  (ime 7, defines the rate of the homogeneous relaxation of
=M35(T), M(T) is the equilibrium value of magnetization \ to its equilibrium valueM,. Based on the estimation
[we chose the anisotropy energy so thgtM)=0 in the  g2f/d(M?)2~fM~*, f~IMy/uo, Wherel is the exchange
ground statg In this case only the value dfl close toMy  integral value close to the Curie temperature T¢), uo iS
may be considered to be actual, i..7(M—Mg)<My,  the Bohr magneton, one obtaing~uo/(\;gl). Conse-

and one can write quently, the contribution of relativistic interactiofise., the
const\4) to the relaxation of the magnetization length is
df — u L, dPF(M) amplified by the exchange interactibhPreviously this fact
dam? xiMg’ X =%Mo d(MOE) ’ has been deduced on the basis of the microscopic analysis in

Ref. 23. Such a coincidence of the character of magnetiza-
where the quantity,<1 has the meaning of the longitudinal tion length relaxation in the framework of the two ap-

susceptibility of the FM. If so doing, proaches testifies that our generalized phenomenological
equation(1.7) is adequate.
7’ oW The inhomogeneous solution of EQ.11) can be nonzero
Hm=— X_u_ M (2.10 only in the presence of a dynamic magnetization wave. Note,

that we are interested in the main approximation Ko,

In the static case, even at an inhomogeneous distributiofbout relaxation constants and therefore a magnetization dis-
of magnetizatiorfe.g., at the presence of a static domain walltribution in the nonlinear wave under consideration, calcu-
or an inhomogeneous external field,=0, and the length lated in the nondissipative approximation, must be substi-
of magnetization vector depends on coordinates, tuted into the functiona(r,t) andA(r,t) in Eq.(2.11). Here

it is also should be noted that a structure of this solution

depends on the ratio betwegnand\, and on the character
: of a magnetic excitation.

For a description of relaxation on the basis of the set of

The latter result follows from the known fact that in the equations obtained, we use a simple version of the perturba-
successive phenomenological theory, evefi-atonst,M is  tion theory based on constructing of evolution equations for
a function of a local intrinsic field. If a dynamic magnetiza- integrals of motion of the unperturbed system. This scheme
tion wave is present, then the quantity,, in general, does is as follows: let the magnetization distribution in the non-
not equal 0. It is noteworthy that a contribution of the firstlinear wave be determined by the set of parameters

M:Mo[l—)((m

ow
' oM
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aq,a5,...,a, Which are constant in the nondissipative ap-M [see Eq.(2.5)]. Since the valuéM is also a function of a
proximation. Taking into account relaxation terms, these patemperature, it means that an equation for the magnetization
rameters begin to depend on time. The corresponding evolwector M with dissipative terms cannot, in general, be con-
tion equations fow; (j=1,2,...n) can be obtained from the sidered independently. There is a need to write a system of
integrals of motion of the unperturbed systémi,,... I, (if  equations, which includes the Landau-Lifshitz equation as
the system under consideration has a solution wilaram-  \ell as equations of thermoconductivity and of entropy bal-
eters, then there exist at leasintegrals of motion ance. However, when studying the relaxation of a certain
One of these integrals is the energy of the magnetic excimagnetic excitation in the temperature region well away
tation, E. Its rate of change is determined by the dissipativesom the Curie temperatur@r Neel temperature for antifer-

function Q, dE/dt=—2Q. Let us finddE/dt, on the one  omagnety the relaxation is implicitly supposed to lead only
hand, as a linear combination of the change rates of the noRy gome changes of parameters characterizing the corre-

linear wave parameterdq; /dt; on the other hand, one can sponding solution of the dynamic equatiotslow relax-

calculgte the value o as a function these. parameters. ation). Both an initial excitation and a final state of the mag-
Equatllng the correspondmg V‘T’"“eS' we obtain the balar]Cﬁetic system are found from solutions of the dynamic
equation for the energy, which is one of the sought-for equa-

tions describing the evolution of the parametersdue to equations in which the magnetization length is fixed. In do-

relaxation processes. Similar equations can be obtained dng S0, we imp“dtly consider thaf[ thg magn_etic system is in
calculating the change rates of other integrals of motion. A corjjcact W'tr a thgrmo‘s\;atbwmch ||mmed|ately compen-
a result, one obtains the system rofiirst-order differential sates_ any alternation o y supplying or rémoving a
equations for the parameters . quantity of heat to or from the magnetic system.

The simplest variant of such an approach with one inte- To tal_ke into consideration this implicit supposition when
gral of motion(energy has been used in Ref. 24 to analyze c@lculating the change rate of one or another integral of mo-
the dissipation of one-parameter nonlinear wasmain  tion, it is sufficient to take into account only that relaxation
walls, a parameter is a DW velocjtaccounting relaxation Which is not associated with changes|bf|. With this aim
and an applied force. in view, one should setM/dt=Mdm/dt+dm/dt, and then

One important note should be made here. As mentionethke only the first addend. For example, taking into account
above, the structure of the relaxation term in E32) is that  Eq. (2.6), one obtains fodE/dt the following expressiofin
it does not conserve the length of the magnetization vectoplace of Eq.(2.4)]:

- : M : . : :
(E)M—const:_fdrMmH:_EOJdr{)\l[([m:m]L)2+gHm(mJ_r[m’m]J_)]+)\3[([mrm]z)2+gHm(mz[mvm]z)]

+Ne22[(V[m,m])2+gHy(m,A[m,m])]}=-2Q. (2.12
|
The quantityQ hereafter is referred as a reduced dissipa- : — d [ Mg
tive function. In fact, the transition fro® to Q is due to a (N)m=cons=(N) = dt | 2ug f dr(1-m;)
small value of the longitudinal susceptibility. The fact that M
x1#0 is taken into consideration only at the intermediate _ Mg 2
stage of the collinear fieltH,, calculation, and in the final T 2u0 drihsmz(m, ,H,)+Asm;H,
expressions, we must take the linyit—0. So, according to )
Eq. (2.10, = x;(Hm+M 6W/5M)— 0. Note, that if so do- — A [AH—m,(m,AH)];. (2.13
ing, f(M?)~u? x,~u—0, and the corresponding term in _ . _ _
the energy balance can be omitted. It is sufficient to analyze two integrals of motidh and

Reduced expressions for rates of change of other integral¥ for describing the evolution of a two-parameter soliton in
of motion can be found in a similar way. In particular, for an & Uniaxial FM. Using one more integral of motion—the mo-
uniaxial FM, considered in the present section, it is conveMentumP—does not lead to new equations due to the rela-
nient to use the integral of motioh, equal to the total de- tionshipdE=%wdN+VdP which is true for any FM admit-
viation of theZ component of magnetization from its equi- finNg an existence of two-parameter solitdiisTo analyze
librium value. This value can be expressed by a number ofV0-parameter nonlinear waves in two-axes magnets,

magnons in a nonlinear wawé. For an easy-axis FM whereinl, is no longer an integral of motion, equations for
dE/dt anddP/dt can be used.

