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Direct atomistic simulation of quartz crystal oscillators: Bulk properties and nanoscale devices
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Current experimental research aims to reduce the size of quartz crystal oscillators into the submicrometer
range. Devices then comprise multimillion atoms and operating frequencies will be in the gigahertz regime.
Such characteristics make direct atomic scale simulation feasible using large scale parallel computing. Here,
we describe molecular-dynamics simulations on bulk and nanoscale device systems focusing on elastic con-
stants and flexural frequencies. Here we find~a! in order to achieve elastic constants within 1% of those of the
bulk requires approximately one million atoms; precisely the experimental regime of interest;~b! differences
from continuum mechanical frequency predictions are observable for 17 nm devices;~c! devices with 1%
defects exhibit dramatic anharmonicity. A subsequent paper describes the direct atomistic simulation of oper-
ating characteristics of a micrometer scale device. A PAPS cosubmission gives algorithmic details.
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I. INTRODUCTION

Quartz crystal oscillators~QCO’s! are used in a multitude
of applications.1,2 They are used as timing devices, as acc
erometers, as mass balances, and as viscometers. Suc
vices can be excited in many different ways, but the one
be considered in this series of papers will be the ‘‘flexu
plate’’; that is, one which oscillates by virtue of bein
plucked in the direction normal to the longitudinal axis. Co
ceptually they are the simplest of mechanical machines; t
function like a violin string except that instead of catgut, th
are made of quartz~SiO2). The observed resonant freque
cies are functions of the length of the device, its cro
sectional area, and its elastic constants~which, for an aniso-
tropic material likea-quartz, vary with orientation!. The
latter, of course, are functions of temperature and degre
compression of the device.

Simple continuum elasticity theory3 tells us that the fre-
quencies (v) should scale as

v}
d

L2
AY

r
, ~1!

whereY is the Young’s modulus of the material along th
longitudinal direction.r is the density of the plate,L is its
length, andd its thickness. Young’s modulus gives the ra
of change with elongation of longitudinal pressure in the r
when the two other directions are allowed to move freely
the hydrostatic bath. For our purposes, the hydrostatic p
sure~P! will be one bar, which is very close to 1 atm.~Note
that we boldface the symbol for pressure, because in gen
it will be a tensor!. As regards the precision of molecula
dynamics~MD!, this pressure is essentially zero. The co
stant of proportionality in Eq.~1! depends upon the bounda
conditions and eigenstate of the plate, for example, whe
the ends are clamped or free to pivot.
560163-1829/97/56~2!/611~8!/$10.00
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It is easy to see that if internal loss mechanisms are k
to a minimum, such devices could operate as timing devic
If the device is put in an accelerating frame, with a referen
mass at one end, it is also easy to see why they opera
accelerometers. Lastly, since density appears in Eq.~1!,
changing the mass of the device~via surface adsorption! also
changes the frequency—hence they can function also as
sitive mass balances.

There is a technological drive to shrink the size of QCO
to the micrometer level. Present technology4 makes them at
the 100mm scale, where they operate in the megahertz
gime @substitution of appropriate values in Eq.~1! confirms
this#. But the demand for further sensitivity is driving the
size down. For example, oil companies would like gravi
tional detectors which are sensitive to nano-g’s; pres
QCO’s are sensitive to micro-g’s. Such miniaturization
attendant with design issues: For example, increased se
tivity is achieved at the cost of increased noise. At wh
point does the statistical mechnical ‘‘noise’’ due to atom
tics start to have an effect on device performance and r
ability? For example, at what point does continuum elastic
theory@inherent in Eq.~1!# start to fail~and in what way! in
determining device characteristics?

When a flexural plate shrinks to the micrometer sc
~longitudinal axis! with typical aspect ratios of 10:1, the os
cillation frequency is in the gigahertz regime. The number
atoms in such a system is in the tens of millions. Thus s
tem sizes and time scales are appropriate for direct atom
simulation on large scale parallel platforms such as thos
DoD/DoE/NSF centers. Although existing interatomic pote
tials for SiO2 are imperfect, they nevertheless conta
enough of the physics and chemistry of the bonding tha
direct simulation of a micron-sized device should reveal
neric behavior which transcends the details of the poten
and which would apply to a real device.

