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Direct atomistic simulation of quartz crystal oscillators: Bulk properties and nanoscale devices
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Current experimental research aims to reduce the size of quartz crystal oscillators into the submicrometer
range. Devices then comprise multimillion atoms and operating frequencies will be in the gigahertz regime.
Such characteristics make direct atomic scale simulation feasible using large scale parallel computing. Here,
we describe molecular-dynamics simulations on bulk and nanoscale device systems focusing on elastic con-
stants and flexural frequencies. Here we fiadin order to achieve elastic constants within 1% of those of the
bulk requires approximately one million atoms; precisely the experimental regime of ini@egifferences
from continuum mechanical frequency predictions are observable for 17 nm de{geaevices with 1%
defects exhibit dramatic anharmonicity. A subsequent paper describes the direct atomistic simulation of oper-
ating characteristics of a micrometer scale device. A PAPS cosubmission gives algorithmic details.
[S0163-182607)02126-1

I. INTRODUCTION It is easy to see that if internal loss mechanisms are kept
to a minimum, such devices could operate as timing devices.
Quartz crystal oscillator€QCO’s) are used in a multitude If the device is put in an accelerating frame, with a reference
of applications-? They are used as timing devices, as accelass at one end, it is also easy to see why they operate as
erometers, as mass balances, and as viscometers. Such gecelerometers. Lastly, since density appears in &j.
vices can be excited in many different ways, but the one t@hanging the mass of the devigga surface adsorptioralso
be considered in this series of papers will be the “flexuralchanges the frequency—hence they can function also as sen-
plate”; that is, one which oscillates by virtue of being sijtive mass balances.
plucked in the direction normal to the longitudinal axis. Con-  There is a technological drive to shrink the size of QCO’s
ceptually they are the simplest of mechanical machines; they the micrometer level. Present technolbgyakes them at
function like a violin string except that instead of catgut, theythe 100um scale, where they operate in the megahertz re-
are made of quartgSiO,). The observed resonant frequen- gime [substitution of appropriate values in Ed) confirms
cies are functions of the length of the device, its crossthis]. But the demand for further sensitivity is driving their
sectional area, and its elastic constamtkich, for an aniso- size down. For example, oil companies would like gravita-
tropic material like a-quartz, vary with orientation The  tional detectors which are sensitive to nano-g's; present
latter, of course, are functions of temperature and degree @CO’s are sensitive to micro-g’s. Such miniaturization is

compression of the device. attendant with design issues: For example, increased sensi-
Simple continuum elasticity thechyells us that the fre- tivity is achieved at the cost of increased noise. At what
quencies {) should scale as point does the statistical mechnical “noise” due to atomis-
tics start to have an effect on device performance and reli-
d N ability? For example, at what point does continuum elasticity
o _z\ﬁ, (1)  theory[inherent in Eq(1)] start to fail(and in what way in
L P determining device characteristics?

When a flexural plate shrinks to the micrometer scale
whereY is the Young's modulus of the material along the (longitudinal axi$ with typical aspect ratios of 10:1, the os-
longitudinal direction.p is the density of the platd, is its  cillation frequency is in the gigahertz regime. The number of
length, andd its thickness. Young’'s modulus gives the rate atoms in such a system is in the tens of millions. Thus sys-
of change with elongation of longitudinal pressure in the rodtem sizes and time scales are appropriate for direct atomistic
when the two other directions are allowed to move freely insimulation on large scale parallel platforms such as those at
the hydrostatic bath. For our purposes, the hydrostatic pre$90D/DoE/NSF centers. Although existing interatomic poten-
sure(P) will be one bar, which is very close to 1 atiiNote  tials for SiO, are imperfect, they nevertheless contain
that we boldface the symbol for pressure, because in generahough of the physics and chemistry of the bonding that a
it will be a tensoy. As regards the precision of molecular direct simulation of a micron-sized device should reveal ge-
dynamics(MD), this pressure is essentially zero. The con-neric behavior which transcends the details of the potential
stant of proportionality in Eq.1) depends upon the boundary and which would apply to a real device.
conditions and eigenstate of the plate, for example, whether These, then, are the reasons for the present study. In this
the ends are clamped or free to pivot. paper, we report results for the temperature-dependent be-
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TABLE |. Elastic constants o&-SiO,. Units of 1(° bars. plate has maximal amplitud@nd in which the plate is thin-
nes}). Thus theyx plane is the(000J), the yz plane is the