1
N= 210 J dr(M—M,). A. Relaxation of two-parameter solitons

In this section we analyze relaxation of a two-parameter
Calculating the change rate of this integral of motion with soliton in an easy-axis FM with the ener@.8), taking into
account ofM = const, one obtains account a constant external magnetic field aligned with the
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easy axisZ. The corresponding dynamic solution of the E/E,
equations of motion in an uniaxial FM has been investigated
in Ref. 25 in detail. The phenomenological theory of soliton \
relaxation without an external magnetic field and with rela- 3
tivistic relaxation terms, which do not take into consideration ~
the symmetry of a magnet, has been developed in Ref. 21. ~

It is easy to see that any solution of the dynamic equations ~
in the presence of the external magnetic field can be
obtained from the corresponding solution calculatedHat
=0 by means of the simple substitutiol —Q—gH,,
where () is the precession frequency about the anisotropy .
axis. The magnetization distribution in the two-parameter
soliton in which we are interested, is defined by the
formulag®

d Vv 1 *
X0 gx = TV, cod(012)"
FIG. 1. The frequency dependence of the ferromagnetic soliton
tar? E_ K? energy ¥=0); solid line —H+# 0, dashed line-H=0.
2 A cosh[k/xo(x—Vt)]+1/2B—A)’
(2.149  where Eg=28M2xy, h=gH./wy, «k=(1+h—w—u)*2

=0t + ¢(x— V1),

where Q=0-qgH Vo =2 meXn: :[1_5/ Here we introduce the dimensionless variabies )/ wg,
gHe,  Vm=cwoXp, K= o - 2 . .
—(VIV)2]¥2 (xo/x) is the effective soliton width u=(V/Vy)* convenient for the further calculations.
xo(c/ B)Y2, A2=B2+ 4ik2(VIV,)? Bzﬁ/woJrz(V/V )2 Note, that the expression for the two-parameter soliton
1 m. 1 m. . .
The angle variable and ¢ parametrize the unit magnetiza- €N€rgy(2.17 cannot be obtained from the known result at
tion vectorm, H.=0 (Ref. 25, by the simple substitutiofd — (): the term
_ _ i in Eq. (2.17) proportional tohl, results in essentially differ-
my+imy=sin #e'¢, m,=cos 6. (219  ent dependence of the soliton energy on its parameters than

The soliton structure is governed by two parameters: th&t He=0. In partlc_ular, for the sqhton n re.S‘“_eo)' th_e
velocity V and the precession frequen€y. The localized two-parameter soliton enerdy(w) increases infinitely with
soliton solution(2.14) exists in the regionc?>0, or w—h, and atw=0 it has an additional minimum as com-

pared with casé=0 (see Fig. 1L

Q—gH N l)2<1 (2.16 The rate of the energy change, described ungetl by
wq Vi ' ' the reduced dissipative functid@ (2.12), can be written in
. . the form
The values of the integrals of motioe and N, corre-
sponding to the soliton solutiof2.14), are equal(per the
squarea?): . 1
h E=—5Eo0 0a=0+0e, (219
EIZEO K+§IO)’ (217)
Eo 2K where g, and g, are the contributions associated with the
N= oo lo, lo=tanh* T arh’ (218  relativistic and exchange relaxation terms, respectively,
|
Q=N 1( 2+ sir? 6 cof 0p2— h,, sir? 6 cos 6¢), (2.20

Uo=NL{0'2+ 0202+ 022+ ' 2 SN 0+ Sir? 6 o O’ 202 +sin 20(0¢' ' + 0 o’ — 0’ ¢’ ) +2 cos DO O’ o
— [ @ COS B(20"2+Sir? O¢'2) +sin 6(0"o— 00" +20" o' 26" ¢')]), (2.21)

where\,=\(a/xo)?, hm=Hm/(BMy); prime and angular brackets mean differentiation and integration with respect to the
dimensionless space variabje=x/x,, respectively, and a point means differentiation with respect to dimensionless-time
= wot. The terms proportional ta; are omitted in Eq(2.19 because ak;<<\; these terms are shown to have no crucial
significance in the problem of soliton relaxation.

For the change rate of the second integral of mobrone obtains from Eq2.13

— Eo
= Zhwg P 7T 7+ e, (2.22
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7, =N\1(Sir? 6 cos (e cosh—h,,)), (2.23

Ne=NL{0'2p+Cos B¢’ +sir? 6 co 0’ 2p+sin 6 cosO(0' @' — 0’ ¢')—hy[ 2 cos'2+sin 96" +sir? 6 cos ' 2]).
(2.24)

On the other hand, let us calculad&/dt anddN/dt as  Here A (0) and\(r,t) are defined by the value of the vector
linear combinations of the derivativeli/dt anddw/dt by  m in the soliton center:
means of the explicit expressiof17) and(2.18. Equating
the expressions found from Eg®.19 and (2.22), respec- __ 2 4 _ 2 T 4
tively, the set of differential equations for the soliton param-A(O) AN1Sol20Co + (AU— 0)Co—2U]— AN oSy 60Cq

etersw andu can be obtained: —wC5(3+5w—5h)+2(u+uh—2uw+ w?—wh)],

. 1 _

®=0,(@,u)= 7 (qb;— 7by), MO)=4[NC5+ N (C2—w+h)]s?,

(2.25

- 1 1

U=gu(w,u)= 70 (731~ 03), cg=co 0(0)= 5 {[(w—h)*+4u]**+ w—h},
where

a;=w(w—h)+2u(h+2), a,=w—h+2u, So=sin 6(0).

