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Spin-gap proximity effect mechanism of high-temperature superconductivity
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When holes are doped into an antiferromagnetic insulator they form a slowly fluctuating array of ‘‘topo-
logical defects’’ ~metallic stripes! in which the motion of the holes exhibits a self-organized quasi-one-
dimensional electronic character. The accompanying lateral confinement of the intervening Mott-insulating
regions induces a spin gap or pseudogap in the environment of the stripes. We present a theory of underdoped
high-temperature superconductors and show that there is alocal separation of spin and charge and that the
mobile holes on an individual stripe acquire a spin gap via pair hopping between the stripe and its environment,
i.e., via a magnetic analog of the usual superconducting proximity effect. In this way a high pairing scale
without a large mass renormalization is established despite the strong Coulomb repulsion between the holes.
Thus themechanismof pairing is the generation of a spin gap in spatially confinedMott-insulatingregions of
the material in the proximity of the metallic stripes. At nonvanishing stripe densities, Josephson coupling
between stripes produces a dimensional crossover to a state with long-range superconducting phase coherence.
This picture is established by obtaining exact and well-controlled approximate solutions of a model of a
one-dimensional electron gas in an active environment. An extended discussion of the experimental evidence
supporting the relevance of these results to the cuprate superconductors is given.@S0163-1829~97!08234-9#
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I. INTRODUCTION

Superconductivity in metals is the result of two distin
quantum phenomena, pairing and long-range phase co
ence. In conventional homogeneous superconductors
phase stiffness is so great that these two phenomena o
simultaneously. On the other hand, in granular supercond
ors and Josephson junction arrays, pairing occurs at the
transition temperature of the constituent metal, while lon
range phase coherence occurs, if at all, at a much lo
temperature characteristic of the Josephson coupling
tween superconducting grains. High-temperat
superconductivity1 is hard to achieve, even in theory, b
cause it requires that both scales be elevated simultaneo
yet they are usually incompatible. Consider, for example,
strong-coupling limit of the negative-U Hubbard model2 or
the Holstein model.3 Pairs have a large binding energy bu
typically, they Bose condense at a very low temperature
cause of the large effective mass of a tightly bound pair.~The
effective mass is proportional touUu in the Hubbard mode
and is exponentially large in the Holstein model.! A similar
issue arises if the strong pairing occurs at specific locati
in the lattice~negative-U centers!; in certain limits this prob-
lem may be mapped into a Kondo lattice,4 which displays
heavy-fermion behavior.

A second problem for achieving high-temperature sup
conductivity is that strong effective attractions, which mig
be expected to produce a high pairing scale, typically lea
lattice instabilities, charge- or spin-density wave order,
two-phase~gas-liquid or phase-separated! states.5 Here the
problem is that the system either becomes an insulator o
it remains metallic, the residual attraction is typically wea
In the neighborhood of such an ordered state there is a
560163-1829/97/56~10!/6120~28!/$10.00
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lying collective mode whose exchange is favorable for
perconductivity, but the superconducting transition tempe
ture is depressed by vertex corrections6 and also because th
density of states may be reduced by the development
pseudogap.

A third ~widely ignored! problem is how to achieve a hig
pairing scale at all in the presence of the repulsive Coulo
interaction, especially in a doped Mott insulator in whic
there is poor screening. A small coherence length~or pair
size! implies that neither retardation nor a long-range attr
tive interaction is effective in overcoming the bare Coulom
repulsion. In the high-temperature superconductors,
problem is especially acute; the coherence length is no m
than a few lattice spacings and angle-resolved photoemis
spectroscopy7 ~ARPES! suggests that the energy gap~and
hence the pairing force! is a maximum for holes separated b
one lattice spacing, where the bare Coulomb interaction
very large.

In short, superconductivity typically occurs at low tem
peratures: if the attractive interaction is weak, the pair
energy is small; if it is strong, the coherence scale is s
pressed or the system is otherwise unstable. When th
coupled with the problem presented by the Coulomb force
a doped Mott insulator, the occurrence of high-temperat
superconductivity in the cuprate perovskites is even m
remarkable. Indeed, there is evidence8–11 that these materials
live in a region of delicate balance between pairing a
phase coherence: in ‘‘underdoped’’ and ‘‘optimally doped
materials, the onset of superconductivity is controlled
phase coherence and occurs well below the pairing temp
ture, while in ‘‘overdoped’’ materials pairing and phase c
herence take place at more or less the same temperatur
in more conventional superconductors.~See Fig. 1.! If we
6120 © 1997 The American Physical Society
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56 6121SPIN-GAP PROXIMITY EFFECT MECHANISM OF . . .
accept this point of view, then we can approach the prob
of understanding the mechanism of high-temperature su
conductivity from the underdoped side by addressing th
separate questions:~i! What gives rise to the large temper
ture scale for pairing or in other words, for superconductiv
on a local scale?~ii ! How can the system avoid the detrime
tal effects of strong pairing on global phase coherence~i.e.,
large mass renormalizations!? ~iii ! How can high-
temperature superconductivity with a short coherence len
coexist with poor screening of the Coulomb interaction?

It is clear the that the conventional view of supercond
tivity as a Fermi surface instability deriving from an attra
tive interaction between quasiparticles cannot be used to
dress these problems. Analyses of the resistivity9 and, more
recently, ARPES experiments12 indicate that the normal stat
of the high-temperature superconductors has no well-defi
quasiparticles and hence no well-defined Fermi surface.

FIG. 1. Theoretical sketch of the phase diagram for a hi
temperature superconductor in the doping-temperature plane.
solid lines represent phase transitions and the shaded areas
overs.TN marks the transition to an antiferromagnetically order
insulating state andTc the transition to the superconducting sta
T1* marks the crossover temperature at which charge inhomog
ities ~stripes! become well defined and correspondingly local an
ferromagnetic correlations develop in the insulating regions;
present paper is primarily concerned with the region betweenT1*
and somewhat aboveTc , where the developing correlations a
primarily confined to the neighborhood of an individual stripe.T2*
marks the temperature scale at which a spin gap develops in
1DEG and correspondingly the local superconducting susceptib
begins to diverge. HereTx , which is approximately 1/2 the antifer
romagnetic exchange energy, marks the temperature at which
antiferromagnetic correlation length in the undoped antiferromag
is equal to two or three lattice constants. For further discuss
especially concerning the experimental justification for this figu
see Sec. IX C.
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the other hand, the fact that the chemical potential is
served in ARPES to be near the band center rules out th
ries involving real-space pairs in the CuO2 planes, which are
a priori implausible in any case due to the strong Coulom
repulsion between electrons.

Here we shall argue that the high-temperature superc
ductors resolve these problems in a unique manner.~i! The
tendency of an antiferromagnet to expel holes13 leads to the
formation of hole-rich and hole-free regions.14 For neutral
holes this leads to a uniform instability~phase separation!,14

but for charged holes the competition with the long-ran
part of the Coulomb interaction generates a dynamicallocal
charge inhomogeneity, in which the mobile holes are ty
cally confined in ‘‘charged stripes,’’ separated by elonga
regions of insulating antiferromagnet.15–17 This self-
organized collective structure, which we have namedtopo-
logical doping,18 is a general feature of doped Mott insul
tors and it produces a locally quasi-one-dimensio
electronic character since the electronic coupling betw
stripes falls exponentially with the distance betwe
them.19,20~ii ! In a locally striped structure, there is separati
of spin and charge, as in the one-dimensional electron g21

~1DEG!. Hence ‘‘pairing’’ is the formation of a spin gap
while the superfluid phase stiffness~i.e., the superfluid den-
sity divided by the effective mass! is a property of the col-
lective charge modes.22–24 ~iii ! A large spin gap~or spin
pseudogap! arises naturally in a spatially confined, hole-fre
region, such as the medium between stripes. This effec
well documented for spin ladders25 and for spin chains with
sufficient frustration.26,27The important point is that the spi
gap does not conflict with the Coulomb interaction since
energetic cost of having localized holes in Cu 3d orbitals has
been paid in the formation of the material.~iv! The spin
degrees of freedom of the 1DEG acquire a spin gap by
hopping between the stripe and the antiferromagnetic e
ronment. ~Single-particle tunneling is irrelevant.28! At the
same time, because of the local separation of spin
charge, the spin-gap fixed point is stable even in the prese
of strong Coulomb interactions and there is no mass ren
malization to depress the onset of phase coherence, so
superconducting susceptibility diverges strongly below t
temperature.29

In summary, the ‘‘mechanism’’ of high-temperature s
perconductivity is a form of magnetic proximity effect i
which a spin gap is generated inMott-insulatingantiferro-
magnetic regions through spatial confinement by cha
stripes and communicated to the stripes by pair hopping.
mobile holes on the stripes have the large phase stiffn
required for a high superconducting transition temperatu

The relationship between phase separation and super
ductivity for models with attractive interactions has been
vestigated extensively by Castellani and co-workers.30,31

Charge instabilities are a general consequence of this c
petition, but the mechanism of superconductivity depends
the details of the underlying model. Here we are particula
interested in the case in which the underlying models h
repulsive interactions.

The formation of a spin gap in the 1DEG may be regard
as a pairing of ‘‘spinons,’’ i.e., the neutral, spin-1/2 excit
tions that occur in the low-energy spectrum of the 1DEG a
a number of one-dimensional quantum antiferromagnets.
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deed, local inhomogeneity provides a realization of some
the earlier ideas32 involving spin-charge separation in th
high-temperature superconductors and the concept of a
liquid, by which we mean a quantum disordered system~i.e.,
with unbroken spin-rotation symmetry! that supports spinon
in its physical spectrum. However, we emphasize that pr
ous ideas relied on a putativetwo-dimensionalspin-liquid
fixed point, while here we are dealing with alocally one-
dimensional system, for which it is well established21,23 that
separation of spin and charge21 occurs generically, and ther
exists a ‘‘paired spin-liquid’’ phase, i.e., a spin liquid with
finite gap or pseudogap in the spinon spectrum.~See the
discussion in Appendix C.! In the strictest sense then, we a
dealing with intermediate-distance effects43 that occur below
a dimensional-crossover scale to two-~or three-! dimensional
physics.

We thus view the emergence of high-temperature su
conductivity as a three-stage process, which can be desc
in renormalization-group language in terms of the influen
of three fixed points. At high temperatures, the ‘‘avoid
critical phenomena’’17 associated with frustrated phase sep
ration govern the emergence of the self-organized, qu
one-dimensional structures. At intermediate temperatu
the one-dimensionalpaired spin liquidfixed point controls
the pairing scale and the growth of local superconduct
@and charge-density wave~CDW!# correlations. Finally, at
low temperatures, a two-~or three-! dimensional fixed point
determines the long-distance physics and the ultimate su
conducting or insulating behavior of the system.

Our proposed mechanism implies the existence of
crossover scales aboveTc in underdoped materials, as show
in Fig. 1: a high-temperature scale, at which local stripe
der and antiferromagnetic correlations develop, and a lo
temperature, at which local pairing~spin gap! and significant
superconducting correlations appear on individual cha
stripes.Tc itself is then determined by the Josephson c
pling between stripes, i.e., by the onset of global ph
coherence.8

The local charge inhomogeneity, which is a central fe
ture of our model, has substantial support from experim
In the past few years charge ordering has been discovere
a number of layered oxides, such as La22xSrxNiO 41d ~Ref.
44! and La0.5Sr1.5MnO4,45 and there is considerable expe
mental evidence showing that the high-temperature su
conductors display a coexistence of superconductivity
charge inhomogeneity. In particular, the efficient destruct
of the antiferromagnetic order46 of the parent insulating stat
is a consequence oftopological doping,18 in which the mo-
bile holes form metallic stripes that are antiphase dom
walls for the spins. The stripes may be ordered47 ~as in
La1.62xNd0.4SrxCuO4), dynamically fluctuating47,48 ~as in
optimally doped La22xSrxCuO4), or pinned and
meandering49 ~as in lightly doped La22xSrxCuO4). Thus we
consider the existence of local metallic stripes~at least in the
La2CuO4 family of high-temperature superconductors! to be
an experimental fact. Moreover, the stripe fluctuations
very slow in these materials, as is clear from the fact that
stripes are in evidence~there are incommensurate peaks o
served in neutron scattering! at frequencies corresponding
1–2 meV;48 thus, for calculational simplicity, we will use
model of static stripes. The evidence that there are simi
f
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local charge fluctuations~stripes! in other families of cuprate
superconductors is less direct than in the La2CuO4 family,
but we expect that the physics of the copper-oxide plane
common to all high-temperature superconductors. Inde
neutron-scattering data50,51 suggest that there are simila
but more disordered, structures17 in underdoped
YBa2Cu3O72d . An analysis of ARPES experiments o
Bi 2Sr2CaCu2O81d leads to a similar conclusion.52

The evidence, mentioned above, thatTc in underdoped
materials is governed by fluctuations of the superconduc
phase8 strongly suggests that pairing, which therefore occ
on a higher-energy scale, does not require interactions
tween metallic charge stripes, although global supercond
tivity is certainly controlled by the Josephson coupling r
quired to establish phase coherence for an array of stri
Consequently, it should be possible to understand the me
nism of pairing from the behavior of a single stripe, model
as a 1DEG coupled to the various low-lying states of
insulating environment. A complete discussion of this pro
lem is a substantial generalization of the theory of the o
dimensional electron gas,53 which we plan to consider more
completely in a subsequent paper.54 Here it will be shown
that, for the high-temperature superconductors, the most
portant process is the hopping of a pair of holes from
stripe into the antiferromagnetic environment, which a
may be regarded as a coherent form of transverse stripe
tuation. It will be shown that the stripe develops a spin g
which, in this model, corresponds to pairing without pha
coherence. We consider two situations:~a! the antiferromag-
netic environment has a pre-existing spin gap or s
pseudogap because of its finite spatial dimensions25 and ~b!
pair hopping produces a spin gap in both the stripe and
environment. In the first case, we find that an induced s
gap in the 1DEG and the consequent divergent superc
ducting fluctuations are a robust consequence of the coup
to the environment. The second case requires a sufficie
strong ~and possibly unphysical! Coulomb interaction be-
tween holes on the stripe and holes in the environment
pair tunneling to be relevant.

Although the existence of two distinct regions, the stri
and the antiferromagnetic environment, provides a poten
escape from some of the limitations on the superconduc
transition temperatureTc , it is not a priori obvious that a
large mass renormalization can be avoided. Indeed,
model we shall study is closely related to Kondo latti
models,4 for which heavy-fermion behavior or large ma
renormalization is theprimary consequence of the strong in
teractions. However, we find that, for stripes in an antifer
magnet~as for one-dimensionalKondo and orbital Kondo
lattice models55,56!, the analog of heavy-fermion physics
reflected solely in the the spin degrees of freedom while
the charge modes, and hence the superfluid phase stiffn
the mass is not renormalized.

In some respects, what we are doing is analogous
working out the renormalization of the electron self-ener
by the coupling to phonons. However, the calculation
more complicated because here the elementary objects
strings of charge~stripes! in a polarizable medium that pro
foundly influences their internal structure. Fluctuating strip
are of finite length, but the solution of the infinite 1DEG ma
be used if they are longer than the spin gap length sc
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which is a few lattice spacings.25

Of course, at higher hole concentrations, the calcula
must be modified to take account of the interaction betw
the stripes, especially to obtain long-range superconduc
order. In general terms, it is fairly straightforward to see h
global superconductivity arises in a system with a small
finite density of ordered or slowly fluctuating stripes,
found in underdoped members of the La22xSrxCuO4 family
of superconductors. Indeed, an analysis of neutron scatte
and thermodynamic data for underdoped and optim
doped La22xSrxCuO4 ~Ref. 48! suggests thatTc is propor-
tional to the product of the Drude weight of the holes on
stripe and the stripe concentrationcs .