These, then, are the reasons for the present study. In
paper, we report results for the temperature-dependent
611 © 1997 The American Physical Society
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612 56BROUGHTON, MELI, VASHISHTA, AND KALIA
havior of the bulk density and elastic constants. The latter
required to predict device frequencies from continuum e
ticity theory. We continue by reporting results for the effe
tive Young’s modulus as a function of cross-sectional area
the SiO2 plate ~from which we develop a simple model t
predict the asymptotic approach of the modulus to its b
value! as well as frequencies obtained by direct simulation
a small device containing approximately 20 000 atom
achievable on a dedicated workstation. We conclude by
scribing the effect of vacancies on device performance.

A subsequent paper will give results for direct simulati
of a micrometer scale device performed on a parallel p
form, namely the Air-force IBM SP2 at Maui. It will also
present details of the domain decomposition for the para
implementation.

In Sec. II, we describe the SiO2 interatomic potential and
the construction of the unit cell for both the bulk and dev
calculations. Section III gives a brief account of the multip
time step, constant pressure, constant temperature algo
that we adopted for the bulk simulations. A full account
the algorithm is to be found in the accompanying PA
submission.5 Section IV presents results for the densi
Young’s modulus, and Poisson ratio as functions of the te
perature for the bulk. Section V reports the Young’s modu
versus the cross-sectional area of the SiO2 flexural plate ob-
tained via simulation. The section continues by fitting the
to a simple model which allows asymptotic behavior vers
cross-sectional area to be predicted. Section VI gives
frequencies obtained via direct simulation for a 17 nm pl
and compares them with those predicted via continuum
chanics~CM!. Finally, Sec. VII presents our conclusions.

II. SYSTEM AND INTERATOMIC POTENTIAL

The stable low-temperature, low-pressure phase of S2
is that of alpha-quartz. It has a hexagonal unit cell comp
ing three silicons and six oxygens. Table I of the PA
co-submission5 gives the internal parameters of the basis
cording to Wycoff.6 The particular orientation of the syste
in which we are interested is the so-called ‘‘Z’ ’ cut.7 This
way of cutting quartz ensures that the temperature dep
dence of the Young’s modulus~or the linear expansivity! is
zero near room temperature. Hence operating frequencie
insensitive to temperature with this cut. In Miller index pa
lance, this means that the faces of the plate will
( 1̄ ,2, 1̄,0), ~0001!, and (1,0, 1̄,0). Throughout the rest of thi
paper they direction will represent the longitudinal directio
of the plate; and thex direction will be that in which the

TABLE I. Elastic constants ofa-SiO2. Units of 10
5 bars.

Bechmann~Ref. 22! Mason~Ref. 23! Present potentia

c11 8.674 8.605 6.945
c12 0.699 0.505 1.927
c13 1.191 1.045 2.121
c14 -1.791 1.825 -0.175
c33 10.720 10.710 7.459
c44 5.794 5.865 3.222
c66 3.988 4.050 2.401
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plate has maximal amplitude~and in which the plate is thin-
nest!. Thus theyx plane is the~0001!, the yz plane is the
( 1̄ ,2, 1̄,0) and thexz is the (1,0, 1̄,0). Such an orientation
allows, in the absence of fluctuations, a rectangular com
tational cell. For the purpose of the present bulk calculatio
we simulated a system comprising 2592 atoms, with perio
boundary conditions, approximately cubic in shape w
computational cell lengths near 30 Å. In order to achiev
rectilinear cell, we double the original nine atom unit ce
and then use 63436 of the subsequent unit cells to produ
the 2592 atoms. We expect finite-size effects of the th
obtained densities and elastic constants to be small and
tainly within the precision necessary for meaningful co
parison with frequencies obtained via direct simulation.

For the construction of the plate, we use the same unit
as for the bulk, but with basis atoms shifted such that
plate surfaces contain oxygens as their outermost ato
such surfaces have the lowest energy for this potential.
por surrounds the flexural plate in thex and z directions,
whereas periodic boundary conditions are employed in
y direction. ~In reality, thex and z are also periodic, there
being 40 Å of vapor surrounding the plate in these dime
sions!.