Note, that the quantith,, in the expressions fag and
Egs.(2.20—(2.24) is multiplied by the function which differs

According to Egs(2.19 and(2.22, the functionsy,, and essentially from 0 only in the region of the soliton localiza-
gu can be also represented as a sum of two terms propoHoN. A<lq. Therefore, when integrating oveérin the ex-

tional to the relativistic and exchange relaxation constants?ressions for and 7, the exponential factor ifd(¢) Eq.
respectively, 2.26 can be set equal to 1, and the quankigydrops out of

the final result§at A ;<<\, the second term in the denomi-
9,=9""+g"®, g,=g"+g'®. nator of (2.27) is small as compared with the first gne
It should be noted that formula®.26) and (2.27) are
To calculate the collinear fielth,,=H,/(8My), let us  obtained in the main approximation with respect to the re-
come back to Eq(2.11). Coordinate and time dependenceslaxation constants. If one of them is small as compared with
of the coefficient\(r,t) and of the right-hand side of this another\,<\; or\;>\,), thenH, does not depend on the
equation are determined by the soliton solut{@rly. Such relaxation constants at all.
a cumbersome structure of this solution makes it impossible In another limiting case, when the diffusion length is
to solve Eq.(2.1]) in the general case. That is why we re- much smaller than the soliton widtlA&1,), the collinear
strict ourselves to consideration of two limiting casgs: field H, differs from O only in the soliton localization region
<\ andy,;>\ (\ is the characteristic value of the relaxation

b;=w(w—3h)+2(h*+h—2u), b,=2+h—w.

constants NG
Functional relationship between the collinear fiblg and H (&)~ ——. (2.29
the magnetization distributiom(x,t) in these two cases are INEI)

shown to be quite different. We are interested, in fact, in theA , h ditionA>1 - for localized o
limiting value of H,, at y,—0, \—0. Consequently, the t N3<<\, A, the conditionA> | for localized excitations

problem of the calculation o, reveals a nonanalyticity: is realized only in exceptional cases, and we shall not con-

the value ofH,, at smally, and\ depends on the sequence sider it further. . N
of the limiting transitionsy,—0 and\ —0. Let now y;>A\. It is easy to see that in this case a char-

Let y,<<\. In this case one can sgt=0 in Eq. (2.1 acteristic value of the soliton velocity, appears in the
from the very beginning. Besides, let us also assume that t oblem, and the result nonlalnalytlcally depends on the ratio
soliton is sufficiently narrow, i.e., its width =xo/x<ly,  (V!V). Under small velocitiesy <V, , the terms in Eq.
l4=(1.a2/\3)2is a some characteristic diffusion length. In (2.1 proportional toy; can be neglected and the equation

this limiting case, the magnetization distribution in the soli-"€duces to the casg <\ considered above.

ton can be considered assgunction, sirf 4(&)=2A&9). In the more intLTrestri]ng C?SV%V* , Oné can om(;t ?]" the”_
If doing S0, Eq.(2.11) can be readily solved: terms proportional to the relaxation constants, and the collin-

ear fieldH,, turns out to be the equal to

Hm(é)=Hmn(0)exp(—|&/1g), (2.26
Hp=—m Mz—,BM {6'%+sir? 6(1+¢'?)
Hm(0) = A0)AM, (2.27 ' oM 0
ml T N0)+2(Aghgad) AL ' +h(1—cos 6)}. (2.29
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It should be noted that in the static casessu=0, the Eq. (2.27). If x>\ andV>V,_, thenH,, depends on the
collinear field, defined by Eq(2.29, is not equal to 0. It magnetization distribution in the solitdsee Eq(2.29].
means that Eq(2.29 under small values of the soliton ve- ~ Substituting one or another expression oy, in the for-
locity is not adequate: even though the characteristic velocitf!41as(2.20~(2.23 and using the soliton magnetization dis-
; . o ) ; ribution (2.14), we obtain, after simple but rather tedious
V, is very small, there is a velocity interval in which the

i 4 ) ) calculations, the desired evolution equations for soliton pa-
collinear fieldH,, is determined by Eq42.26) and (2.27), rametersu and .

andHy,—0 atu—0, —0. The functionsg{;® are very cumbersome and therefore
Thus, in the casg; <A\ and in the casg,>\, V<V, the e shall write down only one of them, namety{”)(w,u) in
collinear fieldH,, can be considered constant in the solitonthe casey,<\ (or y,>\, V<V,) with the collinear field

localization regionH,,~H,(0), whereH,,(0) is defined by H,, being defined by Eq<2.26) and (2.27):

" 5 , 10 ., , 4 52 44 ) 5 , 10 , 2 28
0, (w,u)=2\u§ — 3 w7+ 3 @1Te1m 3 wi—12u+ 3 wU— 3 wiu—1leu“+h| — 50173 w]—wt+ §+ 3 u
26 3 | 5 5 3
-3 wqU —hm< 3 wi-l— w;—4u|+ ;0) { 2 wi-l— > wi- > a):lg-i- w§+4u—6Uw1+ 16le§—9Uw:f+ 24u?
2 S 4 S 3 3 2 2 2 3 3 2
—16u“w,th| — > wi;t 50175 wi—6u+10uw;—6uwi—4u“| —h,| — 2 w;twit4u—3wu| |},
(2.30
|
wherew;=w—h. .8 )
Note, that in the case under consideration the separation U= 3 UkSNy(3+4h) = 2h(1+h)],
of contributions of relativistic and exchange terms in the
soliton relaxation is a matter of convention because the quan-
ggyn:tgr,]tgefined by Eq(2.26), depends on both relaxation w0=8K2(1+h)| N + g )\éu), (2.32

The integral curves of equatiorf2.25, obtained by the
numerical integration for different values of the relaxationand can be solved analytically. The solution of E(38
constants\; and\, are shown in Figs. @) and 2b). Itis ~ With the initial conditionsu=u(0), w=w(0) at 7=0 has
interesting to note that at any values of the soliton paramthe form
eters, with the exception of a narrow region of small soliton

velocities, the derivativalw/dt>0. The region of param- u(m)=u(0)exp{d[1—exp(— 8\ 7(1+h))]},
eters in whichdw/dt<0 is represented in Fig.(®.
Analytical solutions of the evolution equations can be ob- k(7)=rK(0)exp{— 4\ 7(1+h)},

tained in some limiting cases.

