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Spin-gap proximity effect mechanism of high-temperature superconductivity
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When holes are doped into an antiferromagnetic insulator they form a slowly fluctuating array of “topo-
logical defects” (metallic stripeg in which the motion of the holes exhibits a self-organized quasi-one-
dimensional electronic character. The accompanying lateral confinement of the intervening Mott-insulating
regions induces a spin gap or pseudogap in the environment of the stripes. We present a theory of underdoped
high-temperature superconductors and show that therddsah separation of spin and charge and that the
mobile holes on an individual stripe acquire a spin gap via pair hopping between the stripe and its environment,
i.e., via a magnetic analog of the usual superconducting proximity effect. In this way a high pairing scale
without a large mass renormalization is established despite the strong Coulomb repulsion between the holes.
Thus themechanisnof pairing is the generation of a spin gap in spatially confiMatt-insulatingregions of
the material in the proximity of the metallic stripes. At nonvanishing stripe densities, Josephson coupling
between stripes produces a dimensional crossover to a state with long-range superconducting phase coherence.
This picture is established by obtaining exact and well-controlled approximate solutions of a model of a
one-dimensional electron gas in an active environment. An extended discussion of the experimental evidence
supporting the relevance of these results to the cuprate superconductors i §0/68-18207)08234-9

[. INTRODUCTION lying collective mode whose exchange is favorable for su-
perconductivity, but the superconducting transition tempera-
Superconductivity in metals is the result of two distinct ture is depressed by vertex correctibasd also because the
guantum phenomena, pairing and long-range phase coheadensity of states may be reduced by the development of a
ence. In conventional homogeneous superconductors theseudogap.
phase stiffness is so great that these two phenomena occur A third (widely ignored problem is how to achieve a high
simultaneously. On the other hand, in granular superconducpairing scale at all in the presence of the repulsive Coulomb
ors and Josephson junction arrays, pairing occurs at the bulkteraction, especially in a doped Mott insulator in which
transition temperature of the constituent metal, while longthere is poor screening. A small coherence length pair
range phase coherence occurs, if at all, at a much lowesize implies that neither retardation nor a long-range attrac-
temperature characteristic of the Josephson coupling beive interaction is effective in overcoming the bare Coulomb
tween superconducting grains. High-temperaturerepulsion. In the high-temperature superconductors, this
superconductivity is hard to achieve, even in theory, be- problem is especially acute; the coherence length is no more
cause it requires that both scales be elevated simultaneouslytan a few lattice spacings and angle-resolved photoemission
yet they are usually incompatible. Consider, for example, thespectroscopy (ARPES suggests that the energy gémd
strong-coupling limit of the negative- Hubbard modélor  hence the pairing fordés a maximum for holes separated by
the Holstein modetl. Pairs have a large binding energy but, one lattice spacing, where the bare Coulomb interaction is
typically, they Bose condense at a very low temperature bevery large.
cause of the large effective mass of a tightly bound gae In short, superconductivity typically occurs at low tem-
effective mass is proportional {&J| in the Hubbard model peratures: if the attractive interaction is weak, the pairing
and is exponentially large in the Holstein modél. similar ~ energy is small; if it is strong, the coherence scale is sup-
issue arises if the strong pairing occurs at specific locationpressed or the system is otherwise unstable. When this is
in the lattice(negativet centers; in certain limits this prob-  coupled with the problem presented by the Coulomb force in
lem may be mapped into a Kondo lattiteyhich displays a doped Mott insulator, the occurrence of high-temperature
heavy-fermion behavior. superconductivity in the cuprate perovskites is even more
A second problem for achieving high-temperature superremarkable. Indeed, there is evidehc@that these materials
conductivity is that strong effective attractions, which mightlive in a region of delicate balance between pairing and
be expected to produce a high pairing scale, typically lead t@phase coherence: in “underdoped” and “optimally doped”
lattice instabilities, charge- or spin-density wave order, ommaterials, the onset of superconductivity is controlled by
two-phase(gas-liquid or phase-separajestates. Here the phase coherence and occurs well below the pairing tempera-
problem is that the system either becomes an insulator or, ire, while in “overdoped” materials pairing and phase co-
it remains metallic, the residual attraction is typically weak.herence take place at more or less the same temperature, as
In the neighborhood of such an ordered state there is a lown more conventional superconductotSee Fig. 1. If we
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the other hand, the fact that the chemical potential is ob-

served in ARPES to be near the band center rules out theo-
ries involving real-space pairs in the Cy@lanes, which are

a priori implausible in any case due to the strong Coulomb

repulsion between electrons.

Here we shall argue that the high-temperature supercon-
ductors resolve these problems in a unique manmefhe
tendency of an antiferromagnet to expel hbfdsads to the
formation of hole-rich and hole-free regioHsFor neutral
holes this leads to a uniform instabilitphase separation*
but for charged holes the competition with the long-range
part of the Coulomb interaction generates a dynaniazl
charge inhomogeneity, in which the mobile holes are typi-
cally confined in “charged stripes,” separated by elongated
regions of insulating antiferromagnet’ This self-
organized collective structure, which we have nanwub-
logical doping® is a general feature of doped Mott insula-
tors and it produces a locally quasi-one-dimensional
electronic character since the electronic coupling between
stripes falls exponentially with the distance between
them®2(ii) In a locally striped structure, there is separation
of spin and charge, as in the one-dimensional electroff gas
} X (1DEG). Hence “pairing” is the formation of a spin gap,
Koue while the superfluid phase stiffne§se., the superfluid den-

sity divided by the effective mags$s a property of the col-

FIG. 1. Theoretical sketch of the phase diagram for a highlective charge mode€:24 (iii) A large spin gap(or spin
temperature superconductor in the doping-temperature plane. Tigseudogaparises naturally in a spatially confined, hole-free
solid lines represent phase transitions and the shaded areas crogggion, such as the medium between stripes. This effect is
overs.Ty marks the transition to an antiferromagnetically orderedwell documented for spin laddérsand for spin chains with
insulating state and the transition to the superconducting state. syfficient frustratiort®2’ The important point is that the spin
T1 marks the crossover temperature at which charge inhomogengrap does not conflict with the Coulomb interaction since the
ities (stripes become well defined and correspondingly local anti- energetic cost of having localized holes in Cdi @rbitals has
ferromagnetic correlations develop in the insulating regions; theyaen paid in the formation of the materigiv) The spin
present paper is primarily concerned with the region betwEgn degrees of freedom of the 1DEG acquire a spin gap by pair
and somewhat abov&;, where the developing correlations are hopping between the stripe and the antiferromagnetic envi-
primarily confined to the neighborhood of an individual stripg. ronment. (Single-particle tunneling is irreleva?ﬁ) At the

marks the temperature scale at which a spin gap develops in th . . .
1DEG and correspondingly the local superconducting susceptibility ame time, because of the local separation of spin and

begins to diverge. Her€, , which is approximately 1/2 the antifer- charge, the spin-gap fixed pointis stable even in the presence

romagnetic exchange energy, marks the temperature at which th%f strong Coulomb interactions and there is no mass renor-

antiferromagnetic correlation length in the undoped antiferromagnel?’]"jlllzatlon to depress the onset of phase coherence, so the

is equal to two or three lattice constants. For further discussionSUDercondUCt'ng susceptibility diverges strongly below this

; 9
especially concerning the experimental justification for this ﬁgure’temperaturé. _ _
see Sec. IX C. In summary, the “mechanism” of high-temperature su-

perconductivity is a form of magnetic proximity effect in

accept this point of view, then we can approach the problemvhich a spin gap is generated Mott-insulating antiferro-
of understanding the mechanism of high-temperature supermagnetic regions through spatial confinement by charge
conductivity from the underdoped side by addressing threstripes and communicated to the stripes by pair hopping. The
separate question§) What gives rise to the large tempera- mobile holes on the stripes have the large phase stiffness
ture scale for pairing or in other words, for superconductivityrequired for a high superconducting transition temperature.
on a local scalefli) How can the system avoid the detrimen-  The relationship between phase separation and supercon-
tal effects of strong pairing on global phase coherefes,  ductivity for models with attractive interactions has been in-
large mass renormalizatio®s (i) How can high- vestigated extensively by Castellani and co-workers.
temperature superconductivity with a short coherence lengtharge instabilities are a general consequence of this com-
coexist with poor screening of the Coulomb interaction?  petition, but the mechanism of superconductivity depends on

It is clear the that the conventional view of superconduc-the details of the underlying model. Here we are particularly
tivity as a Fermi surface instability deriving from an attrac- interested in the case in which the underlying models have
tive interaction between quasiparticles cannot be used to adepulsive interactions.
dress these problems. Analyses of the resisthdiyd, more The formation of a spin gap in the 1DEG may be regarded
recently, ARPES experimeritindicate that the normal state as a pairing of “spinons,” i.e., the neutral, spin-1/2 excita-
of the high-temperature superconductors has no well-definetibns that occur in the low-energy spectrum of the 1DEG and
guasiparticles and hence no well-defined Fermi surface. Oa number of one-dimensional quantum antiferromagnets. In-
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deed, local inhomogeneity provides a realization of some ofocal charge fluctuationtripes in other families of cuprate
the earlier idea¥ involving spin-charge separation in the superconductors is less direct than in the,CaO, family,
high-temperature superconductors and the concept of a spbut we expect that the physics of the copper-oxide planes is
liquid, by which we mean a quantum disordered systeen, common to all high-temperature superconductors. Indeed,
with unbroken spin-rotation symmejrthat supports spinons neutron-scattering da®! suggest that there are similar,
in its physical spectrum. However, we emphasize that previbut more disordered, structutés in  underdoped
ous ideas relied on a putativevo-dimensionalspin-liquid  YBa,Cuz0,_s. An analysis of ARPES experiments on
fixed point, while here we are dealing withlacally one-  Bi,Sr,CaCu,0Og. 5 leads to a similar conclusiol.
dimensional system, for which it is well establishetf that The evidence, mentioned above, thatin underdoped
separation of spin and chardeccurs generically, and there materials is governed by fluctuations of the superconducting
exists a “paired spin-liquid” phase, i.e., a spin liquid with a phasé strongly suggests that pairing, which therefore occurs
finite gap or pseudogap in the spinon spectryfee the on a higher-energy scale, does not require interactions be-
discussion in Appendix ¢In the strictest sense then, we are tween metallic charge stripes, although global superconduc-
dealing with intermediate-distance efféGtthat occur below tivity is certainly controlled by the Josephson coupling re-
a dimensional-crossover scale to twor three) dimensional  quired to establish phase coherence for an array of stripes.
physics. Consequently, it should be possible to understand the mecha-
We thus view the emergence of high-temperature supemism of pairing from the behavior of a single stripe, modeled
conductivity as a three-stage process, which can be described a 1DEG coupled to the various low-lying states of an
in renormalization-group language in terms of the influencednsulating environment. A complete discussion of this prob-
of three fixed points. At high temperatures, the “avoidedlem is a substantial generalization of the theory of the one-
critical phenomena® associated with frustrated phase sepa-dimensional electron g&swhich we plan to consider more
ration govern the emergence of the self-organized, quaseompletely in a subsequent papérere it will be shown
one-dimensional structures. At intermediate temperatureshat, for the high-temperature superconductors, the most im-
the one-dimensiongpaired spin liquidfixed point controls portant process is the hopping of a pair of holes from the
the pairing scale and the growth of local superconductingstripe into the antiferromagnetic environment, which also
[and charge-density waveCDW)] correlations. Finally, at may be regarded as a coherent form of transverse stripe fluc-
low temperatures, a twder three) dimensional fixed point tuation. It will be shown that the stripe develops a spin gap,
determines the long-distance physics and the ultimate supewhich, in this model, corresponds to pairing without phase
conducting or insulating behavior of the system. coherence. We consider two situatiofey: the antiferromag-
Our proposed mechanism implies the existence of twmetic environment has a pre-existing spin gap or spin
crossover scales aboie in underdoped materials, as shown pseudogap because of its finite spatial dimengiasd (b)
in Fig. 1: a high-temperature scale, at which local stripe orpair hopping produces a spin gap in both the stripe and the
der and antiferromagnetic correlations develop, and a lowegnvironment. In the first case, we find that an induced spin
temperature, at which local pairirigpin gap and significant gap in the 1DEG and the consequent divergent supercon-
superconducting correlations appear on individual chargelucting fluctuations are a robust consequence of the coupling
stripes. T, itself is then determined by the Josephson couto the environment. The second case requires a sufficiently
pling between stripes, i.e., by the onset of global phasatrong (and possibly unphysicalCoulomb interaction be-
coherencé. tween holes on the stripe and holes in the environment for
The local charge inhomogeneity, which is a central feapair tunneling to be relevant.
ture of our model, has substantial support from experiment. Although the existence of two distinct regions, the stripe
In the past few years charge ordering has been discovered and the antiferromagnetic environment, provides a potential
a number of layered oxides, such as,LgSr,NiO,, s (Ref.  escape from some of the limitations on the superconducting
44) and Lay sSr; Mn0O,,*® and there is considerable experi- transition temperatur@, it is not a priori obvious that a
mental evidence showing that the high-temperature supetarge mass renormalization can be avoided. Indeed, the
conductors display a coexistence of superconductivity andghodel we shall study is closely related to Kondo lattice
charge inhomogeneity. In particular, the efficient destructiormodels? for which heavy-fermion behavior or large mass
of the antiferromagnetic ord®rof the parent insulating state renormalization is th@rimary consequence of the strong in-
is a consequence abpological doping!® in which the mo-  teractions. However, we find that, for stripes in an antiferro-
bile holes form metallic stripes that are antiphase domaimagnet(as for one-dimensionaKondo and orbital Kondo
walls for the spins. The stripes may be ordéfeths in lattice model®®9, the analog of heavy-fermion physics is
La; g «Nd ,Sr,CuO,), dynamically fluctuatintf**® (as in  reflected solely in the the spin degrees of freedom while for
optimally doped La_,Sr,CuO,), or pinned and the charge modes, and hence the superfluid phase stiffness,
meanderin®’ (as in lightly doped La_,Sr,CuQ,). Thus we the mass is not renormalized.
consider the existence of local metallic strigasleast in the In some respects, what we are doing is analogous to
La,CuOQ, family of high-temperature superconductois be ~ working out the renormalization of the electron self-energy
an experimental fact. Moreover, the stripe fluctuations ardy the coupling to phonons. However, the calculation is
very slow in these materials, as is clear from the fact that thenore complicated because here the elementary objects are
stripes are in evidencghere are incommensurate peaks ob-strings of chargéstripes in a polarizable medium that pro-
served in neutron scatteringt frequencies corresponding to foundly influences their internal structure. Fluctuating stripes
1-2 meV*8 thus, for calculational simplicity, we will use a are of finite length, but the solution of the infinite 1DEG may
model of static stripes. The evidence that there are similarbe used if they are longer than the spin gap length scale,
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which is a few lattice spacings. “spin-gap center” on the local properties of a Fermi liquid.
Of course, at higher hole concentrations, the calculatiorinally, in Sec. IX we summarize our results and discuss
must be modified to take account of the interaction betweegxperimental implications and predictions for the high-
the stripes, especially to obtain long-range superconductinggmperature superconductors. In this section we also suggest
order. In general terms, it is fairly straightforward to see howsome numerical calculations to test the major ideas. The
global superconductivity arises in a system with a small pufeader who is primarily interested in a discussion of results
finite density of ordered or slowly fluctuating stripes, asMay skip directly to Sec. IX. In addition, Appendix A recasts
found in underdoped members of the,LgSr,CuO, family ~ Some of the present d!scu_ssmn in the familiar language of t.he
of superconductors. Indeed, an analysis of neutron scatterifgf"turbative renormalization group for the 1DEG, Appendix
and thermodynamic data for underdoped and optima”;%econtams an analysis of the symmetries of the model and an

doped La_,Sr,CuO, (Ref. 49 suggests thaT, is propor- explicit construction of the nonlocal order parameter that
—X X . Cc H “ H ” H H

tional to the product of the Drude weight of the holes on achargctenzes local pairing, and Appendix C discusses the

stripe and the stripe concentratiog. precise nature of the paired-spin-liquid state and gives con-