An interesting feature of our model is the interplay b
tween the short-distance physics associated with the flu
ating stripes and the ultimate long-range order that is es
lished in a given material. We shall show that bo
superconducting and charge-density wave correlations
velop on a given stripe. However, they compete at lon
length scales, although they may coexist in certain region
the phase diagram. Also, it follows from general princip
that, locally, the singlet superconducting order parame
will be a strong admixture of extendeds anddx22y2 states.
Ultimately, in tetragonal materials, the order parameter m
have a pure symmetry, but the way in which it emerges fr
the short-distance physics is very different from more c
ventional routes.

This paper is quite long and, in parts, rather technica
addresses the purely theoretical problem of constructing
solving a general model of a 1DEG in an active environme
At the same time, we wish to report progress on the k
problem of understanding the mechanism of hig
temperature superconductivity in the cuprate supercond
ors. To compensate, we have attempted to make the va
sections as self-contained as possible and to indicate w
sections can be skipped by the reader with a more focu
interest in the problem.

A rather general model of the interacting 1DEG in
active environment is introduced in Sec. II. The model
bosonized in Sec. III and various formal transformations t
are useful for later analysis are described; this section
contains a discussion of the allowed interactions in
model, which are unimportant for our purposes and so ca
ignored. In Sec. IV we define a simplified ‘‘pseudospin
model of the charge excitations of the environment and ar
that it exhibits the same low-energy physics as the gen
model. Section V contains a discussion of exact results
the zero-temperature properties of the pseudospin mo
which, among other things, exhibits the spin-gap proxim
effect and the generation of a paired spin liquid state of
1DEG, even in the presence of arbitrarily strong forwa
scattering. Section VI reports the results of a controlled
proximate solution of the pseudospin model for a wide ran
of temperatures and coupling constants; in particular, vari
crossover temperatures to spin-gap behavior are ident
and their dependence on the interactions in the model
determined. In Sec. VII we return to the problem of t
charge degrees of freedom of the 1DEG and consider
effects of umklapp scattering in conditions of near comm
surability and the effects of an externally applied potent
In Sec. VIII we digress slightly to consider the effects of
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‘‘spin-gap center’’ on the local properties of a Fermi liqui
Finally, in Sec. IX we summarize our results and discu
experimental implications and predictions for the hig
temperature superconductors. In this section we also sug
some numerical calculations to test the major ideas. T
reader who is primarily interested in a discussion of resu
may skip directly to Sec. IX. In addition, Appendix A recas
some of the present discussion in the familiar language of
perturbative renormalization group for the 1DEG, Append
B contains an analysis of the symmetries of the model and
explicit construction of the nonlocal order parameter th
characterizes ‘‘local pairing,’’ and Appendix C discusses t
precise nature of the paired-spin-liquid state and gives c
crete examples of model systems that exhibit this state.

II. THE 1DEG IN AN ACTIVE ENVIRONMENT

A. The problem and the solution strategy

It has long been realized that the low-energy properties
a 1DEG, and indeed of a wide variety of other interacti
one-dimensional systems, are equivalent to those of the
plest field theory of interacting electrons, characterized b
small number of potentially relevant interactions betwe
electrons at the Fermi surface. In this section we address
problem of a 1DEG in an ‘‘active’’ environment, one tha
possesses its own low-energy excitations that couple to
1DEG but is insulating so that the electrons of the 1DE
may make excursions into the environment, but ultimat
return. The environment in which we are interested is a
ferromagnetic, so it may have low-energy spin excitations
will also have low-energy charge excitations in which ho
make excursions from the metallic stripe into the enviro
ment. Their energy is low because frustrated phase sep
tion, which generates metallic stripes in the first place,
volves a delicate balance of Coulomb and magnetic energ

This problem can be addressed in several distinct ways
the present paper we make extensive use of
renormalization-group strategyinvolving exact solutions of
solvable models, together with a sophisticated approxim
calculation in which the fluctuations of the 1DEG and t
environment are solved exactly, but the coupling betwe
them is treated in a mean-field approximation. We also g
physical estimates of the values of the various coupling c
stants that enter the model and present strong physical a
ments to show that the physical systems of interest will lie
the ‘‘basin of attraction’’ of the strong-coupling fixed poin
that governs the behavior of the solvable models. In Sec
we will also outline some simple one-dimensional latti
models that are amenable to numerical solution and are
pected to exhibit the mechanism described in this paper.

B. The general model

To begin with, we consider a very general model of
1DEG coupled to an environment. The initial form of th
model is microscopically realistic. It will be assumed that t
environment itself is a one-dimensional system with a cha
gap ~since it is an insulating matrix! that may or may not
have a spin gap. We thus consider the Hamiltonian to be
the form



,

r-
al

n

m
m
-

na
,
iv
nt

n
t

d
rg

th

in
ne
oe
in
e

e
th

i

de
p

ility

also

-
in
g

e
ich
spin
the
in
1/2
-

are
est-
ns,

ner
rg
ter-

e
is-
dif-
tal
s
tive

tal

to
ical
on-

me

ase

-
ent
se

nd
nd
se-
s.
ate
e
ns-

6124 56V. J. EMERY, S. A. KIVELSON, AND O. ZACHAR
H5E
2`

`

dx@H1DEG1Henv1Hint1HCoul#. ~1!

The bare Hamiltonian density of the 1DEG is

H1DEG5H01H1 . ~2!

Here H0 is the Hamiltonian of a noninteracting 1DEG
which in the continuum limit can be written~with \51) as

H05 ivF(
s

@c1,s
† ]xc1,s2c2,s

† ]xc2,s#

2m(
a,s

@ca,s
† ~x!ca,s~x!#, ~3!

whereca,s
† (x) creates an electron with thez component of

spin s on the right- or left-moving branch of the Fermi su
face fora51 or 2, respectively. Here we have made a G
ilean transformations to shift the Fermi points tok50; fac-
tors involving the Fermi wave vectorkF will be shown
explicitly. H1 incorporates the electron-electron interactio
within the 1DEG and has the continuum form53

H15g2 (
s,s8

c1,s
† c2,s8

† c2,s8c1,s1g1 (
s,s8

c1,s
† c2,s8

† c1,s8c2,s

1g3@c1,↑
† c1,↓

† c2,↓c2,↑e
i ~4kF2G!x1H.c.#. ~4!

HereG is a reciprocal lattice vector andg3 is the coupling
constant for umklapp scattering. When the 1DEG is inco
mensurate (4kFÞG), the rapid phase oscillations in the ter
proportional tog3 render it irrelevant in the renormalization
group sense. However, near commensurability, this term
responsible for the fact that the Drude weight is proportio
to the density of doped holes, as we shall see. Typically
will be assumed that the interactions are repuls
(g1 ,g2 ,g3.0), although they may undergo significa
renormalization by the coupling of the 1DEG to thehigh-
energy excitations of the antiferromagnetic environme
~which we do not consider explicitly!. The parameters tha
describe the 1DEG are thus the Fermi velocityvF , the
chemical potentialm, the three coupling constantsgi , and
the ‘‘incommensurability’’ 4kF2G. It should be emphasize
that this is a very general representation of the low-ene
physics of a stripe in a CuO2 plane and all details of the
original microscopic model are contained in the values of
coupling constantsgi .

We have in mind the low-density limit of a stripe phase
which the Coulomb interaction on a given stripe is scree
by the motion of charge on neighboring stripes and so d
not make a singular contribution to the forward-scatter
interactiong2. Thus, for the time being, we will neglect th
term HCoul , although it will ultimately play a role in the
dynamics of the superconducting phase.9

Because the physics of interacting systems in one dim
sion is ultimately so constrained, it is possible to model
Hamiltonian density of the environment as a second~dis-
tinct! interacting one-dimensional electron gas. The Ham
tonianHenv has the same form as in Eqs.~3! and~4!, except
that fields and parameters will be marked with a supertil
However, there are several important differences in the
-
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rameters of the Hamiltonian.~i! The environment is a Mott
insulator. Consequently, there is a strong commensurab

energy (4k̃ F5G̃ and g̃3 is large!, which produces a gap in
the charge degrees of freedom of the environment. This

implies that k̃ F is different from kF . ~ii ! Because of the
frustration of the motion of holes in an antiferromagnet,57 the

propagation velocityṽ c for charge excitations in the envi
ronment is much smaller than the corresponding velocity
the 1DEG. This is the primary manner in which the drivin
force for phase separation14 and stripe formation16,17appears
in the model.~iii ! We shall consider three possibilities for th
spin degrees of freedom of the environment, one in wh
there are gapless excitations and two in which there is a
gap. ~a! The gapless state is realized by considering
model with g̃1.0, in which case the environmental sp
excitations are those of an antiferromagnetic spin-
Heisenberg chain.~b! A spin gap can occur with an accom
panying spontaneous breaking of translational~chiral! sym-
metry ~see Appendix B!, which is realized by simply taking
g̃1,0, in which case the environmental spin excitations
those of a spin-1/2 Heisenberg chain with competing near
and next-nearest-neighbor antiferromagnetic interactio
e.g., the Majumdar-Ghosh model.27 ~c! A spin gap can occur
without any accompanying broken symmetry, in the man
of the antiferromagnetic two-leg, spin-1/2 Heisenbe
ladder;25 to model this system, we need to add a backscat
ing term to the environmental Hamiltonian@of the same form
asHe in Eq. ~80! below#, although a better description can b
attained in the bosonized form of the Hamiltonian, as d
cussed below. For our purposes, there is no significant
ference in the implications of the two types of environmen
spin gap, so for simplicity we will perform our calculation
for the case in which the spin gap is induced by a nega
g̃1 and will use language to describe the physics that~prop-
erly! does not distinguish the two types of environmen
spin gap.

Using well-known results for the 1DEG, it is possible
express these coupling constants in terms of the phys
variables that define the excitation spectrum of the envir
ment: the spin and charge velocitiesṽ s and ṽ c , the charge
gap D̃c and the spin gap~if one exists! D̃s , and the charge
and spin correlation exponents~defined below! K̃c and K̃s .
Since the environment is an insulator, we will always assu
that D̃c is large. We also must include the energy« to trans-
fer charge from the 1DEG to the environment. For the c
of ‘‘ p-type’’ doping, in whichm̃ lies in the lower half of the
environmental gap,«/2[D̃c2@m̃2m# is the bare energy re
quired to remove a quantum of charge from the environm
and add it to the 1DEG. We will be interested in the ca
0<«!D̃c .

Finally, we consider the coupling between the 1DEG a
the environment, for which spin-rotational invariance a
conservation of momentum along the stripe direction
verely limit the number of possible relevant interaction
Since the Fermi wave vector of the 1DEG is incommensur
with the wave vector of any low-energy excitation of th
environment, we can neglect, as irrelevant, terms that tra
fer momentum6(kF2 k̃F) or 62(kF2 k̃F) between the
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1DEG and the environment. For example, there are no l
energy single-particle hopping processes, even though, a
microscopic level, one might expect them to have the larg
coupling term. Such processes are included implicitly as
tual intermediate states in constructing the effective lo
energy Hamiltonian.~We will return to this point briefly in
the following section.! With this in mind, the most genera
form of the interaction Hamiltonian density, i.e., whic
keeps all potentially relevant terms, is

Hint5JsjWs• j̃W s1VsSW • S̃W 1Jcj c j̃ c1Vcr r̃ 1Hpair , ~5!

where the small momentum transfer couplings involve
long-wavelength density fluctuations relative to the ba
ground charge densityr0

r~x!2r05(
s

@c1,s
† c1,s1c2,s

† c2,s#, ~6!

the bare charge-current operator

j c~x!5vc(
s

@c1,s
† c1,s2c2,s

† c2,s#, ~7!

the long-wavelength spin-density operator

SW ~x!5 (
s,s8

@c1,s
† sW s,s8c1,s81c2,s

† sW s,s8c2,s8#, ~8!

and thebare spin-current operator

jWs~x!5 (
s,s8

vs@c1,s
† sW s,s8c1,s82c2,s

† sW s,s8c2,s8#. ~9!

The corresponding operators for the environment are defi
by the same equations, except that all quantities have a
pertilde. Note that we have chosen to expressHint in terms
of the charge and spin current operators for the noninter
ing system. The other contribution toHint is the pair transfer
terms

Hpair5tsp@P†P̃1H.c.#1t tp (
m521

1

@Pm
† P̃m1H.c.#,

~10!

where for the 1DEGP† is the usual singlet-pair creatio
operator

P†~x![
1

A2
@c1,↑

† ~x!c2,↓
† ~x!1c2,↑

† ~x!c1,↓
† ~x!#, ~11!

and Pm are the componenets of the triplet-pair creation o
erator,

P1
†~x![c1,↑

† c2,↑
† ,

P0
†~x![

1

A2
@c1,↑

† ~x!c2,↓
† ~x!2c2,↑

† ~x!c1,↓
† ~x!#, ~12!

P21
† [c1,↓

† c2,↓
† .
-
he
st
r-
-

e
-

ed
u-

t-

-

III. BOSONIZATION OF THE MODEL

In dealing with the problem of the 1DEG in an activ
environment, it is useful to rewrite the model using the sta
dard boson representation of Fermi fields in one dimensio53

cl,s
† ~x!5

1

A2pa
exp$ iFl,s~x!% ~13!

whereFl,s5Ap@us(x)6fs(x)#, with the minus and plus
signs corresponding to l51 and 2, respectively
us(x)5*2`

x dx8Ps(x8), and fs(x) and Ps(x) are
canonically conjugate Bose fields, so th
@fs(x),Ps8(x8)#5 id(x2x8). (u and f are thus dual to
each other in the usual statistical mechanical sense of o
and disorder variables.! To take advantage of the separatio
of spin and charge,53 the Hamiltonian will be expressed i
terms of a spin fieldfs(x)5@f↑2f↓#/A2 and a charge field
fc(x)5@f↑1f↓#/A2 and their conjugate moment
Ps(x)5@P↑2P↓#/A2 and Pc(x)5@P↑1P↓#/A2. The
charge and spin density and current operators may be wr

r~x!52A2

p
]xfc ,

j c~x!5A2

p
Pc , ~14!

Sz~x!52A 1

2p
]xfs ,

S6~x!5
1

pa
exp~6 iA2pus!cos@A2pfs#,

j s
z~x!5A 1

2p
Ps , ~15!

j s
6~x!5

2 i

pa
exp~6 iA2pus!sin@A2pfs#.

In terms of these variables, the Hamiltonians of the stri
the environment, and the small-momentum transfer coup
between the two may be written as a sum of a charge-o
part and a spin-only part. However, the pair hopping ter
Hpair introduces a coupling between spin and charge. T
the total Hamiltonian may be written

H5Hc1Hs1Hpair . ~16!

We now consider the various contributions in turn.

A. Spin degrees of freedom

The general form of the spin Hamiltonian is

Hs[Hs
01Hs

11Hs
2 . ~17!

Here
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Hs
05

vs

2 FKsPs
21

1

Ks
~]xfs!

2G1
ṽ s

2 F K̃sP̃s
21

1

K̃s

~]xf̃s!
2G ,

~18!

Hs
15

2Js

p
Ps~x!P̃s~x!1

2Vs

p
]xfs~x!]xf̃s~x!, ~19!

and

Hs
25

2g1

~2pa!2
cos@A8pfs#1

2 g̃1

~2pa!2
cos@A8pf̃s#

1
Vs

2pa
cos@A2p~us2 ũ s!#cos@A2pfs#cos@A2pf̃s#

1
Js

2pa
cos@A2p~us2 ũ s!#sin@A2pfs#sin@A2pf̃s#.

~20!

Here vs is the spin-wave velocity andKs is the critical
exponent58 that specifies the location on a line of fixe
points. Alsovs is given byvs52vFKs /(Ks

211). In the ab-
sence of coupling between the stripe and the environm
the Hamiltonian is known to be correct for weak or stro
coupling and for different forms of short-distance or hig
energy cutoff,53 although it may be necessary to perfor
some form of global renormalization to determineKs from
the parameters of the initial Hamiltonian. For weak couplin
Ks is related to the bare Fermi velocityvF and coupling
constants asKs5A(2pvF1g1)/(2pvF2g1). For repulsive
interactions~i.e., g1.0) one findsKs.1.