Small-amplitude solitonsSuch solitons exist in the region 8
of the parametersu,w) in the vicinity of the straight line d= = «2(0)[A1(3+4h)— 2\ (1+h)]. (2.33
u+w=1+h, whereink<1 and O~ «<1. 3

In casey; <\ (or x>\, V<V,) one can ses3~ x?(2

— ;) <1, c5~1 in the expressions fdt,, Egs.(2.26 and So, in the regionk<1, u<1, the soliton relaxation is
(2.27 and immediately obtain&,,=—(1+h-+u). Substi- largely governed by relativistic interactions.

tuting this expression into the functiong:(® , the evolu- At 7—o the parametek—0 andu—>.u1=u(0)ed, i.e.,
tion equations in the asymptotic case under consideration cdhe integral curve of the evolution equations- w(u) termi-
be written in the form nates at the point lying on the straight linet w=1+h

where the soliton amplitude is equal to 0, the effective width
(xo/ k) approaches infinity, and the soliton degrades into the
: homogeneous ground state, the final value of the soliton ve-
locity remaining finite. Note that the valug can be greater
or smaller than the initial value(0), depending on the sign
of the parameted, i.e., on the ratio between relativistic and

U=3 Uk M| 3+ e Ut T

8 h(2+w h(5+u
&)zgxz()\l(% (—1))+)\gu(5+2u+ ( )

1+u 1+u exchange relaxation constants. If
(2.31
At small velocity U<1) the equations of the small- Y 1+h
amplitude soliton relaxation can be substantially simplified, ! € 3+4h’



1+h

1+h

(©

FIG. 2. The ferromagnetic soliton parameters evolutianrela-
tivistic relaxation(\;#0, A ¢=0); (b) exchange relaxatioth .# 0,
A1=0); (c) exchange relaxation within the region wherety/dt
<0.

thend>0 and the soliton accelerates in the course the relax-
ation, u;>u(0), whereas under the opposite inequality tak-

ing place,d<0, u;<u(0), i.e., the soliton slows down.
Under k<1 E~«k(1+h) [see Eq(2.17], and the expo-

nential dependence(t) enables one to introduce an effec-

tive soliton lifetime 7o, 7s=[4A,(1+h)] 1. Note that un-
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der u<1 this time does not depend on the initial soliton
parameters but decreases as the external magnetic field in-
creases.

Under large values of the velocitw® 1) the evolution
equations are as follows:

. 8
u=—

3 Uk?(3N 1+ UNY),

8
w=3 K’ [N 1(3—h)— 2\ uw,]. (2.39

The solution of the systert2.34 at A~ )\ has the form
1
u(n)=u(0)+3 k2(0)[ 1—exp(— 8\ u?(0)7)],

k(7)=r(0)exd —4xu?(0)7]. (2.35

Consequently, the relaxation of the small-amplitude soli-
ton underu>1 is defined mainly by exchange interactions,
the lifetime 7,=[4X,u?(0)] ! being inversely proportional
to the fourth power of the initial soliton velocitys
~v~#40). Thefinal value of the soliton velocity; =u(0)

+ k?(0)/3>u(0), i.e., the soliton accelerates in the course
of relaxation.

An analysis of the system of the evolution equations for
the small-amplitude solitof2.31) shows that an exponential
dependence of the soliton parameters on time takes place,
regardless of the initial valuag0) andw(0). It is also note-
worthy that the integral of motioN Eq. (2.18 in a small-
amplitude soliton is proportional te, and therefore the num-
ber of magnons in soliton exponentially tends to zero in the
course of relaxation.

In casey,>\N, V>V, , when the collinear fielch, is
determined by Eq(2.29, the evolution equations for the
small-amplitude soliton are somewhat different from Eqg.
(2.31). However, in this case all the characteristic properties
of these equations are just the same as those of the system
(2.31), and therefore we shall not discuss them here.

Precession solitorf the initial soliton velocity is equal to
0 (but w#0) then the soliton remains immobile at all suc-
ceeding moments during its relaxatigsuch an excitation
can be referred to as a precession so)itdn this case the
integral curve is some interval of the ordinate axisNatu-
rally, that undeV=0 the collinear field is determined by the
formulas(2.26) and (2.27 and the analytical expression for
h,, depends on the sign @§;=w—h:

2w, w<h,

hn= Ne
1

(2.36

Such a difference is due to the fact thatat h the soli-
ton amplitude §,= 7, whereas atw>h co(6y/2)=w—h
<1, i.e., the soliton amplitude becomes a function of the
frequency?®

The character of the precession soliton relaxation essen-
tially depends on the presence of an external magnetic field.
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Let us consider first the cadé=0. In this case and under B. Non-one-dimensional solitons

|w|<1 the evolution equation takes the form: Let us now consider a relaxation of non-one-dimensional

solitons in a uniaxial FM. Dynamical properties of such ex-
=2 o w(r)= «(0) _ (2.37) citations have been studied in detail in Ref. 25.
' 1— zw(o)m’ ' We restrict ourselves to an analysis of precession solitons

— (V=0) in the absence of an external magnetic field. For
wherex=X\/3+\/. We see that ab(0)>0 the precession such solitons of any dimensionality

frequencyw rapidly increases and in a finite time reaches the
valuew~1. If (0)>0 then atr— the frequency asymp- . do Ne — dw(N)
totically approaches 0. Hence, the precession soliton with COTAN dN
>0 becomes a small-amplitude one in a finite time and ) S )
then degrades exponentialigee above whereas undew +Nea7[(VO)*+sir” 6 cos 0(Ve)?]} (242
<0 the soliton transforms into a special solution of the equatwe assumed that a&=0, d/dt=0 andd(V¢)/dt=0 and
tions of motion witho=V=0 which describes two domain setH,,=0).
walls separated infinitely. It has been shown in Ref. 25 that two- and three-
Let now H#0. In this case there are two characteristicdimensional solitons exist only at positive precession fre-
frequency values in the problemi=0 andw=h. If o=h  quenciesw in contrast to the one-dimensional case in which
+0 (w3—+0) then, in accordance with Ed2.36), hy,  solitons exist both at positive and negative signsvoff
=h(1+X\¢/N1) and we obtain fow: >0, then the integrals in Eq2.39 are positive and the sign
of the derivatived¢/dt is opposite to that oflw(N)/dN.
Two-dimensional (2D) soliton3he 2D soliton is charac-
terized by