An interesting feature of our model is the interplay pe-crete examples of model systems that exhibit this state.

tween the short-distance physics associated with the fluctu-

ating stripes and the ultimate long-range order that is estab-

lished in a given material. We shall show that both Il. THE 1DEG IN AN ACTIVE ENVIRONMENT
superconducting and charge-density wave correlations de- A. The problem and the solution strategy

velop on a given stripe. However, they compete at longer ) i
length scales, although they may coexist in certain regions of 't "as long been realized that the low-energy properties of
the phase diagram. Also, it follows from general principles® 1PEG, and indeed of a wide variety of other interacting

that, locally, the singlet superconducting order parameteP€-dimensional systems, are equivalent to those of the sim-
will be a strong admixture of extendedandd,> - states. plest field theory of interacting electrons, characterized by a
Ultimately, in tetragonal materials, the order parameter mustMa/l number of potentially relevant interactions between

have a pure symmetry, but the way in which it emerges fronflectrons at the Fermi surface. In this section we address the

the short-distance physics is very different from more conlProblem of a 1DEG in an “active” environment, one that
ventional routes. possesses its own low-energy excitations that couple to the

This paper is quite long and, in parts, rather technical. i{LDEG but is insulating so that the electrons of the 1DEG

addresses the purely theoretical problem of constructing an@@y Make excursions into the environment, but ultimately
solving a general model of a 1DEG in an active environment/€tUrn- The environment in which we are interested is anti-
At the same time, we wish to report progress on the key€fomagnetic, so it may have low-energy spin excitations. It
problem of understanding the mechanism of high_wnl also have low-energy charge excitations in which holes

temperature superconductivity in the cuprate superconducfnake excgrsions fro_m the metallic stripe into the environ-
ors. To compensate, we have attempted to make the variol€Nt- Their energy is low because frustrated phase separa-
n, which generates metallic stripes in the first place, in-

sections as self-contained as possible and to indicate whidt?

sections can be skipped by the reader with a more focusefP!Ves & delicate balance of Coulomb and magnetic energies.
interest in the problem. This problem can be addressed in several distinct ways. In

A rather general model of the interacting 1DEG in an{N® Present paper we make extensive use of a
active environment is introduced in Sec. Il. The model isfénormalization-group strategivolving exact solutions of

bosonized in Sec. Ill and various formal transformations thaf°lvable models, together with a sophisticated approximate

are useful for later analysis are described: this section alsg2/culation in which the fluctuations of the 1DEG and the
contains a discussion of the allowed interactions in theEnvironment are solved exactly, but the coupling between

model, which are unimportant for our purposes and so can b&ieM is treated in a mean-field approximation. We also give
ignored. In Sec. IV we define a simplified “pseudospin” physical estimates of the values of the various coupling con-
model of the charge excitations of the environment and arguét"’mts that enter the model and present strong phyS|c.:aI_ar.gu-
that it exhibits the same low-energy physics as the gener%ﬂents to.show that the physical systems of mtere_st will Il'e in
model. Section V contains a discussion of exact results fo'€ “Pasin of attraction” of the strong-coupling fixed point

the zero-temperature properties of the pseudospin modetf?at governs the behavior of the solvable models. In Sec. IX

which, among other things, exhibits the spin-gap proximitywe will also outline some simple one-dimensional lattice

effect and the generation of a paired spin liquid state of thdn0dels that are amenable to numerical solution and are ex-
1DEG, even in the presence of arbitrarily strong forwargPected to exhibit the mechanism described in this paper.

scattering. Section VI reports the results of a controlled ap-
proximate solution of the pseudospin model for a wide range
of temperatures and coupling constants; in particular, various
crossover temperatures to spin-gap behavior are identified To begin with, we consider a very general model of a
and their dependence on the interactions in the model areDEG coupled to an environment. The initial form of the
determined. In Sec. VIl we return to the problem of themodel is microscopically realistic. It will be assumed that the
charge degrees of freedom of the 1DEG and consider thenvironment itself is a one-dimensional system with a charge
effects of umklapp scattering in conditions of near commengap (since it is an insulating matrixthat may or may not
surability and the effects of an externally applied potential.have a spin gap. We thus consider the Hamiltonian to be of
In Sec. VIII we digress slightly to consider the effects of athe form

B. The general model
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% rameters of the Hamiltoniarii) The environment is a Mott

H= J_de[HlDEG+Henu+Hint+HC0uI]- (1) insulator. Consequently, there is a strong commensurability
o _ _ energy (k-=G andgs is large, which produces a gap in

The bare Hamiltonian density of the 1DEG is the charge degrees of freedom of the environment. This also
Hipea=Ho+H;. ) implies thatkg is different fromkg. (i) Because of the

frustration of the motion of holes in an antiferromagiete

Here H, is the Hamiltonian of a noninteracting 1DEG, propagation velocityo . for charge excitations in the envi-

which in the continuum limit can be writtefwith 2=1) as  ronment is much smaller than the corresponding velocity in

the 1DEG. This is the primary manner in which the driving

Ho=ivED [¥) dxthn o= b oiha,] force for phase separatifrand stripe formatiolf"'” appears

T ’ ' ' ’ in the modelliii) We shall consider three possibilities for the
spin degrees of freedom of the environment, one in which
- [zp;g(x)wayg(x)], (3)  there are gapless excitations and two in which there is a spin
i gap. (@) The gapless state is realized by considering the

where !, ,(x) creates an electron with trecomponent of ~model with g;>0, in which case the environmental spin
Spin o on the right- or |eft-moving branch of the Fermi sur- excitations are those of an antiferromagnetic spin-l/2
face fora=1 or 2, respectively. Here we have made a Gal-Heisenberg chainb) A spin gap can occur with an accom-
ilean transformations to shift the Fermi pointske 0; fac-  Panying spontaneous breaking of translatiofdliral) sym-
tors involving the Fermi wave vectoke will be shown Metry (see Appendix B which is realized by simply taking
explicitly. H; incorporates the electron-electron interactionsg;<<0, in which case the environmental spin excitations are
within the 1DEG and has the continuum fotin those of a spin-1/2 Heisenberg chain with competing nearest-
and next-nearest-neighbor zz%tiferromagnetic interactions,
e.g., the Majumdar-Ghosh modegl(c) A spin gap can occur
Hi=9, E ‘ﬂﬂ'ﬂ;n"/’ltf’%ﬁgl 2 'ﬁlv‘/’;a"ﬂlﬂ’ V20 wi?hout anylaccompanying broken symr%et?y,en the manner
77 _ 77 of the antiferromagnetic two-leg, spin-1/2 Heisenberg
+gg[l//I’T ‘/’IL Yy € KF XL H ] (4)  ladder®® to model this system, we need to add a backscatter-
ing term to the environmental Hamiltonifof the same form

Here G is a reciprocal lattice vector argh is the coupling 551 in Eq.(80) below], although a better description can be
constant for umklapp scattering. When the 1DEG is inCOMyyained in the bosonized form of the Hamiltonian, as dis-

mensurate (K G), the rapid phase oscillations in the term ,sseq below. For our purposes, there is no significant dif-

proportional togs render it irrelevant in the renormalization- ference in the implications of the two types of environmental

group sense. However, near commensurability, this term ig;iy gap so for simplicity we will perform our calculations
responsible for the fact that the Drude weight is proportionaky, ine case in which the spin gap is induced by a negative

to the density of doped holes, as we shall see. Typically, it . . .
will be asgumed IOthat the interactions are yrI[()epuIs)?vegl and will use language to describe the physics (peop-

(01,9,.95>0), although they may undergo significant erly) does not distinguish the two types of environmental

renormalization by the coupling of the 1DEG to th&gh- spin gap. . .
energy excitations of the antiferromagnetic environment Using glr\:ell—knownllresults fotr trt1e .1DtEG’ I 'Sf [i(r)]ssmrl]e to |
(which we do not consider explicitly The parameters that S;ﬁ;i?:s tﬁ‘:te dggﬁg 'IT% Z?(Zﬁa?ir:) E S'n etrms of the physica
describe the 1DEG are thus the Fermi velocity, the ) . pectrum ot the environ-
chemical potentiajs, the three coupling constangs, and ~ Ment: the spin and charge velocitieg and v, the charge
the “incommensurability” &g — G. It should be emphasized gapA. and the spin gaif one exist$ A, and the charge
that this is a very general representation of the low-energynd spin correlation exponentdefined belov)/"K'C and R'S.
physics of a stripe in a CuPplane and all details of the Since the environment is an insulator, we will always assume
original microscopic model are contained in the values of tthatZC is large. We also must include the enekgto trans-
coupling constants; . fer charge from the 1DEG to the environment. For the case

We have in mind Fhe Iow-.densny Ilrr_1|t ofa S.mp.e phase mé)f “ p-type” doping, in Whichﬁ lies in the lower half of the
which the Coulomb interaction on a given stripe is screene ) ~ 2 .

by the motion of charge on neighboring stripes and so doe§nvironmental gaps/2=A.—[u—u] is the bare energy re-
not make a singular contribution to the forward-scatteringduired to remove a quantum of charge from the environment
interactiong,. Thus, for the time being, we will neglect the @nd add it to the 1DEG. We will be interested in the case

term Heour, although it will ultimately play a role in the Ose<A.
dynamics of the superconducting phﬁse. Finally, we consider the coupling between the 1DEG and
Because the physics of interacting systems in one dimerthe environment, for which spin-rotational invariance and
sion is ultimately so constrained, it is possible to model theconservation of momentum along the stripe direction se-
Hamiltonian density of the environment as a secddis- verely limit the number of possible relevant interactions.
tinct) interacting one-dimensional electron gas. The Hamil-Since the Fermi wave vector of the 1DEG is incommensurate
tonian,,,, has the same form as in Eq8) and(4), except with the wave vector of any low-energy excitation of the
that fields and parameters will be marked with a supertilde€nvironment, we can neglect, as irrelevant, terms that trans-
However, there are several important differences in the pafer momentum = (ke—kg) or £2(kg—kg) between the
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1DEG and the environment. For example, there are no low- Ill. BOSONIZATION OF THE MODEL
energy single-particle hopping processes, even though, at the . . . .
. ; : In dealing with the problem of the 1DEG in an active

microscopic level, one might expect them to havg t_he larg?sénvironmen? it is usequI)to rewrite the model using the stan-
coupling term. Such processes are included implicitly as ViMdard boson r'epresentation of Fermi fields in one dimendion
tual intermediate states in constructing the effective low-
energy Hamiltonian(We will return to this point briefly in

the following section. With this in mind, the most general + _ .
form of the interaction Hamiltonian density, i.e., which Ir.o(X) bra expli®y ,(X)}

keeps all potentially relevant terms, is

(13

) ) where ®, =7 6,(x) = ¢,(x)], with the minus and plus
Hin=Jdsj s | s+ VS S+ Jgj cTc"'VcP;"_Hpair’ (5 signs corresponding toA=1 and 2, respectively,
_ ) 0,(x)=[*_dX'TI(x"), and ¢,(x) and Il (x) are
where the small momentum transfer couplings involve theanonically  conjugate  Bose  fields, so that
long-wavelength density fluctuations relative to the baCquS(,(x),H,,(x’)]:i5(x—x’). (6 and ¢ are thus dual to

ground charge density, each other in the usual statistical mechanical sense of order
and disorder variage)sTo take advantage of the separation
o i i of spin and chargg; the Hamiltonian will be expressed in
X - (r+ o ol 6 . . .
p(X)=po 2 Wisbrot b20020] © terms of a spin fieldpg(x) =[ ¢, — ¢1]/\/§ and a charge field

bc(X)=[;+ ¢l]/\/§ and their conjugate momenta
My(x)=[1,—1I1,1/y2 and T (x)=[11;+11,]/y/2. The
charge and spin density and current operators may be written

the bare charge-current operator

Je) =02 (Y10~ U5 g20), Y]
7 2
the long-wavelength spin-density operator pO)== \[;&X(ﬁc’
S y) — Tz . 2
S(X) - 0%’ [lpl,a-o-oua’ wl,o" + ¢2,¢70-U,0" ¢2,o”]! (8) jc(x) — \/;HC , (14)
and thebare spin-current operator
1
. . . SHX) == \/5=0xs.
jS(X) = 2’ US[ wI,oUU,U’ lpl,o" - l//;,o-o-o,a" wZ,o"] . (9) 2m
The corresponding operators for the environment are defined ST (x)= iexp(ii V2wl cog 2wl
by the same equations, except that all quantities have a su- ma
pertilde. Note that we have chosen to expregs in terms
of the charge and spin current operators for the noninteract- .z 1
ing system. The other contribution g, is the pair transfer Js()= V Z—Hs, (15
terms

1

Hpair=tsg PP+ H.C.]+ttpm;1 [Pl Pm+H.cl,

s (0= ;—;exr(riﬂ@sir{ﬂcﬁs].

(10 In terms of these variables, the Hamiltonians of the stripe,
where for the 1DEGP! is the usual singlet-pair creation the environment, and the small-momentum transfer coupling
operator between the two may be written as a sum of a charge-only

part and a spin-only part. However, the pair hopping terms
1 Hypair introduces a coupling between spin and charge. Thus

PT(x)= \/E[l//I’T(X) Wb () + ¥l ()¢l (%], (11)  the total Hamiltonian may be written

and P, are the componenets of the triplet-pair creation op- H="Het Hst Hpair - (16

erator, We now consider the various contributions in turn.

PT X)= I ’
il ¢1’T ¢2'T A. Spin degrees of freedom

1 The general form of the spin Hamiltonian is
P§(x)= E[wwx) Y3, 00— 95,0091 (0], (12
He=HI+HI+H2. 17)

F’ilE ‘ﬂh ‘Pz,y Here
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0_Us 2, 1 2 vl o = 1~ and
HS:? KSHS+K_(ﬁX¢S) +? KSHS+RT((9X¢S) )
s s 2
(18 H2= 93 cog 8w d.— (4kg—G)X]
(2ma)?
HA= 2 M 0 Tiy(0) + 80 Bex), (19 ]
=—TI(x)[T(x)+ — X X), 2 2 _
Sooqg S TS 4298 50§ 87 he]— \/;ax¢c. (24)
and (2ma)
) o5 Hereuv. is the charge velocity anld. is the Luttinger liquid
9 91 ~ exponenf® with v.=2vK./(K2+1). For weak couplin
H2= cog 8w+ cog /8 P ' ¢~ 2UFRCIRe pling,
S (2ma)? 187 ] (27a)? 18] K. is related to the bare Fermi velocity: and coupling

constants as K.=\(2mvg+9.)/(2mve—gc), Where

n z;aCOi\/E(ﬂs— 5.)]cog V27 b ]cod V27 e gC;g;—Zgz. For repulsive interactions 9K .<1 (i.e.,
c .

