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Soliton relaxation in magnets
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An equation set describing the evolution of the integrals of motion of solitons, induced by relaxation
processes of both a relativistic and exchange nature is obtained within the framework of the phenomenological
theory. Two-parameter one-dimensional ferromagnetic and antiferromagnetic solitons and two- and three-
dimensional ferromagnetic precession solitons are analyzed. The corresponding integral curves are plotted, and
the time dependences of the soliton parameters at various relaxation stages are discussed.
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I. INTRODUCTION

Relaxation processes are known to play a very impor
role in physics of magnetically ordered crystals. These p
cesses are usually studied by means of two main approac
microscopic and phenomenological. An advantage of the
croscopic approach is that it enables one to find differ
dependences of relaxation characteristics on temperature
on parameters of the magnet under consideration. Howe
when applied to investigation of nonlinear waves, the mic
scopic approach appears to be rather intricate and, in fa
can be used to analyze only the simplest kink-type solit
or domain walls~DW!. A description of more complicated
solitons ~e.g., two-parameter solitons! and a generalization
on non-one-dimensional excitations, etc., in the framew
of the microscopic approach is a nontrivial problem beca
it requires one to know an exact spectrum and wave fu
tions of magnons on the soliton background, while the la
are known for a moderate number of one-dimensional s
tems.

The phenomenological approach, suggested in the cla
cal work by Landau and Lifshitz1 well before the micro-
scopic approach began to be developed, does not yiel
comprehensive characteristics of relaxation processes. N
ertheless, it enables one to describe a whole picture of re
ation of a nonlinear excitation. In the framework of the ph
nomenological approach, an energy dissipation is taken
account by introducing relaxation terms into dynamic eq
tions of motion ~Landau-Lifshitz equations!. In particular,
the equation of motion for a magnetization vectorM in one-
sublattice ferromagnets~FM! has been proposed to be
follows:

Ṁ52g@M ,H#1R, ~1.1!

whereH is the effective field,H52dW/dM , W is the en-
ergy of the FM,g is the gyromagnetic ratio, the point mea
the time derivative.

The first term in the right-hand side of Eq.~1.1! describes
the dynamics of the vectorM whereas the second one d
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scribes a magnetization distribution approaching its equi
rium state. In Ref. 1 the dissipative termR has been chosen
in the form

R5lgMHt , Ht5@M @H,M ##/M2, ~1.2!

whereM5uM u, Ht has the meaning of the effective fiel
component perpendicular to the magnetization vectorM , l is
the sole dimensionless relaxation constant appearing in
theory. Taking into consideration that the vectorHt can be
expressed by

Ht5@M ,Ṁ #/~gM2!, ~1.3!

the dissipative term can be rewritten in the Gilbert form2

R5
l8

M
@M ,Ṁ #, l85

l

11l2 . ~1.4!

Both forms ofR Eqs. ~1.2! and ~1.4! are equivalent to one
another.

The equation of motion~1.1! with Landau-Lifshitz Eq.
~1.2! or the Gilbert Eq.~1.4! dissipative term, as it is easy t
see, conserves the length of the vectorM , uM u5const. So, as
was outlined in Ref. 1, Eq.~1.1! is, in fact, the equation for
the unit vectorm5M /M . As a matter of fact, it is precisely
the vectorm that describes the magnetization distribution
the magnet. Besides, it was noted in Ref. 1 that such di
pative terms correspond to relaxation processes conne
with relativistic interactions only. Really, calculating the e
ergy dissipation rateẆ522Q, Q is the so-called dissipa
tive function, using Eqs.~1.2! or ~1.4!, one obtains

Q52
1

2 E drHṀ 52
1

2 E drHR52
l

2gM0
E drṀ 2.

Consequently, the energy dissipation takes place for a ho
geneous precession of magnetization. Since only relativi
interactions result in relaxation of the homogeneous mag
tization motion, the dissipative termR in the form of Eq.
~1.2! or ~1.4! has the relativistic origin.

Starting from Eq.~1.1! andR in the form of Eq.~1.2! or
~1.4!, it is rather easy to obtain such important relaxati
619 © 1997 The American Physical Society
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620 56BARYAKHTAR, IVANOV, SUKSTANSKII, AND MELIKHOV
characteristics of a magnet as a width of a ferromagn
resonance~FMR! line, Dv5lv0 , ~v0 is the FMR fre-
quency!, a dynamic slow-down coefficient of DWh,1 a spin
wave decrement,3 and so on. However, detailed comparis
of these results with experimental data and with microsco
calculations revealed some significant contradictio
Among them it should be primarily noted an erroneous
pendence of the spin-wave decrement on the wave ve
k„g(k);k2… whereas the microscopic calculation, made
Refs. 4 and 5~see also Refs. 1 and 6!, gives for short-wave
magnons (kx0@1)g(k);v2(k);k4. In FM’s of the easy-
plane type an absurd result is obtained: in the long-w
limit ( k→0), whenv(k);uku→0, a calculation by mean
of Eq. ~1.2! or ~1.4! gives g(k)→constÞ0, i.e.,
@g(k)/v(k)#→` at k→0 @the microscopic analysis leads
the hydrodynamic resultg(k);v2(k);k2 ~Refs. 4 and 5!#.

It should be noted that values of the relaxation constanl
obtained from the experimental data on FMR linewidth a
on DW mobility in high-quality ferrite films can diverge
considerably.7 Furthermore, the microscopic calculation
the coefficienth ~Refs. 8 and 9! showed that a DW slow-
down is affected by processes of not only relativistic b
exchange origin as well. Thus, the contradictions m
tioned testifies that the phenomenological description
some relaxation processes in magnets by means of the d
pative term~1.2! or ~1.4! is inadequate.

Significant progress in the development of the pheno
enological approach has been achieved in Refs. 10–13
these works a form of the dissipative term has been p
posed, which takes into account relaxation processes of
relativistic and exchange origins. Besides, it was shown
a symmetry of a crystal and a hierarchy of different inter
tions affect the structure of dissipative terms and the hie
chy of relaxation constants.

To obtain the dissipative terms, in Refs. 10 and 11 O
sager equations have been used with components of the
tor M as generalized coordinates, components of the ef
tive field H being generalized forces. According to Ref. 1
the equation for the magnetization vectorM can be written
in the form

Ṁ i5l ik~M !Hk1l ik,lm~M !
]2Hk

]x1]xm
. ~1.5!

The antisymmetric about the indicesi and k parts of the
tensorsl ik , l ik,lm define the dynamics of the vectorM
whereas the symmetric ones describe an energy dissipa

A spatial dispersion of the system, described by the ten
l ik,lm under small gradients ofM , should naturally be taken
into consideration only in the exchange approximation.
higher symmetry of this approximation results in the cons
vation law for the total magnetic moment of the system:

M~ t !5E drM ~r ,t !. ~1.6!

In this case the corresponding term in Eq.~1.5! must have
the form of a divergence. Besides, in the exchange appr
mation, the spin indicesi , k in the tensorl ik,lm must not
‘‘mix’’ with the coordinate indicesl , m ~the tensorl ik,lm is
symmetric about the latter!. Taking also into account isot
ropy of the media about the spatial indices, the excha
ic
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relaxation term can be written in the form10 l ik,lm5
2led ikd lm ~the sign ‘‘minus’’ is chosen for convenience i
such a way thatle.0!.

The tensorl ik ~more precisely, its symmetric partl ik
(s)!

describes a contribution of different interactions of relativ
tic origin into dissipative processes. The form ofl ik

(s) is de-
fined by the symmetry of the magnet, e.g., in a rhom
magnet the tensorl ik

(s) is diagonal~in the main axes!: l ik
(s)

5diag(l1,l2,l3).
Such a anisotropic structure of the relaxation term lead

that, not only a FMR frequency, but a FMR linewidth a
well, turns out to be dependent of an orientation of the m
netization vector in the ground state of a FM~Ref. 14! ~dif-
ferent orientations of the vectorM can be obtained by apply
ing an external magnetic field aligned with differe
principal axes of the magnet!. This effect enables one to
determine the values of relaxation constants experiment
by means of measuring FMR linewidth at different orien
tions of an external field~see details in Ref. 14!.

A dynamic symmetry is of considerable importance
determining the structure of the tensorl ik . In particular, in
the exchange approximation, the existence of the integra
motionM leads to the conditionl ik50. In the model of an
uniaxial magnet~symmetryC`!, one of the components o
the vectorM, namely,Mz ~Z is the anisotropy axis! is an
integral of motion. It follows that in an uniaxial magnetl ik
5diag(l1,l1,0) ~the equality of the constantslx andly fol-
lows from the equivalence of the axesX andY!.