Turning now to the interatomic potential, a wide range
such have been employed in the literature to describe
structure and phonon frequencies of crystalline silica. So
are simple pair potentials,8–11 others are shell models,12 and
still others are three body.13,14 Our potential is of the latter
kind. We chose to use the form due to Nakano, Kalia, a
Vashishta15 because it is able to describe many of the pro
erties of molten, crystalline, and amorphous quartz. Our
tential is identical in form to theirs except that values of
few constants are slightly different. These differences w
tuned so that specifically crystalline properties would be
tained more accurately. The total potential energy is given
the sum of two-body and three-body terms:

V5 (
m,n

vmn
~2!~rmn!1 (

l ,~m,n!
vmln

~3! ~r lm ,r ln!, ~2!

wherer is the distance between atoms, andm andn desig-
nate atom indices. The two-body term is written as

vmn
~2!~r !5AS sm1sn

r D hmn

1
ZmZn
r

e2r /l

2
amZn

21anZm
2

2r 4
e2r /z, ~3!

where the three terms represent short-range repulsion, C
lomb interaction due to ionicity, and a charge-induced dip
interaction caused by atomic polarizabilities, respective
Note that the Coulomb and polarization terms are damp
Z is the nominal charge on the atom,a is the polarizability,
and s is a distance of ‘‘closest approach.’’ The two-bod
term is truncated atr5r c for ease of computation
For r,r c , vmn

(2) is replaced by vmn
(2)(r )2vmn

(2)(r c)
2(r2r c)dvmn

(2)/drc , so that the value and its first derivativ
are zero at the cutoff. The three-body term is given by
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vmln
~3! ~r lm ,r ln!5BmlnexpS j

r lm2r 0
1

j

r ln2r 0
D S r lm .r lnr lmr ln

2cosūmlnD 2Q~r 02r lm!Q~r 02r ln!, ~4!

whereQ is a Heaviside function. Notice that only the bon
bending terms of O-Si-O and Si-O-Si triplets are presen
the Hamiltonian. Since diffusion is not important in this sy
tem, other triplets are unlikely to be important. The consta
here are chosen to get the atomic positions and the
modulus right atT50. Table II of the PAPS cosubmissio
reports all the potential constants,5 but suffice it here to say
that the only ones differing from Nakanoet al.15 are A

~0.30608 eV!, ZSi ~0.7872e), ZO ~20.3936e), and ū Si-O-Si
~143.70 degrees!. Their potential was optimized for amor
phous silica; the changes here are required for the be
description of crystalline quartz. The experimental~Wycoff!
and relaxedT50 basis vectors agree very well and are giv
in Table I of the PAPS cosubmission.5 Table I compares two
sets of experimental elastic constants with the fully relax
T50 values due to this potential. The overall bulk modu
of 3.7363105bar is fit exactly; whereas trends in the ind
vidual constants (c11 throughc66) are obtained qualitatively
correctly. Note that the two experimental values forc14 are
essentially equal but opposite in sign; this difference is s
not resolved. For the purposes to which this potential will
put ~namely, studying generic QCO behavior!, we deem this
potential satisfactory.

III. ALGORITHMIC DETAILS

Since we want to obtain the Young’s modulus and den
of our SiO2 as a function ofT at a constant pressure of 1 ba
it will be necessary to perform constantT, constantP simu-
lations for the bulk. Also, since the range of the two-bo
and three-body terms are so very different~the three-body
terms truncate after nearest neighbors!, there will be a tre-
mendous computational speed advantage in using mul
time step methods.

Briefly, we use a generalization of the (N,P,T) ensemble
method due to Lill and Broughton16 for the bulk calculations.
Also, although we use only one Nose-Hoover thermostat17,18

for the atomic degrees of freedom, we had to use a No
Hoover chain~due to Martyna, Klein, and Tuckerman19! of
length 10 to achieve satisfactory thermostatting of the lat
degrees of freedom. Finally, we use the multiple time s
method of Tuckerman, Berne, and Martyna.20 In this there is
an innermost loop where rapidly varying degrees of freed
are updated frequently and an outer loop where the m
slowly varying are evolved in time. The evolution of the ce
lengths and angles depend upon the difference (P2PReq);
satisfactory pressure stability is only achieved when the
degrees of freedom are placed in the outer loop. The si
lational pressure is calculated via the virial. The accompa
ing PAPS submission gives comprehensive details of
algorithm.5

For the flexural plate calculations of Secs. V and VI, w
use an (N,V,E) ensemble. As for the bulk, the multiple tim
step method of Tuckermanet al.20 is used, involving this
time only the atomic degrees of freedom. These equation
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motion may be generated from those of the PA
submission5 by letting the mass of the thermostats and c
degrees of freedom go to infinity.