+ ZJ—;acos{ V27 ( 05— ) 1sin V2w pslsin V27 ). C. Spin-charge coupling
Pair hopping between the stripe and the environment, as

(20 given by H,,;,, destroys the separation of spin and charge
Here v, is the spin-wave velocity an& is the critical —and is the driving force for much of the interesting physics.
exponent® that specifies the location on a line of fixed Its bosonized form is given by
points. Alsous is given byvs=2vgK¢/(K2+1). In the ab-
sence of coupling between the stripe and the environment, ts ~
the Hamiltonian is known to be correct for weak or strong pair:(Tsz cog \2m( 6.~ ) ]co§ V27 ]
coupling and for different forms of short-distance or high-
energy cutoff® although it may be necessary to perform _
some form of global renormalization to determikig from X cog \/ﬂ¢5]+
the parameters of the initial Hamiltonian. For weak coupling,

%
Ks is related to the bare Fermi velocity: and coupling = =
constants a¥,=(27vr+9;)/(27vE—g;). For repulsive X cod y2m(0s— 0s)]—cog V2m(6.— 6c)]

interactions(i.e., g;>0) one findsKs>1. X si 2w ps|sin 2w s} (25)
For the case in whicly, is negative and relevant, in the
renormalization-group sense, there is a twofold-degenerate

ground state, corresponding to the classical valbes0 and

$s=/7I2.(See Appendix B.To represent the case in which
there is an environmental spin gap without symmetry break

ing, we should add a term proportional to Eg8m s,

tp
2

){cos{ V2m(6,~6,)]

D. Which terms are unimportant?

The general model has numerous coupling constants and
so, for much of this paper, we focus on the terms that are
most important for our purposes and set the others to zero.
: , X ) ) ) X _Specifically, we drop those terms that are, in the
which arises in & microscopic system with two Spins per unitenormalization-group sense, irrelevant at the paired-spin-
cell, such as a two-leg laddet.This term (which may be  jiqyid fixed point. This argument simply shows that dropping
generalized to allow any even number of spins per unib celliese terms is self-consistent. However, given the nature of
is always relevant for repulsive interactions, so it alwaysy,q antiferromagnetic environment, there are strong argu-

leads to a spin gap. As we shall see shortly, the importantenis to show that these terms also are physically irrelevant,

point is that a spin gap of whatever origin implies a quenchy g that the physical system lies in the basin of attraction of

ing of the fluctuations OES. For a caveat on commensura- the paired-spin-liquid fixed point.

bility effects, see Sec. VII. To begin with, we examine the magnetic interactidns
andV in H;, : these terms represent the interaction between
B. Charge degrees of freedom the ferromagneticfluctuations in the two subsystems. Since

we are primarily interested in antiferromagnetic systems, we
do not expect these terms ever to be important. Of course, in
HC=H2+H:§+H§, (21  the paired-spin-liquid state or, more_generally_, in the pres-
ence of any sort of environmental spin gap, this can be seen
directly from their dependence of,, which means that the

The general form of the charge Hamiltonian is

where

1 ~ 1 corresponding correlation functions decay exponentially with
H(c):% KCH§+ K—((9X¢c)2 + % Rcﬁ §+r((9x$c)z ' distance or time and are thus triviallyirrelevant. The triplet
c Ke pair-tunneling term similarly depends @h and correspond-

(22 ingly triplet pairing is generally expected to be important

only in nearly ferromagnetic systems. Therefore, on both

leﬁn T %a b D 23) clear physical and formal renormalization-group grounds, it
L B is safe to simplify our further discussion by taking
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Js=Vs=t;,=0 (26) o =4

unless explicitly stated otherwise. Thus, in the case where Ve Ue?s
there is strong incommensurability between the valuds-of - o~ o~
in the two subsystems and neither has significant ferromag- Ke=Kely,
netic fluctuations, the only important interactions betweenyhere
the 1DEG and the environment arg,, V¢, andJ..

Away from half filling, the renormalization of the um- \/ A K, AN,
klapp scattering coupling constamf; is cut off by the v= ,
incommensurabilitf®?® and for some purposes it may be veKe  mveKe
dropped. However, this does not mean that umklapp scatter- = =
ing is unimportant for the low-energy physics. Doping of _ \/1+ MocKe  ANVeKe (32
holes into the Mott-insulating state in one dimension creates Y v Ko TUe

soliton excitation¥61in the charge density with a mass gov-

erned byg3. There is a “doped—insulatpr” region in which _ 1. Perturbative relevance of pair hopping

these excitations control the Drude weight and the superfluid , . i i

phase stiffness. In our stripe model of the cuprates, high- The transformatiori28) diagonalizes the quadratic part of

P cuprat ; R S| 62
temperature superconductivity may occur within this regionth® charge Hamiltoniaft;+ provided

of doping. oV K
Finally, we address the nonlinear term proportionad o A= —2C

in H§ in Eq. (20). For repulsive interactions, i.e., féts>1, TV

this term is perturbatively irrelevant and the renormalization- o

group flows go to the fixed poing;=0 andK,=1. (See v KKV

Appendix A) Thus, so long as the bare interactions in the Je=- Ve ' (33

1DEG are not too large, it is reasonable to use the fixed-point _ . . .

values We are now in a position to discuss the perturbative rel-

evance of pair hopping, which is the process that will gener-

0,=0, Ks=1 (27) ate a spin gap along the stripe. Here we have in mind the

initial stage of renormalization, in which degrees of freedom
with energies large compared to the charge transfer ersergy
_ ) are eliminated. Thus it is reasonable to determine the pertur-
E. Unitary transformation bative relevance relative to the quadratic piece of the
We now introduce a unitary transformation that will be Hamiltonian® (See also Appendix A.However, other rel-
used in a number of ways to simplify the problem. The op-evant pertubations, such &g, are important for the later

for the effective low-energy theory.

erator stages of renormalization. Substitution of E(R3) into Eqs.
(32) gives
Uy=exg —i\ | dx6.(X)dydbc(x 28 -

\ F{ f ¢(X) dxpe(X) (28) [, 4V(2: 7 KK, 1/2

has the effect of shifting the fields ’ w2 vl '

U () U, =T(x) + MIe(x), _ AV2 R K |
_ B y=|1-— —= (34)

UL B0 U= (), T Dele

(29 Then the singlet pair hopping operatt,,;, is pertubatively

relevant® if the exponent
UTIL(x) U, =TI¢(x), P

¥ (1-))2

~ 1
UL 6e(X) U = 6o(X)~ N e(x). aspzz(~_+

+K+K
Ke YKe S s

(39

This transformation modifies the various charge interactions ) ) ) )
satisfiesasp,<<1 and is perturbatively irrelevant otherwise.

T NV, Despite appearancea, shares the property of the Hamil-
VC_’AVC_VC_E K’ tonian that it is symmetric under interchangekaf and K .
whenuv.=v.. If all interactions in the original model were
T o~ set equal to zero, then all of th€s andy's would be equal
Jo—AJe=J—=\T K (30) g L4 d

2 to 1, so thatag,=1, and pair hopping would be marginal.

Repulsive interactions within the stripe and the environment
increase the value of;, since they makeK,K=1 and
Ve—UcYs K.,K.<1. This is physically reasonable because repulsive

interactions within the stripe and the environment are unfa-
Ke—Key, vorable for pairing.

and the velocities and exponent parameters
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There are three effects that enhance the perturbative retiagonalized at the point=1 are the analog of the Tou-
evance of singlet pair hopping. First of all, it can be seerlouse limit of the Kondo problem and the various decoupling
from Egs.(34) and (35) that a repulsiveV, decreases the lines of the multichannel Kondo problem and Kondo lattice
value ofas,. Physically, this occurs because the charge denproblems>>°%:66-68
sity in the environment decreases in the vicinity of a pair in  For A=1, the transformation eliminates th#& depen-
the 1DEG; thus it is easier for the pair to hop. This effect isgence OfUIHpairul since Ul[ 6.~ 6.]JU,=10.. Remark-

surely an important piece of the physics of pair hopping andably, this also implies that the transformeéq is gauge in-

it provides a way in which the Coulomb repulsion is favor- _ = L . , :
. . variant. n ntly, it i ible t fin mposit
able for pairing. But it cannot be the sole reason for the ariant. Consequently, it is possible to define a composite

. . . . superconducting order paramé&fe in terms of U,

relevance of singlet pair hopping unlégs is greater than a ~ ~ a ) ~

. ~ . . . as, Ogomp=U1t 0 Ul=(27a) texd —i2m (6.~ 6
suitable average dfj.| and|g.|. As discussed in Appendix ° '~ _¢°MP 17211 c e
A, this can happen, in principle, if the character of the T i#s)], which can exhibit long-range order at zero tempera-
screening is just right, but it seems to be an insufficientlylU’® despite the constraints of the Hohenberg-Coleman-
robust mechanism for a high-temperature scale for pairing. Mermin-Wagner theorem for a conventional order param-

Secondly, the frustration of the motion of holes in an®©ter- 'n,?eeda as dll_scussk;edkln Appenth( B, hllo?]g}range
antiferromagnet implies that the bare Fermi veloaity of composite order implies a brokeriZ symmetry, which, for

i ) ~ ) lack of a better name, we call symmetry.
the environment is small and heneg is small which de-

~ i o The transformation introduces?éc dependence into the
presiieé(;h(eg\slflue of [Eq. (34)] and the first contribution to o term of 742, which complicates the analysis somewhat,
Qsp . .

. ; , . ) although, as we shall see, it can be handled. However, when-
Thirdly, if the enl/|ronment has a preexisting spin gap, g ey 03 can be neglected, the unitary transformation com-
then one should seé{s=0 in the expression fors,; this  pletely decouples the charge modes of the 1DEG from the
substitution makes singlet pair hopping perturbatively rel-environment. This already constitutes a partial solution of the
evant(i.e., asp<1) for a wide range of the other parameters. problem. Moreover, the results are generic for all values of
A slightly weaker form of this route occurs if the environ- the couplings in the basin of attraction of the paired-spin-
ment has a spin pseudogap. For example it might have seyiquid fixed point because, as we shall shaww, and AJ,
eral gapped spin excitations and one gapless spin excitatiogre perturbatively irrelevant.
as in odd-leg ladder®. Then theK term in asp should have
a coefficientw,<1 equal to the weight of the gapless exci- 3. Transformation to holon variables
tation in~the pair hopping process. The elimination or reduc-  Haying separated spin and charge, it is useful for many
tion of Kg in Eq. (35 is the perturbative renormalization- purposes to express the charge excitations as spinless fermi-
group manifestation of the proximity effect. ons, which we shall call “holons.” For the environment

It is important to note that transverse fluctuations of theHamiltonian this is accomplished by rescaling the charge
stripe, together with the Coulomb interaction between holesields of the environment by the real-space version of a Bo-
on the stripe and in the environment, increase the value djoliubov transformation
the superexchange coupling along neighboring bonds per-
pendicular to the strip® Clearly these processes decrease be— b2, B.—+206,. (36)
the value ofwg and are almost as effective as a full environ- - _ _ )
mental spin gap for making pair hopping perturbatively rel-Which also changels— 2K . Then, using Eq(13) for spin-
evant. Moreover, the environment will vary along the lengthless fermions, the Hamiltonian for the environmental charge
of a fluctuating stripe and singlet pair hopping may be rel-excitations can be writen
evant at some stripe locatioli$spin-gap centers’ and ir- - - - - et e
relevant at others, where it may be neglected. This sort ofHe= U e[ 1 i duthi o= W3 i o] — L 1 o+ Uh oo
local fluctuation is readily included in the pseudospin model -

introduced in Sec. IV. ~—— o~~~ 93 ~t ~
+ + == +H.c.
The spin-gap proximity effect, enhanced by a laige 9¥1cd2chacdic 27ra[l//1"’w27C ¢, (37

and smallv ¢, gives a robust mechanism for the perturbative ~ =5 ~ ~ ~ =~
relevance of pair hopping for a wide and physically reason¥/N€reé ve=vc(4Kc+1)/4K and g=2mvel (4K —1)/
able range of interactions. Similar conclusions can be drawk4K:+1)]. The holons, which are created by the operator
from examining the perturbative expression for dunc- E{C are free fermions at the poiKi,=1/2 org=0. We can
tion for ts, in powers of the interaction strength, as discussedaimilarly refermionize the charge part of the pair-tunneling
in Appendix A. term to obtain, when=1,

2. Composite order parameter

l-JIprairulz [;&I,c"z;,c'i_ H.c]

tsp
In the rest of this paper, we shall use the canonical trans- ma
formation (28) in a slightly different way by takingn=1, ~
which is similar to the transformations employ&df in the X cod y2ms]cog V2mhs]. (38
analysis of Kondo and orbital Kondo arrays in one dimen-Thus the pair-tunneling term couples the holon pair creation
sion. The special values of the coupling constafgseindJ.  operator in the environment to the joint spin fluctuations of
for which the quadratic part of the charge Hamilton?dfis ~ the 1DEG and the environmeritn this way, pair tunneling
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can, under the right circumstances, induce a spin gap in the It is important to note that the pseudospin model could
environment, even if there is no preexisting gdginally, the  have been introduced at the outset to represent the active
charge-density and current-density interactions between thenvironment, without reference to a more detailed electronic
1DEG and the environment/( andJ;) can be written sim- model. In that caseH pseuq0c0Uld be written in terms of the

ply in terms of the usual fermionic expressions for the chargeriginal variables as

and current densities, respectively. A similar transformation

to holon variables may be made for the charge degrees of

freedom of the 1DEG. Hpseudo: HlDEG+ﬁs+ ; Jsp[PET; + H-C-]COS{ v27T'<7>s]
IV. THE PSEUDOSPIN MODEL + > [e+2V pRl[ 75+ 1/2], (40)
R

The general model discussed in the previous two sections
cannot be solved exactly, although it can be studied using th&here
sophisticated mean-field theory, which will be introduced in
Sec. V. However, the low-energy physics may be extracted p‘Fre:f dxP(x) (41)
from the solution of any model that has the same degrees of Is—R|<¢p/2
freedom and symmetry as the original model and is con-

. . . and

trolled by the same strong-coupling fixed point. Here we
introduce a “pseudospin” model that preserves the essential
physics, yet it is exactly solvabl@. PR= f dxp(x) (42

The essential point is that the frustration of the motion of |s=RI<£/2
holes in an antiferromagriétimplies that the interaction be-  are the pair creation and charge-density operators defined in
tween holes in the environment is effectively strong, K&., Eqgs.(11) and (12), respectively, and manifestly;+ 1/2 is
andv . are small. Thus we may ignore the bandwidth of pairsthe holon pair density operator in the environment. To see
of holons in the environment and characterize them by 4hat this is equivalent to the form of the pseudospin model
single renormalized excitation energy. Then we introduce discussed above, we apply the pseudospin version of the uni-
a pseudospin operataf, such thatrz=+1/2 if there is a  tary transformatiory,,
holon pair in the environment in the neighborhoodréand
7%= —1/2 otherwise[Formally, if K.=1/2, then it follows U =exp[ —i\27Y, 7@90] , (43)
from Egs.(37) and(25) that the pseudospin raising operator R

is given byr" = ¥l 0] Since the pseudospins are discretetg Eq.(40). In this way, we obtain the transformed version of
variables, we must put them on a lattice, where th_e Iattlggpseudogiven in EQ.(39) with e* =& —2V,. Itis clear from
constanté,, represents the distance the holon can diffuse inhe derivation thaH sseudo Nas the same symmetry as the
an imaginary time ¥*. (§,~ Vu2/Ae*.) Evidently, the starting Hamiltonian.

lattice spacing is the residual effect of the holon bandwidth In the pseudospin model, the umklapp scatterigg) (

in the environment. term of HZ is unchanged by the transformatihsince the
The (transformed Hamiltonian can be expressed in terms argument of the cosine is displaced by the trivial phase
of the pseudospins as 4ar7h, with 7= =1/2. Thus, in the pseudospin model, the

canonical transformation decouples the charge degrees of the
1DEG from the environment, even in the presence of a non-

UIHpseudtplelDEG'l'ﬁs'l'; JspT)I(? zerogs.
The pseudospin model clearly captures the essential phys-
X co§ 2 ps|cog V2w he] ics of charge fluctuations in the environment in the limit of

small kinetic energy. In addition, it is more general, insofar
as it is also a reasonable representation of the spin gap cen-
ters, discussed above. Of course, a continuous distribution of
centers corresponds to the case in which there is an environ-
(39 mental spin gap everywhere.