For the case in whichg̃1 is negative and relevant, in th
renormalization-group sense, there is a twofold-degene
ground state, corresponding to the classical valuesf̃s50 and
f̃s5Ap/2. ~See Appendix B.! To represent the case in whic
there is an environmental spin gap without symmetry bre
ing, we should add a term proportional to cos@A2pf̃s#,
which arises in a microscopic system with two spins per u
cell, such as a two-leg ladder.59 This term ~which may be
generalized to allow any even number of spins per unit c!
is always relevant for repulsive interactions, so it alwa
leads to a spin gap. As we shall see shortly, the impor
point is that a spin gap of whatever origin implies a quen
ing of the fluctuations off̃s . For a caveat on commensur
bility effects, see Sec. VII.

B. Charge degrees of freedom

The general form of the charge Hamiltonian is

Hc5Hc
01Hc

11Hc
2 , ~21!

where

Hc
05

vc

2 FKcPc
21

1

Kc
~]xfc!

2G1
ṽ c

2 F K̃cP̃ c
21

1

K̃c

~]xf̃c!
2G ,

~22!

Hc
15

2Jc

p
PcP̃c1

2Vc

p
]xfc]xf̃c , ~23!
t,

,

te

-

it

l
s
nt
-

and

Hc
25

2g3

~2pa!2
cos@A8pfc2~4kF2G!x#

1
2 g̃3

~2pa!2
cos@A8pf̃c#2m̃A2

p
]xf̃c . ~24!

Herevc is the charge velocity andKc is the Luttinger liquid
exponent,58 with vc52vFKc /(Kc

211). For weak coupling,
Kc is related to the bare Fermi velocityvF and coupling
constants as Kc5A(2pvF1gc)/(2pvF2gc), where
gc5g122g2. For repulsive interactions 0,Kc,1 ~i.e.,
gc,0).

C. Spin-charge coupling

Pair hopping between the stripe and the environment
given byHpair , destroys the separation of spin and char
and is the driving force for much of the interesting physic
Its bosonized form is given by

Hpair5S tsp

p2a2D cos@A2p~uc2 ũ c!#cos@A2pfs#

3cos@A2pf̃s#1S t tp

p2a2D $cos@A2p~uc2 ũ c!#

3cos@A2p~us2 ũ s!#2cos@A2p~uc2 ũ c!#

3sin@A2pfs#sin@A2pf̃s#%. ~25!

D. Which terms are unimportant?

The general model has numerous coupling constants
so, for much of this paper, we focus on the terms that
most important for our purposes and set the others to z
Specifically, we drop those terms that are, in t
renormalization-group sense, irrelevant at the paired-s
liquid fixed point. This argument simply shows that droppi
these terms is self-consistent. However, given the natur
the antiferromagnetic environment, there are strong ar
ments to show that these terms also are physically irrelev
i.e., that the physical system lies in the basin of attraction
the paired-spin-liquid fixed point.

To begin with, we examine the magnetic interactionsJs
andVs in Hint : these terms represent the interaction betwe
the ferromagneticfluctuations in the two subsystems. Sin
we are primarily interested in antiferromagnetic systems,
do not expect these terms ever to be important. Of course
the paired-spin-liquid state or, more generally, in the pr
ence of any sort of environmental spin gap, this can be s
directly from their dependence onũ s , which means that the
corresponding correlation functions decay exponentially w
distance or time and are thus trivially irrelevant. The trip
pair-tunneling term similarly depends onũ s and correspond-
ingly triplet pairing is generally expected to be importa
only in nearly ferromagnetic systems. Therefore, on b
clear physical and formal renormalization-group grounds
is safe to simplify our further discussion by taking
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Js5Vs5t tp50 ~26!

unless explicitly stated otherwise. Thus, in the case wh
there is strong incommensurability between the values okF
in the two subsystems and neither has significant ferrom
netic fluctuations, the only important interactions betwe
the 1DEG and the environment aretsp , Vc , andJc .

Away from half filling, the renormalization of the um
klapp scattering coupling constantg3 is cut off by the
incommensurability,60,23 and for some purposes it may b
dropped. However, this does not mean that umklapp sca
ing is unimportant for the low-energy physics. Doping
holes into the Mott-insulating state in one dimension crea
soliton excitations60,61in the charge density with a mass go
erned byg3. There is a ‘‘doped-insulator’’ region in which
these excitations control the Drude weight and the superfl
phase stiffness. In our stripe model of the cuprates, h
temperature superconductivity may occur within this reg
of doping.

Finally, we address the nonlinear term proportional tog1

in Hs
2 in Eq. ~20!. For repulsive interactions, i.e., forKs.1,

this term is perturbatively irrelevant and the renormalizatio
group flows go to the fixed pointg150 and Ks51. ~See
Appendix A.! Thus, so long as the bare interactions in t
1DEG are not too large, it is reasonable to use the fixed-p
values

g150, Ks51 ~27!

for the effective low-energy theory.

E. Unitary transformation

We now introduce a unitary transformation that will b
used in a number of ways to simplify the problem. The o
erator

Ul5expF2 ilE dxuc~x!]xf̃c~x!G ~28!

has the effect of shifting the fields

Ul
†P̃c~x!Ul5P̃c~x!1lPc~x!,

Ul
†f̃c~x!Ul5f̃c~x!,

~29!

Ul
†Pc~x!Ul5Pc~x!,

Ul
†fc~x!Ul5fc~x!2lf̃c~x!.

This transformation modifies the various charge interacti

Vc→DVc5Vc2
p

2

lvc

Kc
,

Jc→DJc5Jc2
p

2
l ṽ cK̃ ~30!

and the velocities and exponent parameters

vc→vcg,

Kc→Kcg,
re

g-
n

r-

s

id
-

n

-

nt

-

s

~31!

ṽ c→ ṽ cg̃ ,

K̃c→K̃c / g̃ ,

where

g5A11
l2ṽ cK̃c

vcKc
1

4lJc

pvcKc
,

g̃5A11
l2vcK̃c

ṽ cKc

2
4lVcK̃c

p ṽ c

. ~32!

1. Perturbative relevance of pair hopping

The transformation~28! diagonalizes the quadratic part o
the charge HamiltonianHc

01Hc
1 provided62

l5
2VcKc

pvc
,

Jc52
ṽ cK̃cKcVc

vc
. ~33!

We are now in a position to discuss the perturbative r
evance of pair hopping, which is the process that will gen
ate a spin gap along the stripe. Here we have in mind
initial stage of renormalization, in which degrees of freedo
with energies large compared to the charge transfer ener«
are eliminated. Thus it is reasonable to determine the per
bative relevance relative to the quadratic piece of
Hamiltonian.64 ~See also Appendix A.! However, other rel-
evant pertubations, such asg̃3, are important for the later
stages of renormalization. Substitution of Eqs.~33! into Eqs.
~32! gives

g5F12
4Vc

2

p2

ṽ cK̃cKc

vc
3 G 1/2

,

g̃5F12
4Vc

2

p2

K̃cKc

vcṽ c
G 1/2

. ~34!

Then the singlet pair hopping operatorHpair is pertubatively
relevant53 if the exponent

asp5
1

4S g̃

K̃c

1
~12l!2

gKc
1K̃s1KsD ~35!

satisfiesasp,1 and is perturbatively irrelevant otherwis
Despite appearances,asp shares the property of the Hami
tonian that it is symmetric under interchange ofK̃c and Kc

when ṽ c5vc . If all interactions in the original model were
set equal to zero, then all of theK ’s andg ’s would be equal
to 1, so thatasp51, and pair hopping would be margina
Repulsive interactions within the stripe and the environm
increase the value ofasp since they makeKs ,K̃s>1 and
Kc ,K̃c,1. This is physically reasonable because repuls
interactions within the stripe and the environment are un
vorable for pairing.
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There are three effects that enhance the perturbative
evance of singlet pair hopping. First of all, it can be se
from Eqs. ~34! and ~35! that a repulsiveVc decreases the
value ofasp . Physically, this occurs because the charge d
sity in the environment decreases in the vicinity of a pair
the 1DEG; thus it is easier for the pair to hop. This effec
surely an important piece of the physics of pair hopping a
it provides a way in which the Coulomb repulsion is favo
able for pairing. But it cannot be the sole reason for
relevance of singlet pair hopping unlessVc is greater than a
suitable average ofugcu and u g̃cu. As discussed in Appendix
A, this can happen, in principle, if the character of t
screening is just right, but it seems to be an insufficien
robust mechanism for a high-temperature scale for pairin

Secondly, the frustration of the motion of holes in
antiferromagnet implies that the bare Fermi velocityṽ F of
the environment is small and henceṽ c is small which de-
presses the value ofg̃ @Eq. ~34!# and the first contribution to
asp in Eq. ~35!.

Thirdly, if the environment has a preexisting spin ga
then one should setK̃s50 in the expression forasp ; this
substitution makes singlet pair hopping perturbatively r
evant~i.e.,asp,1) for a wide range of the other paramete
A slightly weaker form of this route occurs if the environ
ment has a spin pseudogap. For example it might have
eral gapped spin excitations and one gapless spin excita
as in odd-leg ladders.25 Then theK̃s term inasp should have
a coefficientws,1 equal to the weight of the gapless exc
tation in the pair hopping process. The elimination or red
tion of K̃s in Eq. ~35! is the perturbative renormalization
group manifestation of the proximity effect.

It is important to note that transverse fluctuations of
stripe, together with the Coulomb interaction between ho
on the stripe and in the environment, increase the value
the superexchange coupling along neighboring bonds
pendicular to the stripe.65 Clearly these processes decrea
the value ofws and are almost as effective as a full enviro
mental spin gap for making pair hopping perturbatively r
evant. Moreover, the environment will vary along the leng
of a fluctuating stripe and singlet pair hopping may be r
evant at some stripe locations~‘‘spin-gap centers’’! and ir-
relevant at others, where it may be neglected. This sor
local fluctuation is readily included in the pseudospin mo
introduced in Sec. IV.

The spin-gap proximity effect, enhanced by a largeVc

and smallṽ F , gives a robust mechanism for the perturbat
relevance of pair hopping for a wide and physically reas
able range of interactions. Similar conclusions can be dra
from examining the perturbative expression for theb func-
tion for tsp in powers of the interaction strength, as discuss
in Appendix A.

2. Composite order parameter

In the rest of this paper, we shall use the canonical tra
formation ~28! in a slightly different way by takingl51,
which is similar to the transformations employed55,56 in the
analysis of Kondo and orbital Kondo arrays in one dime
sion. The special values of the coupling constantsVc andJc

for which the quadratic part of the charge HamiltonianH0
c is
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diagonalized at the pointl51 are the analog of the Tou
louse limit of the Kondo problem and the various decoupli
lines of the multichannel Kondo problem and Kondo latti
problems.55,56,66–68

For l51, the transformation eliminates theuc depen-
dence ofU1

†HpairU1 since U1
†@ ũ c2uc#U15 ũ c . Remark-

ably, this also implies that the transformedũ c is gauge in-
variant. Consequently, it is possible to define a compo
superconducting order parameter66,69 in terms of U1

as, Ocomp5U1c̃1,↑c̃2,↓U1
†5(2pa)21exp@2iA2p( ũ c2uc

1 i f̃s)#, which can exhibit long-range order at zero tempe
ture, despite the constraints of the Hohenberg-Colem
Mermin-Wagner theorem for a conventional order para
eter. Indeed, as discussed in Appendix B, long-ran
composite order implies a broken Z~2! symmetry, which, for
lack of a better name, we callt symmetry.

The transformation introduces af̃c dependence into the
g3 term ofHc

2 , which complicates the analysis somewh
although, as we shall see, it can be handled. However, wh
ever g3 can be neglected, the unitary transformation co
pletely decouples the charge modes of the 1DEG from
environment. This already constitutes a partial solution of
problem. Moreover, the results are generic for all values
the couplings in the basin of attraction of the paired-sp
liquid fixed point because, as we shall show,DVc and DJc
are perturbatively irrelevant.

3. Transformation to holon variables

Having separated spin and charge, it is useful for ma
purposes to express the charge excitations as spinless fe
ons, which we shall call ‘‘holons.’’ For the environmen
Hamiltonian this is accomplished by rescaling the cha
fields of the environment by the real-space version of a B
goliubov transformation

f̃c→f̃c /A2, ũ c→A2 ũ c . ~36!

which also changesK̃c→2K̃c . Then, using Eq.~13! for spin-
less fermions, the Hamiltonian for the environmental cha
excitations can be writen

H̃c5 ṽ F@ c̃ 1,c
† i ]xc̃1,c2c̃2,c

† i ]xc̃2,c#2m̃@ c̃1,c
† c̃1,c1c̃2,c

† c̃2,c#

1 g̃c̃1,c
† c̃2,c

† c̃2,cc̃1,c1
g̃3

2pa
@ c̃1,c

† c̃2,c1H.c.#, ~37!

where ṽ F5vc(4K̃c
211)/4K̃c and g̃52p ṽ F@(4K̃ c

221)/

(4K̃c
211)#. The holons, which are created by the opera

c̃l,c
† , are free fermions at the pointK̃c51/2 or g̃50. We can

similarly refermionize the charge part of the pair-tunneli
term to obtain, whenl51,

U1
†HpairU15S tsp

paD @ c̃1,c
† c̃2,c

† 1H.c.#

3cos@A2pfs#cos@A2pf̃s#. ~38!

Thus the pair-tunneling term couples the holon pair creat
operator in the environment to the joint spin fluctuations
the 1DEG and the environment.~In this way, pair tunneling
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can, under the right circumstances, induce a spin gap in
environment, even if there is no preexisting gap.! Finally, the
charge-density and current-density interactions between
1DEG and the environment (Vc andJc) can be written sim-
ply in terms of the usual fermionic expressions for the cha
and current densities, respectively. A similar transformat
to holon variables may be made for the charge degree
freedom of the 1DEG.

IV. THE PSEUDOSPIN MODEL

The general model discussed in the previous two sect
cannot be solved exactly, although it can be studied using
sophisticated mean-field theory, which will be introduced
Sec. V. However, the low-energy physics may be extrac
from the solution of any model that has the same degree
freedom and symmetry as the original model and is c
trolled by the same strong-coupling fixed point. Here
introduce a ‘‘pseudospin’’ model that preserves the essen
physics, yet it is exactly solvable.72

The essential point is that the frustration of the motion
holes in an antiferromagnet57 implies that the interaction be
tween holes in the environment is effectively strong, i.e.,K̃c

and ṽ c are small. Thus we may ignore the bandwidth of pa
of holons in the environment and characterize them b
single renormalized excitation energy«* . Then we introduce
a pseudospin operatortR

z such thattR
z 511/2 if there is a

holon pair in the environment in the neighborhood ofR and
tR

z 521/2 otherwise.@Formally, if K̃c51/2, then it follows
from Eqs.~37! and~25! that the pseudospin raising operat
is given byt15c̃1,c

† c̃2,c
† .# Since the pseudospins are discre

variables, we must put them on a lattice, where the lat
constantjp represents the distance the holon can diffuse

an imaginary time 1/«* . (jp;Aṽ c
2/D̃c«* .! Evidently, the

lattice spacing is the residual effect of the holon bandwi
in the environment.