IV. BULK PROPERTIES

The quantities of interest are density, Young’s modul
and Poisson ratios. The latter are defined

Y5LyS ]Pyy

]Ly
D
T

, ~5!

ux52sxuy ,

uz52szuy , ~6!

where, as we have said, the direction of compress
elongation is along they axis and thex andz directions are
allowed to ‘̀breathe’’ in response to the 1 bar external hyr
static pressure. The Poisson ratio measures the degre
which compression/elongation along one axis affects
length along another. Since SiO2 is not isotropic the Poisson
ratios,sx andsz , in thex andz directions will not be equal.
u is the relative displacement (DL/L, etc.!. The derivatives
inherent in Eqs.~5! and ~6! are evaluated numerically. A
each temperature, three simulations were performed co
sponding toPyy5 1 and 63000 bar. In each case, off
diagonal components of the pressure tensor were set to z
while Pxx andPzzwere set to unity. A least-squares linear
is then performed on these results to obtainY, sx , andsz .
Each simulation required a 3000Dt equilibration followed
by a 6000Dt statistics phase. Results are not given abo
580 K because a phase transition occurs to theb phase.
Table III of the PAPS cosubmission demonstrates this to
the case.5

Figure 1 shows the dependence of density upon temp
ture. The error bars here are easily within the size of
symbols. Throughout the entire temperature range the an
between the cell vectors remain at 90°.

Figure 2 illustrates what happens to the computational
lengths as a function of temperature and pressure.~For the
sake of clarity of viewing, these distances are not represe
as unit-cell lengths; to do so, thex, y, andz lengths of Fig. 2
should be divided by 6, 4, and 6, respectively!. There are
three curves for each direction corresponding to app
Pyy pressures of23000, 1, and 3000 bars. The positiv
Pyy pressure gives rise to a smallery length and largerx and
z lengths. The slope of each line is positive, in contradisti
tion with what is observed in experiment. The reason w
QCO’s are oriented with theZ cut is that near room tempera
ture, the thermal linear expansivity goes through an ex
mum which translates into a Young’s modulus which is
variant to temperature.7 In other words extremely good
thermal stability is achievable under ambient conditions
these QCO’s. We note that our system shows no such be
ior. We have two explanations for this difference; the mo
obvious is that our interatomic potential, as we have alre
noted, is imperfect. But a more likely explanation is th
these simulations are purely classical, whereas the pho
population at these temperatures is almost certainly de
mined by the Planck distribution.~A quick look at the high-
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614 56BROUGHTON, MELI, VASHISHTA, AND KALIA
frequency cutoff of any experimental quartz phonon spe
trum indicates that the Debye temperature will be in exce
of 1000 K ~Ref. 21!!. Although the statistical mechanics of
long-wavelength acoustic modes is likely to be treated pro
erly in these MD simulations, the high-frequency modes a
almost certainly incorrectly treated and it may be the
temperature-dependent population which leads to the exp
mentally observed invariance of the Young’s modulus ne
300 K.

The cell length information of Fig. 2, with the use of Eqs
~5! and ~6!, produces the Young’s modulus andx and z
Poisson ratios of Figs. 3 and 4. Notice that there is quite
strong variation of modulus with temperature, something th
we require to know for accurate analysis of our direct devic
frequency evaluations.

V. PLATE MODULUS AND ANALYSIS

Systems in the submicrometer regime have large surfa
to-volume ratios. A significant surface contribution to th

FIG. 1. Density versus temperature.

FIG. 2. Computational cell lengths versus temperature. See te
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effective Young’s modulus of the device can be expected
is the actual Young’s modulus of the specific device which
required to predict, via continuum mechanics, the frequen
of oscillation of the flexural plate. To quantify this, we
evaluated the Young’s modulus of flexural plates of varyin
cross-sectional area. We used a constantx:z aspect ratio of
approximately 1:2 and evaluated the Young’s modulus
T510 and 300 K. Specifically, a constant number of sev
y unit cells were employed and we varied the number
x andz cells subject to the constraint that the number ofz
cells was twice that of thex. The cells are defined in Sec. I
above.