+ X, {e* —2\2Im AV o} 75+ 1/2],
R

whereH pgc is the Hamiltonian of the 1DE®with g;=0)
defined in Eq(2), FIS is the Hamiltonian for the environmen-
tal spin degrees of freedom, which is the environmental
piece ofHg defined in Eq.(17), U, is defined in Eq(28), In this section we present an exact solution of the pseu-
and for simplicity we have ignored the term proportional todospin model, Eq.40), at a suitably chosen decoupling
AJ., which we expect to be small. The sum is over sites inpoint, in order to elucidate the mechanism by which a stripe
the pseudospin array and it is implicit that the terms involv-coupled to a magnetic insulating environment by pair hop-
ing the continuous fields are integrated over a cell of §jize ping develops a gap in its spin excitation spectrum. We treat
about the sitdR. We will refer to this simplified model of the both the case in which there is a preexisting environmental
dynamics of the environmental charge degrees of freedom agpin gap and the case in which the environmental spin exci-
the “pseudospin” model. tation spectrum is gapless. In both cases, the ground state of

V. EXACT RESULTS FOR THE PSEUDOSPIN MODEL
WITH &*=0 AT T=0
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the solvable model is a fully gapped paired-spin-liquid state1 DEG produces a spin gak in the environment. At ener-

However, we consider the former case to be the more phystjies and temperatures small compared {0 the fluctuations

cally relevant, as without a preexisting environmental spin

gap it is less likely that the model with physically reasonable®f ¢s are effectively pinned and o2 ds(x)] in Eq. (44)

values of the bare interactions will lie in the basin of attrac-M& be replaced_by Its expectation yalqe. Thus, for a large
tion of the paired-spin-liquid fixed point. A gapped spin lig- e_nwronmental Spin gap, we can readily mt_egrate O.Ut the_en—
uid is the one-dimensional version of singlet superconduct¥ironmental spin degrees of freedom, leaving us with a sim-

ing pairing, although it also displays enhanced chargep"ﬁed pseudospin model in which the environmental spin
density wave correlatior§:23 degrees of freedom no longer appear, but in which a new

effective coupling constant

A. The decoupling limit To= 3o s{\/Z_FcZ 0 (45)
=J,,(co T
The close formal relation between the pseudospin model PP °

Hpseudo@nd @ Kondo lattice suggests that there is a Coumerr'eplaces]spcos{\/ﬂ'&s] in the pseudospin Hamiltoni&#0),

part of the solvable limits of the one-dimensional Korfdo h 273y is th :
and orbital Kond®® arrays that we have analyzed previously.W ere <C°_i mhs) s the zero-temperature expectation
value. (This expectation value can be computed exactly in

This is in fact the “decoupling limit,” discussed earlier, in o
whichAV, =0 (i.e., V.= mv/2K,), so that the unitary trans- the continuum limit{cog y27 ¢s])~As/W, from known re-
formationU decouples the charge degrees of freedom of théults for the sine-Gordon field theory, as discussed below; in
1DEG from the remaining degrees of freedom. The spin parthe strong-coupling limit s~ W, (co§ 27 s])~1.)
of the Hamiltonian remains nonlinear and, in general, it in- Once this replacement is made, the analysis of this equa-
volves the dynamics of the pseudospins. However, a furthetion is simplified by the fact that thg, contribution toH$ is
great simplification occurs in the limit* —0 (i.e.,e=2V,) irrelevant, providedy, is not too large: on the one hand, with
at which point the pseudospin operatat$ commute with  respect to the noninteracting fixed point definedsy, the
the transformed HamiltoniathHpseud(p, so the set of ei- final (pair-tunneling term in Eq.(44) is perturbatively rel-
genvaluesry= *1/2 are good quantum numbers. evant, while theg, term is perturbatively irrelevant. More to

In the ground state, theansformedpseudospins are or- the point, the term proportional th,, is a relevant perturba-
dered, i.e.,k= 3 for all R, and there is a twofold degen- tion relative to the full sine-Gordon Hamiltonighg+ #5,
eracy, corresponding te= *+ 1/2. This does not correspond whereas if we reverse the logic and treat theterm as a
to long-range superconducting ordevhich is forbidden in  perturbation, we find that it is irrelevant. We therefore drop
one dimensiop even though the untransformegq creates theg, term for the present with the result tiat is reduced
charge 2. After the unitary transformation in EQ9), 7y O a(solvablg sine-Gordon Hamiltonian for the fieldls. As
becomes the gauge-invariant order parameter that charactéfiscussed below, the solution of this problem is qualitatively
izes thecompositepairing of the holons and it cannot be described by the classical limit, in thk is thus pinned in
expressed as a local function of the original physical fieldsthe ground state and there is a corresponding spin gap.
A similar composite ordering was discovered for the two-

channel Kondo problerff. Here the only symmetry that is 2. The case of a small, bare environmental spin gap
broken in the ground state is the discrete”“symmetry, When the environment does not have a large, preexisting
discussed in Appendix B. spin gap, we may omit{Z in Eq. (44) and rewriteH, as

We show below that, so long ak,<W, the array of
pseudospins is so dense that its discreteness may be ignored

; s J ®
in the ground stat&® Then the spin fields are governed by Ho=H0+ =P f dx{cod VampZ (x)
the double sine-Gordon Hamiltonian S 'S 4qal_. {cod ¢s (0]

- +cog Vame (X)1}, (46)
0 2 ‘]sp
Hs=Hs+Hs+ 7ma dxcog V27 dg(X)] _
_°° wheregg = (ps* $<)/\2. Then, in the special case in which
X cog \/ZES(X)]- (44) the spin .Haprvmltonlans oithe stripe and the env.|r0nment are
symmetric Ks=Ks and vs=vs), Hs may be written as a
where’H? and H2 are given in Egs(18) and (20), respec- sum of two independent sine-Gordon Hamiltonians in the
tively. We can obtain exact solutions of the spin part ofvariables¢, . The major difference from the case in which
problem in two different limits. the environment has a spin gap is tKatis replaced by K.

1. The case of an environment with a large spin gap B. Sine-Gordon models
We first consider the case in which there is a preexisting Until now, we have considered in parallel the cases in

spin gap in the environment and show how it is communi~hich the environment has and does not have a preexisting
cated to the 1DEG. In terms of our model, this correspondg,iy gan. To streamline the subsequent discussion we will
to the case in whiclK ;<1 and|g, /v is large. Then the focus solely on the more physically interesting case in which
term proportional tog, is relevant(in the renormalization- there is a large preexisting environmental spin gap; the other
group senseand even in the absence of coupling to thecase can be straightforwardly analyzed along similar lines.
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So, for example, the double sine-Gordon model in &4¢) C. Correlation functions
will be replaced by the (Zfdlnary sine-Gordon model in which  gice a continuous symmetry cannot be broken in one
Jsp replacesls,cod 27 ¢s]. dimension, the “state” of the system is characterized by the

The solution of the resulting sine-Gordon Hamiltonians iscorrelation functions of the various possible order parameter
well known!” The excitations are massive solitons and anti-fields. In the case of noninteracting electrons, density-density
solitons(which correspond to a “magnon” with acompo-  correlation functions decay asxt/ Therefore, any correla-
nent of spinS*==*1 and charge 0with energy spectrum tion function Ci(x,x")={(0;(x)0;(x")) that decays ax™

given by is “enhanced” if a;<2; the corresponding susceptibility di-
verges asT® 2 in the limit T—0. The order parameters
Eq(k)== ,/(vsk)2+K§, (477 whose correlation functions are enhanced are the 2
charge-density wave
where
Ocow=I[ ‘ﬁ;,‘( Ypt lﬁer,l U] (52
— Vs JspR|” (48) and singlet pairing

A=

Us

Osp=P'(x), (53
with . ) .
whereP" is defined in Eq(11). At temperatures small com-
a=2/(4—K,) (49) pa_red to the_ spin gaps, the spin_ fi_eld _is massive, so the
s spin fluctuations contribute a multiplicative constant to these
correlation functions, while all others exhibit exponential de-
cay. Away from half filling, there is a band of solitons and
the exponents are given bycpw=K; and agp=1/KF .

HereK? is the value oK., renormalized by umklapp scat-

provided K;<4. In addition, so long asx<1, there are
breather m0d£757, i.e., two magnon bound states, wii=0
and energy-A;. In particular, as discussed in H&7), spin
rotation invariance implies that, at low energid§,~1, éering
which, in the case of a large environmental spin gap, implie ) . .
a=2/3, for which there are two breathers. One has energ¥. For 1/2<K.<1, both singlet pairing and_CDW correla-
— . . - ions are enhanced, but the CDW correlations decay more
Ag and, together with the soliton and antisoliton, forms a

- i breaki itation. The other i il ith slowly with x. However, as usual for quasi-one-dimensional
triplet (pair breaking excitation. The other is a singlet with g 1oms disorder and the coupling between stripes determine

energy3A5, which plays the role of the amplitude mode the fate of an array of stripes.

(or “Higgs” particle). The spin gap\ also defines a corre- Even at zero temperature, the correlation function of the
lation lengthé,=v</A¢, which characterizes the response of Untransformed pseudospin operators decays rapidly with dis-
the spin field to external perturbations. Clearly, it is consistance. However, the transformed pseudosgidsyry, U™

tent to ignore the discreteness of the pseudospin array sxhibit long-range order ai=0 and Ising-like behavior at

long asés>¢,. finite temperature,
There are two other classes of excitation of the spin de-
grees of freedom, both of which are nonpropagating in the (UTrkre Ud~(m,)%exd —|[R—R'|[/£(T)], (54

decoupling limit, but which acquire a finitdut large mass , ,
when perturbations are included. The first involves a kink inVhere the temperature-dependent values.¢T), which di-

the pseudospin order, so that, for instance=1/2 forR<0  Verges asT—0, andm,, which approaches 1/2, are esti-
andpﬁg:—lfz for R=0. This induces a corresponding mated below. As in the case of the quantum Hall effect

“half” soliton in the ¢, field and so corresponds to a and, in general, in quantum disordered states in one

o mTE . . . dimension’® such as those found in integer spin ch&irend
spinon” with charge 0 and spin 1/2 with a creation energy . io s kondo array®>*® in the present case the coherent

_ _ state of the system is characterized by the long-range order
Aspinon~As; (50)  of a nonlocal order parameter.

it is unclear at present whethed\gyinon is greater than or v APPROXIMATE RESULTS FOR THE PSEUDOSPIN
less tham\ ¢, which ultimately determines whether the mag- MODEL AT T=0

non is stable or subject to decay into two spino{@&assi-
cally, i.e., in theKs—0 limit, 2Apinon= V2As>Ag.) The
second excitation involves a flip of the pseudospin at on
point.”® Again, because the spif fields are quite rigidi.e.,

&, is large, they will hardly respond to such a flip, so the
energy of this excitation can be estimated as

Our purpose in this section is to obtain a more complete
ébut approximatesolution of the model at finite temperature
and finitee*. We will also discuss, qualitatively, the pertur-
bative effects of deviations from the decoupling limit of the
model(i.e., the effects of nonzeraV,). Again, for simplic-
ity, we restrict our attention to the more physically interest-
_ ing case in which there is a large preexisting environmental

5= (Jspl ma){cos\2mps))~p(Ep)AZ. (51)  spin gap; the other case can be straightforwardly analyzed

along similar lines. Recall that in this case, the environmen-

(The fact that this excitation involves minimal r%xation of tal Spin degrees of freedom can be integrated out, |eaving us
¢ can also be seen, posteriori from the fact thatd <Aq.) with the pseudospin Hamiltoniatd0), with the effective
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couplingJsp, defined in Eq(45), replacingls,co$ 27 s]. Ep(T)=(€*)%+(68/2)2, (59)

(Itis also important to remark that the general model con- L
sidered previously can be treated at the same level of agwhereA, and § are, respectively, the values Af and & at
proximation. The results differ little from those we obtain T=0 ande* =0, as given in Eqs(48) and (51) above. Fi-
here for the pseudospin model, which substantiates our viewa]ly, <C0Q\/ﬁ¢3]> should be computed at finite tempera-
that there is little physically important difference betweentyres using known results from the thermal Bethe af%atz
the two models. However, we have been unable to obtaifor the sine-Gordon model. These results are quite compli-
analogs of the exact results discussed in Sec. V for the gerated, but fortunately the information we need is fairly mini-
eral mode) _ mal, specifically, thatcog 27 ¢,]) is a monotonically de-

We have shown in Sec. V that the transformed pseucreasing function of temperature, with the scale for the
dospins are condensed B 0. The important thermal fluc- temperature dependence set by the zero-temperature gap.
tuations that destroy this order are the spinon excitations thaimong other things, this implies that so long A{T)>T,
produce kinks in the order parameter field, as discusse@e can use the zero-temperature result
above. Thus the transformed pseudospin correlation func-
tions at low temperature are equivalent to those of a classical
Ising model with exchange couplinds,i,on. As a conse-
guence, for sufficiently small’, the correlation length di-
verges as

(co§ V2 mpsly~(madl2Tp)[2(UTTRUY 2L (60)

for the sine-Gordon part of the calculation. It is clear from
these equations that, far<EL(0) and T<A40), all gap
&~ £peXt Agpinon/ T1- (55) parameters are well approximated by_ their zero-temperature
values. Conversely, the gaps begin to decrease when
At first, Eq. (55) might be expected to apply so long as T~E,(0) if EL(0)<A¢0) or when T~A(0) if
T<Agpinon, butin fact it only holds so long a6<g; thisis A (0)<E,(0). We can, in general, define a characteristic
because at temperatures of ordgthe large density of ther-  crossover temperaturg, ,;, to be that temperature at which
mally excited single pseudospin fligehich, by themselves, A (T) begins to drop significantly from its zero-temperature
directly affect only the magnitude, but not the range of theyalue. In some cases, this is the only obvious crossover tem-
pseudospin ordgrleads to a large renormalization of the perature in the problem. However, we will see that under
spinon creation energy; E@55) remains valid, but with @ some circumstances, it is still true th&t(T)>T for a sub-
temperature-dependent renormalized spinon creation energyantial range of temperatures abolgy, ; in these cases
replacingAspinon (and lattice constang,). _ there is a second, parametrically larger crossover tempera-
We obtain anestimateof this renormalization using the ture, Tpoi>Tpair» at which the spin gap gets to be compa-
technique of Coleman, Georges, and TsvéliBasically, rapje toT. For temperatures abovi,,;,, all effects of pair-
this amounts to making a mean-field-like decomposition o

: X : . fing and coherence are negligible.
the nonlinear term(i.e., the term proportional t7sp) in We can now proceed to analyze the solution of these

