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Superconducting fluctuations for three-dimensional anisotropic superconductors
in the presence of a magnetic field with arbitrary direction
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A nonperturbative method for evaluation of thermodynamic scaling functions in the critical region of type-l
superconductors, appropriate for high-temperature superconductors, is extended for the case of external mag-
netic fields with arbitrary angles with respect to tbeaxis for the case of three-dimensional anisotropic
superconductors. An explicit scaling function for the magnetization is presented, discussed, and compared with
experimental data from measurements with applied fields alonglth@anes[S0163-18207)01334-9

I. INTRODUCTION displaying a phase transition will be able to explain those
results. Ullah and Dorséyave used the time-dependent GL
In the last years interest has grown in the study of proptheory to study both transverse and longitudinal transport
erties of strongly type-ll superconductors such as highproperties of a layered superconductor in a magnetic field
temperature superconductqisTSC's), fullerene supercon- perpendicular to the layers near to the mean-field transition
ductors, superconducting superlattices, etc. The behavior iemperaturel .(H).
the vicinity of H.,(T) is strongly influenced by the thermo- In an experiment performed by Welgtal,® high-
dynamic fluctuations and many experimehtllas well as  precision measurements of magnetization and resistivity of
theoretical~'* results have been reported in relation to theYBa,CuzO-_ 5 crystals were performed, near the supercon-
critical behavior arising as a consequence of the thermaducting transition in magnetic fields applied perpendicular to
fluctuations in these systems. For ordinary superconductorshe CuQ, layers. These data showed a scaling behavior in
the superconducting transition is very well described by thehe variable[ T—T.(H)]/(TH)?® which is consistent with
Ginzburg-Landau theor¢GL), which was shown by Gorkov the GL fluctuation theory for a three-dimensiofaD) sys-
to be equivalent to the BCS theory in the lirffit=T,. This  tem in a high magnetic field. Lét al* noticed that the mag-
is a direct manifestation of mean-field behavior in the stronnetization of highly anisotropic BiSr,Ca,Cu30, crystals
gest form, i.e., where both the order parameter and coeffinear the critical temperature may be described by the 2D
cients of the GL theory can be calculated from the micro-version of the scaling function in the variable
scopic mean-field theory. However, mean-field theory doe$T—T,(H)]/(TH)¥2 In a recent work, Tesanoviet al®~**
not account for most second-order phase transitions. Theseve developed a nonperturbative theory of critical behavior
departures from classical behavior are generally attributed tfor anisotropic superconductors for both 2D and 3D systems.
thermal fluctuations which are neglected in the mean-fieldn Ref. 9 Tesanovic considers a strong magnetic fi¢ldp-
approach. Standard estimates of the critical region show thadlied in the direction of anisotropy of the crystal éxis) and
for the case of conventional superconductors the range of this approach the critical behavior is described by means
temperatures arounf, within which fluctuations are impor- of an interacting particle system with long-ranged multiple-
tant is so small that is not in general experimentallybody forces(dense vortex plasmaThe superconducting
accessiblé.The new HTSC'’s however display the effects of transition corresponds to the liquid-solid transition in the
fluctuations in a wide range of temperatures arolipdthe  dense vortex plasméDVP). Recently measurements have
mean-field transition temperature. The effect of fluctuationdeen reported for the magnetization in YEu;0,_ s single
in HTSC’s changes the phase diagram of these materials arudystals for applied magnetic fields parallel to thle planes
new phase boundary lines appear. The true thermodynamiperpendicular to the axis).>® These experimental results
superconducting transition line differs from the mean-fieldare the motivation to generalize Tesanovic’s results in the
He(T) that becomes a crossover line. In fact, Gammelimit of the anisotropic 3D superconductor for the case of an
et al? found experimental evidence for a melting transition arbitrary direction of the applied magnetic field.
from an ordered phase into a high-temperature flux liquid in The work is organized as follows: In Sec. Il the lowest-
YBa,Cu;0;,_; single crystals. The strongly temperature- Landau-level expansion for the order parameter is general-
dependent correlations involving up to°l@ortices, obtained ized for arbitrary directions of the applied magnetic field. In
near the transition, suggest that only many-particle theorieSec. Il it is obtained the partition function of the problem.
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Section IV presents the scaling for the magnetization for ap- When the angle between the applied magnetic fitlanhd
plied magnetic fields parallel to theeb planes for an aniso- the z axis is 6= /2, a suitable gauge 8= B/2(z,0,—x)
tropic 3D superconductor. In Sec. V we discuss results of theand the Hamiltonian may be written as