For each system size and temperature, the plate
equilibrated over 50 000 time steps fory cell lengths near
Pyy50. A further 50 000 steps were then employed to gath
pressure statistics. A linear fit was then performed on
pressure versus length data to extract@see Eq. ~5!# the
Young’s modulus. Note that in evaluating the pressure,

t.

FIG. 3. Young’s modulus versus temperature. Lines are to gu
the eye.

FIG. 4. Poisson ratios versus temperature. Error bars6 0.02 at
the highest temperature. Lines are to guide the eye.
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56 615DIRECT ATOMISTIC SIMULATION OF QUARTZ . . .
volume used for the virial expression is that of the plate its
which is obtained from~a! the known length of the plate an
~b! the cross-sectional area,A, defined by examining the den
sity profiles in thex andz directions. Linear density profile
show oscillatory behavior in crystals; the outer maximum
each direction is used to define the width of the plate. For
purposes of the present analysis, any ambiguity in the d
nition of the volume of the plate is of little consequence
the analysis which follows. System sizes ranged up
100 800 atoms (2037340 unit cells!.

Figure 5 presents our raw data. Included also are res
for a system with 1% of vacancies. Such vacancies
placed at random throughout the system and comprise
Si and O~in the ratio 1:2 to maintain charge neutrality!. Such
systems are of interest because commercial grade qu
such as that used in many oscillator applications contain
fects ~hydrogen, aluminum, etc.! at similar levels~see Ref.
4!. While we do not currently have useful Si, O, Al, H inte
acting interatomic potentials, wecan ascertain the gross ef
fects of defects at these concentrations by the simple e
dient of using random vacancies.

In order to obtain the asymptotic behavior of modul
with increasing system size, it is necessary to fit this data
an appropriate analytic expression. In developing such,
imagine that the core of the plate has the bulk value~at given
temperature! of the Young’s modulus. We then assume th
the surface skin has a different value for its modulus. W
tried the followingansatzfor the modulus of the bar:

Y5YBS AB

ATot
D1YSS AS

ATot
D , ~7!

where subscriptsB andS refer to bulk and surface, respe
tively. The cross-sectional area associated with the sur
skin, assumes a surface skin depth. Of course, the sum
AB andASmust equalATot . This equation makes no distinc
tion between theyx andyz surfaces; rather, it treats them a
an average. For a given set of data~e.g., the 10 K data of Fig

FIG. 5. Young’s modulus versusx width for three different
plates; 10, 300, and 300 K with 1% vacancies.x:z aspect ratio
constant at 1:2. Continuous lines are from Eq.~8!. Horizontal
dashed lines are bulk limit.
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5!, there is no unique best fit for Eq.~7! if both the skin
depth andYS are allowed to vary as fitting parameters
Rather, one must be fixed. When this is done, the equat
does not fit the data adequately.

The reason, we believe, is that corners~i.e., edges! of the
plate are not properly treated. We therefore modified Eq.~7!
thus

Y5YBS AB

ATot
D1YSS AS

ATot
D1YCS AC

ATot
D , ~8!

where subscriptC refers to the corners. The sum ofAB ,
AS , andAC now equalsATot . Again, for a given data set,
there is no unique best fit if the skin depth,YS andYC are
allowed to vary, but there is a best fit if the skin depth
fixed and the surface and corner moduli are allowed to va
We set the skin depth to a value of 10 Å. This model no
does fit the data satisfactorily, the result being shown as co
tinuous lines in Fig. 5. The horizontal dashed lines represe
the bulk asymptotes~from Sec. IV! to which the moduli must
tend.

Table II gives the values of the fit to Eq.~8!. Note that the
arbitrary, but reasonable, choice of 10 Å for the skin dep
produces surface Young’s moduli slightly in excess of th
bulk values. This should not be taken too literally; this is a fi
to anansatz, albeit one, we feel, which has physical basis
Larger values of the skin depth act to decreaseYS .

The conclusion from this analysis is that for a plate with
typical aspect ratio of 1:14:2, the effective modulus of th
bar will achieve 90% of the bulk value at 5.33104, 95% at

TABLE II. Young’s modulus fit for flexural plate according to
Eq. ~8!. Moduli in units of Mbar.