The ~transformed! Hamiltonian can be expressed in term
of the pseudospins as

U1
†HpseudoU15H1DEG1H̃s1(

R
JsptR

x

3cos@A2pfs#cos@A2pf̃s#

1(
R

$«* 22A2/pDVc]xfc%@tR
z 11/2#,

~39!

whereH1DEG is the Hamiltonian of the 1DEG~with g350)
defined in Eq.~2!, H̃s is the Hamiltonian for the environmen
tal spin degrees of freedom, which is the environmen
piece ofHs defined in Eq.~17!, U1 is defined in Eq.~28!,
and for simplicity we have ignored the term proportional
DJc , which we expect to be small. The sum is over sites
the pseudospin array and it is implicit that the terms invo
ing the continuous fields are integrated over a cell of sizejp
about the siteR. We will refer to this simplified model of the
dynamics of the environmental charge degrees of freedom
the ‘‘pseudospin’’ model.
he

he

e
n
of

ns
he

d
of
-

al

f

s
a

e
n

h

l

n
-

as

It is important to note that the pseudospin model co
have been introduced at the outset to represent the a
environment, without reference to a more detailed electro
model. In that case,Hpseudocould be written in terms of the
original variables as

Hpseudo5H1DEG1H̃s1(
R

Jsp@PR
†tR

11H.c.#cos@A2pf̃s#

1(
R

@«12VcrR#@tR
z 11/2#, ~40!

where

PR
†5E

us2Ru,jp/2
dxP†~x! ~41!

and

rR5E
us2Ru,jp/2

dxr~x! ~42!

are the pair creation and charge-density operators define
Eqs. ~11! and ~12!, respectively, and manifestlytR

z 11/2 is
the holon pair density operator in the environment. To s
that this is equivalent to the form of the pseudospin mo
discussed above, we apply the pseudospin version of the
tary transformationU1,

U5expH 2 iA2p(
R

tR
z ucJ , ~43!

to Eq.~40!. In this way, we obtain the transformed version
Hpseudogiven in Eq.~39! with «* 5«22Vc . It is clear from
the derivation thatHpseudo has the same symmetry as th
starting Hamiltonian.

In the pseudospin model, the umklapp scattering (g3)
term ofHc

2 is unchanged by the transformationU since the
argument of the cosine is displaced by the trivial pha
4ptR

z , with tR
z 561/2. Thus, in the pseudospin model, th

canonical transformation decouples the charge degrees o
1DEG from the environment, even in the presence of a n
zerog3.

The pseudospin model clearly captures the essential p
ics of charge fluctuations in the environment in the limit
small kinetic energy. In addition, it is more general, inso
as it is also a reasonable representation of the spin gap
ters, discussed above. Of course, a continuous distributio
centers corresponds to the case in which there is an env
mental spin gap everywhere.

V. EXACT RESULTS FOR THE PSEUDOSPIN MODEL
WITH «* 50 AT T50

In this section we present an exact solution of the ps
dospin model, Eq.~40!, at a suitably chosen decouplin
point, in order to elucidate the mechanism by which a str
coupled to a magnetic insulating environment by pair ho
ping develops a gap in its spin excitation spectrum. We tr
both the case in which there is a preexisting environme
spin gap and the case in which the environmental spin e
tation spectrum is gapless. In both cases, the ground sta
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the solvable model is a fully gapped paired-spin-liquid sta
However, we consider the former case to be the more ph
cally relevant, as without a preexisting environmental s
gap it is less likely that the model with physically reasona
values of the bare interactions will lie in the basin of attra
tion of the paired-spin-liquid fixed point. A gapped spin li
uid is the one-dimensional version of singlet supercondu
ing pairing, although it also displays enhanced char
density wave correlations.53,23

A. The decoupling limit

The close formal relation between the pseudospin mo
Hpseudoand a Kondo lattice suggests that there is a coun
part of the solvable limits of the one-dimensional Kondo56

and orbital Kondo55 arrays that we have analyzed previous
This is in fact the ‘‘decoupling limit,’’ discussed earlier, i
which DVc50 ~i.e.,Vc5pvc/2Kc), so that the unitary trans
formationU decouples the charge degrees of freedom of
1DEG from the remaining degrees of freedom. The spin p
of the Hamiltonian remains nonlinear and, in general, it
volves the dynamics of the pseudospins. However, a fur
great simplification occurs in the limit«*→0 ~i.e., «52Vc)
at which point the pseudospin operatorstR

x commute with
the transformed HamiltonianU†HpseudoU, so the set of ei-
genvaluestR

x 561/2 are good quantum numbers.
In the ground state, thetransformedpseudospins are or

dered, i.e.,tR
x 5t0

x for all R, and there is a twofold degen
eracy, corresponding tot0

x561/2. This does not correspon
to long-range superconducting order~which is forbidden in
one dimension!, even though the untransformedtR

1 creates
charge 2. After the unitary transformation in Eq.~29!, tR

x

becomes the gauge-invariant order parameter that chara
izes thecompositepairing of the holons and it cannot b
expressed as a local function of the original physical fiel
A similar composite ordering was discovered for the tw
channel Kondo problem.66 Here the only symmetry that i
broken in the ground state is the discrete ‘‘t ’’ symmetry,
discussed in Appendix B.

We show below that, so long asJsp!W, the array of
pseudospins is so dense that its discreteness may be ign
in the ground state.76 Then the spin fields are governed b
the double sine-Gordon Hamiltonian

Hs5Hs
01Hs

21
Jsp

2paE2`

`

dxcos@A2pfs~x!#

3cos@A2pf̃s~x!#. ~44!

whereHs
0 andHs

2 are given in Eqs.~18! and ~20!, respec-
tively. We can obtain exact solutions of the spin part
problem in two different limits.

1. The case of an environment with a large spin gap

We first consider the case in which there is a preexist
spin gap in the environment and show how it is commu
cated to the 1DEG. In terms of our model, this correspo
to the case in whichK̃s,1 and u g̃1 / ṽ su is large. Then the
term proportional tog̃1 is relevant~in the renormalization-
group sense! and even in the absence of coupling to t
.
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1DEG produces a spin gapD̃s in the environment. At ener-
gies and temperatures small compared toD̃s , the fluctuations
of f̃s are effectively pinned and cos@A2pf̃s(x)# in Eq. ~44!
may be replaced by its expectation value. Thus, for a la
environmental spin gap, we can readily integrate out the
vironmental spin degrees of freedom, leaving us with a s
plified pseudospin model in which the environmental sp
degrees of freedom no longer appear, but in which a n
effective coupling constant

Jsp[Jsp̂ cos@A2pf̃s#& ~45!

replacesJspcos@A2pf̃s# in the pseudospin Hamiltonian~40!,
where ^cos@A2pf̃s#& is the zero-temperature expectatio
value. ~This expectation value can be computed exactly
the continuum limit,̂ cos@A2pf̃s#&;D̃s /W̃, from known re-
sults for the sine-Gordon field theory, as discussed below
the strong-coupling limitD̃s;W̃, ^cos@A2pf̃s#&;1.!

Once this replacement is made, the analysis of this eq
tion is simplified by the fact that theg1 contribution toH1

s is
irrelevant, providedg1 is not too large: on the one hand, wit
respect to the noninteracting fixed point defined byH0

s , the
final ~pair-tunneling! term in Eq.~44! is perturbatively rel-
evant, while theg1 term is perturbatively irrelevant. More to
the point, the term proportional toJsp is a relevant perturba
tion relative to the full sine-Gordon HamiltonianH0

s1H2
s ,

whereas if we reverse the logic and treat theg1 term as a
perturbation, we find that it is irrelevant. We therefore dr
theg1 term for the present with the result thatHs is reduced
to a ~solvable! sine-Gordon Hamiltonian for the fieldfs . As
discussed below, the solution of this problem is qualitativ
described by the classical limit, in thatfs is thus pinned in
the ground state and there is a corresponding spin gap.

2. The case of a small, bare environmental spin gap

When the environment does not have a large, preexis
spin gap, we may omitHs

2 in Eq. ~44! and rewriteHs as

Hs5Hs
01

Jsp

4paE2`

`

dx$cos@A4pfs
1~x!#

1cos@A4pfs
2~x!#%, ~46!

wherefs
65(fs6f̃s)/A2. Then, in the special case in whic

the spin Hamiltonians of the stripe and the environment
symmetric (K̃s5Ks and ṽ s5vs), Hs may be written as a
sum of two independent sine-Gordon Hamiltonians in
variablesfs

6 . The major difference from the case in whic
the environment has a spin gap is thatKs is replaced by 2Ks .

B. Sine-Gordon models

Until now, we have considered in parallel the cases
which the environment has and does not have a preexis
spin gap. To streamline the subsequent discussion we
focus solely on the more physically interesting case in wh
there is a large preexisting environmental spin gap; the o
case can be straightforwardly analyzed along similar lin
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So, for example, the double sine-Gordon model in Eq.~44!
will be replaced by the ordinary sine-Gordon model in whi
Jsp replacesJspcos@A2pf̃s#.

The solution of the resulting sine-Gordon Hamiltonians
well known.77 The excitations are massive solitons and an
solitons~which correspond to a ‘‘magnon’’ with az compo-
nent of spinSz561 and charge 0! with energy spectrum
given by

Es~k!56A~vsk!21D̄s
2, ~47!

where

D̄s;
vs

a FJspa

vs
Ga

, ~48!

with

a52/~42Ks!, ~49!

provided Ks,4. In addition, so long asa,1, there are
breather modes,77 i.e., two magnon bound states, withSz50
and energy;D̄s . In particular, as discussed in Eq.~27!, spin
rotation invariance implies that, at low energies,Ks'1,
which, in the case of a large environmental spin gap, imp
a52/3, for which there are two breathers. One has ene
D̄s and, together with the soliton and antisoliton, forms
triplet ~pair breaking! excitation. The other is a singlet wit
energyA3D̄s , which plays the role of the amplitude mod
~or ‘‘Higgs’’ particle!. The spin gapD̄s also defines a corre
lation lengthjs5vs /D̄s , which characterizes the response
the spin field to external perturbations. Clearly, it is cons
tent to ignore the discreteness of the pseudospin arra
long asjs@jp .

There are two other classes of excitation of the spin
grees of freedom, both of which are nonpropagating in
decoupling limit, but which acquire a finite~but large! mass
when perturbations are included. The first involves a kink
the pseudospin order, so that, for instance,tR

x 51/2 for R,0
and tR

x 521/2 for R>0. This induces a correspondin
‘‘half’’ soliton in the fs field and so corresponds to
‘‘spinon’’ with charge 0 and spin 1/2 with a creation ener

D̄spinon;D̄s ; ~50!

it is unclear at present whether 2D̄spinon is greater than or
less thanD̄s , which ultimately determines whether the ma
non is stable or subject to decay into two spinons.~Classi-
cally, i.e., in theKs→0 limit, 2D̄spinon5A2D̄s.D̄s .) The
second excitation involves a flip of the pseudospin at o
point.78 Again, because the spinfs fields are quite rigid~i.e.,
js is large!, they will hardly respond to such a flip, so th
energy of this excitation can be estimated as

d̄ 5~Jsp /pa!^cos~A2pfs!&'r~EF!D̄s
2 . ~51!

~The fact that this excitation involves minimal relaxation
fs can also be seen,a posteriori, from the fact thatd̄ !Ds .)
-
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C. Correlation functions

Since a continuous symmetry cannot be broken in o
dimension, the ‘‘state’’ of the system is characterized by
correlation functions of the various possible order parame
fields. In the case of noninteracting electrons, density-den
correlation functions decay as 1/x2. Therefore, any correla
tion function Ci(x,x8)5^Oi(x)Oi(x8)& that decays asx2a i

is ‘‘enhanced’’ if a i,2; the corresponding susceptibility d
verges asTa22 in the limit T→0. The order parameter
whose correlation functions are enhanced are thekF
charge-density wave

OCDW5@c2,↑
† c1,↑1c2,↓

† c1,↓# ~52!

and singlet pairing

OSP[P†~x!, ~53!

whereP† is defined in Eq.~11!. At temperatures small com
pared to the spin gapDs , the spin field is massive, so th
spin fluctuations contribute a multiplicative constant to the
correlation functions, while all others exhibit exponential d
cay. Away from half filling, there is a band of solitons an
the exponents are given byaCDW5Kc* and aSP51/Kc* .
HereKc* is the value ofKc , renormalized by umklapp scat
tering.

For 1/2,Kc,1, both singlet pairing and CDW correla
tions are enhanced, but the CDW correlations decay m
slowly with x. However, as usual for quasi-one-dimension
systems, disorder and the coupling between stripes determ
the fate of an array of stripes.

Even at zero temperature, the correlation function of
untransformed pseudospin operators decays rapidly with
tance. However, the transformed pseudospins^UtR

x tR8
x U†&

exhibit long-range order atT50 and Ising-like behavior a
finite temperature,

^U†tR
x tR8

x U&'~mt!
2exp@2uR2R8u/jt~T!#, ~54!

where the temperature-dependent values ofjt(T), which di-
verges asT→0, and mt , which approaches 1/2, are es
mated below. As in the case of the quantum Hall effec80

and, in general, in quantum disordered states in
dimension,79 such as those found in integer spin chains81 and
various Kondo arrays,55,56 in the present case the cohere
state of the system is characterized by the long-range o
of a nonlocal order parameter.

VI. APPROXIMATE RESULTS FOR THE PSEUDOSPIN
MODEL AT T>0

Our purpose in this section is to obtain a more compl
~but approximate! solution of the model at finite temperatur
and finite«* . We will also discuss, qualitatively, the pertu
bative effects of deviations from the decoupling limit of th
model~i.e., the effects of nonzeroDVc). Again, for simplic-
ity, we restrict our attention to the more physically intere
ing case in which there is a large preexisting environmen
spin gap; the other case can be straightforwardly analy
along similar lines. Recall that in this case, the environm
tal spin degrees of freedom can be integrated out, leavin
with the pseudospin Hamiltonian~40!, with the effective
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couplingJsp , defined in Eq.~45!, replacingJspcos@A2pf̃s#.
~It is also important to remark that the general model c

sidered previously can be treated at the same level of
proximation. The results differ little from those we obta
here for the pseudospin model, which substantiates our v
that there is little physically important difference betwe
the two models. However, we have been unable to ob
analogs of the exact results discussed in Sec. V for the g
eral model.!

We have shown in Sec. V that the transformed ps
dospins are condensed atT50. The important thermal fluc
tuations that destroy this order are the spinon excitations
produce kinks in the order parameter field, as discus
above. Thus the transformed pseudospin correlation fu
tions at low temperature are equivalent to those of a class
Ising model with exchange couplingDspinon. As a conse-
quence, for sufficiently smallT, the correlation length di-
verges as

jt'jpexp@Dspinon/T#. ~55!

At first, Eq. ~55! might be expected to apply so long a
T!Dspinon, but in fact it only holds so long asT!d; this is
because at temperatures of orderd, the large density of ther
mally excited single pseudospin flips~which, by themselves
directly affect only the magnitude, but not the range of t
pseudospin order! leads to a large renormalization of th
spinon creation energy; Eq.~55! remains valid, but with a
temperature-dependent renormalized spinon creation en
replacingDspinon ~and lattice constantjp).

We obtain anestimateof this renormalization using the
technique of Coleman, Georges, and Tsvelik.78 Basically,
this amounts to making a mean-field-like decomposition
the nonlinear term~i.e., the term proportional toJsp) in
H̃pseudo, so that in computing the thermodynamic propert
of fs , we replace the transformed pseudospin operatorstR

x

by their thermal expectation value,mt5^U†tR
x U& and, con-

versely, in computing the pseudospin properties, we t
^cos@A2pfs#& as a pseudo magnetic field. As with all mea
field theories in one dimension, this approximation has
fault that it produces spurious long-range order at finite te
perature, wherê U†tR

x U& and ^cos@A2pfs#& are actually
equal to zero. However, we shall see that the mean-fi
theory is exact in the limit«* , andT→0 and thus its results
are reliable at low temperatures when it is used to estim
local quantities such asDs , Dspinon, and mt . In other
words, it is correct for intermediate-scale fluctuations.@For
example,mt should be defined in terms of the asympto
form of the composite order parameter correlation funct
in Eq. ~54! and the mean-field theory should be viewed a
way of estimating it as the ‘‘local’’ expectation value of a
operator.#

In the mean-field approximation the self-consistent eq
tions for the temperature-dependent gapsDs(T) and d(T)
are

d~T!5~2Jsp /p!^cos@A2pfs#&, ~56!

Ds~T!5D̄s@2^tR
x &#a, ~57!