The inclusion of an anisotropy in the basal plane chan
both dynamic and dissipative terms in equations of moti
If the energy of the uniaxial anisotropy is much larger th
that of interactions breaking the mentioned invariance, th
similar hierarchy takes place for corresponding relaxat
constants, the tensorl ik having the form@A theory with two
different relaxation constants was proposed by Bloch15 ~see
also Ref. 16! for description of magnetic relaxation in mag
netically disordered systems. Relaxation times,t i and t' ,
introduced in Ref. 15, correspond to relaxation of longitu
nal and transverse~with respect to an external magnet
field! components of magnetization vectorM . However,
Bloch’s theory does not take into consideration a symme
of the crystal and a hierarchy of interactions. Only in som
special cases it turns out to be possible to compare our
laxation constants and Bloch relaxation times. A detai
comparison of the present approach and Bloch’s theor
carried out in Ref. 17.#

l ik5diag~l1 ,l1 ,l3!, l3!l1 . ~1.7!

From the aforesaid, the dissipative function of the FM c
be represented as follows:10,12

Q5
1

2 E drgM$l ikHiHk1lea
2~¹H!2%, ~1.8!

where the factorsgM anda2 ~a is the lattice constant! are
introduced for convenience in order that the relaxation c
stantsl ik ,le be dimensionless. The equation of motion f
the vectorM with a relaxation term corresponding to such
dissipative function takes the form
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56 621SOLITON RELAXATION IN MAGNETS
Ṁ52g@M ,H#1gM$l ikHiek2lea
2DH%. ~1.9!

It is easy to verify that in the exchange approximation (l ik
50) and in case of an uniaxial FM, the dissipative term~1.9!
leads to the correct dependence of the spin-wave decre
on the wave vector in the long-wave approximation: t
dependence is identical to that obtained by means of
microscopic calculations. Besides, two~or more! different
relaxation constants presented in the theory make it poss
to fit experimental data on FMR linewidth and on DW
slowdown.10

Similar relaxation terms and a dissipative function, whi
takes into account a symmetry of the magnet and the
change relaxation, for two-sublattice antiferromagnets
been obtained in Refs. 11 and 13. Such magnets are kn
to be convenient to describe in terms of vectorsM and L ,
M5(M11M2)/2, L5(M12M2)/2, M1,2 are the magnetiza
tion vectors of the sublattices. Starting from the Onsa
equations with components of the vectorsM andL as gen-
eralized coordinates and the effective fieldsH52dW/dM ,
F52dW/dL as generalized forces, the following dissipati
function has been found:11

Q5
1

2 E drguL u$l ikHiHk1lea
2~¹H!21l0F

2%,

~1.10!

where the tensorl ik is of a relativistic origin, whereas th
relaxation constantsle and l0 are of an exchange origin
Relaxation terms in the equations of motion for the vect
M and L are defined by the relationships:Rm5dQ/dH,
R15dQ/dF ~see below!.

It is important to note once more that the equation
motion ~1.9! does not conserve the length of the magneti
tion vector, uM uÞconst. Besides, the dissipative functio
~1.8! includes all the components of the effective fieldH,
and not just its componentHt @see Eq.~1.2!#. These two
circumstances complicate the analysis of the relaxation in
system substantially.

In the present work the main attention will be paid to t
investigation of soliton relaxation in uniaxial magne
Smallness of the relaxation constants involved enable on
develop the perturbation theory to describe the evolution
soliton’s parameters. For solitons in completely integra
systems, there exist a specific form of the perturbat
theory, based on the inverse scattering problem~e.g., see
Refs. 18 and 19!. We shall use a more simple version of th
perturbation theory, based on the construction of evolut
equations for integrals of motion of an undisturbed syste
These equations describe a slow evolution of parameter
an initial excitation due to dissipation. The simplest varia
of such an approach has been used in Ref. 20 when stud
fluxons damping in Josephson’s contacts in the framewor
a sine-Gordon equation. An advantage of this approac
that it can be used even in the case when an initial~unper-
turbed! equation is not completely integrable, e.g., when a
lyzing two- or three-dimensional solitons.

II. RELAXATION IN FERROMAGNETS

To describe phenomenologically dissipation processe
nonlinear excitations in ferromagnets, we start from
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equation of motion for the magnetization vectorM Eq. ~1.9!.
The relaxation term in a uniaxial FM has the form12

R5gM$l1H'2lea
2DH%, ~2.1!

whereH'5H2n(n,H) is the component of the effectiv
field perpendicular to the anisotropy axis~the axisZ, n is the
unit vector along this axis!; le and l1 are exchange and
relativistic relaxation constants, respectively (le ,l1!1). As
was noted in the Introduction, if one takes into account sm
interactions breaking the uniaxiality of the magnet, then
Z component of the dissipative vectorR becomes nonzero,

R5gM$l1H'1l3Hzn2lea
2DH%. ~2.2!

As it will be shown below, the constantl3 , even though
it is small in comparison withl1(l3!l1) is required when
analyzing nonlinear wave relaxation.

Thus, the equation of motion~1.1! in uniaxial FM with a
small deviation from uniaxiality has the form

Ṁ52gM@M ,H#1gM$l1H'1l3Hzn2lea
2DH%

~2.3!

and the dissipative functionQ is equal to

Q5
1

2 E drgM$l1H'
21l3Hz

21lea
2~¹H!2%. ~2.4!

According to Eq. ~2.3!, the modulus of the vectorM
changes due to the relaxation terms. Multiplying Eq.~2.3! by
M , one obtains21

Ṁ5gM$l1~m,H'!1l3mzHz2lea
2~m,DH!%. ~2.5!

Combining Eqs.~2.3! and ~2.5!, it is easy to write the
equation for the unit vectorm:

ṁ52g@m,H#1g$l1@H'2m~m,H'!#1l3@Hzn

2m~mzHz!#2lea
2@DH2m~m,DH!#%. ~2.6!

It should be noted that in the casel i5le→0 uM u
5const, and the magnetization dynamics are entirely
scribed by Eq.~2.6! for the unit vectorm. As shown in Ref.
22, a nonconservation ofuM u leads to an existence of th
so-called dissipative linear spin mode.

To calculate an energy dissipation rate in the linear
proximation with respect to the relaxation constants~we re-
strict ourselves to this approximation!, the effective fieldH
in the dissipative functionQ should be calculated in the mai
~zero! approximation with respect to the these constants
the nondissipative approximation, the perpendicular tom
component of the effective fieldH' can be readily found
@see Eq.~1.3!#. But, as mentioned in the Introduction, on
more peculiarity of Eqs.~2.3! and ~2.6! is that these equa
tions contain not onlyH' but the collinear component of th
effective fieldHm as well, Hm5mHm , Hm5(mH). This
component cannot be found from the nondissipative equa
of motion and must be obtained independently.

So, the choice of the dissipative termR in the form~1.9!
@or in the special case Eq.~2.2!# leads to that the equation fo
the normalized magnetizationm becomes insufficient to de
scribe a magnetization distribution. Naturally, one may a
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622 56BARYAKHTAR, IVANOV, SUKSTANSKII, AND MELIKHOV
lyze Eq.~2.3! for the magnetization vectorM as such, but all
soliton solutions are constructed on the basis of Eq.~2.6!,
and when analyzing their relaxation, it is also more con
nient to start from the similar equation modified by its rela
ation part properly.

To construct an equation for the collinear fieldHm , we
use the explicit expression for the FM energy:

W5E dr$ f ~M2!1w~M !%. ~2.7!

Here the termf (M2) describes the isotropic exchange inte
action which defines for the most part the length of the m
netization vectorM5uM u. The termw(M ) corresponds to
the inhomogeneous exchange interaction, the anisotropy
ergy, the interaction with an external magnetic field, etc.

w~M !5
a

2
~¹M !21

b

2
M'

22He~M2M0!. ~2.8!

HereM0 is the magnetization in the ground state,He is the
external magnetic field.

It is easy to show thatHm52dW/dM . From Eq.~2.8!
one obtains

Hm522M
df

dM22m
dw

dM
. ~2.9!

Note, that ifw(M ) is a homogeneous function of the seco
order with respect to the components of the vectorM , then
the second term in Eq.~2.9! reduces to 2M21w(M ).

Under temperatures not very close to Curie tempera
TC , the function f (M2) has a sharp maximum atM2

5M0
2(T), M0(T) is the equilibrium value of magnetizatio

@we chose the anisotropy energy so thatw(M )50 in the
ground state#. In this case only the value ofM close toM0
may be considered to be actual, i.e.,m5(M2M0)!M0 ,
and one can write

d f

dM2 5
m

x iM0
, x i

2154M0
2
d2f ~M0

2!

d~M0
2!2

,

where the quantityx i!1 has the meaning of the longitudin
susceptibility of the FM. If so doing,

Hm52
m

x i
2m

dw

dM
. ~2.10!