J dr{\, sir? 6 cog 6

w=2Nh(1+NJ/N)(w—h), (2.38
o(7)=h+[w(0)—h]exd 2Ah7(1+Ni/N1)], _
0=0(p), ¢=ot+ny, 6(p)—0 if p—oo,
i.e., the soliton frequency increases exponentially rather than (2.43
by the power law as in cade=0.
If w—h—-0 (w;——0) thenh,=2w, and the soliton
frequency decreases exponentially,

where,p, x are the polar coordinates of the 2D magnet, the

integern is the topological charge of the soliton. For the 2D

soliton at allN, dw/dN<0,? therefore in the course of re-

c'o=2§1(w—h), w(r)=h+[w(0)—h]exq2ﬁ17). laxation the soliton frequency increases. d& w, for any
(2.39 N one can assume that

In the casdw|<h~1, one obtains for the soliton frequency p—Ry
cos #=tanh 1
0

_ o . _ where Ry=1qwo/w>1y, N,=27s(1y/a)?>1; s is the
where the inverse soliton lifetime=1"(h) is determined by  atom spin,a is the lattice constant. Evaluating the integrals
a rather cumbersome expression not shown here. At smal gq. (2.42 on the basis of Eq2.44), one obtains
field, this lifetime is proportional toh, I'(h)=2h(\/3
+N\g)=2\h. R w(0)

So, the entire picture of the precession soliton relaxation w=—o0° o(t)= — 2
under an external magnetic field is as follows: undet0 or @o [1=220™(0) o]
0<w<h the precession frequency tends to 0 with a characwhere)\’ =\1~\¢, i.e., similar to the one-dimensiondD)
teristic lifetimeI'(h). Underw>h the soliton frequency in- case the soliton frequency changes from its initial vah(@)
creases, it becomes a small-amplitude one and then degradgs, — «,, in a periodty~ w, /[ N\w?(0)]. Further evolution of
according to Eq(2.33. Such a character of the soliton re- the 2D soliton is entirely different from that of the 1D soliton
laxation is in perfect agreement with the fact that the solitonsee Eq(2.37)].
energy decreases in the course of relaxatisee Fig. 1 The soliton without topological charge € 0) also exists
either E(w)—En(w=0) at <0 and at Kw<h, or at w<wy similar to the 1D case; ab— wy
E(w)—E(w=1+h)=0 atw>h.

Soliton with a small velocitylf the initial value of the Kp
soliton velocity is small (<1), then in the small-amplitude H(P):Klﬁ(l—)' K=
region, (at o~ 1+h) this velocity can increase as well as 0
decrease as dictated by the sign of the parantbfeee Eq.  but atw— wq the value ofN tends to the finite limft
(2.33]. In the caséw|>1(w<0) the evolution equation for

N2 1/2
W) . (2.49

o(N)=wg
w=-T(hw, o(r)=w(0)e M (2.40

(2.495

1/2

, (2.49

wo— w

o

u can be written in the form _N WT®Wo =
=N,+ =1. ~1.
N=Np+ AN, ———, N=1.8N;, Ao~1
16, , 10
U= 73 AU~ = MUw>>0. (2.41) An approximate estimation of the integral in £g8.42 on

the basis of Eq(2.46) shows that abv— wq, dw/dt~\; and
Consequently, the soliton with a small velocity accelerateshe degeneration poiniu= w,) is achieved in a finite time
due to both relativistic and exchange relaxation. t;=(\1wo) "%, i.e., much quicker than in the 1D case.
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In the degeneration pointu(= wg) the number of mag- w(O)[l—ﬂuz(O)t/wo]*l’z, w<w,
nons in the soliton remains finitdN(=N,>1) and the soli- w(l)= 2_ 55, 31172
ton width approaches infinity. Thué, atzthe )final stage soliton @0x ~{lwy (07— 2hwot} w<w*(2' 50
relaxation can be described as a transition of the soliton to '
N, magnons of the continuous spectrum. These formulas describe the following picture of the
For the topological soliton the frequency cannot exceedhree-dimensional soliton relaxation. In the course of evolu-
wol|n|; at N<N, we havé® tion the soliton frequency increases from any initial value to
0 RN N 1 Wy in a finit_e period of time[of th_e ord(_arwol()\wz(O))],
tan—s<—) SAPUYN (__ i) A >0. then it remains constant. The soliton Wl&h:_ w, does not
2 "Ny TNl wg) " evolve at the expense of the slow relaxation processes de-

(247  scribed by Eq(2.42. This fact may seem to be paradoxical
but actually it can be well explained by the specific character

The final stage of relaxation of this soliton is different. 4t e E(w) or N(w) dependences of the 3D solitons: the
The main contribution to the integral in ER.42 comes energy E as a function ofw grows infinitely both at
from the terms with gradients. Calculating the integral on thew_wO [E~(wo— )~ Y¥?] and atw—0 (E~w~2), ie., the

basis of Eq/(2.47), one obtains functionE=E(w) has a minimum ab= w, . Thus, the soli-

dN 16ms ton with w = w,, is the natural final result of slow relaxation
——=— 5 \ewo, (2.48  processes. N | _
dt 3 In order to understand the transition of the soliton with

and the number of magnons in the soliton approaches th@= @« 0 the ground state, one has to go beyond the slow
terminal value N=0 in a finite time interval t, relaxation approximation. The characteristic feature of the

3D soliton with w~ w, is the fact that its energy is higher

~(worls) 1, and /[n|. Consequently, the 2D soli-
(woheS) = wolln| ; y than the energy of the same number of magnons of the con-

ton finally ends up as the singular vortex state with-0 :

(N—0). The further evolution should go with the change of "Y0US spectrurfi; E(N,)=1.034%iwoN, , N, =N(w,)
the vortex line topological charge. The minimum thresholdzg'oa\l?’ and the tran5|t|9n of the s_ollton W, free mag-
energy value for this process seems to be associated with thens with ener_g_lebwoN* IS _energetlcally favorable. How-
break of a soliton line forming two vortex lines with free €Veh the condition of radiation of a small number of mag-

ends. The process of this type is described for topological®nSN<N, which has the forn(N)>E(N—n)+7%won, is

vortices in superfluid helium-% not fulfilled atw=w, <wg bec_ausei E/dN=t . l\_leverthg—
Three-dimensional (3D) solitontn the case of dynamic less, the dece_ly of the soliton into free magnons is poss_|_ble by

central-symmetric solitong= 6(r), r=|r|, the form of the ~Way OfN-particle processN~N,.), although the probability

function 6(r) is of type (2.44 and (2.4 at w<w, and at  ©f Such a process is exponentially small.