angular dependence of the coupling constant and the theoret-

ical scaling function for the magnetization is compared to_ € 2,020 = — X2+ 22 1,
data for YBaCuyO,_5. Finally, the conclusions of the H= i (K IPH(XT7= 200+ —— |~ 509y,
work are presented.
(6)
IIl. THE EXPANSION FOR THE ORDER PARAMETER which has the eigenfunctions
The problem of fluctuations ne#t,,(T) for large applied (pqv(w,y)oce‘qwaexp(— |w|?/4), (7

magnetic fields can be represented in terms of the GL theory .

on a degenerate manifold spanned by the lowest-Landau lewherew=z+ix = (z/\e+iex)/l. In this case the order

els (LLL) for the Cooper pairs. In the GL-LLL description parametet¥(w,y) looks like Eq.(5) but with the new defi-

the order parameter for the superconductor state may be wrigition of w.

ten in the formi~! In order to generalize these results for an arbitrary angle
0 between the microscopic magnetic fiddd(vortice9 and

N the z axis, we choose the gauge

V(xy,2)=@mHY b 2)doxy), D)
v= B
. . A= = (zsing— 9, 9, — Xsing), 8
where {¢o,(x,y)} are the LLL orbitals,N=Q/271?, Q is 2(zsm ycosy,xco Xsing) ®
the sample cross-sectional area &rdc/2e B)is the mag-
netic length. The problem is then reduced to the study o
fluctuations in{b,} as done in perturbation theory.

fand obtain the Hamiltonian

2y 12 12
The LLL orbitals are eigenfunctions of the operator H— 1 2. ox il 24 Y coso
2ml? X4 Y 4
~ 1 2e \? .
= 2m c +| —e az,+T +icosH(y’ dyr—x"dyr)
whereVXA=B andmy, is the effective mass in the di- sin26
rection. For layered superconducterg =my =m, m; =M +ising(e®x" d, —2' 9y ) — 7 y'z'|, 9)

and the anisotropy ratie, is defined by:>=m/M<1. For a

magnetic field along the direction, described by means of wherex’=x/I, y’'=y/l, z'=z/| and §°=cos6+¢%sirfo is

the vector potentiah = B/2(—y,X,0), we obtain the angle-dependent anisotropy parameter. In the general
case the vector$l and B are not parallel, but for large

~ 2 2., ) X'2+y’? enough fields the internal angbebecomes equal to the angle
H= oml2 (g ay) Ty O =X dy) + — 6, between the external magnetic field and #hexis.
By introducing the following coordinate transformatith:
1
2 H ’
~ oM %2 € yi| [coss  —sind |[y
- H -1 AR (10)

Z; esind & “coH||z

wherex’'=x/l andy’=y/l. Since[P,,H]=[—id,,H]=0 L L
thenP, =q is a constant of the motion and the eigenfunc-@d carrying out the changes=.6x’, y=y,;//é and

tions of H take the form z=Iz,; , the Hamiltonian(9) is transformed to
bqu(W,2)xe"Wexp( — |w|%/4), G , o —  — xX%y? &2,

H= 5 —(&;+&yﬁ+i(y¢97—xayﬁ+T —2—02—,

with w=x'+iy’ = (x+iy)/l. 2ml m
Starting with Eq.(1) it is possible to obtaih (13)