Hpseudo SO that in computing the thermodynamic propertiesequations as a function of temperature arfd The results
of ¢, we replace the transformed pseudospin operatgrs (for the important case mandated by spin-rotation invariance
by their thermal expectation valum,=(UT75U) and, con- in which «=2/3) can be sumarized as followa:(0) is
versely, in computing the pseudospin properties, we treadargest fore* =0 and falls slowly, roughly ag ~*, with
(co§\27¢]) as a pseudo magnetic field. As with all mean-increasinge*, but only vanishesi.e., pair hopping becomes
field theories in one dimension, this approximation has thérrelevanj Whens*~[jsp]2/gl. Tpair is much smaller than
fault that it produces spurious long-range order at finite temA¢(0) for smalle*, butincreaseswith increasings*, reach-
perature, wherdUT75U) and (cogy2m¢,]) are actually ing a maximum fore* ~7,, at which point all energy
equal to zero. However, we shall see that the mean-fieldcales are comparableT,;~As(0)~Tsp. Meanwhile,
theory is exact in the limie*, andT—0 and thus its results T ,,;, is of order J;, and roughly independent ef* for &*
are reliable at low temperatures when it is used to estimatemall compared tQJs, and becomes indistinguishable from
local quantities such af\g, Agpinon, and m.. In other T, for e*>J;,. These results are shown schematically in
words, it is correct for intermediate-scale fluctuatiof®or  Fig. 2. In the following, we derive these results, focusing
example,m_ should be defined in terms of the asymptotic sequentially on four distinct regimes of behavior as a func-
form of the composite order parameter correlation functiortion of £*; in the subsection headings, the ranges are ex-
in Eq. (54) and the mean-field theory should be viewed as gressed with numerical exponents for the important case
way of estimating it as the “local” expectation value of an «=2/3, as well as algebraically for genewal
operator}

In the mean-field approximation the self-consistent equa-

, . *< 13 e, *<§
tions for the temperature-dependent gapgT) and &(T) A. The casee™ < Tyl Jop/ W' 1e., whene” <5

are In this regime, the results are qualitatively the same as for
£*=0. [Note that fore* =T=0, the self-consistent equa-
O(T)=(2Jsp! m){cog V27 s]), (56)  tions (56)—(60) are exact. There is little temperature depen-
o dence of any of the gap parameters in the low-temperature
A(T)=AJ2(7%)]4, (57 regimeT<T,;, where

(UTTRU) = (814Ep)tant BE(T)], (58) Tpair~ 0. (61)
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B. The caseJ, Jsp/ W] 3<e* < Ty, ie., when
8<e*<6JA 5,20
It is easy to see from Eqg58) and(59) that larger values

of ¢* suppress the thermal disordering of the pseudospins
and hence remove the anomalous renormalization £T)

at low temperatures. A=0 and so long as* > 5,

log [Energy/fsl

log [AJssl ﬂ

8(0)= 8[ 5/e* VA1~ (66)

and

Ag(o)zA_s[Es*](20{71)/2(170{). (67)

log [8/c94] 1

If at the same time* <T,,;, thenA(0)>¢*, so

- + t Tpair~e*. (68)
log [0/l 0 log [*/s)
For T<Tp,, there is little temperature dependence of the

FIG. 2. Energy scales from the solution of the pseudospin modefjaps, whereas foF>T ., ¢* falls out of the problem so
as a function ok*: & andA; are, respectively, the coherence scale A¢(T), &(T), and TF’)air are given by Egs(63), (64), and
and the spin gap derived from the exact solution of the model for62), as before.
£*=0 and given in Eqs(48) and(51), A¢(0) is the zero tempera- The remarkable property of this range of parameters is
ture value of the spin gaf,,.; is the temperature scale at which that, ase* increases, the spin gap Bt=0 decreases rapidly
A4(T) begins to fall significantly relative to its zero temperature (as expectex but the pairing temperaturB,,;, actuallyin-
value, andT,;, is the temperature at whichy(T)~T. creaseslIn other words, in order to obtain a high-temperature

] ] ~ scale for pairing, the charge transfer energy should be
Clearly, substantial suppression ®§(T) due to pseudospin somewhat above the Fermi energy.

fluctuations begins to occur Wheh~Tp,;; as a conse- We can summarize the heirarchy of scales in this case as
quenceyTpair/AS(O)NP(Ef)AS(O)<l/2.

There follows an intermediate temperature regime A A(O)S T 5T e* > B> 50 69
Tair <T<T 4, Where SAL0)>T i >Thai~e (0). (69)

o One remarkable feature of this result, which relies on the
bair~ O Al 5521~ @), (62)  particular value a=2/3, is that in this regime
o _ _ _ AJ0)~[Tepl®le*, Tpair~e*, and Ty, ~ T are all inde-
in this regime, even though(T) is strongly suppressed, it pendent of the bandwidth. Note that at the upper end of this
is still true thaF A(T)>T, so we can approximate range, Ag(0)~Tpair~Thair~8* ~Jsp. This same conclu-
(cody2mes]) by its zero temperature value E@O), with  sjon follows from evaluating the expressions in the next sub-
the consequence that section at the lower limit of the stated range.

A TR s1a2l—a
A(T)~A{ B3] ( ) (63) C. The caseJ;,<e* <W, i.e., when

and K[A_s/g]Z(l—a)/(Z—a)<s* <W

o Whenever §[A /521 @@= a<g* it follows that
8(T)=~ 5[ p ]2 V21w, (64 A (0)<e*. As a consequence, the temperature dependence

o _ » _ . .. of the various gaps is set by
However, while significant spin pairing still survives in this

temperature range, the entropy of the pseudospins is recov- T .. ~A0) (70)
ered and hence the specific he@t~[8(0)/T]YA" ) s pair =St e
large. where A((0) and §(0) are given by Eqs(48) and (66)

pair IS the temperature at which=A4(T), whereA((T)  above; moreover, there is no longer a distinct temperature

!

is given by Eq.(63). For temperature$>T,;,, there is no  scaleT/;, .
coherence, no apparent gap in any of the degrees of freedom, The heirarchy of scales in this case can be summarized as
and the problem can be treated using a high-temperature ex-

pansion. . . . AEA(0)~ Ty 5> 8(0),
We can summarize the heirarchy of scales in this case as

e ' I % e*>A40). (71
AS~AS(0)>Tpair>Tpair~ 6(0)~ 6>¢&™*. (65)

- _ " In this regime, bothA4(0) and, correspondinglyT .. are
Specifically, for thea = 2/3 caseAs~Jgy', Tpair~Jsp, @nd  decreasing functions of*. To be specific, for the case of

o~ sﬁ. a:2/3'Tpair~~7gp/8* and 5(0)~Tpai”8*lw'
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D. £* ~W: Renormalized interactions large, quantitative, and at times qualitative effects on the
In the limit of larges*, the dynamical nature of the col- physics of interest, even if they do not affect the character of

lective mode is unimportant; it could have been integrated® trué asymptotic behavior of the system. .
out to obtain new effective interactions in the 1DEG, with €t us consider the effects of nonzeky ande* on the

retardation and spatial nonlocality limited by the sizestt ~ Nature of the excitations of the system at zero temperature.
Moreover, since in this limit holon pairs in the environment "When these couplings are small, their most important quali-

exist only as dilute, virtual excitations, it is sufficient to com- [@tive effect is to induce dynamics for the pseudospins. In the
pute these interactions perturbatively in powersgg/s* . presence of these terms, the effective Hamiltonian for the
To second order i, the Hamiltonian is of the same form pseudospins, obtained by integrating out the electronic de-

asHpeg in EQ. (2), but with a renormalized chemical po- grees of freedonf; is. qualita'gively similgr fo(but not pre-
tential and interacti,onS' cisely equal tothe spin-1/2 Ising model in a transverse mag-

netic field,
eff__ YL * _Z7_ =Y X
KE=K(g}), 9 M (GRTRret R 2 KRR TRy
vE¥=v+ 8g/2m, (74) +K(R—R') m&75], (76)

where 8g=(Jsp) %/4e*.

When g, is small,g} <0 and the pair fluctuations pro-
duce a net attractive interaction in the spin degrees of fre
dom, which leads to a spin gap of magnitfitie

in whichK(R—R’)~ §%/A; andK(R—R’)~(AV)% A4 and
both have range of ordef;. As is well known, a transverse
ield induces dynamic§ropagation of the kinksn the spin-
1/2 Ising model.

— AN~ _ As we have seen, the other effect of is to suppress

As=avan/mlvslajexd =], (79 thermal fluctuations of the pseudospins. At high tempera-

wherex=p4|g7|/a andps=al/mvs. Itis also clear that there tures, there is an entropy densi8- (a/¢p)In2 associated
is a corresponding crossover temperatlifg;, ~A¢/2<e*, with the discrete symmetry of the pseudospins. £br=0,

above which the spin gap vanishes and the spin excitationgis entropy is lost at about the temperatﬂiq)gir~§,where
are well described as linearly dispersing collective modesgtrong pairing sets in. In higher-dimensional systems this
with velocity v§ . Again, the charge modes are completelyjarge entropy is presumably responsible for heavy-fermion
unaffected by the pairing physics and so continue to be depehavior in the modél;in the present context it leads to the
scribed as linearly dispersing modes with veloeity Hence ¢4 ratio OfT pair /A(0). Whene* =5, the majority of the

the Drude weightor, equivalently for the 1DEG, the zero- oneqpy associated with the pseudospins is lost at tempera-
temperature superfluid phase stiffnessunrenormalized. tures greater thafi,,;, . As a consequence, thermal disorder-

This analysis is strictly correct only #*>W because it effects are relativelv less severe JA(0)~1/2 is
did not take account of retardation, which implies that thera%idly restored. y anghic/A(0)

induced interaction’g, vanishes for energy exchange much

greater thar* . However, for the physically more interesting

caseWse*> 7., the effect of retardation can be studied VIl THE BEHAVIOR OF THE CHARGE DEGREES
using an energy shell renormalization-group scheme, as in OF FREEDOM

the electron-phonon problgi"ﬁ. This improved treatment  \ye have seen that, in the pseudospin model, the canonical
produces results that are similar in spirit to those describeg,niormation decouples the charge degrees of the 1DEG
above, except that, for energies smaller than(when there g5 the environment and their fluctuations are described by
is no longer a distinction between the retarded and instantgp,o quadratic Hamiltoniaf® . This Hamiltonian describes a
neous pieces of the interactjorhe effective interaction has fluctuating superconductorc with phage, or in dual lan-

a renormalization g,, which is a complicated, but guage, a fluctuating charge density wave, with phase
Evidently, proximity to commensurability or the existence of

% external potential can substantially modify the physics.
sc~(£p)2/4gl, such that for largee* >¢., the renormal- P y fy Py

ized value ofg, is positive at low energies and there is no
spin gap, whereas far* <e., g7 is negative and a spin gap
opens up at zero temperature. This answers the question of The charge fields of the 1DEG are governed by the
how “active” the environment must be. Hamiltonian

A. The role of Umklapp scattering

E. Effects of “irrelevant” interactions H.= HS+HS, (77

We now consider the effects of various interactions that o
we set equal to zero in the decoupling limit. Because thévhereHg andH7 are given in Eqs(22) and(23). Now thec
spectrum of the pseudospin model has a gap at the solvablimber (&g —G)x may absorbed into the phagg, with-
point, all of the omitted terms are formally irrelevant in the out changing the commutation relations and the quadratic
renormalization-group sense. Of course this does not give ugart of Hg in Eq. (22) may be diagonalized by the canonical
license to completely ignore these terms; they can havéransformationp.— ¢p.KY?, I1,—1II./K22. The net result is
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that the charge degrees of freedom are described by a sinef the environmentH, is not changed by the unitary trans-

Gordon model with a chemical potential* given by formation defined byU in Eq. (29), i.e., UTH,U=H,.
Moreover, it is clear from the spin Hamiltonia@d4) that
u* _Uc(4ke—G) (78 cog 27 4(x)] has a finite expectation value so that it may
4K, ' be replaced by a constant K, to obtain the asymptotic

: - .8 behavior of the charge degrees of freedom. Umklapp scatter-
For the strongly incommensurate case, in whichis large, . . YA ; . L
gy ! nw ! 9 ing may be ignored if it is an irrelevant variable or ik4is

we can ignore the umklapp scattering tefpnoportional to . ; .
gs): in this case the charge excitations are gapless coIIectivﬁumc'emly far from a reciprocal lattice vector. However, the

modes with a soundlike dispersion and a velocitythat is effect (.)f the periodic potential is similar to that'of umkiapp
unrenormalized by the interactions with the environment.s.catte”ng' The main differences are that the solitons are mas-
Correspondingly, the Drude weight, or superfluid phase stiff>!ve whenKC<*4 (as opposed tio< 1.for umkjapp scatter-
ness(which cannot be distinguished in one dimension in them.g) and thatu :UC(ZKF_Q)/KC' V.V.h'Ch modifies the con-
absence of disordgris also unrenormalized. dition for th? metal-insulator t_ransm_on. N

In the nearly commensurate case, which characterizes the The physical argument for including such a potential is as
doped-insulator region, the analysis of the correspondin pllows. In the ordered state of Lg xNdo,Sr,CuQ,, the

sine-Gordon theory is the same as for the spin degrees les on a given.strip.e move.in an_effective potent!al pro-
freedom. In particular, foK.<1, which is always satisfied uced by the stripes in a neighboring Ci@lane. Since

for repulsive interactions, the “particles” in the theory are stripes in adjacent planes are per.pen.dicular to each cher, the
massive solitons with chargeand spin 0. It follows at once wave v_ectqr of the charge cqntnbunon to the effeptwe po-
that the system undergoes an insulator to metal transition %‘?nt'al is given byg=2e in units of 2/a, wherea is the
|u*|=A., where the chemical potential moves out of the
gap, and that there is a finite density of solitons

attice spacing’ In the same units, B-=n/2, wheren is
the concentration of doped holes on a given stripe. The
present experimental evide{é&®is consistent withe=1/8

/(M*)Z—AZ and ng=1/2 and henceg=2kg for dopant concentration
nso,zTc, (799  x=1/8. This is the hole concentration near which the super-
C

conducting T, is suppressed in the stripe-ordered material
with u* given in Eq.(78). For smallng,,, the Drude weight La; g «Ndg ,Sr,CuO, (Ref. 89 and in La,_,Ba,CuOQy,, for
of the stripe is proportional tag,,. This argument is similar which there is indirect evidence of stripe ord®An array of
to the analysis of the commensurate-incommensurate transitripes will undergo a transition to a superconducting state at
tion by Pokrovsky and Talapd¥, except that they consid- a temperature that is determined by the onset of phase coher-
ered a two-dimensional classical problem, equivalent to thence and is proportional to the superfluid phase stifffiess,
guantum sine-Gordon problem in imaginary time. which in turn is proportional tag,.

For quarter-filled stripe® 4ke=2kr=G/2, so the In Sec. Il we considered the case in which the environ-

charge density on the stripe and in the environment maynental spin~gap arose because the backscattering tErm pro-
jointly lock to the lattice. This commensurability effect com- portional tog; was relevant. For a half-filled band with,
petes with superconductivity, but if the coupling constant isalso relevant, there is a broken-symmetry ground state with
not too large, it may not develop beyond the logarithmicperiod 2, which produces an external potential on the stripe,
temperature dependence that characterizes the early stagesnith a wave vector equal tok¢ whenng=1/2. Such a po-
renormalizatiof® We are investigating this behavior as a tential is commensurate with the umklapp tegn so the
potential source of the special stability of quarter-filled coupling between these terms must be taken into account.
stripes for doping< 1/8 in the LaCuO, family*’#"and the ~ This is an example in which spin gaps with and without a
logarithmic temperature dependence of the resistivityproken symmetry may lead to different consequences. The
observef“’ when the onset of superconductivity is sup- physical case has no broken symmetry.
pressed.