10 K plate 300 K plate 300 K plate, 1% vacancies

YB 0.460 0.424 0.385
YS 0.463 0.429 0.386
YC 0.223 0.101 0.082

FIG. 6. Oscillation behavior of 10 K perfect plate.~a! Center of
gravity versus time. Horizontal line is center of gravity of ends o
plate.~b! Cosine transform.
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616 56BROUGHTON, MELI, VASHISHTA, AND KALIA
1.83105, and 99% at 1.53106 atoms. These conclusions ar
independent of temperature or of the vacancy concentrati
These self-same atom numbers correspond to device len
of 0.09, 0.13, and 0.26mm, respectively. Thus the
asymptotic approach to bulk elastic behavior is occurring
precisely the size regime to which next generation QCO
aspire. This general observation is unlikely to change w
future improvements in the form of the SiO2 interatomic
potential.

Whether the actual oscillator frequencies converge
macroscopic behavior in the same size regime is the sub
of a subsequent paper. Such calculations require the use
parallel machine, but below we study an 18 000 atom~17.2
nm! plate whose simulation can be performed on a deskt
workstation.

VI. DIRECT SIMULATIONS OF PLATES

The system comprised 5320310 unit cells in thex, y,
andz dimensions. The surfaces, as in the plate elastic co
stant calculations described above, were all oxygen term
nated. We considered both perfect and 1% vacancy Si2
plates. Periodic boundary conditions are applied in all thr
directions, but with a vapor region surrounding the plate
the x and z dimensions. The center of gravity~CG! of the
y endsof the plate are ‘‘constrained’’ in thex andz direc-
tions by adding two harmonic spring terms to the Ham
tonian of the system. Since the unperturbed plate’s cente
gravity is placed at~0,0,0! in our coordinate system, the two
additional terms areK•(CGx)

2 andK•(CGz)
2 whereK is a

judiciously chosen spring constant. The center of grav
used in these expressions pertain to ay width of two unit
cells at the ends of the plate~i.e., one at low values ofy, the
other at high!. The effect of these soft constraints is to mimi
the effect of clamps at either end of the plate. It would b
possible to mimic further the effect of clamps by adding
random and disspiative heatbath to the ends, but this
chose not to do here.

FIG. 7. Oscillation behavior of 300 K perfect plate.~a! Center of
gravity versus time. Horizontal line is center of gravity of ends o
plate.~b! Cosine transform.
n.
ths

n
s
h

n
ct
f a

p

n-
i-

e
n

-
of

y

e

e

After equilibration of each system at 10 and 300 K, such
that the mean value ofPyy is near zero bar, their oscillatory
motion was initiated by deforming~i.e., plucking! them in
thex direction according to the continuum mechanical solu-
tion for a plate with clamped ends~which is distinct from a
plate with freely pivoting ends!. Suchx displacement is of
the form:

x~y!5Q@~sinkLy2sinhkLy!~cosky2coshky!

2~coskLy2coshkLy!~sinky2sinhky!# ~9!

and is applied to all atoms of the equilibrated undeflected
state.Q is an amplitude factor.k is obtained from the roots
of

coskLycoshkLy51, ~10!

the first three of which are 4.7300, 7.8532, and 10.9956. Th
characteristic frequencies are given~in radians/s! by

v5
k2d

~A12!Ly
2
AY

r
. ~11!

The appropriate Young’s modulus to include here, of
course, should be that which pertains to the plate, of give
temperature and cross-sectional area, under consideratio
Typical displacements at the midpoint of the plate are 1 Å
the plate being 172 Å long. This corresponds to less tha
1° of deflection.

Figures 6 and 7 give thex center of gravity versus time
and the associated cosine transform for the perfect plates
10 and 300 K.~The center of gravity is for the entire plate!.
Notice firstly that the 10 K perfect system behaves very har
monically. The cosine transform gives a clean single peak a
3.0531010 Hz. In contrast, the 300 K perfect plate’s CG
behavior is very clearly anharmonic and the Fourier trans
form indicates a principle peak at 2.4431010 Hz with a