N which has the eigenfunctions
P(x,y,2)=27%¥>, b,(z w - =

(%,y,2)= (271323, b,(2) o, (W) o, 7)< Pt — wl14), 12

_ N 5 with w=x+iy.
—d)(z)iljl [w—wi(2)]exp(—|w[*/4),  (5) It is easy to check that in the special cases#er0 and
0= /2, the Hamiltoniar(11) becomes equal to Eq&3) and
in which {w;(z)} are the positions of the vortices aril (6), respectively, corresponding to the limiting cases studied
describes the overall amplitude fluctuations. The variableabove. For an arbitrary anglebetweerB and thez axis, the
@ and{w;} are the natural way of representing arbitrary order parameter in the superconducting state may be ex-
linear combinations of LLL orbitals. panded in the form
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__N L For any direction of the magnetic field, different frofs=0
W(X,y,2)=( Z)H [w—w;(z)]exp(—|w|?4), (13)  or =x/2, the Landau orbits are coupled to the phase of the
=1 propagation along the field direction. The transformation in
with the corresponding definition fav. Equation(13) is the  Eq. (10) decouples these orbits from the translational motion
generalized form of Eq5) for an arbitrary direction of the but now this motion will not be along the field direction. The
magnetic field. physical meaning of the solutiod2) is that for an arbitrary
In order to clarify the significance of the transformation direction of the external magnetic field the one-dimensional
(10), we note that for applied magnetic fields in the directionfluctuations will not occur along the field direction but along
parallel to thec axis, the eigenfunctions of E(Q) describe a the 7 axis.
free-particle propagation along the field direction and LLL
orbitals in the plane perpendicular to the field, which corre-
spond to classical orbits of particles with charge b a
magnetic field. The plane-wave modes along the field have a
continuous spectra with arbitrary small eigenvalues whereas
the LLL are separated by gaps and therefore will be only If we ignore the fluctuations of the magnetic fidlghich
rarely excited. Consequently an anisotropic superconductas an excellent approximation in HTS(,s¢he essential fea-
in a magnetic field parallel to the axis will display effec- tures of the critical behavior for these superconductors are
tively one-dimensional fluctuations along the magnetic field described by the partition functidn

lll. THE PARTITION FUNCTION
AND COUPLING CONSTANT

* 1 3
ocf DY (r)DW¥*(r)ex k T d°r

wherea(T,0)=a(T)[1—-H/H: (T, 0)], « andB are the GL coefficients is the electron density, and the functional integral
is to be taken over the subspace spanned by the LLL. It is supposed that high Landau levels are taken into account only by the
renormalization of the GL paramete#§T, §) and B, and these parameters differ from the original ones for the GL model for
H=0 due to the contribution of high Landau levels. For large enough fields this contribution is small.

By introducing expansiofi13) for the order parameter in the partition functi@¥), we obtain the expression

Zoc—f]'[

n 2e 2
a(T 0)|\If(r |2 —|\If(r)|4+— d, +—A ) W(r H, (14
2mM

dwl(z ydw:* (z)

2

Itz —w D [ de@oe D@ @0t (2)"

i<j,z

e 2m°N
Xexp{ ek J[a(T (122|024 52D+ (T, e>|§—<|ﬁ¢<z>f<z>)|2>H, (s

where we have used the definitions define a cutoff length, of the order of the correlation length,
because the exact free energy is actually divergent in the
A—0 limit.*®
fw{wi(2))=11 [w—wi(2)], The integration ove® in Eq. (15) may be carried out and
=1 leads to the many-body system of interacting particles
{w;(z)}, obeying all the symmetries of the problem. The
dw( z)dw (z) variable®( z) is a classical variable whose contributionzo
(fP(2))= f for 3D systems, in the thermodynamic limit, is controlled by
the nontrivial saddle point
X exp( — p|w|?/4) fP(w|{w;(2)}),

(FD)B(2)+ (DD (2 - —
and g 2 d*(z)
g o =|gi(f*(2) 5@ (2)f(2))), (16)
2 2mla(T,0)| where the lengths are being measured in unit§;of®(z)

has been suitably rescaled and the coupling constant
For an explicit evaluation of the partition function, the g(T,H,6) is a pure number defined by
functional integralsll;, J;, etc., may be defined on a set of
discrete intervals of sizA and at the end of the calculation g(T.H,0)= \/—( ml?&;
the limit A — O is to be taken. However it is necessary to 28kgT

a(T 0). 17
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The properties of the many-body systefw;(z)} are 12—
determined by the coupling constany. The value I ai
g(T,H,#)=0 corresponds tti.,(T,6), whereas the solid- 10
liquid transition line may be obtained from the melting value
9(T.H,0)=gu(6)<0.