In the static case, even at an inhomogeneous distribu
of magnetization~e.g., at the presence of a static domain w
or an inhomogeneous external field! Hm50, and the length
of magnetization vector depends on coordinates,

M5M0F12x iSm, dw

dM D G .
The latter result follows from the known fact that in th
successive phenomenological theory, even atT5const,M is
a function of a local intrinsic field. If a dynamic magnetiz
tion wave is present, then the quantityHm , in general, does
not equal 0. It is noteworthy that a contribution of the fir
-
-

-

n-

re

n
ll

t

term in Eq.~2.10! in Hm , although the value ofm is small,
can be rather essential due to the presence of the large
ficient x i

21@1.
To calculateHm andm, it is necessary to use Eq.~2.5!.

Taking into account the relationship betweenHm andm, one
obtains the equation for the collinear fieldHm :

x i

gM0
Ḣm2lea

2DHm1l̄~r ,t !Hm52
x i

g SM ,
dw

dM D
1L~r ,t !,

l̄~r ,t !5l1m'
21l3mz

21lea
2~¹m!2,

L~r ,t !5
l12l3

g
mz@m,ṁ#z1

lea
2

g
~m,D@m,ṁ# !.

~2.11!

Equation~2.11! is a linear homogeneous equation of t
diffusion-type with a right-hand side part. In combinatio
with Eq. ~2.6! for the unit vectorm and with relationship
~1.3! for the quantityHt , Eq. ~2.11! completes the construc
tion of the closed system of equations describing relaxa
of different dynamic excitations in FM in the linear, wit
respect to relaxation constants, approximation. This sys
written in terms ofm andHm is more convenient for analysi
than that written in the variablesm andm, sincem→0 at
x i→0 whereas the quantityHm remains finite.

A general solution of Eq.~2.11! without the right-hand
side describes the relaxation ofHm to the equilibrium value
Hm50, the characteristic relaxation timet0 is of the order
(l1gM0 /x i)21, and atx i→0 it is very small.10 The same
time t0 defines the rate of the homogeneous relaxation
M to its equilibrium valueM0 . Based on the estimation
d2f /d(M2)2; fM24, f;IM 0 /m0 , whereI is the exchange
integral value close to the Curie temperature (I;TC), m0 is
the Bohr magneton, one obtainste;m0 /(l1gI). Conse-
quently, the contribution of relativistic interactions~i.e., the
const l1! to the relaxation of the magnetization length
amplified by the exchange interaction.10 Previously this fact
has been deduced on the basis of the microscopic analys
Ref. 23. Such a coincidence of the character of magnet
tion length relaxation in the framework of the two a
proaches testifies that our generalized phenomenolog
equation~1.7! is adequate.

The inhomogeneous solution of Eq.~2.11! can be nonzero
only in the presence of a dynamic magnetization wave. N
that we are interested in the main approximation forHm
about relaxation constants and therefore a magnetization
tribution in the nonlinear wave under consideration, calc
lated in the nondissipative approximation, must be sub
tuted into the functionsl̄(r ,t) andL(r ,t) in Eq. ~2.11!. Here
it is also should be noted that a structure of this solut
depends on the ratio betweenx i andl, and on the characte
of a magnetic excitation.

For a description of relaxation on the basis of the set
equations obtained, we use a simple version of the pertu
tion theory based on constructing of evolution equations
integrals of motion of the unperturbed system. This sche
is as follows: let the magnetization distribution in the no
linear wave be determined by the set of paramet
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56 623SOLITON RELAXATION IN MAGNETS
a1 ,a2 ,...,an which are constant in the nondissipative a
proximation. Taking into account relaxation terms, these
rameters begin to depend on time. The corresponding ev
tion equations fora j ( j51,2,...,n) can be obtained from the
integrals of motion of the unperturbed systemI 1 ,I 2 ,...,I n ~if
the system under consideration has a solution withn param-
eters, then there exist at leastn integrals of motion!.

One of these integrals is the energy of the magnetic e
tation,E. Its rate of change is determined by the dissipat
function Q, dE/dt522Q. Let us finddE/dt, on the one
hand, as a linear combination of the change rates of the n
linear wave parameters,da j /dt; on the other hand, one ca
calculate the value ofQ as a function these parameter
Equating the corresponding values, we obtain the bala
equation for the energy, which is one of the sought-for eq
tions describing the evolution of the parametersa j due to
relaxation processes. Similar equations can be obtaine
calculating the change rates of other integrals of motion.
a result, one obtains the system ofn first-order differential
equations for the parametersa j .

The simplest variant of such an approach with one in
gral of motion~energy! has been used in Ref. 24 to analy
the dissipation of one-parameter nonlinear waves~domain
walls, a parameter is a DW velocity! accounting relaxation
and an applied force.

One important note should be made here. As mentio
above, the structure of the relaxation term in Eq.~2.2! is that
it does not conserve the length of the magnetization ve
pa
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M @see Eq.~2.5!#. Since the valueM is also a function of a
temperature, it means that an equation for the magnetiza
vectorM with dissipative terms cannot, in general, be co
sidered independently. There is a need to write a system
equations, which includes the Landau-Lifshitz equation
well as equations of thermoconductivity and of entropy b
ance. However, when studying the relaxation of a cert
magnetic excitation in the temperature region well aw
from the Curie temperature~or Néel temperature for antifer-
romagnets!, the relaxation is implicitly supposed to lead on
to some changes of parameters characterizing the co
sponding solution of the dynamic equations~slow relax-
ation!. Both an initial excitation and a final state of the ma
netic system are found from solutions of the dynam
equations in which the magnetization length is fixed. In d
ing so, we implicitly consider that the magnetic system is
a contact with a thermostat which immediately ‘‘compe
sates’’ any alternation ofM by supplying or removing a
quantity of heat to or from the magnetic system.

To take into consideration this implicit supposition whe
calculating the change rate of one or another integral of m
tion, it is sufficient to take into account only that relaxatio
which is not associated with changes ofuM u. With this aim
in view, one should setdM /dt5Mdm/dt1dm/dt, and then
take only the first addend. For example, taking into acco
Eq. ~2.6!, one obtains fordE/dt the following expression@in
place of Eq.~2.4!#:
~Ė!M5const52E drMṁH52
M0

g E dr $l1@~@m,ṁ#'!21gHm~m' ,@m,ṁ#'!#1l3@~@m,ṁ#z!
21gHm~mz@m,ṁ#z!#

1lea
2@~¹@m,ṁ# !21gHm~m,D@ṁ,m# !#%[22Q̄. ~2.12!
in
o-
la-

ets,
or

ter

the
The quantityQ̄ hereafter is referred as a reduced dissi
tive function. In fact, the transition fromQ to Q̄ is due to a
small value of the longitudinal susceptibility. The fact th
x iÞ0 is taken into consideration only at the intermedia
stage of the collinear fieldHm calculation, and in the fina
expressions, we must take the limitx i→0. So, according to
Eq. ~2.10!, m5x i(Hm1MdW/dM )→0. Note, that if so do-
ing, f (M2);m2/x i;m→0, and the corresponding term i
the energy balance can be omitted.

Reduced expressions for rates of change of other integ
of motion can be found in a similar way. In particular, for a
uniaxial FM, considered in the present section, it is con
nient to use the integral of motionI z equal to the total de-
viation of theZ component of magnetization from its equ
librium value. This value can be expressed by a numbe
magnons in a nonlinear waveN. For an easy-axis FM

N5
1

2m0
E dr ~M2Mz!.

Calculating the change rate of this integral of motion w
account ofM5const, one obtains
-

t

ls

-

of

~Ṅ!M5const[~Ṅ!5
d

dt H M0

2m0
E dr ~12mz!J

5
M0

2m0
E dr$l1mz~m' ,H'!1l3mz

2Hz

2lea
2@DHz2mz~m,DH!#%. ~2.13!

It is sufficient to analyze two integrals of motionE and
N for describing the evolution of a two-parameter soliton
a uniaxial FM. Using one more integral of motion—the m
mentumP—does not lead to new equations due to the re
tionshipdE5\vdN1VdP which is true for any FM admit-
ting an existence of two-parameter solitons.25 To analyze
two-parameter nonlinear waves in two-axes magn
whereinI z is no longer an integral of motion, equations f
dE/dt anddP/dt can be used.

A. Relaxation of two-parameter solitons

In this section we analyze relaxation of a two-parame
soliton in an easy-axis FM with the energy~2.8!, taking into
account a constant external magnetic field aligned with
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easy axisZ. The corresponding dynamic solution of th
equations of motion in an uniaxial FM has been investiga
in Ref. 25 in detail. The phenomenological theory of solit
relaxation without an external magnetic field and with re
tivistic relaxation terms, which do not take into considerati
the symmetry of a magnet, has been developed in Ref.