Bechmann(Ref. 23 Mason(Ref. 23  Present potential 775" 6y and thexz is the (1,0, 30). Such an orientation

Cyy 8.674 8.605 6.945 allows, in the absence of fluctuations, a rectangular compu-
C1p 0.699 0.505 1.927 tatior_1a| cell. For the purpose qf .the present bulk cglculation_s,
C13 1.191 1.045 2121 we simulated a system comprising 2592 atoms, with peno.dlc
Cia 1791 1.825 0175 boundary conditions, approximately cubic in shape with
Cas 10.720 10.710 7 459 computational cell lengths near 3_O_A. In order to achieve a
Cas 5.794 5.865 3992 rectilinear cell, we double the original nine atom unit cell
Ces 3.988 4.050 2401 and then use 84X 6 of the subsequent unit cells to produce

the 2592 atoms. We expect finite-size effects of the thus-
obtained densities and elastic constants to be small and cer-

. . . tainly within the precision necessary for meaningful com-
havior of the bulk density and elastic constants. The latter arBarison with frequencies obtained via direct simulation.

required to predict device frequencies from continuum elas- For the construction of the plate, we use the same unit cell

e e o o1t 11 11 B, bt wih basis s hifted tch it
9 late surfaces contain oxygens as their outermost atoms;

the SiO, plate (from which we develop a simple model to ; ; _
oredict the asymptotic approach of the madulus to its bullé/uch surfaces have the lowest energy for this potential. Va

value as well as frequencies obtained by direct simulation o or surrounds the flexural plate in theandz directions,
. quenc dby hereas periodic boundary conditions are employed in the
a small device containing approximately 20 000 atoms

: . . direction. (In reality, thex and z are also periodic, there
achievable on a dedicated workstation. We conclude by d being 40 A of vapor surrounding the plate in these dimen-
scribing the effect of vacancies on device performance. siong
of 2 mgf:ggﬁg: ggglir (\jl\giiigzlavié?leﬂlrfezor()ﬂlrzcgasrlgllllgﬁ :)KI):;[- Turning now to the interatomic potential, a wide range of
form, namely the Air-force IBM SP2 at Maui. It will also such have been employed in the literature to describe the

resent details of the domain decomposition for the paralle tructure and phonon frequencies of crystalline silica. Some
P , P P re simple pair potentiafs;!! others are shell modeté,and
implementation.

. . . . ill oth h 14 ial is of the |
In Sec. I, we describe the Silnteratomic potential and still others are three body:™ Our potential is of the latter

th nstruction of the unit cell for both the bulk and devi kind. We chose to use the form due to Nakano, Kalia, and
€ construction of the unit celi for bo € bulk a EVICE, /ashishtad® because it is able to describe many of the prop-
calculations. Section Ill gives a brief account of the multiple

erties of molten, crystalline, and amorphous quartz. Our po-

time step, constant pressure, constant temperature algorithI!E'ntial is identical in form to theirs except that values of a

:Ezt ;\I/geo%(tjr?rat?g ftgr g;e fgldlr:( dSIirr?utlr?etIO;csc.o% Lu;:q;a/i?chou;,;lgfsfew constants are slightly different. These differences were
submissior?. Section IV presents results for the density, tuned so that specifically crystalline properties would be ob-

Young’s modulus, and Poisson ratio as functions of the tem'gained more accurately. The total potential energy is given as
perature for the bulk. Section V reports the Young's modulusthe sum of two-body and three-body terms:
versus the cross-sectional area of the Sflexural plate ob-

tained via simulation. The section continues by fitting these B (2) (3)
to a simple model which allows asymptotic behavior versus V_mzn vm”(rm“)+,v(mz<n) Omin(Fim Fin) 2

cross-sectional area to be predicted. Section VI gives the
frequencies obtained via direct simulation for a 17 nm plate, harer is the distance between atoms. andand n desig-

and compares them with those predicted via continuum Mesate atom indices. The two-body term is written as
chanics(CM). Finally, Sec. VII presents our conclusions.
ot on ”m“+ ZmZne