VIII. SPIN-GAP CENTER

B. External periodic potential . . .
Another model of some physical interest has a spin gap at

Here it is assumed that there is an external potential witlbne specific location as, for example, at an isolated antifer-
a wave vectoq that is close to Rr. Then the Hamiltonian  romagnetic region in a metal. This is an example of a dy-
must be supplemented by a contribution namical impurity problem, in which the conduction electrons
. couple to a center with internal degrees of freedom. It is well
HeZUZ f dx( l/’I A (reuszx—qx)Jr H.c], (80 known Fhat an an_gula.r mgment_um analysi_s prodgces a one-
e J-o e dimensional Hamiltonian involving the radial motion of in-
coming and outgoing fermions on the half line- 0, wherer
is the distance from the pairing cenférAlso, it is possible
2u to extend the space to all valuesroby transforming incom-
Hez—f dxcog \/E¢C+(q—2kF)x]coz{ \/Zzﬁs]. ing fermions forr >0 to incoming fermions at positionr.
ma 81 Then the problem is formally equivalent to a one-
(8D dimensional electron gas in which only the right-going fer-
It is straightforward to show that when the pseudospin repmions interact with the pairing center. In the absence of left-
resentation is introduced for the charge degrees of freedomoing fermions, the operatoP!, introduced in Eq.(11),

which may be written in the boson representatit8) as
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cannot be defined and only thepairing terni* rays of pairing centers in two and three dimensions behave
like Kondo lattices and that they should show heavy-fermion
Pl =vl,yl,, (82 behavior!

. . . . Of course a single-pairing center in a purely one-
couples to the pairing center. T_rlplet-pal_rlng terms are omitgimensional model should also exhibit this single-channel
ted because the exclusion principle requires them to be of thg 5ndo behavior. This wouldhot happen if we replaced the

T s t ) - J

form ¢ 1941, , which is less relevant thaR, ;. (The de-  pseydospin array in Eq40) by a single center because we
rivative in the triplet operator leads to an extra power af 1/ would have omitted a possiblg-pairing interaction of the
in the correlation function.Thus a pairing center naturally form jﬂT;[p”l+ P,2] in that Hamiltonian. While momen-
produces singlet pairing. tum conservation indeed makes this term unimportant for the

We consider the case in which the center has a large spigxtended array, a spin-gap center, by its very nature, breaks
gap, so the pseudospin varialftepresenting charge transfer (angjational symmetry and hence permits finite momentum
to the centeris the only internal degree of freedom of the yansfer scattering processes. Including these terms, the total
center that we retain explicitly. Thus the Hamiltonian is  pair coupling at a single spin-gap center in Etjl) may be

written
Hcenter:HlDEG+H771 (83

Hpair={TspP (R) + T,[ P, 1(R) e FR
where Hpeg is given in Eq.(2), although in the case in pair=1JspP (R} + T Py4(R)
which the metallic degrees of freedom represent a higher- + P, aRr)e-2ikeR]} TR T H.C. (89
dimensional Fermi liquid, one must set the interactiogg (

to zero. The bosonized form 6f, is If we consider a single center Rt=0 and consider the case

J,=0, the left-going fermions at position may be trans-

Vv 7 formed to right-going fermions at positior-x, without

H =g+ ZDL(0)+ 277?14+ Hc]. changing the Kondo coupling. Thus the subscripts 1,2 be-
7 \/Ea-r ma come “flavor” labels and we have a two-channel Kondo

(84 problem. However, in this language, t#%, term breaks the

“ch I d " and i tubativel I t, it
Here (I)l,c(o):[(Dl,T(O)"_q)l,l(O)]/\/E- In this form the channel degeneracy” and is pertubatively relevant, so i

. . ) Sieam produces a single-channel Kondo problem. On the other
model is equivalent to a single-channel Kondo pro d  hand, the oscillating factors in E€89) make the7,, pertur-
it may be solved by making a unitary transformation

+ 4 batively irrelevant for the array and, moreover, since the mis-
Heenter—U Hcente With match of momenta between the 1DEG and the antiferromag-
_ _ net implies that7,, is small compared tg7,, the neglect of

U=exd —ird(0)] (85 n-pairing interactions for the extended system is justified.

N ; PN This is analagous to the behavior found previously for
and choosing.= y2—1, for the special poinV=y27\v,. : : ;

ThenFi %\ V2 P P V2mhug Kondo systems® where the anisotropic single-channel
ENHcenter DECOMES Kondo array behaves as if it were a two-channel Kondo ar-
ray, even though the single-impurity version of the model

J , L _ _
U Hcenteld =H1peg+e ™+ %[T—eld)l,c(m_,_ H.cl. exhibits ordinary Kondo behavior.
(86) IX. DISCUSSION
This the Hamiltonian may be “refermionized” by writing A. Summary of results

the pseudospin operator in the forri= d, where is an , , ) ,
anticommutingc number andd is a fermion annihilation We have studied a model of a 1DEG in an active envi-

operator, and inverting the boson representation of fermiofONMent, focusing in particular on the case in which the en-

fields vironment possesses both a charge gap and a spin gap, and
the energy difference between a singlet pair of holes in the
Qi 1DEG and the environment, is small in comparison to the
¢Z: 7 . (87) bandwidth. We have discovered a mechanism for producing
2ma strong superconducting fluctuations on a high-temperature

) ) i i ) scale, in which a spin gap is induced in the regions between
When written in terms of these variables, the right-going parihe stripes by spatial confinement and transferred to the
of the Hamiltonian becomes 1DEG by pair tunneling. A striking feature of this mecha-
. nism of superconductivity, which may be described as a
UTH; coneld = —ivcf dx[l//;rach] spin-gap proximity effect, is that the pairinge., the spin
' —o gap is a property of the insulating state itself and it is simply
7 imprinted on the mobile holes through their virtual excur-
n + sions into the insulating regions. We have found that this
+ \/Z_m[dlfljc(oH H.c], (88) phenomenon is robust and, in particular, it survives the pres-
ence of strongly repulsive forward-scattering interactions,
which is precisely the Toulouse limit from which all of the i.e., Coulomb repulsion between electrons.
well-known behavior of the single-channel Kondo problem We have demonstrated that the physics of this problem is
may be derived” This argument strongly suggests that ar-captured by a simple pseudospin model, for which exact and
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well-controlled approximate results can be obtained. Thigause of the existence of a spin gap, so we do not expect a
model includes the most important interactions: the renorerossover to higher-dimensional Fermi liquid behavior in this
malized pair-tunneling matrix elemegf, [defined in Eq. limit. Then the nature of the long-range order is determined
(45)], the renormalized energy cost required to move a by pair tunneling and the Coulomb coupling between stripes.
singlet pair of holes from the 1DEG to the environment, the

bandwidth of the 1DEGN~Eg (which is assumed to be 1. Effects of disorder

large compared to other energiesnd the exponent,
which characterizes the spin correlations of the 1DEG. We
have used renormalization-group arguments to show th

a=~2/3 for repulsive, spin-rotationally invariant interactions stripes, which may be produced by impuritiéss in e.g.

and we shall use this value afin discussing our results. organic conductojsor by quantum or thermal fluctuations in
We have found that, generically, this model produces sin- 9 ya

glet pairing(spin-gap behaviorat a high temperature, . - the stripe configuration. For a “self-organized” quasi-one-
pair - H H H
in the limit e* 0, Tpaiﬁjsp(Jsp/VV)”s, while for dimensional system, such as a charged stripe array, the latter

8*>£p(Jsp/M1’3, Toar is the smaller of e* and source of disorder is likely to be the more important. Disor-

. der of this type favors superconductivitwhich is ak=0
— *
AS(O). jgp/s ' Re_markabl_y, th's* means that for smafl, . ordep since it strongly frustrates the short-wavelength CDW
Tpair Is an increasing function of*, which reaches a maxi-

| T hene* Below T ; order associated with thekd or 2kg instabilities of the
Mmum value o Pa".NJSPW ens” ~ Jsp. €OW Tpair, SIN" = 1PEG. This is especially so when the stripes are strongly
glet superconducting and CDW susceptibilities diverge asI‘Iuctuating. In the simplest situation, the dynamics of the

T—0, with the stronger.div.ergenc.:g typically.associated Withstripes is slow compared to the Josephson plasma frequency,
the CDW. Mo_reqv_er, this h'gh pairing scalerist accompa- as, for example, in La,Sr,CuQ,, and the disorder is es-
nied by any significant reduction of the zero-temperature Suéentially static. On the other hand, if the CDW and super-

perfluid phase stiffnes¢Drude weighf, i.e., there is no  .,nq,cting fluctuations are on similar time scales, different

strong mass repormallzatlon. We ha\{e also identified a Zeroﬁhysics may emerge; an interesting possibility is that there
temperature spin gap energiy(0), which Ela_ys_ the role of - yists a quantum critical point that controls the physics in
the superconducting gapo. In the smalle™ limit the ralio some region of temperatures and dopant concentr&tith.
Tpair/A5(0)~As(0)/W<1/2, while for large &*, The second type of disorder affects the coherence of elec-
Tpair/As(0)~=1/2, as in BCS theory(The evolution of these  qnic motion along a single stripe. For a single stripe, the
energy scales as a function ef is shown in Fig. 2 and 50k scattering of holes from an impurity is always pertuba-
discussed in Sec. Vjl.The ground state of this model has a ey relevant for the range of interactions considered here
broken,_dlscrete @) symmetry, unrelated to any of the usua_l because CDW correlations are enhan¥sdowever, the lo-
space-time symmetries of the problem, and a correspondingization can be superseded by sufficiently strong Josephson
nonlocal order parameter that develops a nonzero expectgypling(pair tunneling between stripes and there will be an
tion value in the ground state and has an exponentially longsjator to superconductor transition as the concentration of
correlation Ie_ngth at Iow temperaturéSee the discussion of stripes grows or the Josephson coupling between stripes is,
7 symmetry in Appendix B. in any other way, increased, with fixed disorder. This is in
agreement with the evolution of the ground state observed in
La,_,Sr,CuO, as a function of dopirfy or applied mag-
netic field®®
To extend our results to situations in which there is a true
phase transition, we must consider the properties of an array
of one-dimensional systemtripes. To avoid misunder-
standing, we emphasize that, for purposes of the present dis- If stripe order breaks the fourfold rotational symmetry of
cussion, “CDW” refers to charge orderinglong the stripe  the crystal, the superconducting order will h& strongly
direction, whereas “stripe order” implies charge ordering in mixed extended andd,2_,2 symmetry. This will happen in
the directionperpendicularto the stripes, i.e., ordering of the a stripe-ordered phase, such as i kaNdg 4Sr,CuOy, or
stripe positions and orientations. Of course, both types ofn & possible “stripe nematic” phase, in which the stripe
order are a form of generalized charge-density wave. positional order is destroyed by quantum or thermal melting
The ultimate nature of the long-range order depends9r quenched disorder, but the stripe orientational order is
among other things, on the coupling between stripes, whiclRreserved(Such phases also would be characterized by large
is profoundly influenced by the intervening antiferromagneti-induced asymmetries in the electronic response in the
cally correlated regions and, in particular, by the frustrationrab plane. Below we discuss some preliminary evidence
of hole motion in the antiferromagnet, which was the drivingfor a transition to a stripe nematic phase in overdoped
force for the formation of the stripes themselves. Thus thisYBa,CuzO;_5.)
coupling should be smaller than the characteristic energies of On the other hand, when the stripes are disordered at long
the electronic correlations along the stripe, considered in thifength scales, the thermodynamic distinction betweerave
paper. and d-wave superconducting order is well defined; in a te-
With this in mind, the onset of superconductivity in a tragonal system that is not too heavily doped the 2 or-
dilute stripe array can be studied by introducing weak interder parameter should give the long-distance behavior be-
actions between well-separated stripes. Single-particle tursause the extendexlorder parameter (c&gs+co,) is small
neling between stripes is an irrelevant perturbaffolbe-  on the Fermi surface of the noninteracting system. However,

There are two distinct types of disorder that have very
ifferent effects on the physics of an array of stripes. The
irst is a degree of randomness in the couplifgtween

B. Interactions between stripes and possible ordered phases

2. Symmetry of the order parameter
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even here, if there is substantial orientational order to the We identify the lower crossover temperatufg with
stripe fluctuations at intermediate length scales, the interplay ., the temperature at which pairirigpin-gap behavior
between the two types of superconducting order is likely tcemerges within a stripe. This is also the temperature below
be more complicated and more subtle than in conventionalyhich significant local, quasi-one-dimensional superconduct-
homogeneous materials. For example, one can imagine thahg fluctuations become significant. For local probes of the
even in a phase that is globallywave, substantial mixtures spin and quasiparticle response functions, the system should
of s andd wave order could occur over mesoscopic scalesappear all but superconducting below this temperature. Since

near surfaces or twin boundaries. Tpair is more or less a property of a single stripe, we have
shown it as a relatively insensitive function xf until it is
3. Superconducting fluctuations cut off by T7 at larger dopant concentrations. From this fig-

ure it is clear thatT,,;, is substantially greater thai
throughout the underdoped regime, and possibly even at op-
timal doping, and only approaches closelyTtoin the over-
doped regime. Thus, in underdoped materidls,is deter-
ined by the superfluid phase stiffness, and hence by the
Osephson coupling between stripes, rather than by the pair-
ing scale. This is consistent with our previous anal§sis.

It should be noted that a phase diagram of the same form
as that shown in Fig. 1 has been considered, previously, on
Rurely phenomenological groundfswith the crossover tem-
egratures determined as follows.

(i) The upper crossover occurred at a characteristic tem-
perature deduced by Batloggt all% from an analysis of
susceptibility and transport properties and by Liagl 1
from an analysis of thermodynamic data. We feel that all of
C. Phase diagram of the high-temperature Superconductors these phenomena are broadly Consistent W|th our identiﬁca'
tion of T with the emergence of stripe and local antiferro-
ﬁwagnetic order(lt appears that a pseudogap appears in the
c-axis optical conductivit}’? at this temperature. Much of
e c-axis optical oscillator strength will be shifted to ener-

A necessary corollary of the stripe model is that, in lightly
doped materials, the temperature scBlg;, at which pairing
occurs(on a single stripeis parametrically larger than the
superconducting transition temperatufg, which is gov-
erned by the Josephson coupling between stripes. Moreov
since the pairing force derives from thacal antiferromag-
netic correlations in the regions between stripes, bgth,
and T, must be less than the temperature scBlg below
which local antiferromagnetic correlations develop. A se-
guence of crossovers is indeed observed experimentally i
underdoped high temperature superconductors and they ha
tentatively been identifiéd with these two phenomena; see
Fig. 1, above, and the discussion below.