(wo— w)<wy, respectively. Thifs

[lI. RELAXATION IN ANTIFERROMAGNETS
3

R=21, ﬂ, N=16Ns w_og, w<wg, Our analysis of relaxation in antiferromagthSFM's)
@ 3w will be done in the framework of the two-sublattice model of
AFM’s starting from the equations of motion for the vectors
M andL:
N=A; —— 0, w—wp, (2.49
(wo— ) 2
whereNz=4ms(1q/a)3, As~1. M= g {IM,H]+[L,FI}+ Ry,
It is seen that the derivativéN/dw is negative at small 3.
precession frequenciesand is positive atv— wg, changing ) 2
its sign atw= w, ~0.9150,.%° L=- g {IM,F]+[L,H]} + R,

According to Eq.(2.49, the soliton frequency decreases
at w>w, and grows aw<w, both due to relativistic and whereH=— sW/S8M, F=— SW/SL are the effective fields,
exchange relaxation. This behavior is completely differentr,, R, are the dissipation terms defined by the dissipative
from that of the 1D case, namely, in the course of relaxatiorfunction (Ry,= 6Q/6H, R, = 8Q/6F). The structure of the
the frequency of the 3D soliton, at any initial value @f |atter, taking into account both exchange and relativistic re-
approacheso, . laxation processes, has been found in Refs. 11 and 13, and
As shown in Ref. 27 on the basis of the Lyapunov theorycan be written in the fornil.8).
the 3D solitons witho> w, are unstable and it is not rea-  As in FM’s, a symmetry of the relativistic relaxation con-
sonable to consider them within the slow evolution frame-stants\;, is governed by symmetry and hierarchy of relativ-
work. For the low-frequency solitonss< w,.), according to istic interactions. In particular, in uniaxial AFM’s the tensor
Egs.(2.42, (2.44), and(2.49, \ix has the form(1.7) and the dissipative ternRy, andR,
— can be written as follows:
Awdlwy, w<wg
T N0, —0), 0, —o<wg, Ru=0|LI(\{H, +NgH n—\a%AH), A<y

wherex~A= N1+\.. Integrating this equation, one obtains R, =g|L|\oF. (3.2
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As in the previous sections, we shall analyze relaxation of 1= _
. , . > < ; M=—-g[M, H,]+tR,,
nonlinear waves in the linear approximation with respect to 3.9
relaxation constants, using the method of construction of
evolution equations for nonlinear wave parameters, de- Ri=Rw+RL, R:=Ry—R_.

scribed above. Calculating the rate of change of integrals of
motion |; on the basis of Eq(3.1), only the relaxations Hence
which are not connected with the change of the sublattices
magnetization vectort ,=|M,|, @=1,2, should be taken _ _ M
into consideration._In particular, one must use the reduced M;=m;(Ry,+R.), M,=m,(Ry—R\), ma:_“_
dissipative functiorQ instead of the full dissipative function M,(?) 4
Q (1.8. :
To separate i) the terms corresponding to the change of
M|, let us rewrite the equations of motion in terms of the  Taking into account Eq.3.4), one readily obtains the re-

vectorsM duced dissipative functio® in the form
. 1/dE 1 . . 1 1
Q: — = | = == J‘ dr[M1m1H1+ Mzmsz]: by f dr HRM+FRL_ vl [(HM+FL)(MRM+LRL)
2\dt/,, _ 2 2 M3
a*COf‘ISt
+(HLt FM)(LRM+MRL)]]1 (3.9
|
where H =(HL), F =(FL), Hy=(HM), Fy=(FM) p=ML =0, s=M2?+L2-M3=0. (3.9
[two first addends in Eq3.5) correspond to the full dissipa-
tive functionQ]. When the dissipative terms in E¢3.1) are taken into ac-

When calculating in the linear approximation with re- count, the quantitiep ands are no longer constant:
spect to relaxation constants, the effective figtdlandF in

Egs. (3.2, (3.3 should be substituted in the maiaerg p=RyL+R.M, 5=2(RyM+R.L). (3.10
approximationfwe already used this circumstance when cal-
culating Eq.(3.5) by settingM;=M,=Mg]. In the nondis- The functionf(x) in Eq. (3.7) under temperature far be-

sipative approximation, the vectotd and F can be ex- Jow Neéel temperature has a deep minimumxat M3(T),

pressed in terms of two scalar valugs andF which may M (T) is the equilibrium value of the sublattice magnetiza-

be referred to as collinear fieldsn analogy withHy, in tion length. Therefore, approximating the functibfx) by

FM’s), the expressiorf(x)=(x—M32)%/(4x,M3), x,<1, one ob-
tains from the energy3.7):

1(2 .
H= " [a[L,L]+LHL+MFL],

: (3.6) Hinp+H0' H0=_(%,L),
) X oM
1(2 .
F:F[ﬁ[L'MHMHL“FL' FL=—X35+FO, FO=—<%,L>. (3.11)

The collinear fieldH, andF_ can be obtained from the ioned in th he lonaitudinal ibil
explicit expression for the AFM energy: As mentioned in the Sec. I, the longitudinal susceptibility

x; should be set equal to 0 in the final results. However,
contributions of two first terms in Eq3.11) are finite be-

W=f dr[f(M3)+f(M%)+wo(M,L)], (3.7 causep~y,, s~y;. In the static cased, =F, =0 but the
quantitiesp ands are not equal to zero:

@ 1)
WO(M,L)=§(VL)2+§M2+Wa—2MHe, (3.9 Xi Xi
p:_ZHo, S:?FO

where the functiorf(M2) defines the density of the intersu-

blattice exchange interaction which forms the length of the In the presence of a dynamic magnetization wave, the
sublattice magnetization vectorsi, is the anisotropy en- fieldsH, andF_ are not, in general, equal to 0. The equa-
ergy, He is an external magnetic field. tions for these quantities can be obtained by differentiating

The equations of motiof3.1) in the nondissipative ap- Eq. (3.11) with respect to time and using Eq€.2) and

proximation are known to have two integrals of motion, (3.10:
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L HL—Nea?L2AH, — 2\ ea?[(L,VL)VH, +(L,VM)VF 1+H [A L2+ AgL2+NgM2— N ea?(L,AL)]