r

—r/\

2
II. SYSTEM AND INTERATOMIC POTENTIAL UI(’TH)‘I(r):A

The stable low-temperature, low-pressure phase of, SiO
is that of alpha-quartz. It has a hexagonal unit cell compris- Z e "¢ (3)
ing three silicons and six oxygens. Table | of the PAPS 2r
co-submissiongives the internal parameters of the basis ac-
cording to Wycoff® The particular orientation of the system where the three terms represent short-range repulsion, Cou-
in which we are interested is the so-calle@™ cut.” This  lomb interaction due to ionicity, and a charge-induced dipole
way of cutting quartz ensures that the temperature deperiateraction caused by atomic polarizabilities, respectively.
dence of the Young’'s modulusr the linear expansivilyis ~ Note that the Coulomb and polarization terms are damped.
zero near room temperature. Hence operating frequencies afeis the nominal charge on the atowm,is the polarizability,
insensitive to temperature with this cut. In Miller index par- and o is a distance of “closest approach.” The two-body
lance, this means that the faces of the plate will beterm is truncated atr=r. for ease of computation.
(1,2,1,0), (0003, and (1,0, 30). Throughout the rest of this For r<r¢, v is replaced by v@(r)—vX(re)
paper they direction will represent the longitudinal direction —(r—rc)dvﬁﬁ,)/drc, so that the value and its first derivative
of the plate; and the direction will be that in which the are zero at the cutoff. The three-body term is given by

amZﬁ—F anZﬁ1
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motion may be generated from those of the PAPS
submission by letting the mass of the thermostats and cell
degrees of freedom go to infinity.

Mim-Tin

& &
U(rr?l)n(rlm1rln):BmlneXF<r r0+r| S
n

Im™— Mimlin

2
_Cosem'“) Oro=rm®(o=rim), (4 IV. BULK PROPERTIES
where® is a Heaviside function. Notice that only the bond- ~ The quantities of interest are density, Young's modulus,
bending terms of O-Si-O and Si-O-Si triplets are present irRnd Poisson ratios. The latter are defined
the Hamiltonian. Since diffusion is not important in this sys-

tem, other triplets are unlikely to be important. The constants Y=L iyy) (5)
here are chosen to get the atomic positions and the bulk Y\ aLy T’