It is easy to see that any solution of the dynamic equati
in the presence of the external magnetic fieldHe can be
obtained from the corresponding solution calculated atHe
50 by means of the simple substitutionV→V2gHe ,
whereV is the precession frequency about the anisotro
axis. The magnetization distribution in the two-parame
soliton in which we are interested, is defined by t
formulas25

w5Ṽt1c~x2Vt!, x0
dc

dx
52

V

Vm

1

cos2~u/2!
,

tan2
u

2
5

k2

A cosh2@k/x0~x2Vt!#11/2~B2A!
,

~2.14!

where Ṽ5V2gHe , Vm52v0x0 ; k5@12Ṽ/v0
2(V/Vm)

2#1/2; (x0 /k) is the effective soliton width,
x0(a/b)

1/2, A25B214k2(V/Vm)
2, B5Ṽ/v012(V/Vm)

2.
The angle variablesu andw parametrize the unit magnetiza
tion vectorm,

mx1 imy5sin ueiw, mz5cosu. ~2.15!

The soliton structure is governed by two parameters:
velocity V and the precession frequencyV. The localized
soliton solution~2.14! exists in the regionk2.0, or

V2gH

v0
1S VVm

D 2,1. ~2.16!

The values of the integrals of motionE and N, corre-
sponding to the soliton solution~2.14!, are equal~per the
squarea2!:

E52E0S k1
h

2
I 0D , ~2.17!

N5
E0

\v0
I 0 , I 05tanh21

2k

22v1h
, ~2.18!
d

-

.
s

y
r

e

where E052bM0
2x0 , h5gHe /v0 , k5(11h2v2u)1/2.

Here we introduce the dimensionless variablesv5V/v0 ,
u5(V/Vm)

2 convenient for the further calculations.
Note, that the expression for the two-parameter soli

energy~2.17! cannot be obtained from the known result
He50 ~Ref. 25!, by the simple substitutionV→Ṽ: the term
in Eq. ~2.17! proportional tohI0 results in essentially differ-
ent dependence of the soliton energy on its parameters
at He50. In particular, for the soliton in rest (u50), the
two-parameter soliton energyE(v) increases infinitely with
v→h, and atv50 it has an additional minimum as com
pared with caseh50 ~see Fig. 1!.

The rate of the energy change, described underx i!1 by
the reduced dissipative functionQ̄ ~2.12!, can be written in
the form

Ė52
1

2
E0q, q5qr1qe , ~2.19!

where qr and qe are the contributions associated with th
relativistic and exchange relaxation terms, respectively,

FIG. 1. The frequency dependence of the ferromagnetic sol
energy (V50); solid line2HÞ0, dashed line2H50.
o the
me
ial
qr5l1^u̇
21sin2 u cos2 uẇ22hm sin2 u cosuẇ&, ~2.20!

qe5le8^u821 u̇2w821u82ẇ21ẇ82 sin2 u1sin2 u cos2 uw82ẇ21sin 2u~u̇w8ẇ81u8ẇẇ82 u̇8w8ẇ !12 cos 2uu8u̇w8ẇ

2hm@ẇ cosu~2u821sin2 uw82!1sin u~u9ẇ2 u̇w912u8ẇ822u̇8w8!#&, ~2.21!

wherele85le(a/x0)
2, hm5Hm /(bM0); prime and angular brackets mean differentiation and integration with respect t

dimensionless space variablej5x/x0 , respectively, and a point means differentiation with respect to dimensionless tit
5v0t. The terms proportional tol3 are omitted in Eq.~2.19! because atl3!l1 these terms are shown to have no cruc
significance in the problem of soliton relaxation.

For the change rate of the second integral of motionN, one obtains from Eq.~2.13!

N̄̇52
E0

2\v0
h, h5h r1hc , ~2.22!
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h r5l1^sin
2 u cosu~ẇ cosu2hm!&, ~2.23!

he5le8^u82ẇ1cos 2uu̇w81sin2 u cos2 uw82ẇ1sin u cosu~u8ẇ82 u̇8w8!2hm@2 cosuu821sin uu91sin2 u cosuw82#&.
~2.24!
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On the other hand, let us calculatedE/dt anddN/dt as
linear combinations of the derivativesdu/dt anddv/dt by
means of the explicit expressions~2.17! and~2.18!. Equating
the expressions found from Eqs.~2.19! and ~2.22!, respec-
tively, the set of differential equations for the soliton para
etersv andu can be obtained:

v̇5gv~v,u![
1

4k
~qb22hb1!,

~2.25!

u̇5gu~v,u![
1

4k
~ha12qa2!,

where

a15v~v2h!12u~h12!, a25v2h12u,

b15v~v23h!12~h21h22u!, b2521h2v.

According to Eqs.~2.19! and~2.22!, the functionsgv and
gu can be also represented as a sum of two terms pro
tional to the relativistic and exchange relaxation consta
respectively,

gv5gv
~r !1gv

~e! , gu5gu
~r !1gu

~e! .

To calculate the collinear fieldhm5Hm /(bM0), let us
come back to Eq.~2.11!. Coordinate and time dependenc
of the coefficientl̄(r ,t) and of the right-hand side of thi
equation are determined by the soliton solution~2.15!. Such
a cumbersome structure of this solution makes it imposs
to solve Eq.~2.11! in the general case. That is why we r
strict ourselves to consideration of two limiting cases:x i

!l andx i@l ~l is the characteristic value of the relaxatio
constants!.

Functional relationship between the collinear fieldHm and
the magnetization distributionm(x,t) in these two cases ar
shown to be quite different. We are interested, in fact, in
limiting value of Hm at x i→0, l→0. Consequently, the
problem of the calculation ofHm reveals a nonanalyticity
the value ofHm at smallx i andl depends on the sequenc
of the limiting transitionsx i→0 andl→0.

Let x i!l. In this case one can setx i50 in Eq. ~2.11!
from the very beginning. Besides, let us also assume tha
soliton is sufficiently narrow, i.e., its widthD5x0 /k! l d ,
l d5(lea

2/l3)
1/2 is a some characteristic diffusion length.

this limiting case, the magnetization distribution in the so
ton can be considered as ad function, sin2 u(j)52Dd(j).

If doing so, Eq.~2.11! can be readily solved:

Hm~j!5Hm~0!exp~2uju/I d!, ~2.26!

Hm~0!5
L~0!bM0

l̄~0!12~l3lea
2!1/2D21

. ~2.27!
-

r-
s,

le

e

he

-

HereL(0) andl̄(r ,t) are defined by the value of the vecto
m in the soliton center:

L~0!524l1s0
2@2vc0

41~4u2v!c0
222u#24le8s0

2@6vc0
4

2vc0
2~315v25h!12~u1uh22uv1v22vh!#,

l̄~0!54@l1c0
21le8~c0

22v1h!#s0
2,

c0
2[cos2 u~0!5

1

2
$@~v2h!214u#1/21v2h%,

s0[sin u~0!.

Note, that the quantityhm in the expressions forq andh
Eqs.~2.20!–~2.24! is multiplied by the function which differs
essentially from 0 only in the region of the soliton localiz
tion, D! l d . Therefore, when integrating overj in the ex-
pressions forq andh, the exponential factor inHm(j) Eq.
~2.26! can be set equal to 1, and the quantityl3 drops out of
the final results@at l3!l1 , the second term in the denom
nator of ~2.27! is small as compared with the first one#.

It should be noted that formulas~2.26! and ~2.27! are
obtained in the main approximation with respect to the
laxation constants. If one of them is small as compared w
another~le8!l1 or le8@l1!, thenHm does not depend on th
relaxation constants at all.

In another limiting case, when the diffusion length
much smaller than the soliton width (D@ l d), the collinear
fieldHm differs from 0 only in the soliton localization regio

Hm~j!'
L~j!

l̄~j!
. ~2.28!

At l3!le8 , l1 the conditionD@ l d for localized excitations
is realized only in exceptional cases, and we shall not c
sider it further.

Let now x i@l. It is easy to see that in this case a cha
acteristic value of the soliton velocityV* appears in the
problem, and the result nonanalytically depends on the r
(V* /V). Under small velocities,V!V* , the terms in Eq.
~2.11! proportional tox i can be neglected and the equati
reduces to the casex i!l considered above.

In the more interesting case,V@V* , one can omit all the
terms proportional to the relaxation constants, and the co
ear fieldHm turns out to be the equal to

Hm52m
dW

dM
52bM0$u821sin2 u~11w82!

1h~12cosu!%. ~2.29!
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It should be noted that in the static case,v5u50, the
collinear field, defined by Eq.~2.29!, is not equal to 0. It
means that Eq.~2.29! under small values of the soliton ve
locity is not adequate: even though the characteristic velo
V* is very small, there is a velocity interval in which th
collinear fieldHm is determined by Eqs.~2.26! and ~2.27!,
andHm→0 atu→0, v→0.

Thus, in the casex i!l and in the casex i@l, V,V* the
collinear fieldHm can be considered constant in the solit
localization region,Hm'Hm(0), whereHm(0) is defined by
ti
he
a
n

on

m
on

b

n

c

l-
d

ty

Eq. ~2.27!. If x i@l andV.V* , thenHm depends on the
magnetization distribution in the soliton@see Eq.~2.29!#.