^U†tR
x U&5~d/4Eb!tanh@bEb~T!#, ~58!
-
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Eb~T!5A~e* !21~d/2!2, ~59!

whereD̄s and d̄ are, respectively, the values ofDs andd at
T50 and«* 50, as given in Eqs.~48! and ~51! above. Fi-
nally, ^cos@A2pfs#& should be computed at finite temper
tures using known results from the thermal Bethe ansa82

for the sine-Gordon model. These results are quite com
cated, but fortunately the information we need is fairly min
mal, specifically, that̂ cos@A2pfs#& is a monotonically de-
creasing function of temperature, with the scale for t
temperature dependence set by the zero-temperature
Among other things, this implies that so long asDs(T)@T,
we can use the zero-temperature result

^cos@A2pfs#&'~pa d̄ /2Jsp!@2^U†tR
x U&#~2a21! ~60!

for the sine-Gordon part of the calculation. It is clear fro
these equations that, forT!Eb(0) and T!Ds(0), all gap
parameters are well approximated by their zero-tempera
values. Conversely, the gaps begin to decrease w
T;Eb(0) if Eb(0),Ds(0) or when T;Ds(0) if
Ds(0),Eb(0). We can, in general, define a characteris
crossover temperatureTpair to be that temperature at whic
Ds(T) begins to drop significantly from its zero-temperatu
value. In some cases, this is the only obvious crossover t
perature in the problem. However, we will see that und
some circumstances, it is still true thatDs(T)@T for a sub-
stantial range of temperatures aboveTpair ; in these cases
there is a second, parametrically larger crossover temp
ture, Tpair8 @Tpair , at which the spin gap gets to be comp
rable toT. For temperatures aboveTpair8 , all effects of pair-
ing and coherence are negligible.

We can now proceed to analyze the solution of the
equations as a function of temperature and«* . The results
~for the important case mandated by spin-rotation invaria
in which a52/3) can be sumarized as follows:Ds(0) is
largest for «* 50 and falls slowly, roughly as«21, with
increasing«* , but only vanishes~i.e., pair hopping become
irrelevant! when«* ;@Jsp#

2/g1. Tpair is much smaller than
Ds(0) for small«* , but increaseswith increasing«* , reach-
ing a maximum for«* ;Jsp , at which point all energy
scales are comparable,Tpair;Ds(0);Jsp . Meanwhile,
Tpair8 is of orderJsp and roughly independent of«* for «*
small compared toJsp and becomes indistinguishable fro
Tpair for «* .Jsp . These results are shown schematically
Fig. 2. In the following, we derive these results, focusi
sequentially on four distinct regimes of behavior as a fu
tion of «* ; in the subsection headings, the ranges are
pressed with numerical exponents for the important c
a52/3, as well as algebraically for generala.

A. The case«* !Jsp†Jsp /W‡

1/3, i.e., when«* ! d̄

In this regime, the results are qualitatively the same as
«* 50. @Note that for«* 5T50, the self-consistent equa
tions ~56!–~60! are exact.# There is little temperature depen
dence of any of the gap parameters in the low-tempera
regimeT!Tpair , where

Tpair; d̄ . ~61!
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Clearly, substantial suppression ofDs(T) due to pseudospin
fluctuations begins to occur whenT;Tpair ; as a conse-
quence,Tpair /Ds(0);r(Ef)Ds(0)!1/2.

There follows an intermediate temperature regi
Tpair!T!Tpair8 , where

Tpair8 ; d̄ s@D̄/ d̄ s#
2~12a!/~22a!; ~62!

in this regime, even thoughDs(T) is strongly suppressed,
is still true that Ds(T)@T, so we can approximate
^cos@A2pfs#& by its zero temperature value Eq.~60!, with
the consequence that

Ds~T!'D̄s@b d̄ #a/2~12a! ~63!

and

d~T!' d̄ @b d̄ #~2a21!/2~12a!. ~64!

However, while significant spin pairing still survives in th
temperature range, the entropy of the pseudospins is re
ered and hence the specific heatCv;@d(0)/T#1/(12a) is
large.

Tpair8 is the temperature at whichT5Ds(T), whereDs(T)
is given by Eq.~63!. For temperaturesT@Tpair8 , there is no
coherence, no apparent gap in any of the degrees of free
and the problem can be treated using a high-temperature
pansion.

We can summarize the heirarchy of scales in this cas

D̄s;Ds~0!@Tpair8 @Tpair;d~0!; d̄ @«* . ~65!

Specifically, for thea52/3 case,D̄s;Jsp
2/3, Tpair8 ;Jsp , and

d̄ ;Jsp
4/3.

FIG. 2. Energy scales from the solution of the pseudospin mo

as a function of«* : d̄ andD̄s are, respectively, the coherence sca
and the spin gap derived from the exact solution of the model
«* 50 and given in Eqs.~48! and~51!, Ds(0) is the zero tempera
ture value of the spin gap,Tpair is the temperature scale at whic
Ds(T) begins to fall significantly relative to its zero temperatu
value, andTpair8 is the temperature at whichDs(T);T.
e

v-

m,
x-

as

B. The caseJsp†Jsp /W‡

1/3!«* !Jsp , i.e., when
d̄!«* ! d̄s†D̄s / d̄s‡

2„12a…/„22a…

It is easy to see from Eqs.~58! and~59! that larger values
of «* suppress the thermal disordering of the pseudosp
and hence remove the anomalous renormalization ofDs(T)
at low temperatures. AtT50 and so long as«* @ d̄ ,

d~0!5 d̄ @ d̄ /«* #1/2~12a! ~66!

and

Ds~0!5D̄s@ d̄ /«* #~2a21!/2~12a!. ~67!

If at the same time«* !Tpair8 , thenDs(0)@«* , so

Tpair;«* . ~68!

For T!Tpair , there is little temperature dependence of t
gaps, whereas forT@Tpair , «* falls out of the problem so
Ds(T), d(T), and Tpair8 are given by Eqs.~63!, ~64!, and
~62!, as before.

The remarkable property of this range of parameters
that, as«* increases, the spin gap atT50 decreases rapidly
~as expected!, but the pairing temperatureTpair actually in-
creases. In other words, in order to obtain a high-temperatu
scale for pairing, the charge transfer energy«* should be
somewhat above the Fermi energy.

We can summarize the heirarchy of scales in this cas

D̄s@Ds~0!@Tpair8 @Tpair;«* @ d̄ @d~0!. ~69!

One remarkable feature of this result, which relies on
particular value a52/3, is that in this regime
Ds(0);@Jsp#

2/«* , Tpair;«* , andTpair8 ;Jsp are all inde-
pendent of the bandwidth. Note that at the upper end of
range, Ds(0);Tpair;Tpair8 ;«* ;Jsp . This same conclu-
sion follows from evaluating the expressions in the next s
section at the lower limit of the stated range.

C. The caseJsp!«* !W, i.e., when
d̄†D̄s / d̄‡

2„12a…/„22a…!«* !W

Whenever d̄ @D̄s / d̄ #2(12a)/(22a)!«* , it follows that
Ds(0)!«* . As a consequence, the temperature depende
of the various gaps is set by

Tpair;Ds~0!, ~70!

where Ds(0) and d(0) are given by Eqs.~48! and ~66!
above; moreover, there is no longer a distinct tempera
scaleTpair8 .

The heirarchy of scales in this case can be summarize

D̄s@Ds~0!;Tpair@ d̄ @d~0!,

«* @Ds~0!. ~71!

In this regime, bothDs(0) and, correspondingly,Tpair are
decreasing functions of«* . To be specific, for the case o
a52/3, Tpair;Jsp

2 /«* andd(0);TpairA«* /W.
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D. «* ;W: Renormalized interactions

In the limit of large«* , the dynamical nature of the co
lective mode is unimportant; it could have been integra
out to obtain new effective interactions in the 1DEG, w
retardation and spatial nonlocality limited by the size of«* .
Moreover, since in this limit holon pairs in the environme
exist only as dilute, virtual excitations, it is sufficient to com
pute these interactions perturbatively in powers ofJsp /«* .
To second order inJsp , the Hamiltonian is of the same form
as H1DEG in Eq. ~2!, but with a renormalized chemical po
tential and interactions:

g1* 5g12dg, ~72!

Ks* 5K~g1* !, ~73!

vs* 5vs1dg/2p, ~74!

wheredg5(Jsp)
2/4«* .

When g1 is small, g1* ,0 and the pair fluctuations pro
duce a net attractive interaction in the spin degrees of f
dom, which leads to a spin gap of magnitude83

Ds54A2l/p~vs /a!exp@21/l#, ~75!

wherel5rsug1* u/a andrs5a/pvs . It is also clear that there
is a corresponding crossover temperatureTpair'Ds/2!«* ,
above which the spin gap vanishes and the spin excitat
are well described as linearly dispersing collective mo
with velocity vs* . Again, the charge modes are complete
unaffected by the pairing physics and so continue to be
scribed as linearly dispersing modes with velocityvc . Hence
the Drude weight~or, equivalently for the 1DEG, the zero
temperature superfluid phase stiffness! is unrenormalized.

This analysis is strictly correct only if«* .W because it
did not take account of retardation, which implies that t
induced interactiondg1 vanishes for energy exchange mu
greater than«* . However, for the physically more interestin
caseW@«* @Jsp , the effect of retardation can be studie
using an energy shell renormalization-group scheme, a
the electron-phonon problem.23 This improved treatmen
produces results that are similar in spirit to those descri
above, except that, for energies smaller than«* ~when there
is no longer a distinction between the retarded and insta
neous pieces of the interaction!, the effective interaction ha
a renormalization dg1, which is a complicated, bu
calculable,23 function of g1, (Jsp)

2/4«* , and «* /W. In all
cases, there is a critical value of the charge transfer en
«c;(Jsp)

2/4g1, such that for larger«* .«c , the renormal-
ized value ofg1 is positive at low energies and there is n
spin gap, whereas for«* ,«c , g1* is negative and a spin ga
opens up at zero temperature. This answers the questio
how ‘‘active’’ the environment must be.

E. Effects of ‘‘irrelevant’’ interactions

We now consider the effects of various interactions t
we set equal to zero in the decoupling limit. Because
spectrum of the pseudospin model has a gap at the solv
point, all of the omitted terms are formally irrelevant in th
renormalization-group sense. Of course this does not giv
license to completely ignore these terms; they can h
d
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large, quantitative, and at times qualitative effects on
physics of interest, even if they do not affect the characte
the true asymptotic behavior of the system.

Let us consider the effects of nonzeroDV and«* on the
nature of the excitations of the system at zero temperat
When these couplings are small, their most important qu
tative effect is to induce dynamics for the pseudospins. In
presence of these terms, the effective Hamiltonian for
pseudospins, obtained by integrating out the electronic
grees of freedom,78 is qualitatively similar to~but not pre-
cisely equal to! the spin-1/2 Ising model in a transverse ma
netic field,

He f f;(
R

@~ d̄ /2!tR
x 1«* tR

z #2 (
R.R8

@K~R2R8!tR
x tR8

x

1K̃~R2R8!tR
z tR8

z
#, ~76!

in which K(R2R8); d̄ 2/D̄s andK̃(R2R8);(DV)2/D̄s and
both have range of orderjs . As is well known, a transverse
field induces dynamics~propagation of the kinks! in the spin-
1/2 Ising model.

As we have seen, the other effect of«* is to suppress
thermal fluctuations of the pseudospins. At high tempe
tures, there is an entropy densityS5(a/jp)ln2 associated
with the discrete symmetry of the pseudospins. For«* 50,
this entropy is lost at about the temperatureTpair; d̄ , where
strong pairing sets in. In higher-dimensional systems t
large entropy is presumably responsible for heavy-ferm
behavior in the model;4 in the present context it leads to th
small ratio ofTpair /D(0). When«* . d̄ , the majority of the
entropy associated with the pseudospins is lost at temp
tures greater thanTpair . As a consequence, thermal disorde
ing effects are relatively less severe andTpair /D(0);1/2 is
rapidly restored.

VII. THE BEHAVIOR OF THE CHARGE DEGREES
OF FREEDOM

We have seen that, in the pseudospin model, the canon
tranformation decouples the charge degrees of the 1D
from the environment and their fluctuations are described
the quadratic HamiltonianHc

0 . This Hamiltonian describes a
fluctuating superconductor, with phaseuc , or in dual lan-
guage, a fluctuating charge density wave, with phasefc .
Evidently, proximity to commensurability or the existence
an external potential can substantially modify the physics

A. The role of Umklapp scattering

The charge fields of the 1DEG are governed by
Hamiltonian

H̃c5H0
c1H1

c , ~77!

whereH0
c andH1

c are given in Eqs.~22! and~23!. Now thec
number (4kF2G)x may absorbed into the phasefc , with-
out changing the commutation relations and the quadr
part ofH0

c in Eq. ~22! may be diagonalized by the canonic
transformationfc→fcKc

1/2, Pc→Pc /Kc
1/2. The net result is
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that the charge degrees of freedom are described by a
Gordon model with a chemical potentialm* given by

m* 5
vc~4kF2G!

4Kc
. ~78!

For the strongly incommensurate case, in whichm* is large,
we can ignore the umklapp scattering term~proportional to
g3); in this case the charge excitations are gapless collec
modes with a soundlike dispersion and a velocityvc that is
unrenormalized by the interactions with the environme
Correspondingly, the Drude weight, or superfluid phase s
ness~which cannot be distinguished in one dimension in
absence of disorder!, is also unrenormalized.

In the nearly commensurate case, which characterizes
doped-insulator region, the analysis of the correspond
sine-Gordon theory is the same as for the spin degree
freedom. In particular, forKc,1, which is always satisfied
for repulsive interactions, the ‘‘particles’’ in the theory a
massive solitons with chargee and spin 0. It follows at once
that the system undergoes an insulator to metal transitio
um* u5Dc , where the chemical potential moves out of t
gap, and that there is a finite density of solitons

nsol5
A~m* !22Dc

2

pvc
, ~79!

with m* given in Eq.~78!. For smallnsol , the Drude weight
of the stripe is proportional tonsol . This argument is similar
to the analysis of the commensurate-incommensurate tra
tion by Pokrovsky and Talapov,84 except that they consid
ered a two-dimensional classical problem, equivalent to
quantum sine-Gordon problem in imaginary time.

For quarter-filled stripes,85 4kF52 k̃ F5G/2, so the
charge density on the stripe and in the environment m
jointly lock to the lattice. This commensurability effect com
petes with superconductivity, but if the coupling constan
not too large, it may not develop beyond the logarithm
temperature dependence that characterizes the early stag
renormalization.86 We are investigating this behavior as
potential source of the special stability of quarter-fill
stripes for dopingx,1/8 in the La2CuO4 family47,87and the
logarithmic temperature dependence of the resistiv
observed88,47 when the onset of superconductivity is su
pressed.

B. External periodic potential

Here it is assumed that there is an external potential w
a wave vectorq that is close to 2kF . Then the Hamiltonian
must be supplemented by a contribution

He5u(
s

E
2`

`

dx@c1,s
† c2,sei ~2kFx2qx!1H.c.#, ~80!

which may be written in the boson representation~13! as

He5
2u

paE dxcos@A2pfc1~q22kF!x#cos@A2pfs#.

~81!

It is straightforward to show that when the pseudospin r
resentation is introduced for the charge degrees of free
e-

ve
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f-
e
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e
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y
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of the environment,He is not changed by the unitary trans
formation defined byU in Eq. ~28!, i.e., U†HeU5He .
Moreover, it is clear from the spin Hamiltonian~44! that
cos@A2pfs(x)# has a finite expectation value so that it m
be replaced by a constant inHe to obtain the asymptotic
behavior of the charge degrees of freedom. Umklapp sca
ing may be ignored if it is an irrelevant variable or if 4kF is
sufficiently far from a reciprocal lattice vector. However, th
effect of the periodic potential is similar to that of umklap
scattering. The main differences are that the solitons are m
sive whenKc,4 ~as opposed toKc,1 for umklapp scatter-
ing! and thatm* 5vc(2kF2q)/Kc , which modifies the con-
dition for the metal-insulator transition.