modulus right afT=0. Table Il of the PAPS cosubmission

reports all the potential constaritdut suffice it here to say Uy=— Uy,

that the only ones differing from Nakanet al® are A

(0.30608 eV, Zg; (0.7872¢€), Zg (—0.3936¢€), and Ogj.o.g; u,=—ouy, (6)
(143.70 degreés Their potential was optimized for amor-
phous silica; the changes here are required for the betté¥here, as we have said, the direction of compression/
description of crystalline quartz. The experimeritycoff)  €longation is along thg axis and thex andz directions are
and relaxedr =0 basis vectors agree very well and are givenallowed tobreathe” in response to the 1 bar external hyro-
in Table | of the PAPS cosubmissiGiT.able | compares two Static pressure. The Poisson ratio measures the degree to
sets of experimental elastic constants with the fully relaxedvhich compression/elongation along one axis affects the
T=0 values due to this potential. The overall bulk moduluslength along another. Since Sj@ not isotropic the Poisson
of 3.736x 10°bar is fit exactly; whereas trends in the indi- ratios,o, ando, in thex andz directions will not be equal.
vidual constantsd; throughcg) are obtained qualitatively U is the relative displacement(/L, etc). The derivatives
correctly. Note that the two experimental values dgs are  inherent in Egs(5) and (6) are evaluated numerically. At
essentially equal but opposite in sign; this difference is stilleach temperature, three simulations were performed corre-
not resolved. For the purposes to which this potential will besponding toPy,= 1 and =3000 bar. In each case, off-
put (namely, studying generic QCO behavijowe deem this diagonal components of the pressure tensor were set to zero,
potential satisfactory. while P,, andP,, were set to unity. A least-squares linear fit
is then performed on these results to obtdino,, ando,.
Each simulation required a 30QBt equilibration followed
by a 6000At statistics phase. Results are not given above
Since we want to obtain the Young’s modulus and densityp80 K because a phase transition occurs to ghehase.
of our SiO, as a function off at a constant pressure of 1 bar, Table Il of the PAPS cosubmission demonstrates this to be
it will be necessary to perform constant constant® simu-  the case.
lations for the bulk. Also, since the range of the two-body Figure 1 shows the dependence of density upon tempera-
and three-body terms are so very differgtite three-body ture. The error bars here are easily within the size of the
terms truncate after nearest neighbpthere will be a tre- symbols. Throughout the entire temperature range the angles
mendous computational speed advantage in using multipleetween the cell vectors remain at 90°.
time step methods. Figure 2 illustrates what happens to the computational cell
Briefly, we use a generalization of thal(P,T) ensemble lengths as a function of temperature and pressiier the
method due to Lill and Broughtdfifor the bulk calculations. sake of clarity of viewing, these distances are not represented
Also, although we use only one Nose-Hoover thermd&tit  as unit-cell lengths; to do so, they, andz lengths of Fig. 2
for the atomic degrees of freedom, we had to use a Noseshould be divided by 6, 4, and 6, respectiyelyhere are
Hoover chain(due to Martyna, Klein, and Tuckerm&hof  three curves for each direction corresponding to applied
length 10 to achieve satisfactory thermostatting of the latticdy, pressures of-3000, 1, and 3000 bars. The positive
degrees of freedom. Finally, we use the multiple time stefP,, pressure gives rise to a smalietength and largex and
method of Tuckerman, Berne, and Martyfidn this there is  z lengths. The slope of each line is positive, in contradistinc-
an innermost loop where rapidly varying degrees of freedontion with what is observed in experiment. The reason why
are updated frequently and an outer loop where the mor®CQO’s are oriented with thg cut is that near room tempera-
slowly varying are evolved in time. The evolution of the cell ture, the thermal linear expansivity goes through an extre-
lengths and angles depend upon the differeriee PR®9; mum which translates into a Young’s modulus which is in-
satisfactory pressure stability is only achieved when the celariant to temperaturé.In other words extremely good
degrees of freedom are placed in the outer loop. The simuhermal stability is achievable under ambient conditions for
lational pressure is calculated via the virial. The accompanythese QCO’s. We note that our system shows no such behav-
ing PAPS submission gives comprehensive details of théor. We have two explanations for this difference; the most
algorithm® obvious is that our interatomic potential, as we have already
For the flexural plate calculations of Secs. V and VI, wenoted, is imperfect. But a more likely explanation is that
use an N,V,E) ensemble. As for the bulk, the multiple time these simulations are purely classical, whereas the phonon
step method of Tuckermaat al?® is used, involving this population at these temperatures is almost certainly deter-
time only the atomic degrees of freedom. These equations aghined by the Planck distributiolA quick look at the high-

Ill. ALGORITHMIC DETAILS
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FIG. 1. Density versus temperature. FIG. 3. Young’'s modulus versus temperature. Lines are to guide

the eye.

frequency cutoff of any experimental quartz phonon spec-
trum indicates that the Debye temperature will be in excesgffective Young’'s modulus of the device can be expected. It
of 1000 K (Ref. 21). Although the statistical mechanics of is the actual Young’s modulus of the specific device which is
long-wavelength acoustic modes is likely to be treated proprequired to predict, via continuum mechanics, the frequency
erly in these MD simulations, the high-frequency modes arexf oscillation of the flexural plate. To quantify this, we
almost certainly incorrectly treated and it may be theirevaluated the Young’'s modulus of flexural plates of varying
temperature-dependent population which leads to the experéross-sectional area. We used a conskantaspect ratio of
mentally observed invariance of the Young’s modulus neaapproximately 1:2 and evaluated the Young’s modulus at
300 K. T=10 and 300 K. Specifically, a constant number of seven

The cell length information of Fig. 2, with the use of Egs. y unit cells were employed and we varied the number of
(5) and (6), produces the Young's modulus andandz  x andz cells subject to the constraint that the numbezof
Poisson ratios of Figs. 3 and 4. Notice that there is quite &ells was twice that of the. The cells are defined in Sec. II
strong variation of modulus with temperature, something thagpove.