Substituting one or another expression forHm in the for-
mulas~2.20!–~2.23! and using the soliton magnetization di
tribution ~2.14!, we obtain, after simple but rather tediou
calculations, the desired evolution equations for soliton
rametersu andv.

The functionsgu,v
(r ),(e) are very cumbersome and therefo

we shall write down only one of them, namely,gu
(r )(v,u) in

the casex i!l ~or x i@l, V,V* ! with the collinear field
Hm being defined by Eqs.~2.26! and ~2.27!:
gu
~r !~v,u!52l1uH 2

5

2
v1
41

10

3
v1
32v1

22
4

3
v1212u1

52

3
v1u2

44

3
v1
2u216u21hS 2

5

2
v1
32

10

3
v1
22v11

2

3
1
28

3
u

2
26

3
v1uD2hmS 2

3

2
v1
21v124uD1S I 0k D F2

5

4
v1
51

5

2
v1
42

3

2
v1
31v1

214u26uv1116uv1
229uv1

3124u2

216u2v11hS 2
5

2
v1
41

5

2
v1
32

3

2
v1
226u110uv126uv1

224u2D2hmS 2
3

4
v1
31v1

214u23v1uD G J ,
~2.30!
th
the
ve-

d

wherev15v2h.
Note, that in the case under consideration the separa

of contributions of relativistic and exchange terms in t
soliton relaxation is a matter of convention because the qu
tity hm , defined by Eq.~2.26!, depends on both relaxatio
constants.

The integral curves of equations~2.25!, obtained by the
numerical integration for different values of the relaxati
constantsl1 andle8 are shown in Figs. 2~a! and 2~b!. It is
interesting to note that at any values of the soliton para
eters, with the exception of a narrow region of small solit
velocities, the derivativedv/dt.0. The region of param-
eters in whichdv/dt,0 is represented in Fig. 2~c!.

Analytical solutions of the evolution equations can be o
tained in some limiting cases.

Small-amplitude solitons.Such solitons exist in the regio
of the parameters (u,v) in the vicinity of the straight line
u1v511h, whereink!1 andumax;k!1.

In casex i!l ~or x i@l, V,V* ! one can sets0
2'x2(2

2v1)
21!1, c0

2'1 in the expressions forhm Eqs.~2.26! and
~2.27! and immediately obtainshm52(11h1u). Substi-
tuting this expression into the functionsgu,v

(r ),(e) , the evolu-
tion equations in the asymptotic case under consideration
be written in the form

u̇5
8

3
uk2H l1S 31

4h

11uD2le8S 22u1
2hv1

11u D J ,
v̇5

8

3
k2H l1S 31

h~21v1!

11u D1le8uS 512u1
h~51u!

11u D J .
~2.31!

At small velocity (u!1) the equations of the smal
amplitude soliton relaxation can be substantially simplifie
on

n-

-

-

an

,

u̇5
8

3
uk2$l1~314h!22le8~11h!%,

v̇58k2~11h!S l11
5

3
le8uD , ~2.32!

and can be solved analytically. The solution of Eqs.~2.38!
with the initial conditionsu5u(0), v5v(0) at t50 has
the form

u~t!5u~0!exp$d@12exp„28l1t~11h!…#%,

k~t!5k~0!exp$24l1t~11h!%,

d5
8

3
k2~0!@l1~314h!22le8~11h!#. ~2.33!

So, in the regionk!1, u!1, the soliton relaxation is
largely governed by relativistic interactions.

At t→` the parameterk→0 andu→u15u(0)ed, i.e.,
the integral curve of the evolution equationsv5v(u) termi-
nates at the point lying on the straight lineu1v511h
where the soliton amplitude is equal to 0, the effective wid
(x0 /k) approaches infinity, and the soliton degrades into
homogeneous ground state, the final value of the soliton
locity remaining finite. Note that the valueu1 can be greater
or smaller than the initial valueu(0), depending on the sign
of the parameterd, i.e., on the ratio between relativistic an
exchange relaxation constants. If

l1.2le8
11h

314h
,
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thend.0 and the soliton accelerates in the course the re
ation,u1.u(0), whereas under the opposite inequality ta
ing place,d,0, u1,u(0), i.e., the soliton slows down.

Underk!1 E;k(11h) @see Eq.~2.17!#, and the expo-
nential dependencek(t) enables one to introduce an effe
tive soliton lifetimets , ts5@4l1(11h)#21. Note that un-

FIG. 2. The ferromagnetic soliton parameters evolution;~a! rela-
tivistic relaxation~l1Þ0, le50!; ~b! exchange relaxation~leÞ0,
l150!; ~c! exchange relaxation within the region wherebydv/dt
,0.
x-
-

der u!1 this time does not depend on the initial solito
parameters but decreases as the external magnetic fiel
creases.

Under large values of the velocity (u@1) the evolution
equations are as follows:

u̇5
8

3
uk2~3l11ule8!,

v̇5
8

3
k2@l1~32h!22le8uv1#. ~2.34!

The solution of the system~2.34! at l;le8 has the form

u~t!5u~0!1
1

3
k2~0!@12exp„28le8u

2~0!t…#,

k~t!5k~0!exp@24le8u
2~0!t#. ~2.35!

Consequently, the relaxation of the small-amplitude so
ton underu@1 is defined mainly by exchange interaction
the lifetimets5@4le8u

2(0)#21 being inversely proportiona
to the fourth power of the initial soliton velocity,ts
;v24(0). Thefinal value of the soliton velocityu15u(0)
1k2(0)/3.u(0), i.e., the soliton accelerates in the cour
of relaxation.

An analysis of the system of the evolution equations
the small-amplitude soliton~2.31! shows that an exponentia
dependence of the soliton parameters on time takes pl
regardless of the initial valuesu(0) andv~0!. It is also note-
worthy that the integral of motionN Eq. ~2.18! in a small-
amplitude soliton is proportional tok, and therefore the num
ber of magnons in soliton exponentially tends to zero in
course of relaxation.

In casex i@l, V.V* , when the collinear fieldhm is
determined by Eq.~2.29!, the evolution equations for the
small-amplitude soliton are somewhat different from E
~2.31!. However, in this case all the characteristic propert
of these equations are just the same as those of the sy
~2.31!, and therefore we shall not discuss them here.

Precession soliton.If the initial soliton velocity is equal to
0 ~but vÞ0! then the soliton remains immobile at all su
ceeding moments during its relaxation~such an excitation
can be referred to as a precession soliton!. In this case the
integral curve is some interval of the ordinate axisv. Natu-
rally, that underV50 the collinear field is determined by th
formulas~2.26! and ~2.27! and the analytical expression fo
hm depends on the sign ofv15v2h:

hm5H 2v, v,h,

vH ~122v1!1
le8

l1
~12v1!J , v,h.

~2.36!

Such a difference is due to the fact that atv,h the soli-
ton amplitudeu05p, whereas atv.h cos2(u0/2)5v2h
,1, i.e., the soliton amplitude becomes a function of t
frequency.25

The character of the precession soliton relaxation ess
tially depends on the presence of an external magnetic fi
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Let us consider first the caseH50. In this case and unde
uvu!1 the evolution equation takes the form:

v̇52l̄v, v~t!5
v~0!

122v~0!l̄t
, ~2.37!

wherel̄5l1/31le8 . We see that atv(0).0 the precession
frequencyv rapidly increases and in a finite time reaches
valuev;1. If v(0).0 then att→` the frequency asymp
totically approaches 0. Hence, the precession soliton w
v.0 becomes a small-amplitude one in a finite time a
then degrades exponentially~see above!, whereas underv
,0 the soliton transforms into a special solution of the eq
tions of motion withv5V50 which describes two domai
walls separated infinitely.

Let now HÞ0. In this case there are two characteris
frequency values in the problem:v50 andv5h. If v→h
10 (v1→10) then, in accordance with Eq.~2.36!, hm
5h(11le8/l1) and we obtain forv:

v̇52l̄h~11le8/l1!~v2h!,
~2.38!

v~t!5h1@v~0!2h#exp@2l̄ht~11le8/l1!#,

i.e., the soliton frequency increases exponentially rather t
by the power law as in caseh50.

If v→h20 (v1→20) then hm52v, and the soliton
frequency decreases exponentially,

v̇52l̄h~v2h!, v~t!5h1@v~0!2h#exp~2l̄ht!.
~2.39!

In the caseuvu!h;1, one obtains for the soliton frequenc

v̇52G~h!v, v~t!5v~0!e2G~h!t, ~2.40!

where the inverse soliton lifetimeG5G(h) is determined by
a rather cumbersome expression not shown here. At s
field, this lifetime is proportional toh, G(h)52h(l1/3
1le8)52l̄h.

So, the entire picture of the precession soliton relaxat
under an external magnetic field is as follows: underv,0 or
0,v,h the precession frequency tends to 0 with a char
teristic lifetimeG(h). Underv.h the soliton frequency in-
creases, it becomes a small-amplitude one and then deg
according to Eq.~2.33!. Such a character of the soliton re
laxation is in perfect agreement with the fact that the soli
energy decreases in the course of relaxation~see Fig. 1!:
either E(v)→Emin(v50) at v,0 and at 0,v,h, or
E(v)→E(v511h)50 at v.h.