The physical argument for including such a potential is
follows. In the ordered state of La1.62xNd0.4SrxCuO4, the
holes on a given stripe move in an effective potential p
duced by the stripes in a neighboring CuO2 plane. Since
stripes in adjacent planes are perpendicular to each other
wave vector of the charge contribution to the effective p
tential is given byq52e in units of 2p/a, wherea is the
lattice spacing.47 In the same units, 2kF5ns/2, wherens is
the concentration of doped holes on a given stripe. T
present experimental evidence47,48 is consistent withe51/8
and ns51/2 and henceq52kF for dopant concentration
x51/8. This is the hole concentration near which the sup
conductingTc is suppressed in the stripe-ordered mate
La1.62xNd0.4SrxCuO4 ~Ref. 89! and in La22xBaxCuO4, for
which there is indirect evidence of stripe order.90 An array of
stripes will undergo a transition to a superconducting stat
a temperature that is determined by the onset of phase co
ence and is proportional to the superfluid phase stiffne8

which in turn is proportional tonsol .
In Sec. III we considered the case in which the enviro

mental spin gap arose because the backscattering term
portional to g̃1 was relevant. For a half-filled band withg̃3
also relevant, there is a broken-symmetry ground state w
period 2a, which produces an external potential on the stri
with a wave vector equal to 4kF when ns51/2. Such a po-
tential is commensurate with the umklapp termg3, so the
coupling between these terms must be taken into acco
This is an example in which spin gaps with and withou
broken symmetry may lead to different consequences.
physical case has no broken symmetry.

VIII. SPIN-GAP CENTER

Another model of some physical interest has a spin ga
one specific location as, for example, at an isolated anti
romagnetic region in a metal. This is an example of a d
namical impurity problem, in which the conduction electro
couple to a center with internal degrees of freedom. It is w
known that an angular momentum analysis produces a o
dimensional Hamiltonian involving the radial motion of in
coming and outgoing fermions on the half liner .0, wherer
is the distance from the pairing center.67 Also, it is possible
to extend the space to all values ofr by transforming incom-
ing fermions forr .0 to incoming fermions at position2r .
Then the problem is formally equivalent to a on
dimensional electron gas in which only the right-going fe
mions interact with the pairing center. In the absence of le
going fermions, the operatorP†, introduced in Eq.~11!,
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cannot be defined and only theh-pairing term91

Ph,1
† 5c1,↑

† c1,↓
† , ~82!

couples to the pairing center. Triplet-pairing terms are om
ted because the exclusion principle requires them to be o
form c1,↑

† ]c1,↑
† , which is less relevant thanPh,1

† . ~The de-
rivative in the triplet operator leads to an extra power of 1x2

in the correlation function.! Thus a pairing center naturall
produces singlet pairing.

We consider the case in which the center has a large
gap, so the pseudospin variable~representing charge transfe
to the center! is the only internal degree of freedom of th
center that we retain explicitly. Thus the Hamiltonian is

Hcenter5H1DEG1Hh , ~83!

where H1DEG is given in Eq.~2!, although in the case in
which the metallic degrees of freedom represent a high
dimensional Fermi liquid, one must set the interactions (ga)
to zero. The bosonized form ofHh is

Hh5«tz1
V

A2p
tzFc8~0!1

Jh

pa
@t2eiA2F1,c~0!1H.c.#.

~84!

Here F1,c(0)5@F1,↑(0)1F1,↓(0)#/A2. In this form the
model is equivalent to a single-channel Kondo problem67 and
it may be solved by making a unitary transformati
Hcenter→U†HcenterU with

U5exp@2 ilFc~0!tz# ~85!

and choosingl5A221, for the special pointV5A2plvc .
Then H̃center becomes

U†HcenterU5H1DEG1«tz1
J

pa
@t2eiF1,c~0!1H.c.#.

~86!

This the Hamiltonian may be ‘‘refermionized’’ by writing
the pseudospin operator in the formt15hd, whereh is an
anticommutingc number andd is a fermion annihilation
operator, and inverting the boson representation of ferm
fields

cc
†5h

eiFc

A2pa
. ~87!

When written in terms of these variables, the right-going p
of the Hamiltonian becomes

U†H1,centerU52 ivcE
2`

`

dx@cc
†]xcc#

1
Jh

A2pa
@dcc

†~0!1H.c.#, ~88!

which is precisely the Toulouse limit from which all of th
well-known behavior of the single-channel Kondo proble
may be derived.67 This argument strongly suggests that a
t-
he

in

r-

n

rt

-

rays of pairing centers in two and three dimensions beh
like Kondo lattices and that they should show heavy-ferm
behavior.4

Of course a single-pairing center in a purely on
dimensional model should also exhibit this single-chan
Kondo behavior. This wouldnot happen if we replaced the
pseudospin array in Eq.~40! by a single center because w
would have omitted a possibleh-pairing interaction of the
form JhtR

1@Ph,11Ph,2# in that Hamiltonian. While momen-
tum conservation indeed makes this term unimportant for
extended array, a spin-gap center, by its very nature, bre
translational symmetry and hence permits finite moment
transfer scattering processes. Including these terms, the
pair coupling at a single spin-gap center in Eq.~11! may be
written

Hpair5$JspP
†~R!1Jh@Ph,1~R!e2ikFR

1Ph,2~R!e22ikFR#%tR
21H.c. ~89!

If we consider a single center atR50 and consider the cas
Jh50, the left-going fermions at positionx may be trans-
formed to right-going fermions at position2x, without
changing the Kondo coupling. Thus the subscripts 1,2
come ‘‘flavor’’ labels and we have a two-channel Kond
problem. However, in this language, theJh term breaks the
‘‘channel degeneracy’’ and is pertubatively relevant, so
produces a single-channel Kondo problem. On the ot
hand, the oscillating factors in Eq.~89! make theJh pertur-
batively irrelevant for the array and, moreover, since the m
match of momenta between the 1DEG and the antiferrom
net implies thatJh is small compared toJsp , the neglect of
h-pairing interactions for the extended system is justifie
This is analagous to the behavior found previously
Kondo systems,56 where the anisotropic single-chann
Kondo array behaves as if it were a two-channel Kondo
ray, even though the single-impurity version of the mod
exhibits ordinary Kondo behavior.

IX. DISCUSSION

A. Summary of results

We have studied a model of a 1DEG in an active en
ronment, focusing in particular on the case in which the
vironment possesses both a charge gap and a spin gap
the energy difference between a singlet pair of holes in
1DEG and the environment«, is small in comparison to the
bandwidth. We have discovered a mechanism for produc
strong superconducting fluctuations on a high-tempera
scale, in which a spin gap is induced in the regions betw
the stripes by spatial confinement and transferred to
1DEG by pair tunneling. A striking feature of this mech
nism of superconductivity, which may be described as
spin-gap proximity effect, is that the pairing~i.e., the spin
gap! is a property of the insulating state itself and it is simp
imprinted on the mobile holes through their virtual excu
sions into the insulating regions. We have found that t
phenomenon is robust and, in particular, it survives the p
ence of strongly repulsive forward-scattering interactio
i.e., Coulomb repulsion between electrons.

We have demonstrated that the physics of this problem
captured by a simple pseudospin model, for which exact
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well-controlled approximate results can be obtained. T
model includes the most important interactions: the ren
malized pair-tunneling matrix elementJsp @defined in Eq.
~45!#, the renormalized energy cost«* required to move a
singlet pair of holes from the 1DEG to the environment, t
bandwidth of the 1DEGW;EF ~which is assumed to be
large compared to other energies!, and the exponenta,
which characterizes the spin correlations of the 1DEG.
have used renormalization-group arguments to show
a'2/3 for repulsive, spin-rotationally invariant interaction
and we shall use this value ofa in discussing our results.

We have found that, generically, this model produces s
glet pairing~spin-gap behavior! at a high temperatureTpair :
in the limit «*→0, Tpair;Jsp(Jsp /W)1/3, while for
«* @Jsp(Jsp /W)1/3, Tpair is the smaller of «* and
Ds(0);Jsp

2 /«* . Remarkably, this means that for small«* ,
Tpair is an increasing function of«* , which reaches a maxi
mum value ofTpair;Jsp when«* ;Jsp . Below Tpair , sin-
glet superconducting and CDW susceptibilities diverge
T→0, with the stronger divergence typically associated w
the CDW. Moreover, this high pairing scale isnot accompa-
nied by any significant reduction of the zero-temperature
perfluid phase stiffness~Drude weight!, i.e., there is no
strong mass renormalization. We have also identified a z
temperature spin gap energyDs(0), which plays the role of
the superconducting gapD0. In the small-«* limit the ratio
Tpair /Ds(0);Ds(0)/W!1/2, while for large «* ,
Tpair /Ds(0)'1/2, as in BCS theory.~The evolution of these
energy scales as a function of«* is shown in Fig. 2 and
discussed in Sec. VI.! The ground state of this model has
broken, discrete Z~2! symmetry, unrelated to any of the usu
space-time symmetries of the problem, and a correspon
nonlocal order parameter that develops a nonzero expe
tion value in the ground state and has an exponentially l
correlation length at low temperatures.~See the discussion o
t symmetry in Appendix B.!

B. Interactions between stripes and possible ordered phases

To extend our results to situations in which there is a t
phase transition, we must consider the properties of an a
of one-dimensional systems~stripes!. To avoid misunder-
standing, we emphasize that, for purposes of the present
cussion, ‘‘CDW’’ refers to charge orderingalong the stripe
direction, whereas ‘‘stripe order’’ implies charge ordering
the directionperpendicularto the stripes, i.e., ordering of th
stripe positions and orientations. Of course, both types
order are a form of generalized charge-density wave.

The ultimate nature of the long-range order depen
among other things, on the coupling between stripes, wh
is profoundly influenced by the intervening antiferromagne
cally correlated regions and, in particular, by the frustrat
of hole motion in the antiferromagnet, which was the drivi
force for the formation of the stripes themselves. Thus t
coupling should be smaller than the characteristic energie
the electronic correlations along the stripe, considered in
paper.

With this in mind, the onset of superconductivity in
dilute stripe array can be studied by introducing weak int
actions between well-separated stripes. Single-particle
neling between stripes is an irrelevant perturbation,92 be-
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cause of the existence of a spin gap, so we do not expe
crossover to higher-dimensional Fermi liquid behavior in t
limit. Then the nature of the long-range order is determin
by pair tunneling and the Coulomb coupling between strip

1. Effects of disorder

There are two distinct types of disorder that have ve
different effects on the physics of an array of stripes. T
first is a degree of randomness in the couplingsbetween
stripes, which may be produced by impurities~as in e.g.,
organic conductors! or by quantum or thermal fluctuations i
the stripe configuration. For a ‘‘self-organized’’ quasi-on
dimensional system, such as a charged stripe array, the l
source of disorder is likely to be the more important. Diso
der of this type favors superconductivity~which is ak50
order! since it strongly frustrates the short-wavelength CD
order associated with the 4kF or 2kF instabilities of the
1DEG. This is especially so when the stripes are stron
fluctuating. In the simplest situation, the dynamics of t
stripes is slow compared to the Josephson plasma freque
as, for example, in La22xSrxCuO4, and the disorder is es
sentially static. On the other hand, if the CDW and sup
conducting fluctuations are on similar time scales, differ
physics may emerge; an interesting possibility is that th
exists a quantum critical point that controls the physics
some region of temperatures and dopant concentration.31,93

The second type of disorder affects the coherence of e
tronic motion along a single stripe. For a single stripe,
back scattering of holes from an impurity is always pertub
tively relevant for the range of interactions considered h
because CDW correlations are enhanced.94 However, the lo-
calization can be superseded by sufficiently strong Joseph
coupling~pair tunneling! between stripes and there will be a
insulator to superconductor transition as the concentratio
stripes grows or the Josephson coupling between stripe
in any other way, increased, with fixed disorder. This is
agreement with the evolution of the ground state observe
La22xSrxCuO4 as a function of doping87 or applied mag-
netic field.88

2. Symmetry of the order parameter

If stripe order breaks the fourfold rotational symmetry
the crystal, the superconducting order will have95,96 strongly
mixed extendeds anddx22y2 symmetry. This will happen in
a stripe-ordered phase, such as in La1.62xNd0.4SrxCuO4, or
in a possible ‘‘stripe nematic’’ phase, in which the strip
positional order is destroyed by quantum or thermal melt
or quenched disorder, but the stripe orientational orde
preserved.~Such phases also would be characterized by la
induced asymmetries in the electronic response in
ab plane. Below we discuss some preliminary eviden
for a transition to a stripe nematic phase in overdop
YBa2Cu3O72d .)

On the other hand, when the stripes are disordered at
length scales, the thermodynamic distinction betweens-wave
and d-wave superconducting order is well defined; in a
tragonal system that is not too heavily doped thedx22y2 or-
der parameter should give the long-distance behavior
cause the extendeds order parameter (coskx1cosky) is small
on the Fermi surface of the noninteracting system. Howe
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even here, if there is substantial orientational order to
stripe fluctuations at intermediate length scales, the interp
between the two types of superconducting order is likely
be more complicated and more subtle than in conventio
homogeneous materials. For example, one can imagine
even in a phase that is globallyd wave, substantial mixture
of s and d wave order could occur over mesoscopic sca
near surfaces97 or twin boundaries.

3. Superconducting fluctuations

A necessary corollary of the stripe model is that, in ligh
doped materials, the temperature scaleTpair at which pairing
occurs~on a single stripe! is parametrically larger than th
superconducting transition temperatureTc , which is gov-
erned by the Josephson coupling between stripes. Moreo
since the pairing force derives from thelocal antiferromag-
netic correlations in the regions between stripes, bothTpair
and Tc must be less than the temperature scaleTAF below
which local antiferromagnetic correlations develop. A s
quence of crossovers is indeed observed experimentall
underdoped high temperature superconductors and they
tentatively been identified98 with these two phenomena; se
Fig. 1, above, and the discussion below.

C. Phase diagram of the high-temperature superconductors

The schematic phase diagram shown in Fig. 1 shows
global framework in which our model is related to the pro
erties of the high-temperature superconductors. The axe
this figure are temperatureT and doping concentrationx;
hatched lines indicate the most important crossover temp
tures and the solid lines represent phase transitions to
antiferromagnetically ordered state at very smallx and to the
superconducting state at largerx. ~In general, there are add
tional phase transitions and possibly other crossovers,
here we wish to focus only on the central physical issue!

The upper crossover temperatureT1* characterizes the ag
gregation of charge~holes! into stripes; as we have show
elsewhere, the driving force for this crossover is frustra
phase separation.16–18 Above T1* the holes are more or les
uniformly distributed and randomly disrupt antiferroma
netic correlations, while belowT1* , the self-organized stripe
array allows local antiferromagnetic correlations to deve
in the hole-free regions of the sample. At short distanc
low-energy spin fluctuations should come from regions w
the character of odd-leg ladders and be like those of
one-dimensional Heisenberg model25 and, indeed, there is
experimental evidence99 indicating that this is the case i
La22xSrxCuO4. As x→0, T1* approaches the temperatu
Tx at which local antiferromagnetic correlations develop
the undoped systems.100 BetweenT1* and the superconduct
ing transition temperatureTc , there is a large range of tem
peratures in which there are significant stripe correlatio
but coherence between stripes can be largely ignored; th
the region of temperatures addressed by the calculation
this paper. As the concentration of holes increases, the s
ration between stripes eventually becomes comparabl
their width, at which point all information concerning th
Mott insulating state is lost; for this reason, we have sho
T1*→0 at a dopant concentrationxmax.
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We identify the lower crossover temperatureT2* with
Tpair , the temperature at which pairing~spin-gap! behavior
emerges within a stripe. This is also the temperature be
which significant local, quasi-one-dimensional supercondu
ing fluctuations become significant. For local probes of
spin and quasiparticle response functions, the system sh
appear all but superconducting below this temperature. S
Tpair is more or less a property of a single stripe, we ha
shown it as a relatively insensitive function ofx, until it is
cut off by T1* at larger dopant concentrations. From this fi
ure it is clear thatTpair is substantially greater thanTc
throughout the underdoped regime, and possibly even at
timal doping, and only approaches closely toTc in the over-
doped regime. Thus, in underdoped materials,Tc is deter-
mined by the superfluid phase stiffness, and hence by
Josephson coupling between stripes, rather than by the
ing scale. This is consistent with our previous analysis.8

It should be noted that a phase diagram of the same f
as that shown in Fig. 1 has been considered, previously
purely phenomenological grounds,98 with the crossover tem-
peratures determined as follows.