+ﬂmrmmmeﬁMW}%m+«MsmwQHWﬂMwmmMum

(3.12

);‘—'g FL—Ne@’M2AF | —2Xa?[(M,VM)VF +(M,VL)VH_ JF [A{M? +A3M2+ \oL2— A a%(M,AM)]

+H[(\— >Mme¥wAurﬁ§a+{ml3mﬂLuwu¥mAun» (3.13

The solution of Eqs(3.12 and (3.13 without the right- The value of the magnetic field is limited by the condition
hand side describes relaxationtéf andF, to their equilib- of the static soliton existenceH.<My(B88)Y? or H,
rium values. An inhomogeneous solution of this system of<Mq(B848)*?, i.e., by the spin-flop field.
equations can be nonzero only in the presence of a dynamic To construct the evolution equations for the soliton pa-
magnetization wave. rametersV and (), we use, as in FM’s, the soliton energy

It should be noted once more that the syst@&1i2 and (E) and the totalZ projection of magnetization,
(3.13 is obtained in the linear approximation with respect to
the small parameters and y, [as is Eq.(2.11) for the col- 1
linear fieldH,, in FM’s]. Hence, all the coefficients and the = — f drM (3.17
right-hand side part of these equations are defined by the

magnetlzatlon distribution in the excitation under consider- (|n the nond|ss|pat|ve approx|mat|on the latter conserves

ation, calculating in the nondissipative approximation. due to the uniaxiality of AFM’s

Further we analyze relaxation in an easy-axis AFM with  The values of the integral of motida andN, correspond-
the anisotropy energwy, ing to solution(3.15), are equal to

1 1 2E, [ 1
2 252 0
== - = > >0. . =
Wa zﬁLL 4b(LL) ’ B o! b 0 (3 14) E P [1—” we(a)-l-a)e)},

As an example, we shall discuss relaxation of the one- 2n,

dimensional two-parameter soliton. The corresponding solu- N= e (0t wg), (3.18

tion of the dynamic equations has been obtained in Ref. 28.
At b=0 this solution has the form:

where
o=kx—Qt, cosf=—tanHk(x—Vt)], Eo=AM2Xo, No=Eq/(2hwy),
2
:(Q-l-Qe)V e B (Q+Q) K2=1(1-U)— (0+ 0e)?, we=0c/wy, ©=0Qwy,
cc a(1-V?/c?) c?
(3.19 u=(V/c)?

whereQ).=gH., an external magnetic field is considered to
be aligned with the anisotropy axis. The angle variatdes
and ¢ parametrize the unit vectoe=L/|L|,

are the dimensionless parameters convenient for further cal-

culations. The frequency dependence of the AFM soliton en-

ergy atV=0 is represented in Fig. 3.

i ) : In the main approximation with respect to the small pa-
L tily=sin 6e'¢, 1,=cos6. (318 rameter @/6), all terms in the reduced dissipative function

(3.5, proportional toM, can be omitted and, taking into
This solution describes the magnetization distribution ingccount Eqs(3.2) and(3.6), the functionQ can be written in
the two-parameter topological soliton of the kink-tyb@  the form
(=) =0, 8(+»)=]. The soliton solution(3.15 exists in

the region’E2>0, i.e., its parameterghe velocityV and the _ Mod
precession frequend) satisfy the inequality Q= ZgM2 f drRy[L, L]— Eoq. (3.19
2
Wo The functionq is defined by the sum of the relativistic and

2
(Q+Qe) <7772 exchange termgj=q, +qk,
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Eq. (3.25 somewhat differs. We will not dwell on the analy-
sis of this equation in detail. The results of this analysis in
the case under consideration are as follows: if the soliton
velocity V exceeds the characteristic valug ~\weXo/ x| »
then the quantityh, is defined by the simple formula

h. = w, COS h. (3.26

It is obvious that such a situation can be realized only in
the limiting casey>\ and in the presence of an external
magnetic field. Ify<<\, then the quantityr, in Egs.(3.20
and(3.22 should be set equal to 0, regardless of an external
field and a soliton velocity.

The evolution equations for the soliton parameters have

o the simplest form unded.=0. Substituting Eq(3.18 into
Egs.(3.20—(3.22 and settingh, =0, one obtains

FIG. 3. The frequency dependence of the antiferromagnetic soli- Y~ fr(u, @) +fe(u,0),  @=0i(u,0)+ge(u, o),
ton energy ¥=0); solid line —H#0, dashed line-H=0. 1
- . fr=—2\;0Uk?(1—u)?, g,=—\;6k%w(1—u) 3yl
dr=No{([1L 1) = hel 11T,
! | ! ./ ! n 1 1
de=A¢e=(([LI2+h (MLITT=1TLID),  (3.20 fo=~2Mjoux?(1-u) 3 + w2(1-u)?
Where)\é:)\e(a/XO)z, hL:gHL/(ZMOwO)
The reduced rate of change of the second integral of mo- ) u o, )
— =—2\.6 1- -~ (1+u)(1l- . (3.2
tion N is obtained in a similar manner: Ge @ 3 ¢ (1+w(d-w 3.27

— 1

The analysis of these equations shows that an influence of

hgMZ f drL,(Ru,L)=gMgéngn, 5=1n+ 7e, relativistic and exchange dissipative terms on soliton relax-
(3.21) ation differs essentially. In the whole region of the soliton
parameterg3.26), the relativistic relaxation leads to mono-

m=n(1 7 i] —h1,2) tonic decreasing of both the soliton velocit; £0) and the
ron e LR absolute value of the precession frequengsgng,)=
77e=7\é<|z(|,[|.i]")+hl_(|'z’—|z|'2)>- (3.22 —sgn)]. The character of relativistic relaxation is readily

illustrated by the integral curves of equatiams f,, w=g,
According to the general scheme, one obtains feorend

. ] h u 1/6] 1_U(0) 1/3
N Eqg. (3.18 the following evolution equations for param- 0=w(0) ’
etersw and u: u(o0) 1-u
o 2 where u(0) and w(0) are the initial values of the soliton
. ok(1=wAa+wn), 3.23 parameters. These curves are schematically represented in
S Fig. 4(a).
0=——{(0+we)(1-u)g—[1-(1-u)(0+we) (20 As to the contribution of exchange relaxation, the func-
2 tions f, and g, can change their signs, and in the course of
+we)] 7t (3.24 exchange relaxation the soliton parameterand o change

nonmonotonically. The corresponding integral curves of the
Equations(3.12 and (3.13, defining the quantitie$d, ~ €dquationsi=fe, ®=g., obtained by the numerical integra-
andF, in the main approximation with respect to the small tion, are shown in Fig. @). The integral curves in the case
parameter g/ ), are divorced from one another, and for the A1=N\ are shown in Fig. @).