we require to know for accurate analysis of our direct device For each system size and temperature, the plate was

frequency evaluations. equilibrated over 50 000 time steps fprcell lengths near
P,,=0. A further 50 000 steps were then employed to gather
V. PLATE MODULUS AND ANALYSIS pressure statistics. A linear fit was then performed on the

ressure versus length data to extrgsee Eq.(5)] the

Systems in the submicrometer regime have large surfac oung’s modulus. Note that in evaluating the pressure, the

to-volume ratios. A significant surface contribution to the
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constant at 1:2. Continuous lines are from E8). Horizontal ~ Plate.(b) Cosine transform.
dashed lines are bulk limit.

5), there is no unique best fit for Eq7) if both the skin
volume used for the virial expression is that of the plate itselfdepth andYs are allowed to vary as fitting parameters.
which is obtained fronta) the known length of the plate and Rather, one must be fixed. When this is done, the equation
(b) the cross-sectional are, defined by examining the den- does not fit the data adequately.
sity profiles in thex andz directions. Linear density profiles ~ The reason, we believe, is that cornérs., edgepof the
show oscillatory behavior in crystals; the outer maximum inPlate are not properly treated. We therefore modified (Ep.
each direction is used to define the width of the plate. For théhus
purposes of the present analysis, any ambiguity in the defi-
nition of the volume of the plate is of little consequence in Y=YB<E +Ys(£
the analysis which follows. System sizes ranged up to Atot Aot

10?:.800 a;oms (2}@t7><40 unltdcetllg.l luded al Itvvhere subscripC refers to the corners. The sum 8§,
igure 5 presents our raw data. Included also are resu <, andAc now equalsAr,. Again, for a given data set,

. 0 . .
for a system with 1% of vacancies. Such vacancies arg ‘i< o unique best fit if the skin depts and Y. are
placed at random throughout the system and comprise bolly e 1o vary, but there is a best fit if the skin depth is

fixed and the surface and corner moduli are allowed to vary.

e set the skin depth to a value of 10 A. This model now

fects (hydrogen, aluminum, etcat similar levels(see Ref edoes fit the dr?lta §atisfactori|y, t'he result being §hown as con-
' ' " tinuous lines in Fig. 5. The horizontal dashed lines represent

4). .Wh'.le we do not curre_ntly have useful Sf" O, Al, H inter- the bulk asymptote§rom Sec. I\j to which the moduli must
acting interatomic potentials, wean ascertain the gross ef- tend

fects of defects at these concentrations by the simple expe-
dient of using random vacancies.

In order to obtain the asymptotic behavior of modulus
with increasing system size, it is necessary to fit this data t
an appropriate analytic expression. In developing such, wi
imagine that the core of the plate has the bulk vdategiven
temperaturgof the Young’'s modulus. We then assume that
the surface skin has a different value for its modulus. W
tried the followingansatzfor the modulus of the bar:

+Ye ®

Ac )
Aot/

such as that used in many oscillator applications contain d

Table Il gives the values of the fit to E(B). Note that the
arbitrary, but reasonable, choice of 10 A for the skin depth
roduces surface Young’s moduli slightly in excess of the
ulk values. This should not be taken too literally; this is a fit
fo an ansatz albeit one, we feel, which has physical basis.
Larger values of the skin depth act to decre¥ge
The conclusion from this analysis is that for a plate with a
etypical aspect ratio of 1:14:2, the effective modulus of the
bar will achieve 90% of the bulk value at %30%, 95% at

As
ATot

i) +Yd , (7) TABLE Il. Young’s modulus fit for flexural plate according to
Aot Eq. (8). Moduli in units of Mbar.

where subscript® andS refer to bulk and surface, respec-
tively. The cross-sectional area associated with the surface

Y:YB

10 K plate 300 K plate 300 K plate, 1% vacancies

skin, assumes a surface skin depth. Of course, the sum of, 0.460 0.424 0.385
Ag andAg must equalAr,. This equation makes no distinc- v 0.463 0.429 0.386
tion between the/x andyz surfaces; rather, it treats them as vy 0.223 0.101 0.082

an average. For a given set of déag., the 10 K data of Fig.
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FIG. 7. Oscillation behavior of 300 K perfect plata) Center of ) | ) .
fW|th a sixth-order polynomial to guide the eye.