~i! The upper crossover occurred at a characteristic t
perature deduced by Batlogget al.100 from an analysis of
susceptibility and transport properties and by Lianget al.101

from an analysis of thermodynamic data. We feel that all
these phenomena are broadly consistent with our identifi
tion of T1* with the emergence of stripe and local antiferr
magnetic order.~It appears that a pseudogap appears in
c-axis optical conductivity102 at this temperature. Much o
the c-axis optical oscillator strength will be shifted to ene
gies higher thanD̃s1«* /2 as the stripe correlations emerg
below T1* .! If we accept this identification, then for mode
ate doping concentrations, a typical value isT1* ;300 K,
although it depends somewhat on the particular material
rather more strongly on the dopant concentration. Inde
stripe correlations have been seen in neutron scattering
periments all the way up to 300 K, although the scatter
cross section decreases continuously, making it difficult
identify them unambiguously at high temperatures.99

~ii ! The lower crossover was identified by Batlogg a
Emery98 as the characteristic ‘‘pseudogap’’ temperature, d
duced from the temperature dependence103 of the Cu NMR
1/T1T, which correlates well with the emergence of sup
conducting gap structure in ARPES experiments,104,105and a
narrowing of the ‘‘Drude-like’’ peak in the optical conduc
tivity in the ab plane.106 If we accept this identification then
for moderate doping,Tpair;150 K, again depending some
what on the particular material being studied.

D. Relation to experiments

1. Estimates of the model parameters

To begin with, it is necessary to estimate the values of
important interactions that determine the behavior of
model. The physics is driven by the local antiferromagne
correlations between spins, soa priori we expect the inter-
actions, other than those within a single stripe, to be so
fraction ofJAF , which in the high temperature supercondu
ors is in the range 1000–1500 K.46 For similar reasons, the
bandwidth in the environmentW̃ is expected to be a few



ad

nd

ua
n-
su

er
e
e
ha
,
he

a

e-
de
th

h
th
te
s

n

al
s
o

pe
u

io
-

op

a-
s

s
su

og

m
e

om
op
ti

ar
ob
t
un

s
o-

plied
on

n
rgu-

-

a-

x-
and
ng

f
he
ou-

ef-

l-
ac-

nt.
he
ole

n

y
or a
ra-

e

dy
sics
ture
ove.
di-
g-

ped
on-

e
iate
ong
ct-
are
oth
t
teri-

ions

56 6139SPIN-GAP PROXIMITY EFFECT MECHANISM OF . . .
timesJAF ; numerical simulations for the square lattice le
to the estimate that the hole bandwidth107 is approximately
2.2JAF . On the other hand, a naive estimate of the ba
width W of the 1DEG is given by the bare value 2t;1 eV,
although this is certainly reduced substantially due to virt
~high-energy! single-particle excursions into the enviro
ment, i.e., leakage of the hole wave function into the in
lating neighborhood of the stripe.

More detailed estimates may be obtained from exp
ment. Since«* /2 is the binding energy of a holon in th
stripe, we expect that it also determines the temperatur
which stripes begin to lose their integrity, so we estimate t
«* ;2T1* . Thus «* is certainly remarkably small
«* ;JAF/2, but still large enough that the peculiarities of t
small-«* limit are avoided. Similarly, if we identifyTpair
with the spin-gap temperature deduced from NMR, we c
approximately invert the relationTpair;Jsp

2 /«* to obtain an
estimate ofJsp'«* , where the exact numerical relation b
tween these two quantities depends on numerical amplitu
which we cannot calculate with any great accuracy. For
range of parameters, it also follows thatDs(0);Tpair , con-
sistent with estimates of the superconducting gap from p
toemission experiments. Finally, from the magnitude of
pseudogap observed inc-axis optical response, we estima
that D̃s'«* . This implies that the cuprates lie in the cros
over region between large and small«* ~regimesB and C
described in Sec. VI!, which is also the region of maximum
Tpair , as shown in Fig. 2. We feel that these values of«* ,
Jsp , andD̃s are physically reasonable.

2. Does local pairing on stripes provide a consistent explanatio
of the pseudogap behavior of underdoped cuprates?

In the above discussion, we interpreted the experiment
measured pseudogap behavior in underdoped cuprates a
perconducting pairing in a large range of temperatures ab
Tc . This behavior was predicted by us8 on the basis of a
phenomenological analysis of the relation between the su
conductingTc and the measured zero temperature superfl
phase stiffness~i.e., the zero-temperature London penetrat
depth!. It provides a very natural explanation of the ‘‘spin
gap’’ behavior that has been widely observed in planar c
per NMR measurements in underdoped cuprates.108 Here,
there is a peak in 1/T1T at a characteristic pairing temper
ture aboveTc , below which there is a rapid falloff that i
quite similar to that observed belowTc in more heavily
doped cuprates. The interpretation of the spin gap as a
perconducting gap has recently received considerable
port from ARPES experiments,104,105 which find that the
magnitude and wave-vector dependence of the pseud
aboveTc is similar to that of the gap seen well belowTc in
both underdoped and optimally doped materials. The te
perature above which this gap structure becomes unobs
able correlates well with the pairing scale deduced fr
spin-gap measurements. Measurements of the in-plane
cal response are also highly suggestive of superconduc
pairing aboveTc in underdoped cuprates.109,110,106

This interpretation has been questioned because a l
fluctuation diamagnetism and conductivity have not been
served betweenTc and Tpair .111 However, we believe tha
the absence of dramatic magnetic-field effects is readily
-
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derstood. Well aboveTc , the superconducting fluctuation
are essentially one dimensional, with little effect of the J
sephson coupling between stripes. Consequently, an ap
magnetic field does not drive any significant orbital moti
until coherence develops in two-~and ultimately three-! di-
mensional patches, close toTc . We are currently engaged i
more detailed calculations of these effects to make this a
ment more quantitative.

Recently it has been determined87,89 that in underdoped
and optimally doped La22xSrxCuO4, there is a unique rela
tion between the mean separation between stripes~i.e., the
half period of the dynamical incommensurate spin fluctu
tions! and the superconductingTc . We have previously pre-
dicted such a relation95 as a natural consequence of the e
istence of superconducting fluctuations on a single stripe
the idea thatTc is determined by the Josephson coupli
between stripes.

3. Commensurability and near-commensurability effects

The charge density on the stripes~and hence the value o
kF) is largely determined by the competition between t
local tendency to phase separation and the long-range C
lomb interaction; however, there are commensurability
fects both within the 1DEG ~which tend to pin
2kFa52p/m, wherem is the order of the commensurabi
ity! and transverse to the stripes, which tend to pin the sp
ing between stripes at an integer times the lattice consta18

In La22xSrxCuO4, neutron scattering evidence supports t
notion that there is a strong tendency toward locking the h
density within a stripe near commensurabilitym54 for a
range ofx less thanx50.125 and to pin the spacing betwee
stripes near four lattice constants forx.0.125. ~See Sec.
VIIB. ! Within the theory of the 1DEG, commensurabilit
leads to a charge gap and insulating behavior. However, f
weak commensurability, the gap develops at low tempe
tures where it must compete with superconductivity.~For an
alternative view, see Ref. 112.!

4. Are there any experimentally testable predictions that can b
made on the basis of this mechanism?

To begin with, it is important to stress that there alrea
exists considerable experimental evidence that the phy
discussed in this paper is pertinent to the high-tempera
superconductors. Some of this has been discussed ab
Neutron scattering and transport measurements provide
rect evidence of hole-rich metallic stripes in an antiferroma
netic environment in at least the La2CuO4 family of mate-
rials. The convincing experimental evidence that underdo
cuprates behave like granular materials in that a superc
ducting gap opens well aboveTc strongly suggests that th
superconductivity is inhomogeneous at some intermed
scale of length and time. Moreover, the absence of str
effects of magnetic fields in a regime of strong supercondu
ing fluctuations indicates that these inhomogeneities
likely to be one dimensional in character. The fact that b
s-wave and d-wave symmetry are manifest in differen
phase-sensitive experiments on essentially the same ma
als supports the idea that there are strong, local fluctuat
that break the~approximate! fourfold rotational symmetry of
the crystal.113,96
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However, while we feel that these experimental facts p
vide strong evidence for the general form of our model, th
do not probe the microscopic structure of the proposed p
ing mechanism. There are, however, various signatures
could, in principle, be detected. We predict a spin
charge-0 excitation ~a quasi-one-dimensional, magno
mode! with an energy gapDs , which is of order the super
conducting gap. This mode could, in principle, be detecte
neutron scattering. We also predict a charge-0, sp
breather mode with energy gap equal toA3Ds when a has
the expected value of 2/3. This mode could, in principle,
observed by Raman scattering.114 Since it also could hybrid-
ize with a phonon, it could also show up in neutro
scattering. It is interesting to note that a magnon with ene
about 40 meV~Ref. 116! and a Raman mode with energ
about 75 meV~Ref. 115! appear close toTc in optimally
doped YBa2Cu3O72d and above Tc in underdoped
YBa2Cu3O72d . The energies of these modes vary diffe
ently with doping. We are currently exploring whether the
two phenomena reflect the two collective modes discus
above.

A stripe structure may have a nematic phase, in which
stripes are orientationally ordered along a particular dir
tion. Such a phase should display a striking anisotropy in
phase stiffness. It is interesting to note that a big increas
the phase stiffness is observed as YBa2Cu3O72d is
overdoped.117 This behavior has been attributed to superc
ductivity ~induced by the proximity effect! in the CuO
chains, as they become filled. However, such an interpr
tion requires that the superfluid density in the chains
greater than in the planes, where it originated. Experim
tally it may not be easy to distinguish nematic stripe orde
overdoped YBa2Cu3O72d given the existence of the CuO
chains.

One feature of our model is that there are two, physica
distinct, spin gaps, one associated with the 1DEG, and he
with the ‘‘superconducting gap,’’ and the other~larger gap!
with the insulating environment. However, in practice, w
expect that the two gaps will be similar in magnitude b
cause the difference will be ‘‘smoothed out’’ by the motio
of the holes between the stripe and the environment.~Exactly
this sort of ‘‘smoothing out’’ of the gap occurs in the ‘‘Coo
per limit’’ for the conventional proximity effect.! Finally, we
observe that there are calculable consequences of our m
for single-particle properties, such as the density of sta
which are currently under investigation.

Another qualitative test of our ideas is to look for hig
temperature superconductivity in materials that have o
dimensional metallic and spin-gapped regions in close e
trical contact built into their structure and not necessa
self-organized. In this regard, we note that a material w
even-leg undoped ladders~which have a spin gap25! in inti-
mate contact with doped CuO2 chains should display the
mechanism of superconductivity that we have propo
here. Interestingly, superconductivity withTc512 K
has been observed118 at a pressure of 3 GPa i
Sr0.4Ca13.6Cu24O41.84, a material with this kind of structure
although the chains and ladders are in different planes, so
electrical contact is not as strong as we would like. At atm
spheric pressure, it appears that the doped holes are in
chains,119 but, at present, it is not known if this feature pe
-
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sists at the high pressures required for superconductivity
Our model also could be studied by numerical techniqu

In particular, an environment with a spin gap could be re
resented by either a two-leg ladder or an incommensu
dimerized half-filled chain. An environment without a sp
gap would be a half-filled one-dimensional Hubbard mod
In either case the coupling to the 1DEG should invol
strong single-particle or pair hopping and a repulsive int
action between holes.

Note added in proof.Recently, incommensurate magnet
fluctuations in YBa2Cu3O6.6 with Tc562.7 K have been ob-
served by P. Dai, H. A. Mook, and F. Dogan@cond-mat/
9707112~unpublished!# in neutron scattering measuremen
of the dynamic spin and nuclear structure factors. In com
nation with the similar experiments on the La2CuO4 family,
cited above, these new data provide strong evidence
stripe fluctuations in the YBCO family of materials. Recen
we have shown that transverse stripe fluctuations elimin
CDW ordering along a stripe and, at the same time, enha
pair hopping between stripes which is required for superc
ducting phase coherence. This calculation establishes the
istence of metallic stripe phases, i.e., electron liquid cryst
and suggests that a transition to nematic order could b
candidate for the upper crossoverT1* in Fig. 1 @S. A. Kivel-
son, E. Fradkin, and V. J. Emery~unpublished!#.
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APPENDIX A: PERTURBATIVE
RENORMALIZATION-GROUP ANALYSIS

There are three related senses in which we use the re
malization group~RG! to analyze a complex physical prob
lem, such as the present one.

~i! First, the renormalization group, and in particular t
notion of fixed points, is a theory of theories and it provid
a context and structure that allows the problem to be
proached in the context of its global phase diagram. E
when calculations are not carried out by use of the renorm
ization group, the results are fundamentally informed by
structure. For instance, so long as an exactly solvable m
and a particular problem of physical interest are governed
the same fixed point, the solvable model can be said to b
accurate representation of the low-energy physics of
problem of physical interest, whether or not there is a mic
scopic correspondence. It is in this sense that a large clas
physically diverse one-dimensional systems can all be
scribed as ‘‘Luttinger liquids,’’ or that the resonant lev
model represents a solution of the antiferromagnetic Kon
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problem. Similarly, the exact solution of the pseudos
model, presented in Sec. V, describes the physics of
paired spin liquid phase of the 1DEG in an active enviro
ment.

~ii ! The notion of an unstable fixed point~or line of fixed
points! also underlies the use of field theories to descr
condensed matter systems. Of course, condensed matte
tems have a finite lattice spacing. However, in the proxim
of an unstable fixed point, the correlation length diverges
that the continuum limit is actually realized when the cor
lation length diverges, but this is equivalent to holding t
correlation length fixed and letting the bandwidth diverge,
is done in defining a field theory. Thus all the field theo
results we employ, incuding the results based on the equ
lence between different field theories that goes under the
of bosonization, are based on the proximity of the system
the Luttinger liquid line of unstable fixed points.

~iii ! The renormalization group is also a computation
scheme, which in most cases must be carried out in the
text of a perturbative evaluation of theb function. The terms
‘‘relevant’’ or ‘‘irrelevant’’ in the renormalization-group
sense refer to the results of a perturbative evaluation of thb
function in the neighborhood of a particular fixed point. Su
methods are useful for determining the stability or la
thereof of a particular fixed point. However, in the case
which there is one or more relevant interaction, these res
can only be used to guess the nature of the actual gro
state.

1. Perturbative treatment ofHint

One approach to the problem is to treatHint as a small
perturbation. Thus one imagines determining the proper
of the fixed point corresponding to the decoupled proble
of the 1DEG and the environment and then assessing
relevance ofHint at that fixed point. Because, by assumptio
the environment has a charge gap, any interaction involv
excitations of the charge degrees of freedom of the envir
ment is irrelevant in the renormalization-group sense. T
Hpair and the charge and charge-current interactions inHint
~i.e., the terms proportional toVc and Jc) are immediately
seen to be irrelevant. In the case in which the environm
has a preexisting spin gap, the same analysis implies tha
remaining interactions inHint are also perturbatively irrel
evant. Even in the case in which the environment has gap
excitations (g̃1.0), the spin couplings can readily seen
be perturbatively irrelevant. Thus, for weak enough coupl
between the 1DEG and the environment, the coupling can
ignored in the sense that the low-energy behavior is qua
tively similar to that of the two subsystems in the absence
their coupling.

In the problem of physical interest, the energy to trans
a pair of holes from the 1DEG to the environment«* is very
small compared to the bandwidth. As we have shown in
main body of the paper, this implies that the perturbat
analysis about theHint50 fixed point is valid only in an
extremely restricted regime of parameter space. In particu
for fixed small, but nonvanishingtsp , there is a critical value
of «* , such thatHpair is irrelevant for«* .«c and relevant
for «* ,«c .
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2. Perturbative RG about the noninteracting fixed point

The standard~‘‘ g-ology’’ ! treatment of the 1DEG may b
derived by computing theb function in powers of the inter-
actionsga using a version of Anderson’s poor-man’s scalin
in which states at the band edge are integrated out and
effective interactions are computed for the model with a
duced bandwidthE,W. The variation of the coupling con
stants as a function ofE are determined by a differentia
equation, in which the microscopoic values of the intera
tions serve as initial conditions. This method can only
applied if all the interactions are weak on the scale of t
bandwidth, as it is based on perturbation theory about
noninteracting fixed point.