dimensionless quantit, we have an equation In the caseu(0)=0, the functionsf,=f.=0; it means
that if the initial soliton velocity is equal to zero then the
}hL—KéhIﬂLhL{?\3+(7\1—?\3)|E+7\é|'2} soliton remains immobile at all succeeding momefats it
] ] ] does in FM’g. Similarly, if initially the precession frequency
=N = AL LIT NI + Y wel 5, is equal to 0, thery,=g.=0 and w=0 in the course of
32 relaxation.
(329 If an external magnetic field is large enough angd<c,
wherey = x,wo/(4gMy). then the picture of soliton relaxation becomes more compli-

With accuracy at designations, E@®.31) coincides with  cated. In the cas& >V, , whenh_ is determined by the
Eqg. (2.11) for the collinear component of the effective field formula (3.31), the functionsg(u,w) and f(u,») have the
in a uniaxial FM but the last term in the right-hand side of form
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{c)

FIG. 4. The antiferromagnetic soliton parameters evolution at

b=0; (a) relativistic relaxatior(\ ;# 0, A= 0); (b) exchange relax-
ation (\o#0, A;=0); (c) relaxation at\g=X\;.

f,=—2N\;8uk?(1—u)?,

gr= _)\15K2(w+we)(1_u)

1
§+U),

633

— ’ 201 _ E 201 _11)\2
feo 2N 0uk“(1—u) 3+(w+we) (1—-u)

ge=—2\,0kX(w+ wg)

u
1- §—(w+ we)2(1+ u)(l—u)z}.
(3.28

It is easy to see that the functions in E§3.28 can be
obtained from Eqs(3.27) by the simple substitutiom— w
+ w.. The region of the soliton existence can also be ob-
tained from that calculated aé,=0 by the frequency axis
shift on the value { w,), since the integral curves of Egs.
(3.28 are just the same as those of E(27) but shifted on
the value - w,). In this case the limiting state of the soliton
turns out to be that with precessian—0, o — — w,. How-
ever, it should be recollected that form28 under small
values of the soliton velocity is inadequate because under
V<V, one must také =0. If so doing, we have the fol-
lowing evolution equations rather than E.28:

f,=—2N;0uk?(1—u)?,

1
gr=—N10k2(1—U)| U(w+ we) + 3@

=—2\’ 21— E_ 201 _11\2
feo 2N go0uk<(1 u)3 w(w+we)“(1—u)

1
—we(w+we)(§—u)

ge=—2\.0k%(1—u)

2 u
K|\o—3 (0+ we)

(3.29

)
+u(w+ a)e)2< U(w+ we)— §) .

It can be readily verified that these equations result in the
final state of the soliton relaxation with= 0=0 as it must.

_ﬂ.

-1t

FIG. 5. The antiferromagnetic soliton parameters evolution at
b#0, A=0.
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If the characteristic velocity/, <c, then the soliton re- 6(—»)=0, §(+x)=7]; in the caseA<0 then #(*x)
laxation is described by Eq$3.28 at V>V, and by Eqs. =0 and solution3.30 describes a dynamic soliton without
(3.29 atV<V, . Naturally, in the cas¥, <c there exists a a topological charge. The soliton energy and the integral of
certain intermediate region between one regime to anothemotion N, corresponding to E¢3.30, are equal to
An analysis of this intermediate region requires calculating

h, from Eq.(3.25 in the general case, which is beyond the E—E & 1-p +0?|+x N=n.wD
scope of the present paper. ol 2 l1- ’ 0%k
In the more general model of AFM’s, which takes into (3.3)

account the anisotropy energy of the fourth order, ite., \yherek=12: atA>0k=1 and atA<0k=2
#0 [see Eq(3.14], the solitonlike solution of the dynamic " '

equations can be represented in the fganH = 0):2® _ p 112
2| sinhY——| , k=1
1-u (1-u)k*—
r K 1 D=2 T~ K°—p
Al? . A=0 k P 1 P ¥ 2
K _— =
sin)'(x—(x—Vt)) cos p—(1—u)x?| ’ '
_ 0
tan =1 K 1 Note that the existence regions of two types of solitons
|A[72 P » Amin<A<O, (with and without a topological chargare separated by the
cosl‘(— (x—Vt)) infinitely high-energy barriedfz(A— *0)—o. Therefore in

. %o the course of relaxation, a transformation of a dynamic soli-

(330 ton in the topological one and vice versa is impossible. The
whereA=(1—p)/(1—u)—w?, p=Db/(2B); the dimension- analysis of the soliton relaxation b= 0 is performed in the
less parameters, u, and « are defined above. The restric- same manner as it done above for the das®, and there-
tion A>Anin=—p/(1—u)<0 is connected with the existence fore we shall present only the final results.
condition of the solutior(3.30 (x2>0). The evolution equations for the soliton parametesnd

At A>0, solution(3.30), as previously, describes the soli- o, which are connected with relativistic relaxation, have the
ton with a topological charggkink, or domain wall, following form:

[(1-p)/(1—u)— w?]Dy+ 2k
[(1-p)/(1—u)+ 0?]Dy+ 2k’

u=-—2\,8u(1—u)

_ 1-p 1-p 7 l-p-e’tue’[(1-p
w——)\lé‘w(u (ru—a) )Dk+2K (m'f’(x) Dy+2k| - 2p 1_u—a) Dy—2«
o [A2P_ 2] pr 2] 3.3
1—u w k+ P . ( . 2

The exchange terms have similar but more cumbersomeelaxation. It should be stressed once more that an adequate
form and we do not write them down here. description of a nonlinear excitation in magnets is impossible

The integral curves of Eq$3.32 are shown in Fig. 5. We without taking into account the exchange relaxation pro-
see that topological solitons approa@s atb=0) the equi- cesses. They affect not only quantitative estimations, as took
librium state with a domain wall at rest whereas dynamicalplace for domain wall$? but can result in a qualitatively
solitons degenerate into the homogeneous ground state dffferent picture of the soliton evolution.
AFM’s.
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