f

FIG. 8. Flexural modes of 300 K perfect plate. Data points fit
with a sixth-order polynomial to guide the eye.
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56 617DIRECT ATOMISTIC SIMULATION OF QUARTZ . . .
smaller but still significant one at 4.9531010 Hz. There is
also a feature at 12.4531010 Hz. By dividing the plate into
20 y sections and monitoring the CG of each of these ver
time, it is possible to determine to what modes these frequ
cies relate. Figure 8 shows the modes for the three freq
cies. Note that the 2.44 and 4.9531010 Hz states have a
single maximum in the center of the plate, whereas
12.4531010 has two nodes.The 4.9531010 state is therefore
a second harmonic and the 12.4513010 state represents th
third excited state of the plate. No second excited state
present because it is disallowed by symmetry. Second
monics are only allowed when significant anharmonicity
present.3 The difference in behavior for the two temperatur
is truly dramatic. We strongly suspect that, at the high
temperature, the motion of the surface atoms is highly anh
monic which, such is the large surface to volume ratio
these system sizes, couples significantly to the oscillat
dynamics of the whole plate.

Turning now to the systems with vacancies. Figure
shows, side by side, the dynamics of the 1% vacancy s
tems at both 10 and 300 K. The 10 K system appears v
harmonic, but notice what has happened to the baseline.
amplitude fluctuations should be distributed equally arou
zero; that they are not shows that after the initial displa
ment, a memory of the event is stored in the system. In ot
words, significant plasticity occurs and the plate is perm
nently curved. In contrast, at 300 K, not only is the pla
permanently curved, but also the oscillatory behavior is
tremely anharmonic. The Fourier transforms~not shown! of
these two systems produce a clean single-peak spectrum
a noisy multiple peak spectrum, respectively.

The frequency spectra obtainable via direct simulat
can be compared with those predicted from continuum m
chanics. The comparison is shown in Table III. The Young
modulus quoted is specific to the plate that was simulat
For this system size, the discrepancy between the contin
prediction and the frequency obtained via direct simulat
would have been much larger if thebulk value of the modu-
lus had been employed. As it is, we still see significant d

FIG. 9. Oscillation behavior of 1% vacancy plate.~a! Center of
gravity versus time at 10 K.~b! Center of gravity versus time at 30
K. Horizontal lines are centers of gravity of ends of plate.
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ferences. At 10 K, there is a 10% difference, while at 300
the difference is approximately 30%. The third state which
just determinable at 300 K~see Fig. 7! at 12.4531010 Hz is
to be compared with a prediction of 17.2231010 Hz which
constitutes a 38% difference.

VII. CONCLUSIONS

This paper, together with the PAPS cosubmission,5 has
described an interatomic model suitable for the simulation
bulk crystalline quartz and for the description of quartz cry
tal oscillators. Even though this potential may not duplica
all the details of experimental quartz, there is sufficient ph
ics contained therein that the qualitative details of h
QCO’s behave as a function of system size is likely to
correct. The paper has also described a multiple time s
algorithm suitable for an (N,P,T) ensemble appropriate fo
bulk systems described by three-body potentials.

The principal objective here has been to obtain ela
properties germane to the analysis of theZ-cut oscillator
frequencies directly evaluated in the latter part of the pap
These properties were obtained for bulk systems as we
for plate geometries as a function of plate cross-sectio
area. We predict that asymptotic approach to within 1 ela
value occurs at device sizes just below 1mm. Also, we find
that for oscillators that are approximately 20 Å long, es
mates of oscillator frequency based upon continuum m
chanics, even when elastic constants appropriate for the
cific device size under consideration are used, are in erro
10–30 % depending upon the temperature.

A by-product of this work has been to show that Poiss
ratios in the directions normal to the ‘‘Z cut’’ are not isotro
pic and that thea to b transition is faithfully reproduced
with our interatomic potential albeit at a temperature 270
below experiment.~A brief description of the phase trans
tion is given in the PAPS cosubmission.5!

We have shown that evaluation of device frequency
possible via direct atomistic simulation and that whereas
vice behavior is very harmonic atT510 K, the surface plays
an important role in introducing anharmonicity at 300 K f
20 Å devices. Behavior of 0.1mm devices is presently bein
studied by methods similar to those employed here on pa
lel machines. Such studies will be the subject of a futu
paper. We further showed that effects on device characte
tics can be observed via atomistic simulation when defect
the 1% level are present.
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TABLE III. Comparison of MD frequencies and those predict
by continuum mechanics. Moduli in Mbar. Frequencies in 1010 Hz.

System Y vMD vCM

Perfect plate 10 K 0.388 3.05 3.36
Perfect plate 300 K 0.335 2.44 3.19
Vacancy plate 10 K 0.343 2.82 3.17
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