For the present problem, one can similarly derive the
propriate scaling equations for the entire set of interaction
perturbation theory about the noninteracting fixed point.
do this, we notice that the model defined in Sec. II is
particular form of an asymmetric two-band model, with a
propriate couplings and bandwidthsW andW̃, respectively.
However, because of the large difference in the bandwid
the integrating out of high-energy degrees of freedom, wh
is the business end of this sort of calculation, must be car
out in two stages. In the initial stages of renormalization,
integrate out degrees of freedom~of the 1DEG! with ener-
gies betweenW andE, whereW>E@W̃. The resulting scal-
ing equations apply so long as all the interactions rem
small~i.e., so long as perturbation theory is adequate! until E

reaches the scale ofW̃. For further reduction of the band
width, excited states of both the environment and the 1D
are being simultaneously eliminated. In this way, start
with a set of bare coupling constants, one obtains a se
renormalized coupling constants at the end of the first st
of renormalization, which serve as initial conditions for th
second stage flow equations.

a. The RG flows for W̃>E

To begin with, we ignore the differences in bandwidth
that the model is equivalent to the two-band model cons
ered by Varma and Zawadowskii.120 This allows us to adopt
their results~obtained using the usual methods!; translated
into the notation of the present paper, the scaling equat
can be written as

ġ152
1

2p v̄
F2ag1

21
b

2
~ tsp

2 2t tp
2 !G , ~A1!

ġc52
1

2p v̄
F2ag3

22
b

2
~ tsp

2 13t tp
2 !G , ~A2!

ġ352
2a

2p v̄
gcg3 , ~A3!

U̇s52
1

2p v̄
F tspt tp

2
24Us

2G , ~A4!

U̇c5
1

8p v̄
@ tsp

2 1t tp
2 #, ~A5!
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ṫ tp5
1

4p v̄
@a~g11gc!1b~ g̃11 g̃c!24Uc24Us#t tp

2
1

p v̄
Ustsp , ~A6!

ṫ sp52
1

4p v̄
@a~3g12gc!1b~3 g̃12 g̃c!24Uc#tsp

2
3

p v̄
Usttp , ~A7!

where v̄ [(vF1 ṽ F)/2 is the average Fermi velocity
a5 v̄ /vF , b5 v̄ / ṽ F ,

Us[Vs2Js , ~A8!

Uc[Vc2Jc , ~A9!

and there are three additional scaling equations forg̃a that
can be obtained from the equations forga by placing tildes
on thega’s and interchanginga andb. Here we have aug
mented the original equations of Varma and Zawadowski
include the effects of umklapp scattering, which was done
Balents and Fisher.121 ~We correct a factor of 2 error the
made in the scaling equations forg3 and g̃3.! Note that we
have adopted the opposite sign convention for theb function
to Varma and Zawadowskii; here the overdot signifies
derivative with respect tol [ ln@W/E#, which is the negative
of their variable ln@S#.

There are several aspects of these equations that are w
noting. In the first place, the scaling equation fortsp is the
weak-coupling version of the more general Luttinger liqu
result given in Eq.~35!; tsp is perturbatively relevant only if

@a(3g12gc)1b(3 g̃12 g̃c)24Uc# is negative. We expec
that gc is negative~but possibly small!, g̃c is negative and
grows in magnitude with renormalization, andg1 is positive,
but typically decreases with renormalization. Thus we
that the two ways in whichtsp can become relevant ar
through the generation of a largeUc or via spin-gap physics
of the environment, in which caseg̃1 is negative and grows
with renormalization. That the latter possibility is the mo
robust is further emphasized by the expected large valu
b, which means that the term involvingg̃1 makes the larges
contribution to theb function. In either case, by examinin
the dependence of theb functions of the various other inter
actions ontsp , it is clear that oncetsp becomes sufficiently
large, the there is a bootstrap effect that accelerates the fl
to strong coupling, in that a largetsp makes a positive con
tribution to theb functions forgc , g̃c , andUc and a nega-
tive contribution tog1 and g̃1.

b. The RG flows for W>E@W̃

We now return to the problem of determining theb func-
tion for the initial stages of the elimination of high-energ
degrees of freedom. The scaling equations for the reg
W>E@W̃ can be obtained from the above equations by t
o
y

e

rth

e

of

ws

e
-

ing the limit ṽ F→`; this has the effect of projecting out an
intermediate states involving the propagator in the envir
ment. The result is the scaling equations that govern the
tial renormalization process:

ġ152
1

pvF
g1

2 , ~A10!

ġc52
1

pvF
g3

2 , ~A11!

ġ352
1

pvF
gcg3 , ~A12!

g8 152
1

4pvF
@ tsp

2 2t tp
2 #, ~A13!

g8 c5
1

4pvF
@ tsp

2 13t tp
2 #, ~A14!

ṫ tp5
1

4pvF
@g11gc#t tp , ~A15!

ṫ sp52
1

4pvF
@3g12gc#tsp , ~A16!

g8 35U̇s5U̇c50. ~A17!

Most importantly from these equations it is clear that, in t
initial stages of renormalization,tsp is reducedfrom its mi-
croscopic value, although if the interactions in the 1DEG
not too strong, this reduction may not be too severe. Ther
also an additive negative contribution tog̃1 and a positive
additive contribution tog̃c generated in this initial stage o
renormalization. This is a form of asymmetric screening t
tends to increase the relevance oftsp in the final stages of
renormalization. However, it seems to us unlikely that t
latter effect is strong enough to maketsp robustly relevant at
low energies in the absence of an environmental spin ga

APPENDIX B: SYMMETRIES OF THE MODEL AND THE
COMPOSITE ORDER PARAMETER

1. Symmetries of the model

To begin with, we tabulate the symmetries of the Ham
tonian of the 1DEG in an active environment, Eqs.~1!.

Parity is a Z~2! symmetry of the system, which results
the transformation

c1,s~x!→c2,s~2x!,

c2,s~x!→c1,s~2x! ~B1!

and the analogous transformation for the environmetal op
tors. In terms of bosonic variables,

ua~x!→ua~2x!,

fa~x!→2fa~2x!. ~B2!
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wherea denotess or c. Under the action of the parity trans
formation,P†, rc , andrW s are even andPm

† , j c , and jWs are
odd.

Time reversalis a second Z~2! symmetry of the system
which results in the transformation

c1,↑~x!→ ic2,↓~x!,

c2,↑~x!→ ic1,↓~x!,
~B3!

c1,↓~x!→2 ic2,↑~x!,

c2,↓~x!→2 ic1,↑~x!

and the analogous transformation for the environmetal op
tors. In terms of bosonic variables,

uc~x!→2uc~x!,

us~x!→us~x!2Ap/2, ~B4!

fs~x!→2fs~x!,

and, of course,i→2 i . Under the action of the time-revers
transformationrc and jWs are even,P†, j c , andrW s are odd,
Pm

† transforms asPm
†→2exp(ipm)P2m

† , and the correspond
ing environmental operators transform in the same fashi

Spin rotational symmetryis respected entirely by th
model as originally written, so there is a correspond
SU~2! symmetry of the system, which transforms the ope
tors according to

cl,s→(
s8

@exp~ igW •sW !#s,s8cl,s8 ~B5!

and the analogous transformation for the environmetal op
tors. Manifestly, this transformation leaves all the char
charge current, and singlet pairing operators invariant
rotates all spin vectors in the appropriate fashion. Abel
bosonization of the model obscures this symmetry, which
manifest as a nontrivial relation betweenKs andg1. Gener-
alizing the original model by defining distinct couplingsg1,'
and g1,i would give arbitrary values ofKs and g1 ~which
now should be identified withg1,'); in this case, only the
U~1! symmetry associated with rotations about thez axis
remains of the original spin rotational symmetry. The f
SU~2! transformation is complicated in terms of the boso
variables, but rotations about thez axis correspond to an
additive phase shift tous .

Gauge invarianceor charge conservation is manifest as
global U~1! symmetry of the model~since we have not ex
plicitly included the gauge fields! that transforms the opera
tors as

cl,s→exp~ ig!cl,s ~B6!

and the analogous transformation for the environmetal op
tors. In terms of bosonic variables,

uc→uc1A2

p
g ~B7!

andfa and f̃a are invariant. This transformation leaves a
the particle-conserving operators invariant and multiplies
pairing operators by a factor of exp@22ig#.
a-

.

g
-

a-
,
d
n
is

l

a-

ll

Translational (chiral) symmetries. There are the two in-
dependent symmetries corresponding to translations~chiral
transformations! of the 1DEG,

c1,s→exp~ ig t!c1,s ,

c2,s→exp~2 ig t!c2,s , ~B8!

and the analogous tranformations, defined in terms of a
ond, independent angleg̃ t , for the environmental operators
In the absence of umklapp scattering~i.e., if we setg350)
g t can take on any real value between 0 and 2p, i.e., there is
an additional U~1! symmetry associated with translations
the 1DEG!. In terms of bosonic variables, we have

fc→fc1A2

p
g t ~B9!

and the analogous relations~with g̃ t) for the environmental
operators.

Spin chiral transformations. There is an analagous tran
formation, which amounts to a translation of the spin-dens
wave fluctuations by a half a period, in which the up- a
down-spin components are translated in opposite directio
We define the spin chiral transformationC as

c1,↑→ ic1,↑ ,

c2,↑→2 ic2,↑ ,
~B10!

c1,↓→2 ic1,↓ ,

c2,↓→ ic2,↓ ,

which in terms of the bosonic variables is

fs→fs1Ap

2
, ~B11!

and we define the analagous transformation for the envir
mental operators asC̃. H1DEG is invariant underC, but it has
the effect of rotatingrW s and jWs by p about theẑ axis and
changing the sign of bothP† andP0

† , so it is not a symmetry

of the full Hamiltonian; however,CC̃ manifestly is. Having
said this, it is clear that additional symmetries can be c
structed by combiningC and C̃ with spin rotations byp
about theẑ axis; we call these transformationsR andR̃ and
they correspond to shifts ofus and ũ s by Ap/2, respectively.
In this way, an additional discrete group of related symme
transformations can be constructed consisting of the ide
ties,CC̃, CR, C̃R̃, CR̃, andC̃R; this group is Abelian, with
a simple group multipliction table, which is readily obtaine
Notice that, as with time-reversal symmetry, this group’s o
eration on spinor fields is double valued.

t symmetry. There is one additional hidden Z~2! symme-
try of the Hamiltonian, which combines spin and char
transformations and is the symmetry that is spontaneo
broken in the paired-spin-liquid state. This symmetry is co
bines a spin chiral transformation of the 1DEG,C; a p ro-
tation of the environmental spins,R̃; and an inequivalent
gauge transformation of the charge modes of the 1DEG
the environment. In terms of the fermionic fields, this sy
metry corresponds to the transformation
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c̃l,↑→2c̃l,↑ ,

c̃l,↓→c̃l,↓ ,

c1,↑→ ic1,↑ ,
~B12!

c2,↑→2 ic2,↑ ,

c1,↓→2 ic1,↓ ,

c2,↓→ ic2,↓ .

In terms of bosonic variables, this transformation take

ũ c→ ũ c1Ap

2
,

ũ s→ ũ s1Ap

2
, ~B13!

fs→fs1Ap

2
.

This transformation leavesrc , j c , r̃ c , and j̃ c , invariant,

rotatesrW s , jWs , r̃W s , and j̃W s by p about theẑ axis, changes the
sign of P† and P̃†, and transformsP̃m

†→2eimpP̃m
† and

Pm
†→2eimpPm

† .
In the above, it is important to realize that a shift in t

bosonic phasesfa by 6Ap/2 is equivalent to a displacemen
through a distance equal to the average spacing betwee
particles. Forfc (fs), spins s are displaced in the sam
~opposite! direction. This shift leaves the Hamiltonian of th
1DEG unchanged because the arguments of the cosine
theg1cos(A8pfs) andg3cos(A8pfc) terms are changed b
2p. To appreciate the significance of this observation, c
sider the ground-state degeneracy of the 1DEG with a h
filled band. A shift of eitherfc or fs by 6Ap/2 changes the
sign of the operatorc2,s

† c1,s since its boson representation

proportional to exp@iA2p(fc1sfs)#. Thus, if this operator
is ordered the ground state is twofold degenerate. This
curs if bothg1 and g3 are relevant, as, for example, in th
negative-U Hubbard model with additional nearest-neighb
repulsionsV, and it is easily understood from a stron
coupling analysis, as the ground state is a period-2 cha
density wave. These considerations must be taken into
count in studying the full symmetry group of the 1DEG
they imply that not all the symmetry operations discuss
above are linearly independent.

2. The nonlocal order parameter

The nonlocal order parameter defined in terms of the u
tary transformation in Eq.~29!,

Ocomp5UP̃†U†

5~pa!21exp@ iA2p~uc2 ũ c!#cos@A2pf̃s#,

~B14!

can be expressed as a nonlocal function of the original
mionic fields as
the

in

-
lf-

c-

r

e-
c-

d

i-

r-

Ocomp5expF ipE
2`

x

dy jc~y!G P̃†. ~B15!

Clearly, this composite order parameter is odd undert sym-
metry.

APPENDIX C: THE NATURE OF THE
‘‘PAIRED SPIN LIQUID’’

Various definitions of a ‘‘spin liquid’’ are used in the
literature.32 Here we define a spin liquid to be a quantu
disordered ground state of the spin degrees of freedom
system, which means that spin rotation invariance is unb
ken. We also require that translation invariance be unbro
for the system to qualify as a liquid. In addition, to disti
guish the spin liquid from a quantum paramagnet and
Fermi liquid, we require that a spin liquid support spino
excitations in its excitation spectrum.

The ground state of a spin-1/2 Heisenberg chain is a g
less spin liquid.33 An integer spin chain and an even-le
half-integer spin ladder fail to qualify because spinons
confined.~The only finite energy states are integer-spin ma
nons; spinons are bound by a linear potential in pairs o
the ends of chains.122! The frustrated spin-1/2 chain~e.g., the
Majumdar-Ghosh model27! fails to qualify because transla
tional symmetry is spontaneously broken in the ground st
~See Appendix B.! The 1DEG away from half filling dis-
plays two kinds of behavior.~a! wheng1 is irrelevant it is a
gapless spin liquid in the universality class of the spin-1
Heisenberg chain;~b! when g1 is relevant it has a gap be
cause of spinon pairing and is in the universality class
doped polyacetylene123 or a doped Majumdar-Ghos
model.24 It is this latter case, in which spinon pairing caus
a gap or pseudogap in the spinon spectrum, that we ca
‘‘paired spin liquid’’; spinons are paired in the same way36

as electrons in a superconductor and they must be create
pairs, i.e., by breaking a bound pair that exists in t
‘‘vacuum.’’

There are, to the best of our knowledge, only two oth
theoretically well established examples of a spin liquid, a
cording to the above definition. The first is the supercondu
ing state of charged particles in higher dimensions; in t
context, it has been shown124 that the usual Bogoliubov qua
siparticles have spin 1/2 and charge 0, where both quan
numbers are sharp quantum observables. Clearly, the pa
of spinons in the superconducting state is precisely the p
ing that gives rise to superconductivity. However, while th
connection is useful for intuitive purposes, we feel that t
state should probably not be referred to as a spin liquid
so we propose adding to the above definition of a spin liq
the condition that large-scale gauge invariance~in the usual
sense of superconductivity! should also be an unbroken sym
metry of the ground state. The second example is afforded
some quantum Hall liquid states of electrons with spin.125

For instance, in a quantum Hall system consisting o
Laughlin liquid126 of strongly paired opposite spin electron
at filling factor n52, it is easy to see that there exist qua
particles with spin 1/2, charge 0, and semionic statistics127

This sort of state is a realization of the so-called chiral s
liquid.39,128
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