The schematic phase diagram shown in Fig. 1 shows th
global framework in which our model is related to the prop-
erties of the high-temperature superconductors. The axes
this figure are temperatur€ and doping concentratior; . i — . .
hatched lines indicate the most important crossover temper&i€s higher thamls+¢*/2 as the stripe correlations emerge
tures and the solid lines represent phase transitions to tHeelow T1 .) If we accept this identification, then for moder-
antiferromagnetically ordered state at very smadind to the ~ ate doping concentrations, a typical valueTis~300 K,
superconducting state at larger(In general, there are addi- although it depends somewhat on the particular material and
tional phase transitions and possibly other crossovers, bigther more strongly on the dopant concentration. Indeed,
here we wish to focus only on the central physical isgues. Stripe correlations have been seen in neutron scattering ex-

The upper crossover temperat(rg characterizes the ag- Periments all the way up to 300 K, although the scattering
gregation of chargéholes into stripes; as we have shown Cross section decregses contmuqusly, making it difficult to
elsewhere, the driving force for this crossover is frustrateddentify them unambiguously at high temperatuites.
phase separatidfi: ¢ Above T# the holes are more or less (i) The lower crossover was identified by Batlogg and

8 bl b ”
uniformly distributed and randomly disrupt antiferromag- Emery* as the characteristic pseud%%%p temperature, de-
netic correlations, while belo@* , the self-organized stripe duced from the temperature dependeéticef the Cu NMR

array allows local antiferromagnetic correlations to developlrrlT’ which correlates well with the emergence of super-

; ; ; 05
in the hole-free regions of the sample. At short distancesCondUCtIng gap structure in ARPES experimefifs *°and a

low-energy spin fluctuations should come from regions with1arrowing of the "D{&de"'ke" peak n the opt_lcal_ conduc-
vity in the ab plane.™® If we accept this identification then,

the character of odd-leg ladders and be like those of th . ; ;
one-dimensional Heisenberg moffelnd, indeed, there is [Of moderate dopingT p,;;~150 K, again depending some-
what on the particular material being studied.

experimental evidend® indicating that this is the case in
La, ,Sr,CuO,. As x—0, T7 approaches the temperature
T, at which local antiferromagnetic correlations develop in D. Relation to experiments
the undoped system®’ BetweenT} and the superconduct-
ing transition temperaturé@,, there is a large range of tem-
peratures in which there are significant stripe correlations, T0 begin with, it is necessary to estimate the values of the
but coherence between Stripes can be |arge|y ignored; this important interactions that determine the behavior of the
the region of temperatures addressed by the calculations iodel. The physics is driven by the local antiferromagnetic
this paper. As the concentration of holes increases, the sepgorrelations between spins, sopriori we expect the inter-
ration between stripes eventually becomes comparable tactions, other than those within a single stripe, to be some
their width, at which point all information concerning the fraction ofJog, which in the high temperature superconduct-
Mott insulating state is lost; for this reason, we have showrPrs is in the range 1000—1500"R For similar reasons, the
Ti —0 at a dopant concentratioy, .. bandwidth in the environmerlV is expected to be a few

1. Estimates of the model parameters
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timesJap; numerical simulations for the square lattice leadderstood. Well abovd ., the superconducting fluctuations

to the estimate that the hole bandwitfthis approximately are essentially one dimensional, with little effect of the Jo-
2.2J,¢. On the other hand, a naive estimate of the bandsephson coupling between stripes. Consequently, an applied
width W of the 1DEG is given by the bare valu¢21 eV,  magnetic field does not drive any significant orbital motion
although this is certainly reduced substantially due to virtuauntil coherence develops in twéand ultimately three-di-
(high-energy single-particle excursions into the environ- mensional patches, closeT@. We are currently engaged in
ment, i.e., leakage of the hole wave function into the insuimore detailed calculations of these effects to make this argu-
lating neighborhood of the stripe. ment more quantitative.

More detailed estimates may be obtained from experi- Recently it has been determifé8° that in underdoped
ment. Sinces*/2 is the binding energy of a holon in the and optimally doped La ,Sr,CuQ,, there is a unique rela-
stripe, we expect that it also determines the temperature &bn between the mean separation between stripes the
which stripes begin to lose their integrity, so we estimate thahalf period of the dynamical incommensurate spin fluctua-
e*~2T7. Thus &* is certainly remarkably small, tions) and the superconductinf.. We have previously pre-

g* ~Jap/2, but still large enough that the peculiarities of the dicted such a relatioR as a natural consequence of the ex-
smalle* limit are avoided. Similarly, if we identifyT istence of superconducting fluctuations on a single stripe and
with the spin-gap temperature deduced from NMR, we carthe idea thatT, is determined by the Josephson coupling
approximately invert the relatiofi,,;,~ J5,/e* to obtain an ~ between stripes.

estimate of7;,~&*, where the exact numerical relation be-

tween these two quantities depends on numerical amplitudes, 3. Commensurability and near-commensurability effects

which we cannot calculate with any great accuracy. For this

X The charge density on the stri d hence the value of
range of parameters, it also follows th&f(0)~ T4, con- g e Ik val

k) is largely determined by the competition between the

sister_lt V.Vith estimates of thg superconducting gap from phoI'ocal tendency to phase separation and the long-range Cou-
toemission experiments. Finally, from the magnitude of thQOmb interaction; however, there are commensurability ef-

pseudogap observed maxis optical response, we estimate]cects both within the 1DEG (which tend to pin

thatAs%.S* . This ImpIIeS that the Cuprates' lie in the CrOSS-ZkFaz 27T/m, wherem is the order of the commensurabil-
over region between large and smafl (regimesB andC  jty) and transverse to the stripes, which tend to pin the spac-
described in Sec. V] which is also the region of maximum ing between stripes at an integer times the lattice con$tant.
Tpair» as shown in Fig. 2. We feel that these valuesdf  |n La,_,Sr,CuO,, neutron scattering evidence supports the
Tsps andA, are physically reasonable. notion that there is a strong tendency toward locking the hole
density within a stripe near commensurability=4 for a
2. Does local pairing on stripes provide a consistent explanation range ofx less thark=0.125 and to pin the spacing between
of the pseudogap behavior of underdoped cuprates? stripes near four lattice constants fer-0.125. (See Sec.
VIIB.) Within the theory of the 1DEG, commensurability
Yeadsto a charge gap and insulating behavior. However, for a
Weak commensurability, the gap develops at low tempera-

In the above discussion, we interpreted the experimentall
measured pseudogap behavior in underdoped cuprates as
o o s s o o es e | must compete wih superconductagor

X . ; alternative view, see Ref. 112.
phenomenological analysis of the relation between the super-
conductingT,. and the measured zero temperature superfluid ) -
phase stiffneséi.e., the zero-temperature London penetration 4. Are there any experlmentglly testgble predlgtlons that can be
depth. It provides a very natural explanation of the “spin- made on the basis of this mechanism?
gap” behavior that has been widely observed in planar cop- To begin with, it is important to stress that there already
per NMR measurements in underdoped cuprétésiere,  exists considerable experimental evidence that the physics
there is a peak in TAT at a characteristic pairing tempera- discussed in this paper is pertinent to the high-temperature
ture aboveT., below which there is a rapid falloff that is superconductors. Some of this has been discussed above.
quite similar to that observed beloWw, in more heavily Neutron scattering and transport measurements provide di-
doped cuprates. The interpretation of the spin gap as a swect evidence of hole-rich metallic stripes in an antiferromag-
perconducting gap has recently received considerable supetic environment in at least the L@uQ, family of mate-
port from ARPES experiment§*1% which find that the rials. The convincing experimental evidence that underdoped
magnitude and wave-vector dependence of the pseudogapprates behave like granular materials in that a supercon-
aboveT, is similar to that of the gap seen well beldw in ducting gap opens well abovE. strongly suggests that the
both underdoped and optimally doped materials. The temsuperconductivity is inhomogeneous at some intermediate
perature above which this gap structure becomes unobsergeale of length and time. Moreover, the absence of strong
able correlates well with the pairing scale deduced fromeffects of magnetic fields in a regime of strong superconduct-
spin-gap measurements. Measurements of the in-plane optig fluctuations indicates that these inhomogeneities are
cal response are also highly suggestive of superconductirigkely to be one dimensional in character. The fact that both
pairing aboveT, in underdoped cuprate&:110:106 s-wave andd-wave symmetry are manifest in different

This interpretation has been questioned because a largiase-sensitive experiments on essentially the same materi-
fluctuation diamagnetism and conductivity have not been obals supports the idea that there are strong, local fluctuations
served betweef; and T 111 However, we believe that that break théapproximaté fourfold rotational symmetry of
the absence of dramatic magnetic-field effects is readily unthe crystaf-*>°6
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However, while we feel that these experimental facts prosists at the high pressures required for superconductivity.
vide strong evidence for the general form of our model, they Our model also could be studied by numerical techniques.
do not probe the microscopic structure of the proposed pairin particular, an environment with a spin gap could be rep-
ing mechanism. There are, however, various signatures th&gsented by either a two-leg ladder or an incommensurate
could, in principle, be detected. We predict a spin-1,dimerized half-filled chain. An environment without a spin
charge-0 excitation (a quasi-one-dimensional, magnon 9ap would be a half-filled one-dimensional Hubbard model.
mode with an energy gamS, which is of order the super- In elthEIf case the Coupllng to the 1DEG Should- |n\./0|Ve
conducting gap. This mode could, in principle, be detected ir$t"ong single-particle or pair hopping and a repulsive inter-
neutron scattering. We also predict a charge-0, spin-@ction between holes. _ _
breather mode with energy gap equah8A when « has Note. addt_ad in prooﬂRece_ntIy, incommensurate magnetic
the expected value of 2/3. This mode could, in principle, bdluctuations in YBaCugOg ¢ With T,=62.7 Khave been ob-
observed by Raman scatteriHg.Since it also could hybrid- Se€rved by P. Dai, H. A. Mook, and F. Dog4oond-mat/
ize with a phonon, it could also show up in neutron 9707112(unpgbhshe§d] in neutron scattering measurements
scattering. It is interesting to note that a magnon with energ the dynamic spin and nuclear structure factors. In combi-
about 40 meV(Ref. 116 and a Raman mode with energy nation with the similar experiments on the, a0, fa_lmlly,
about 75 meV(Ref. 115 appear close td, in optimally cm_ad above, _thes_e new data proylde strong evidence for
doped YBaCu;O, s and above T. in underdoped stripe fluctuations in the YBCO famll_y of materlals. Re(_:er_my
YBa,Cuz0;_s. The energies of these modes vary differ- W€ have shown that transverse stripe fluctuat|(_)ns eliminate
ently with doping. We are currently exploring whether theseCPW ordering along a stripe and, at the same time, enhance
two phenomena reflect the two collective modes discusseB@" hopping between stripes which is required for supercon-
above. ducting phase coherence. This calculation establishes the ex-

A stripe structure may have a nematic phase, in which théstence of metallic stripe phe}ses, ie., elegtron liquid crystals,
stripes are orientationally ordered along a particular direc@1d Suggests that a transition to nematic order could be a
tion. Such a phase shouid display a striking anisotropy in it§andidate for the upper crossovef in Fig. 1[S. A. Kivel-
phase stiffness. It is interesting to note that a big increase ifon. E. Fradkin, and V. J. Emetynpublished].
the phase stiffness is observed as Y¥Ba;O, 5 is
over_d(_)ped_‘.17 This behavior has been attributed to supercon- ACKNOWLEDGMENTS
ductivity (induced by the proximity effegtin the CuO
chains, as they become filled. However, such an interpreta- We would like to acknowledge important insights we
tion requires that the superfluid density in the chains ihave gained in discussions with D. Basov, R. C. Dynes, E.
greater than in the planes, where it originated. ExperimenFradkin, D.-H. Lee, S. Sondhi, and J. Tranquada. S.K. would
tally it may not be easy to distinguish nematic stripe order inlike to acknowledge the hospitality of the Physics Depart-
overdoped YBaCu30-_ 5 given the existence of the CuO ment at UC Berkeley, where this work was initiated, and the
chains. support of the Miller Foundation and the John Simon

One feature of our model is that there are two, physicallyGuggenheim Foundation. This work was supported in part
distinct, spin gaps, one associated with the 1DEG, and hend® the National Science Foundation Grant No. DMR93-
with the “superconducting gap,” and the othdarger gap ~ 12606(S.K.) at UCLA. Work at BrookhaverV.E.) was sup-
with the insulating environment. However, in practice, weported by the Division of Materials Science, U.S. Depart-
expect that the two gaps will be similar in magnitude be-ment of Energy under Contract No. DE-AC02-76CH00016.
cause the difference will be “smoothed out” by the motion
of the holes between the stripe and the environm@&xactly
this sort of “smoothing out” of the gap occurs in the “Coo-
per limit” for the conventional proximity effect.Finally, we
observe that there are calculable consequences of our model There are three related senses in which we use the renor-
for single-particle properties, such as the density of statesnalization group(RG) to analyze a complex physical prob-
which are currently under investigation. lem, such as the present one.

Another qualitative test of our ideas is to look for high- (i) First, the renormalization group, and in particular the
temperature superconductivity in materials that have onenotion of fixed points, is a theory of theories and it provides
dimensional metallic and spin-gapped regions in close eleca context and structure that allows the problem to be ap-
trical contact built into their structure and not necessarilyproached in the context of its global phase diagram. Even
self-organized. In this regard, we note that a material withwhen calculations are not carried out by use of the renormal-
even-leg undoped laddefwhich have a spin g&p in inti- ization group, the results are fundamentally informed by its
mate contact with doped CufOchains should display the structure. For instance, so long as an exactly solvable model
mechanism of superconductivity that we have proposednd a particular problem of physical interest are governed by
here. Interestingly, superconductivity withf.=12 K  the same fixed point, the solvable model can be said to be an
has been observéd at a pressure of 3 GPa in accurate representation of the low-energy physics of the
Srg 4Cay3 CuU-4041 g4, @ Material with this kind of structure, problem of physical interest, whether or not there is a micro-
although the chains and ladders are in different planes, so tteeopic correspondence. It is in this sense that a large class of
electrical contact is not as strong as we would like. At atmo{hysically diverse one-dimensional systems can all be de-
spheric pressure, it appears that the doped holes are in tiseribed as “Luttinger liquids,” or that the resonant level
chains!®® but, at present, it is not known if this feature per- model represents a solution of the antiferromagnetic Kondo

APPENDIX A: PERTURBATIVE
RENORMALIZATION-GROUP ANALYSIS
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problem. Similarly, the exact solution of the pseudospin 2. Perturbative RG about the noninteracting fixed point
mo_del, presgntgd in Sec. V, describgs the physics qf the The standard" g-ology”) treatment of the 1DEG may be
paired spin liquid phase of the 1DEG in an active environ-qerived by computing th@ function in powers of the inter-
ment. actionsg, using a version of Anderson’s poor-man’s scaling,
(ii) The notion of an unstable fixed poifdr line of fixed i which states at the band edge are integrated out and new
pointg also underlies the use of field theories to describesffective interactions are computed for the model with a re-
condensed matter systems. Of course, condensed matter sygsrced bandwidtiE<W. The variation of the coupling con-
tems have a finite lattice spacing. However, in the proximitystants as a function of are determined by a differential
of an unstable fixed point, the correlation length diverges, sequation, in which the microscopoic values of the interac-
that the continuum limit is actually realized when the corre-tions serve as initial conditions. This method can only be
lation length diverges, but this is equivalent to holding theapplied if all the interactions are weak on the scale of the
correlation length fixed and letting the bandwidth diverge, adandwidth, as it is based on perturbation theory about the
is done in defining a field theory. Thus all the field theory noninteracting fixed point.
results we employ, incuding the results based on the equiva- For the present problem, one can similarly derive the ap-
lence between different field theories that goes under the titieropriate scaling equations for the entire set of interactions in
of bosonization, are based on the proximity of the system t@erturbation theory about the noninteracting fixed point. To
the Luttinger liquid line of unstable fixed points. do t.hls, we notice that the mpdel defined in Sec. Ilis a
(i) The renormalization group is also a computationalParticular form of an asymmetric two-band model, with ap-
scheme, which in most cases must be carried out in the compropriate couplings and bandwidtk'g and W, respectively.
text of a perturbative evaluation of tiefunction. The terms However, because of the large difference in the bandwidths,
“relevant” or “irrelevant” in the renormalization-group the integrating out of high-energy degrees of freedom, which
sense refer to the results of a perturbative evaluation gBthe is the business end of this sort of calculation, must be carried
function in the neighborhood of a particular fixed point. Suchout in two stages. In the initial stages of renormalization, we
methods are useful for determining the stability or lackintegrate out degrees of freedawf the 1DEQ with ener-
thereof of a particular fixed point. However, in the case ingies betweeW andE, whereW= Es>W. The resulting scal-
which there is one or more relevant interaction, these resultg equations apply so long as all the interactions remain
can only be used to guess the nature of the actual grounshall(i.e., so long as perturbation theory is adequatsil E

state. reaches the scale &¥. For further reduction of the band-

width, excited states of both the environment and the 1DEG

are being simultaneously eliminated. In this way, starting

with a set of bare coupling constants, one obtains a set of
One approach to the problem is to trédt,; as a small renormalized coupling constants at the end of the first stage

perturbation. Thus one imagines determining the propertieef renormalization, which serve as initial conditions for the

of the fixed point corresponding to the decoupled problemsecond stage flow equations.