Soliton with a small velocity.If the initial value of the
soliton velocity is small (u!1), then in the small-amplitude
region, ~at v;11h! this velocity can increase as well a
decrease as dictated by the sign of the parameterd @see Eq.
~2.33!#. In the caseuvu@1(v,0) the evolution equation fo
u can be written in the form

u̇5
16

3
le8uv22

10

3
l1uv3.0. ~2.41!

Consequently, the soliton with a small velocity accelera
due to both relativistic and exchange relaxation.
e

th
d

-

n

all

n

-

des

n
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B. Non-one-dimensional solitons

Let us now consider a relaxation of non-one-dimensio
solitons in a uniaxial FM. Dynamical properties of such e
citations have been studied in detail in Ref. 25.

We restrict ourselves to an analysis of precession solit
(V50) in the absence of an external magnetic field. F
such solitons of any dimensionality

v̇5
dv

dN
Ṅ52

dv~N!

dN E dr ẇ$l1 sin
2 u cos2 u

1lea
2@~¹u!21sin2 u cos2 u~¹w!2#% ~2.42!

~we assumed that atV50, du/dt50 andd(¹w)/dt50 and
setHm50!.

It has been shown in Ref. 25 that two- and thre
dimensional solitons exist only at positive precession f
quenciesv in contrast to the one-dimensional case in whi
solitons exist both at positive and negative signs ofv. If v
.0, then the integrals in Eq.~2.39! are positive and the sign
of the derivativedw/dt is opposite to that ofdv(N)/dN.

Two-dimensional (2D) solitons.The 2D soliton is charac-
terized by

u5u~r!, w5vt1nx, u~r!→0 if r→`,
~2.43!

where,r, x are the polar coordinates of the 2D magnet, t
integern is the topological charge of the soliton. For the 2
soliton at allN, dv/dN,0,25 therefore in the course of re
laxation the soliton frequency increases. Atv!v0 for any
n one can assume that25

cosu5tanh
r2R0

10
, v~N!5v0SN2

N D 1/2, ~2.44!

where R0510v0 /v@10 , N252ps(10 /a)
2@1; s is the

atom spin,a is the lattice constant. Evaluating the integra
in Eq. ~2.42! on the basis of Eq.~2.44!, one obtains

v̇5
l̄

v0

v3, v~ t !5
v~0!

@122l̄v2~0!t/v0#
1/2
, ~2.45!

wherel85l1'le8 , i.e., similar to the one-dimensional~1D!
case the soliton frequency changes from its initial valuev~0!
to v5v0 in a periodt0;v0 /@ l̄v2(0)#. Further evolution of
the 2D soliton is entirely different from that of the 1D solito
@see Eq.~2.37!#.

The soliton without topological charge (n50) also exists
at v,v0 similar to the 1D case; atv→v0

u~r!5kcS kr

10
D , k5Fv02v

v0
G1/2, ~2.46!

but atv→v0 the value ofN tends to the finite limit25

N5Ñ21A0N2

v2v0

v
, Ñ251.8N2 , A0;1.

An approximate estimation of the integral in Eq.~2.42! on
the basis of Eq.~2.46! shows that atv→v0 , dv/dt;l1 and
the degeneration point (v5v0) is achieved in a finite time
t15(l1v0)

21, i.e., much quicker than in the 1D case.
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56 629SOLITON RELAXATION IN MAGNETS
In the degeneration point (v5v0) the number of mag-
nons in the soliton remains finite (N5Ñ2@1) and the soli-
ton width approaches infinity. Thus, at the final stage soli
relaxation can be described as a transition of the soliton
Ñ2 magnons of the continuous spectrum.

For the topological soliton the frequency cannot exce
v0 /unu; at N!N2 we have25

tan
u

2
>SRr D unu

,
N

N2
>AnS 1

unu
2

v

v0
D , An.0.

~2.47!

The final stage of relaxation of this soliton is differen
The main contribution to the integral in Eq.~2.42! comes
from the terms with gradients. Calculating the integral on
basis of Eq.~2.47!, one obtains

dN

dt
52

16ps

3
le8v0 , ~2.48!

and the number of magnons in the soliton approaches
terminal value N50 in a finite time interval te
;(v0le8s)

21, andv→v0 /unu. Consequently, the 2D soli
ton finally ends up as the singular vortex state withR→0
(N→0). The further evolution should go with the change
the vortex line topological charge. The minimum thresho
energy value for this process seems to be associated wit
break of a soliton line forming two vortex lines with fre
ends. The process of this type is described for topolog
vortices in superfluid helium-3.26

Three-dimensional (3D) solitons.In the case of dynamic
central-symmetric solitonsu5u(r ), r5ur u, the form of the
function u(r ) is of type ~2.44! and ~2.46! at v!v0 and at
(v02v)!v0 , respectively. Thus

25

R>210
v0

v
, N>16N3

v0
3

3v3 , v!v0 ,

N>A3

N3

~v02v!1/2
, v→v0 , ~2.49!

whereN354ps(10 /a)
3, A3;1.

It is seen that the derivativedN/dv is negative at smal
precession frequenciesv and is positive atv→v0 , changing
its sign atv5v*'0.915v0 .

25

According to Eq.~2.49!, the soliton frequency decrease
at v.v* and grows atv,v* both due to relativistic and
exchange relaxation. This behavior is completely differ
from that of the 1D case, namely, in the course of relaxat
the frequency of the 3D soliton, at any initial value ofv,
approachesv* .

As shown in Ref. 27 on the basis of the Lyapunov theo
the 3D solitons withv.v* are unstable and it is not rea
sonable to consider them within the slow evolution fram
work. For the low-frequency solitons (v,v* ), according to
Eqs.~2.42!, ~2.44!, and~2.49!,

v̇5H l̄v3/v0 , v!v0

l̃v0
3/~v*2v!, v*2v!v0 ,

wherel̃;l̄5l11le8 . Integrating this equation, one obtain
n
to

d

e

he

f

the

al

t
n

,

-

v~ t !5H v~0!@12l̄v2~0!t/v0#
21/2, v!v0

v*2$@v*2v~0!#222l̃v0
3t%1/2, v!v* .

~2.50!

These formulas describe the following picture of t
three-dimensional soliton relaxation. In the course of evo
tion the soliton frequency increases from any initial value
v* in a finite period of time@of the orderv0 /„l̄v2(0)…#,
then it remains constant. The soliton withv5v* does not
evolve at the expense of the slow relaxation processes
scribed by Eq.~2.42!. This fact may seem to be paradoxic
but actually it can be well explained by the specific charac
of the E(v) or N(v) dependences of the 3D solitons: th
energy E as a function ofv grows infinitely both at
v→v0 @E;(v02v)21/2# and atv→0 (E;v22), i.e., the
functionE5E(v) has a minimum atv5v* . Thus, the soli-
ton with v5v* is the natural final result of slow relaxatio
processes.

In order to understand the transition of the soliton w
v5v* to the ground state, one has to go beyond the s
relaxation approximation. The characteristic feature of
3D soliton withv;v* is the fact that its energy is highe
than the energy of the same number of magnons of the c
tinuous spectrum,25 E(N* )51.034\v0N* , N*5N(v* )
59.08N3 , and the transition of the soliton toN* free mag-
nons with energieshv0N* is energetically favorable. How
ever, the condition of radiation of a small number of ma
nonsn!N, which has the formE(N).E(N2n)1\v0n, is
not fulfilled atv5v*,v0 becausedE/dN5\v. Neverthe-
less, the decay of the soliton into free magnons is possible
way ofN-particle process (N;N* ), although the probability
of such a process is exponentially small.

III. RELAXATION IN ANTIFERROMAGNETS

Our analysis of relaxation in antiferromagnets~AFM’s!
will be done in the framework of the two-sublattice model
AFM’s starting from the equations of motion for the vecto
M andL :

Ṁ52
2

g
$@M ,H#1@L ,F#%1RM ,

~3.1!

L̇52
2

g
$@M ,F#1@L ,H#%1RL ,

whereH52dW/dM , F52dW/dL are the effective fields,
RM ,RL are the dissipation terms defined by the dissipat
function ~RM5dQ/dH, RL5dQ/dF!. The structure of the
latter, taking into account both exchange and relativistic
laxation processes, has been found in Refs. 11 and 13,
can be written in the form~1.8!.