The coupling constarg may be used for the evaluation of
the thermodynamic scaling functidfi$®in both 2D and 3D
cases. In Ref. 13 Tesanovic and Andreev, by introducing a
suitable rescaling on the partition functi¢tb) for magnetic
fields parallel to thec axis (angle #=0), obtained simple
scaling functions for the free energy, magnetization and spe-
cific heat. Their calculations are in a very good agreement
with experimental datd.Given the angular dependence of
the partition function(15), it is always possible to obtain
similar scaling functions for any direction of the external 0
magnetic field in the 3D case. The special cas&efm/2,
for which there is data available, will be discussed in the
next section and compared with those data for

a) H/ch(T’O)=O'2

pYH/H (T,00=0.5
c2

¢)WH (T,00=0.8
c2

d) H/ch(T’0)=0'9

Coupling constant g(T,H,0)/g(T,H,0)
o>}

0 20 40 60 80
Angle 6 (Deg)

YBa,Cuz05_in Sec. V. FIG. 1. Angular dependence of the coupling constant for some
In the limiting casesg=0 andé= /2, the coupling con- points belowH,(T,0) in the phase diagram, for the values of

stantg is reduced to H/H(T,0) : (& 0.2,(b) 0.5, (c) 0.8, and(d) 0.9.

27T|2§c 12 M 2(477)1/3(¢0Kab§ab(o))2/3-rc|H(,:2|

o(T,H 0= (m) a(T,0), (18@ (TH)2/3 (kBGHgS(O))ZIS
tan 1| "
and :(gl+ g3+ 32 (GU2-UG?U?+2),
o
21712 U2 20
g(T,H,7-r/2)=< kgab) a(T,w/2). (18 20
2pBkgT whereH gg is the upper critical field parallel to theeb planes,

H{, is the slope of that field 8 =T, «,y, is the GL param-
Equation(18a for the coupling constant corresponds toeter, and g; is related to the scaling variable
Tesanovic’s coupling constant for the 3D case for a magnetic=[T—T,(H)]/(TH)?® by means of the equation
field applied along the axis of the crystaf,while Eq.(18b)

gives the result fov= /2 which corresponds to the applied ) tan 17 e
field along theab planes. ga| 91+ \/ 01+ 02
2pgab2 2/3
IV. SCALING OF THE MAGNETIZATION [ #o€an(0)e°HZ7(0)] . 2
FOR MAGNETIC FIELDS ALONG THE ab PLANES (167Kt K2 BT,

For an applied magnetic field parallel to thd planes
(6= /2) we obtain, from the partition functiol5), the
expression for the free energy

The quantitied) andG depend org; in the form'®

G+2
U(g;)=0.818-0.110tan ,

2\2

(22)
a(T,m2)(f2(y))| D (y)|?

F(T,H) 2#I°N
_ fdy

keT  kgT and
B a 4 m—tan o tan 1o
+§<f (Ynl@(y)| G=g1t ————| 0t g+ |- (23
2tan U
+|Z(T,77/2)|ggb(wy(@(y)f(y))lz) , (19 For each value of the scaling variabte results two

coupled equations fog; and G, which may be decoupled

_ . ] taking forU the mean valu&J ;= 0.8 wherever it appears on
where £,,(T,H)=[n/2m|a(T,7/2)|]1*? is the correlation the right-hand side of Eq22).

length along theab planes.

By following the same procedure as that in Ref. 13 for the
3D case and introducing the usual expressions for the GL
coefficients, the scaling function for the magnetization may In Figs 1 and 2, the angular dependence of
be written in the form 9(T,H,0)/9(T,H,0) is shown for points located in several

V. RESULTS AND DISCUSSION
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a) H/ch(T,O)=2

o
(8]
T

b)yHH (T,0)=3
c2

¢) H/H_(T.0)=5
&) WH_(T,0)~10

Coupling constant g(T,H)/g(T,H,0)

0 20 40 60 80
Angle 8 (Deg)

FIG. 2. Angular dependence of the coupling constant for some

points aboveH ,(T,0) in the phase diagram, for the values of
H/H(T,0): (a) 2, (b) 3, (¢) 5, and(d) 10. The dashed line corre-
sponds to points placed on the lifkg,(T,7/2) =5H,(T,0).
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FIG. 3. Experimental magnetization for YB@u;0-_ 5 for dif-

ferent values of the magnetic field applied parallel todteplanes
(Ref. 5. The data are scaled and plotted with the theoretical expres-
sion (solid curve from Eg. (20), appropriate for 3D scaling.

regions of the phase diagram. It was assumed the usual aga|qs parallel to theab planes presented in Sec. IV, are

gular dependendd (T, 8) =H,(T,0)/6 for the upper criti-
cal field® and the valuee=1/5 for the anisotropy ratio,
which corresponds to the case of YRau;0,_5.