of the 1DEG and the environment and then assessing the _

relevance of{;,, at that fixed point. Because, by assumption, a. The RG flows for WE

the environment has a charge gap, any interaction involving 14 pegin with, we ignore the differences in bandwidth so

excitations of the charge degrees of freedom of the environg, the model is equivalent to the two-band model consid-

ment is irrelevant in the renormalization-group sense. Thug by Varma and Zawadowsk#° This allows us to adopt

Hpair and the charge and charge-current interacCtioniiy  hejr results(obtained using the usual methaderanslated

(i.e., the terms proportional ¥, and J.) are immediately  jn(g the notation of the present paper, the scaling equations
seen to be irrelevant. In the case in which the environment pe written as

has a preexisting spin gap, the same analysis implies that the

1. Perturbative treatment of H;,,

remaining interactions irH;,; are also perturbatively irrel- _ 1 B
evant. Even in the case in which the environment has gapless O1=— %ZagfﬂL E(tgp—tfp)}, (A1)
excitations §;>0), the spin couplings can readily seen to 2my
be perturbatively irrelevant. Thus, for weak enough coupling
between the 1DEG and the environment, the coupling can be o L 2 02— E(tz +3t2) (A2)
ignored in the sense that the low-energy behavior is qualita- O 2y 937 5 sp™ o) |
tively similar to that of the two subsystems in the absence of
their coupling. _ 20
In the problem of physical interest, the energy to transfer 03= — —=0.03, (A3)
a pair of holes from the 1DEG to the environmeiitis very 2my
small compared to the bandwidth. As we have shown in the
main body of the paper, this implies that the perturbative . 1| teptep )
analysis about thé{;,;=0 fixed point is valid only in an Us=— E 7_4 s|’ (A4)

extremely restricted regime of parameter space. In particular,

for fixed small, but nonvanishing,,, there is a critical value 1

of s**, such thatH,, is irrelevant fore* >¢. and relevant Uc:__[tngth]' (A5)
for e* <e;. 8mv
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) 1 _ - ing the limit v .— o; this has the effect of projecting out any
typ=——=[a(9:+9c) +B(g1+9c) —4U —4U]ty, intermediate states involving the propagator in the environ-

4mv ment. The result is the scaling equations that govern the ini-
tial renormalization process:

1
_fn'_v_UStSp’ (AB) 1
-2
gl_ 77_v':glr (Alo)
. 1 ~ o~
tsp:_47Tv—[a(3gl_gc)+,8(3gl_gc)_4Uc]tsp . 1,
9c= ~ 7y 9 (A11)
3
___Usttp! (A7) i 1
_ ™ _ g3:_7r_vFg°93’ (A12)
wheE UE(UFiUF)/Z is the average Fermi velocity,
a=vlvg, B=vlvE, s 1 2 .2
01=— va[tSp_ ttp]- (A13)
Us=V—Js, (A8)
B 1
Ue=Ve—Jc, (A9) 0o= g [tonT 351, (A14)

and there are three additional scaling equationsgfptthat
can be obtained from the equations fpr by placing tildes b= 1 [g1+g.]t (A15)
on theg,’s and interchangingr and 8. Here we have aug- P 4qyg St IR

mented the original equations of Varma and Zawadowskii to
include the effects of umklapp scattering, which was done by

Balents and Fishéf! (We correct a factor of 2 error they tsp= "~ 4va[3g1_g°]tSp’ (AL6)
made in the scaling equations fgs andgs.) Note that we
have adopted the opposite sign convention for@Hfenction gs=U=U.=0. (A17)

to Varma and Zawadowskii; here the overdot signifies the
derivative with respect ta’=In[W/E], which is the negative Most importantly from these equations it is clear that, in the
of their variable IfiS]. initial stages of renormalization,, is reducedfrom its mi-
There are several aspects of these equations that are woFPscopic value, although if the interactions in the 1DEG are
noting. In the first place, the scaling equation fgy is the not too strong, this reduction may not bS too severe. There is
weak-coupling version of the more general Luttinger liqguidalso an additive negative contribution ¢p and a positive
result given in Eq(35); t, is perturbatively relevant only if additive contribution tag,, generated in this initial stage or
[@(391—0c) +B(391—0g.)—4U.] is negative. We expect renormalization. This is a form of asymmetric screening that
that g, is negative(but possibly small g. is negative and tends to increase the relevancetgf in the final stages of
grows in magnitude with renormalization, agglis positive, ~ renormalization. However, it seems to us unlikely that this
but typically decreases with renormalization. Thus we sedatter effect is strong enough to makg robustly relevant at
that the two ways in WhiChSp can become relevant are low energies In the absence of an environmental Spin gap.
through the generation of a large. or via spin-gap physics
of the environment, in which casg, is negative and grows APPENDIX B: SYMMETRIES OF THE MODEL AND THE
with renormalization. That the latter possibility is the more COMPOSITE ORDER PARAMETER
robust is further emphasized by the expected large value of

B, which means that the term involvirgy makes the largest
contribution to theB function. In either case, by examining
the dependence of the functions of the various other inter- o Parity is a Z(2) symmetry of the system, which results in
actions ontg,, it is clear that onceg, becomes sufficiently y ©) Sy y y '

pr = p the transformation
large, the there is a bootstrap effect that accelerates the flows

1. Symmetries of the model

To begin with, we tabulate the symmetries of the Hamil-
nian of the 1DEG in an active environment, E¢b.

to strong coupling, in that a largg, makes a positive con- U o (X)— o — X)
tribution to the functions forg., g., andU. and a nega- 7 7
tive contribution tog; andg. W o (X) = Py o —X) (B1)

and the analogous transformation for the environmetal opera-

b. The RG flows for W E>W ; )
tors. In terms of bosonic variables,

We now return to the problem of determining tBeunc-
tion for the initial stages of the elimination of high-energy 0,(X)— 05(—X),
degrees of freedom. The scaling equations for the regime

W=E>W can be obtained from the above equations by tak- a(X)— — pa(—X). (B2)
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wherea denotess or c. Under the action of the parity trans- ~ Translational (chiral) symmetriesThere are the two in-
formation, PT, p., andp, are even and®] , j., andj are dependent symmetries corresponding to translatichgal

odd. transformationsof the 1DEG,
Time reversais a second &) symmetry of the system, 1 g—explive) 1 o

which results in the transformation ' _ '

l/’l T(X)_’l 11,2 l(X) 1102,0_) exq -1 yt) wZ,o' ’ (88)

’ o and the analogous tranformations, defined in terms of a sec-
P (X) =y, (%), (B3) ond, independent anglg,, for the environmental operators.
_ In the absence of umklapp scatterifige., if we setg;=0)
P, (X)— =i (X), v; can take on any real value between 0 and Re., there is

U (X)— — i ry1(X) an additional W1) symmetry associated with translations of
2l 11 the 1DEQ. In terms of bosonic variables, we have
and the analogous transformation for the environmetal opera- >
Pe— Pt \/\')’t

tors. In terms of bosonic variables, (B9)

Hc(x)_’_ac(x)a ] o~ )
and the analogous relatiofiwith +,) for the environmental

O5(X)— O5(X) — 7/ 2, (B4)  operators.
ba(X)— — be(X) Spin chiral transformationsThere is an analagous trans-
s S\ formation, which amounts to a translation of the spin-density

and, of coursei— —i. Under the action of the time-reversal wave fluctuations by a half a period, in which the up- and
transformationp, and j are evenpP’, j., and p, are odd down-spin components are translated in opposite directions.
P! transforms a®! — —exp(mm)P’ ., and the correspond- We define the spin chiral transformati¢has

T
ing environmental operators transform in the same fashion. 1=y,
Spin rotational symmetrys respected entirely by the .
model as originally written, so there is a corresponding Yai— 1y,
SU(2) symmetry of the system, which transforms the opera- (B10)
tors according to b1, —— iy,
Lo - [ ,
o= 2 (XY )]t o (85) Va2
o’ which in terms of the bosonic variables is

and the analogous transformation for the environmetal opera-
tors. Manifestly, this transformation leaves all the charge, b— bt \[2 7 (B11)

charge current, and singlet pairing operators invariant and

rotates all spin vectors in the appropriate fashion. Abelian,q e define the analagous transformation for the environ-
bosonization of the model obscures this symmetry, which is ~ o . .
manifest as a nontrivial relation betwekn andg,. Gener- mental operators a@ Hipee 'S invariant undec, bUt, ithas
alizing the original model by defining distinct couplings, the effect of rc.)tatlngoS arlrdjS byT T ak?o.ut thez axis and
and g, would give arbitrary values oK and g; (which ~ changing the sign of botR" andPy, so it is not a symmetry
now should be identified witly, , ); in this case, only the of the full Hamiltonian; howeverC C manifestly is. Having
U(1) symmetry associated with rotations about thexis  said this, it is clear that additional symmetries can be con-
remains of the original spin rotational symmetry. The full structed by combiningC and C with spin rotations by
SU(2) transformation is complicated in terms of the boson'cabout thez axis: we call these transformatioRsand® and

variables, but rotations about theaxis correspond to an . ~ .
P they correspond to shifts @f; and 64 by \7/2, respectively.

aaditive phase shift tds In this way, an additional discrete group of related symmetry

Gauge invariancer charge conservation is manifest as at f . b tructed st f the identi
global U(1) symmetry of the modefsince we have not ex- .rans ormations can be constructed consisting of the identi-

plicitly included the gauge fieldghat transforms the opera- ties,CC, CR, CR, CR, andCR; this group is Abelian, with

tors as a simple group multipliction table, which is readily obtained.
) Notice that, as with time-reversal symmetry, this group’s op-
o= XN V) o (B6)  eration on spinor fields is double valued.
and the analogous transformation for the environmetal opera- 7 Symmetry There is one additional hidder(Zl symme-
tors. In terms of bosonic variables, try of the Hamiltonian, which combines spin and charge
transformations and is the symmetry that is spontaneously
2 broken in the paired-spin-liquid state. This symmetry is com-
Oc— O+ \/:7 (B7)  bines a spin chiral transformation of the 1DEG, a 7 ro-

_ tation of the environmental spin&; and an inequivalent
and ¢, and ¢, are invariant. This transformation leaves all gauge transformation of the charge modes of the 1DEG and
the particle-conserving operators invariant and multiplies althe environment. In terms of the fermionic fields, this sym-
pairing operators by a factor of &xp2ivy]. metry corresponds to the transformation
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~ - . N
I = I Ocomp= exp[iwf_ dyjc(y)} BT, (B15)
I —
b=y, Clearly, this composite order parameter is odd undsym-
(B12)  metry.
Yor— =1y,
'J/u—’_il/fll , APPENDIX C: THE NATURE OF THE
' ' “PAIRED SPIN LIQUID”
Yo =1y .

Various definitions of a “spin liquid” are used in the

In terms of bosonic variables, this transformation takes literature?” Here we define a spin liquid to be a quantum
disordered ground state of the spin degrees of freedom of a
system, which means that spin rotation invariance is unbro-
ken. We also require that translation invariance be unbroken
for the system to qualify as a liquid. In addition, to distin-
guish the spin liquid from a quantum paramagnet and a

(B13) Fermi liquid, we require that a spin liquid support spinon
excitations in its excitation spectrum.

The ground state of a spin-1/2 Heisenberg chain is a gap-
> less spin liqui® An integer spin chain and an even-leg
half-integer spin ladder fail to qualify because spinons are

This transformation leaves,, j¢, pc, and ], invariant, ~confined.(The only finite energy states are integer-spin mag-
nons; spinons are bound by a linear potential in pairs or to

r(_)tateSpS’,rJS’ ps;?nd] s by  about tt‘.? axis, i(;hfinTges the ihe ends of chain¥? The frustrated spin-1/2 chaie.g., the
sign of P and P’, and transformsP,— —e"™"P; and  \Majumdar-Ghosh mod®&) fails to qualify because transla-
P:n—> - e'm”P:n- tional symmetry is spontaneously broken in the ground state.
In the above, it is important to realize that a shift in the (See Appendix B. The 1DEG away from half filling dis-
bosonic phaseg, by = \/7/2 is equivalent to a displacement plays two kinds of behaviofa) whengj is irrelevant it is a
through a distance equal to the average spacing between tgepless spin liquid in the universality class of the spin-1/2
particles. For¢. (¢¢), spinso are displaced in the same Heisenberg chainfb) wheng, is relevant it has a gap be-
(oppositg direction. This shift leaves the Hamiltonian of the cause of spinon pairing and is in the universality class of
1DEG unchanged because the arguments of the cosines dloped polyacetylet®® or a doped Majumdar-Ghosh
theg,cos(/87 ¢¢) andgzcos(/87¢.) terms are changed by model?* It is this latter case, in which spinon pairing causes
2. To appreciate the significance of this observation, cona gap or pseudogap in the spinon spectrum, that we call a
sider the ground-state degeneracy of the 1DEG with a halfpaired spin liquid”; spinons are paired in the same Wy
filled band. A shift of eithekp. or ¢, by + 7/2 changes the as electrons in a superconductor and they must be created in
sign of the operatog} , , since its boson representation is pairs, i.e., by breaking a bound pair that exists in the

proportional to exfiv2(¢e+ ods)]. Thus, if this operator  VacUum-”

's ordered the ground state is twofold degenerate. This o(;t_heoretically well established examples of a spin liquid, ac-

curs if bothg, andg; are relevant, as, for example, in the . o U i
negativet) Hubbard model with additional nearest-neighborpordmg to the above definition. The first is the superconduct

. L ; ing state of charged particles in higher dimensions; in this
repulsionsV, and it is easily understood from a strong- it has b how# that th | Bogoliub
coupling analysis, as the ground state is a period-2 chargé:-.onte?(t’ It has een sho that the usual Bogoliubov qua-
. ’ 4 . ; Siparticles have spin 1/2 and charge 0, where both quantum
density wave. These considerations must be taken into ac-

count in studying the full symmetry group of the 1DEG asnumbers are sharp quantum observables. Clearly, the pairing

. . . f spinons in the superconducting state is precisely the pair-
they imply _that not all the symmetry operations d|scussecﬁ19 that gives rise to superconductivity. However, while this
above are linearly independent.

connection is useful for intuitive purposes, we feel that this
state should probably not be referred to as a spin liquid and

?éc—;éc-l-

hs— dst

U?bz
i

U?:l
+

There are, to the best of our knowledge, only two other

2. The nonlocal order parameter so we propose adding to the above definition of a spin liquid
The nonlocal order parameter defined in terms of the unithe condition that large-scale gauge invariaficethe usual
tary transformation in Eq(29), sense of superconductivjtghould also be an unbroken sym-
metry of the ground state. The second example is afforded by
Ocomp=UPTUT some quantum Hall liquid states of electrons with sigt.
For instance, in a quantum Hall system consisting of a
=(ma) texdi2m(6.— 0.)]cod V27 ], Laughlin liquid"?® of strongly paired opposite spin electrons
(B14) at filling factor v=2, it is easy to see that there exist quasi-

particles with spin 1/2, charge 0, and semionic statisti€s.
can be expressed as a nonlocal function of the original ferThis sort of state is a realization of the so-called chiral spin
mionic fields as liquid.39-128
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