As in FM’s, a symmetry of the relativistic relaxation con
stantsl ik is governed by symmetry and hierarchy of relati
istic interactions. In particular, in uniaxial AFM’s the tens
l ik has the form~1.7! and the dissipative termsRM andRL
can be written as follows:

RM5guL u~l1H'1l3Hzn2lea
2DH!, l3!l1

RL5guL ul0F. ~3.2!
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As in the previous sections, we shall analyze relaxation
nonlinear waves in the linear approximation with respect
relaxation constants, using the method of construction
evolution equations for nonlinear wave parameters,
scribed above. Calculating the rate of change of integral
motion I i on the basis of Eq.~3.1!, only the relaxations
which are not connected with the change of the sublatt
magnetization vectorsMa5uMau, a51,2, should be taken
into consideration. In particular, one must use the redu
dissipative functionQ̄ instead of the full dissipative function
Q ~1.8!.

To separate inQ the terms corresponding to the change
uMau, let us rewrite the equations of motion in terms of t
vectorsMa ,
-

-

al

-
th

-

f
o
f
-
of

s

d

f

Ṁ52g@Ma ,Ha#1Ra ,
~3.3!

R15RM1RL , R25RM2RL .

Hence

Ṁ15m1~RM1RL!, Ṁ25m2~RM2RL!, ma5
Ma

Ma
.

~3.4!

Taking into account Eq.~3.4!, one readily obtains the re
duced dissipative functionQ̄ in the form
Q̇52
1

2 S dEdt D
Ma5const

5
1

2 E dr @M1ṁ1H11M2ṁ2H2#5
1

2 E dr HHRM1FRL2
1

M0
2 @~HM1FL!~MRM1LRL!

1~HL1FM !~LRM1MRL!#J , ~3.5!
-

a-

ity
er,

the
a-
ing
where HL5(HL ), FL5(FL ), HM5(HM ), FM5(FM )
@two first addends in Eq.~3.5! correspond to the full dissipa
tive functionQ#.

When calculatingQ̄ in the linear approximation with re
spect to relaxation constants, the effective fieldsH andF in
Eqs. ~3.2!, ~3.3! should be substituted in the main~zero!
approximation@we already used this circumstance when c
culating Eq.~3.5! by settingM15M25M0#. In the nondis-
sipative approximation, the vectorsH and F can be ex-
pressed in terms of two scalar valuesHL andFL which may
be referred to as collinear fields~in analogy withHm in
FM’s!,

H5
1

L2 H 2g @L ,L̇ #1LHL1MFLJ ,
~3.6!

F5
1

L2 H 2g @L ,Ṁ #1MHL1LFLJ .
The collinear fieldsHL andFL can be obtained from the

explicit expression for the AFM energy:

W5E dr @ f ~M1
2!1 f ~M2

2!1w0~M ,L !#, ~3.7!

w0~M ,L !5
a

2
~¹L !21

d

2
M21wa22MH e , ~3.8!

where the functionf (Ma
2) defines the density of the intersu

blattice exchange interaction which forms the length of
sublattice magnetization vectors,wa is the anisotropy en-
ergy,He is an external magnetic field.

The equations of motion~3.1! in the nondissipative ap
proximation are known to have two integrals of motion,
-

e

p[ML 50, s[M21L22M0
250. ~3.9!

When the dissipative terms in Eq.~3.1! are taken into ac-
count, the quantitiesp ands are no longer constant:

ṗ5RML1RLM , ṡ52~RMM1RLL !. ~3.10!

The functionf (x) in Eq. ~3.7! under temperature far be
low Néel temperature has a deep minimum atx5M0

2(T),
M0(T) is the equilibrium value of the sublattice magnetiz
tion length. Therefore, approximating the functionf (x) by
the expressionf (x)5(x2M0

2)2/(4x iM0
2), x i!1, one ob-

tains from the energy~3.7!:

HL5
4

x i
p1H0 , H052S dw0

dM
,L D ,

FL52
2

x i
s1F0 , F052S dw0

dL
,L D . ~3.11!

As mentioned in the Sec. II, the longitudinal susceptibil
x i should be set equal to 0 in the final results. Howev
contributions of two first terms in Eq.~3.11! are finite be-
causep;x i , s;x i . In the static case,HL5FL50 but the
quantitiesp ands are not equal to zero:

p52
x i

4
H0 , s5

x i

2
F0 .

In the presence of a dynamic magnetization wave,
fieldsHL andFL are not, in general, equal to 0. The equ
tions for these quantities can be obtained by differentiat
Eq. ~3.11! with respect to time and using Eqs.~3.2! and
~3.10!:
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x iL

4g
ḢL2lea

2L2DH'22lea
2@~L ,¹L !¹HL1~L ,¹M !¹FL#1HL@l1L'

21l3Lz
21l0M

22lea
2~L ,DL !#

1FL@~l12l3!L'M'2lea
2~L ,DM !#5

x iL

4g
Ḣ01

2

g
$~l12l3!Lz@L ,L̇ #z1l0~M ,@L ,Ṁ # !1lea

2~L ,D@L ,L̇ # !%,

~3.12!

x iL

4g
ḞL2lea

2M2DF'22lea
2@~M ,¹M !¹FL1~M ,¹L !¹HL#FL@l1M'

21l3Mz
21l0L

22lea
2~M ,DM !#

1HL@~l12l3!M'L'2lea
2~M ,DL !#5

x iL

4g
Ḟ01

2

g
$~l12l3!M'@ L̇ ,L #'1lea

2~M ,D@L ,L̇ # !%. ~3.13!
o
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The solution of Eqs.~3.12! and ~3.13! without the right-
hand side describes relaxation ofHL andFL to their equilib-
rium values. An inhomogeneous solution of this system
equations can be nonzero only in the presence of a dyna
magnetization wave.

It should be noted once more that the system~3.12! and
~3.13! is obtained in the linear approximation with respect
the small parametersl andx i @as is Eq.~2.11! for the col-
linear fieldHm in FM’s#. Hence, all the coefficients and th
right-hand side part of these equations are defined by
magnetization distribution in the excitation under consid
ation, calculating in the nondissipative approximation.

Further we analyze relaxation in an easy-axis AFM w
the anisotropy energywa

wa5
1

2
bL'

22
1

4
b~L'

2 !2, b.0, b.0. ~3.14!

As an example, we shall discuss relaxation of the o
dimensional two-parameter soliton. The corresponding s
tion of the dynamic equations has been obtained in Ref.
At b50 this solution has the form:

w5kx2Vt, cosu52tanh@ k̃~x2Vt!#,

k5
~V1Ve!V

c2
, k̃25

b

a~12V2/c2!
2

~V1Ve!
2

c2
,

~3.15!

whereVe5gHe , an external magnetic field is considered
be aligned with the anisotropy axis. The angle variableu
andw parametrize the unit vectorl5L /uL u,

l x1 i l y5sin ueiw, l z5cosu. ~3.16!

This solution describes the magnetization distribution
the two-parameter topological soliton of the kink-type@u
(2`)50, u(1`)5p#. The soliton solution~3.15! exists in
the regionk̃2.0, i.e., its parameters~the velocityV and the
precession frequencyV! satisfy the inequality

~V1Ve!
2,

v0
2

12V2/c2
.

f
ic

he
-

-
u-
8.

The value of the magnetic field is limited by the conditio
of the static soliton existence,He,M0(bd)1/2, or He
,M0(bd)1/2, i.e., by the spin-flop field.

To construct the evolution equations for the soliton p
rametersV andV, we use, as in FM’s, the soliton energ
(E) and the totalZ projection of magnetization,

N5
1

\g E drMz ~3.17!

~in the nondissipative approximation, the latter conser
due to the uniaxiality of AFM’s!.

The values of the integral of motionE andN, correspond-
ing to solution~3.15!, are equal to

E5
2E0

k H 1

12u
2ve~v1ve!J ,

N5
2n0
k

~v1ve!, ~3.18!

where

E05bM0
2x0 , n05E0 /~2\v0!,

k251/~12u!2~v1ve!
2; ve5Ve /v0 , v5V/v0 ,

u5~V/c!2

are the dimensionless parameters convenient for further
culations. The frequency dependence of the AFM soliton
ergy atV50 is represented in Fig. 3.

In the main approximation with respect to the small p
rameter (b/d), all terms in the reduced dissipative functio
~3.5!, proportional toM , can be omitted and, taking int
account Eqs.~3.2! and~3.6!, the functionQ̄ can be written in
the form

Q̄>
1

2gM0
2 E drRM@L ,L̇ #5

gM0d

2
E0q. ~3.19!

The functionq is defined by the sum of the relativistic an
exchange terms,q5qr1qe ,
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qr5l1^~@ l, l̇#'!22hLl z@ l, l̇#z&,

qe5le85^~@ l, l̇#8!21hL~ l̇8@ l,l8#2 l9@ l, l̇# !&, ~3.20!

wherele85le(a/x0)
2, hL5gHL /(2M0v0).

The reduced rate of change of the second integral of

tion Ṅ̄ is obtained in a similar manner:

Ṅ̄52
1

\gM0
2 E drLz~RM ,L !5gM0dn0h, h5h r1he ,

~3.21!

h r5l1^ l z
2@ l, l̇#z2hLl zl'

2 &,

he5le8^ l z~ l,@ l, l̇#9!1hL~ l z92 l zl8
2!&. ~3.22!