Figure 1 displays the angular dependence
o(T,H,6)/g(T,H,0) for some values of the applied fietdt.
It corresponds to the region beloW:,(T,0) in the phase
diagram. In this region the sign g{T,H, 6) is always nega-
tive [the same ag(T,H,0)] because these points lie below
Hq(T,0) for any direction of the magnetic field. As the
angle @ is increased, the absolute value gifT,H, ) rises
until reaching its highest value fo#= /2 due to the fact
that the upper critical field linél.,(T,#) moves away from
the point in whichg(T,H, 6) is calculated.

Figure 2 presentg(T,H,6)/g(T,H,0) as a function of
the angled for several values of the applied magnetic field
corresponding to points in the region limited by the lines
Heo(T,0) andH,(T,w/2), as well as for the region above
the lineH,(T,7/2) in the phase diagram. For any point in
the region limited byH .»(T,0) andH .»(T,#/2), the value of
g(T,H,0) is positive, and on the other hand(T,H, )
changes sign from positive to negative, becausé &sin-
creased the lindH»(T,#) moves fromH,(T,0) towards
Hq,(T,7/2) and at a certain angle this line crosses that point
(curvesa and b). In the region aboveH.,(T,#/2) both
g(T,H,0) and g(T,H,#) are positive and the value of
g(T,H, ) diminishes as the anglé is increased since the
line H.,(T,0) comes near to the point whetdT,H, 6) is
calculated(curved).

For points in the phase diagram far from the region lim-
ited by H.»(T,0) andH (T, #/2), corresponding to values
of H/H(T,0)>5 or H/H.,(T,0)<1, the angular depen-
dence of the coupling constant is smoothed gfd,H, 6)
tends to the limiting valugy(T,H,0) in both cases. As one
approaches the lind .,(T,0), the value ofj(T,H,0) tends to
zero and the quantitg(T,H, #)/g(T,H,0) rises quickly in
absolute value as the angleis increased.

MATH® (107 G/(0eK)¥®)
S
N

H=2T
a H=3T
+ H=4T
x  H=bT i
Theory
0.0 0.2 0.4 0.6
t (107 K"30e??

discussed and compared with previously published experi-
mental dat&. Figure 3 displays the behavior of the magneti-
zation for 3D anisotropic superconductors using Ez{).
OfThe theoretical expressid@o) is plotted and compared with
the recent measurements in YR2u;0,_ 5 for different ap-
plied magnetic fields parallel to theb planes of the crystal.
It was assumed the valués.,= —8.6T/K for the slope of
the upper critical field. £,,(0)=16 A for the in-plane cor-
relation length'’ and H(0)=eH32(0)/\2k,,~1.2 T for
the thermodynamic critical fieltf These data have been ana-
lyzed in a previous worR showing 3D scaling behavior. The
present analysis shows that the scaled data agree rather well
with the theoretical scaling functioi20). In order to perform
an internal check of the theory, a similar analysis was made

FIG. 4. Experimental magnetization for YB@u;0-_ 5 for dif-

ferent values of the magnetic field applied parallel to thaxis
(Ref. 6. The data are scaled and plotted with the theoretical expres-
The results for the magnetization in applied magneticsion (solid curve from Ref. 13, appropriate for 3D scaling.
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for the experimental data in Ref. 6 for applied magneticWe have also obtained a scaling function for the magnetiza-
fields parallel to the axis. In this analysis the scaling func- tion in the presence of magnetic fields parallel to tie
tion of the magnetization fop=0 of the present angular- planes. Our theoretical results are in good agreement with
dependent model was usédhich is the result previously recent experimental data.
presented by Tesanovic and Andéév,Figure 4 shows the
corresponding scaling and the experimental data. The good
agreement shown is similar to that of Fig 3.
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