According to the general scheme, one obtains fromE and
N Eq. ~3.18! the following evolution equations for param
etersv andu:

u̇52dk~12u!2~q1vh!, ~3.23!

v̇52
dk

2
$~v1ve!~12u!q2@12~12u!~v1ve!~2v

1ve!#h%. ~3.24!

Equations~3.12! and ~3.13!, defining the quantitiesHL
andFL in the main approximation with respect to the sm
parameter (b/d), are divorced from one another, and for t
dimensionless quantityhL we have an equation

x̃ḣL2le8h'9 1hL$l31~l12l3!l'
21le8l8

2%

5~l12l3!l z@ l, l̇#z1le8~ l,@ l, l̇#9!1x̃vel̇ z ,

~3.25!

wherex̃5x iv0 /(4gM0).
With accuracy at designations, Eq.~3.31! coincides with

Eq. ~2.11! for the collinear component of the effective fie
in a uniaxial FM but the last term in the right-hand side

FIG. 3. The frequency dependence of the antiferromagnetic s
ton energy (V50); solid line2HÞ0, dashed line2H50.
o-

l

f

Eq. ~3.25! somewhat differs. We will not dwell on the analy
sis of this equation in detail. The results of this analysis
the case under consideration are as follows: if the soli
velocity V exceeds the characteristic valueV*;lvex0 /x i ,
then the quantityhL is defined by the simple formula

hL5ve cosu. ~3.26!

It is obvious that such a situation can be realized only
the limiting casex̃@l and in the presence of an extern
magnetic field. Ifx̃!l, then the quantityhL in Eqs. ~3.20!
and~3.22! should be set equal to 0, regardless of an exter
field and a soliton velocity.

The evolution equations for the soliton parameters h
the simplest form underHe50. Substituting Eq.~3.18! into
Eqs.~3.20!–~3.22! and settinghL50, one obtains

u̇5 f r~u,v!1 f e~u,v!, v̇5gr~u,v!1ge~u,v!,

f r522l1duk2~12u!2, gr52l1dk2v~12u!S 131uD ,
f e522le8duk2~12u!F131v2~12u!2G ,

ge522le8dk2vF12
u

3
2v2~11u!~12u!2G . ~3.27!

The analysis of these equations shows that an influenc
relativistic and exchange dissipative terms on soliton rel
ation differs essentially. In the whole region of the solito
parameters~3.26!, the relativistic relaxation leads to mono
tonic decreasing of both the soliton velocity (f r,0) and the
absolute value of the precession frequency@sgn(gr)5
2sgn(v)#. The character of relativistic relaxation is readi
illustrated by the integral curves of equationsu̇5 f r , v̇5gr

v5v~0!F u

u~0!G
1/6F12u~0!

12u G1/3,
where u(0) andv~0! are the initial values of the soliton
parameters. These curves are schematically represente
Fig. 4~a!.

As to the contribution of exchange relaxation, the fun
tions f e andge can change their signs, and in the course
exchange relaxation the soliton parametersu andv change
nonmonotonically. The corresponding integral curves of
equationsu̇5 f e , v̇5ge , obtained by the numerical integra
tion, are shown in Fig. 4~b!. The integral curves in the cas
l15le8 are shown in Fig. 4~c!.

In the caseu(0)50, the functionsf r5 f e50; it means
that if the initial soliton velocity is equal to zero then th
soliton remains immobile at all succeeding moments~as it
does in FM’s!. Similarly, if initially the precession frequenc
is equal to 0, thengr5ge50 andv50 in the course of
relaxation.

If an external magnetic field is large enough andV*,c,
then the picture of soliton relaxation becomes more com
cated. In the caseV.V* , when hL is determined by the
formula ~3.31!, the functionsg(u,v) and f (u,v) have the
form

li-
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f r522l1duk2~12u!2,

gr52l1dk2~v1ve!~12u!S 131uD ,

FIG. 4. The antiferromagnetic soliton parameters evolution
b50; ~a! relativistic relaxation~l1Þ0, le50!; ~b! exchange relax-
ation ~leÞ0, l150!; ~c! relaxation atle5l1 .
f e522le8duk2~12u!F131~v1ve!
2~12u!2G ,

ge522le8dk2~v1ve!F12
u

3
2~v1ve!

2~11u!~12u!2G .
~3.28!

It is easy to see that the functions in Eqs.~3.28! can be
obtained from Eqs.~3.27! by the simple substitutionv→v
1ve . The region of the soliton existence can also be o
tained from that calculated atve50 by the frequency axis
shift on the value (2ve), since the integral curves of Eqs
~3.28! are just the same as those of Eqs.~3.27! but shifted on
the value (2ve). In this case the limiting state of the solito
turns out to be that with precession:u→0, v→2ve . How-
ever, it should be recollected that formula~3.28! under small
values of the soliton velocity is inadequate because un
V,V* one must takehL50. If so doing, we have the fol-
lowing evolution equations rather than Eq.~3.28!:

f r522l1duk2~12u!2,

gr52l1dk2~12u!Fu~v1ve!1
1

3
vG ,

f e522le8duk2~12u!F132v~v1ve!
2~12u!2

2ve~v1ve!S 132uD G ,
ge522le8dk2~12u!Fk2S v2

u

3
~v1ve! D

1u~v1ve!
2S u~v1ve!2

v

3 D G . ~3.29!

It can be readily verified that these equations result in
final state of the soliton relaxation withu5v50 as it must.

t

FIG. 5. The antiferromagnetic soliton parameters evolution
bÞ0, le50.
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If the characteristic velocityV*,c, then the soliton re-
laxation is described by Eqs.~3.28! at V.V* and by Eqs.
~3.29! atV,V* . Naturally, in the caseV*,c there exists a
certain intermediate region between one regime to anot
An analysis of this intermediate region requires calculat
hL from Eq. ~3.25! in the general case, which is beyond t
scope of the present paper.

In the more general model of AFM’s, which takes in
account the anisotropy energy of the fourth order, i.e.b
Þ0 @see Eq.~3.14!#, the solitonlike solution of the dynami
equations can be represented in the form~at He50!:28

tan u55
k

A1/2

1

sinhS k

x0
~x2Vt! D , A.0

k

uAu1/2
1

coshS k

x0
~x2Vt! D , Amin,A,0,

~3.30!

whereA5(12p)/(12u)2v2, p5b/(2b); the dimension-
less parametersv, u, andk are defined above. The restric
tion A.Amin52p/(12u),0 is connected with the existenc
condition of the solution~3.30! (k2.0).

At A.0, solution~3.30!, as previously, describes the so
ton with a topological charge@kink, or domain wall,
m

a

t
o

r.
g

u(2`)50, u(1`)5p#; in the caseA,0 then u(6`)
50 and solution~3.30! describes a dynamic soliton withou
a topological charge. The soliton energy and the integra
motionN, corresponding to Eq.~3.30!, are equal to

E5E0HDk

2 S 12p

12u
1v2D1kJ , N5n0vDk ,

~3.31!

wherek51,2; atA.0 k51 and atA,0 k52,

Dk52S 12u

p D 1/2H sinh21F p

~12u!k22pG1/2, k51

cosh21F p

p2~12u!k2G1/2, k52.

Note that the existence regions of two types of solito
~with and without a topological charge! are separated by th
infinitely high-energy barrier,E(A→60)→`. Therefore in
the course of relaxation, a transformation of a dynamic s
ton in the topological one and vice versa is impossible. T
analysis of the soliton relaxation atbÞ0 is performed in the
same manner as it done above for the caseb50, and there-
fore we shall present only the final results.

The evolution equations for the soliton parametersu and
v, which are connected with relativistic relaxation, have t
following form:
u̇522l1du~12u!
@~12p!/~12u!2v2#Dk12k

@~12p!/~12u!1v2#Dk12k
,

v̇52l1dvH uF S 12p

12u
2v2DDk12kGF S 12p

12u
1v2DDk12kG21

2
12p2v21uv2

2p F S 12p

12u
2v2DDk22kG

3F S 12p

12u
2v2DDk1

2v2

k G21J . ~3.32!
uate
ble
ro-
ook

al
The exchange terms have similar but more cumberso
form and we do not write them down here.

The integral curves of Eqs.~3.32! are shown in Fig. 5. We
see that topological solitons approach~as atb50! the equi-
librium state with a domain wall at rest whereas dynamic
solitons degenerate into the homogeneous ground state
AFM’s.

IV. CONCLUSION

The analysis performed demonstrates a rather complica
character of soliton parameters evolution in the course
e

l
of

ed
f

relaxation. It should be stressed once more that an adeq
description of a nonlinear excitation in magnets is impossi
without taking into account the exchange relaxation p
cesses. They affect not only quantitative estimations, as t
place for domain walls,10 but can result in a qualitatively
different picture of the soliton evolution.
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