gravity versus time. Horizontal line is center of gravity of ends o
plate.(b) Cosine transform.
After equilibration of each system at 10 and 300 K, such

that the mean value d?,, is near zero bar, their oscillatory
otion was initiated by deforming.e., plucking them in

e x direction according to the continuum mechanical solu-
ion for a plate with clamped endgvhich is distinct from a
late with freely pivoting ends Suchx displacement is of
he form:

1.8x 10, and 99% at 1.5 1P atoms. These conclusions are
independent of temperature or of the vacancy concentratiof,
These self-same atom numbers correspond to device lengt
of 0.09, 0.13, and 0.26um, respectively. Thus the
asymptotic approach to bulk elastic behavior is occurring i
precisely the size regime to which next generation QCO’s
aspire. This general observation is unlikely to change with
future improvements in the form of the SjOnteratomic x(y)=Q[(sinkL,—sinhxL,)(coscy — coshey)
potential.

Whether the actual oscillator frequencies converge on
macroscopic behavior in the same size regime is the subject | . . .
of a subsequent paper. Such calculations require the use offRd is applied to all atoms of the equilibrated undeflected
parallel machine, but below we study an 18 000 atdm?2 state.Q is an amplitude factor« is obtained from the roots
nm) plate whose simulation can be performed on a desktoﬁf
workstation.

—(coscLy—coshL)(sinky—sinhky)]  (9)

coscLcoshel =1, (10

VI. DIRECT SIMULATIONS OF PLATES the first three of which are 4.7300, 7.8532, and 10.9956. The

The system comprised>520x 10 unit cells in thex, y, characteristic frequencies are givén radians/s by

and z dimensions. The surfaces, as in the plate elastic con-

stant calculations described above, were all oxygen termi- P \/V
nated. We considered both perfect and 1% vacancy, SiO W= —=——"\/ "
plates. Periodic boundary conditions are applied in all three (\/IZ)Ly p
directions, but with a vapor region surrounding the plate in

the x and z dimensions. The center of gravit€G) of the The appropriate Young’s modulus to include here, of
y endsof the plate are “constrained” in thg andz direc-  course, should be that which pertains to the plate, of given
tions by adding two harmonic spring terms to the Hamil-temperature and cross-sectional area, under consideration.
tonian of the system. Since the unperturbed plate’s center dfypical displacements at the midpoint of the plate are 1 A,
gravity is placed af0,0,0 in our coordinate system, the two the plate being 172 A long. This corresponds to less than
additional terms ar& - (CG,)2 andK - (CG,)? whereK isa 1’ of deflection.

judiciously chosen spring constant. The center of gravity Figures 6 and 7 give thr center of gravity versus time
used in these expressions pertain ty avidth of two unit  and the associated cosine transform for the perfect plates at
cells at the ends of the platee., one at low values of, the 10 and 300 K(The center of gravity is for the entire plate
other at high. The effect of these soft constraints is to mimic Notice firstly that the 10 K perfect system behaves very har-
the effect of clamps at either end of the plate. It would bemonically. The cosine transform gives a clean single peak at
possible to mimic further the effect of clamps by adding a3.05x 10'° Hz. In contrast, the 300 K perfect plate’'s CG
random and disspiative heatbath to the ends, but this wbkehavior is very clearly anharmonic and the Fourier trans-
chose not to do here. form indicates a principle peak at 2440'° Hz with a

(11)
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06 I 08 et TABLE Ill. Comparison of MD frequencies and those predicted
’ by continuum mechanics. Moduli in Mbar. Frequencies if°1z.
04 & 0s | System Y b wem
. = Perfect plate 10 K 0.388 3.05 3.36
i > Perfect plate 300 K 0.335 2.44 3.19
302 3% Vacancy plate 10 K 0.343 2.82 3.17
G 5]
3 ks
£00 go2 ferences. At 10 K, there is a 10% difference, while at 300 K
o © the difference is approximately 30%. The third state which is
oz oo just determinable at 300 Ksee Fig. 7 at 12.45<10'° Hz is

to be compared with a prediction of 17:220'° Hz which
constitutes a 38% difference.

04 N 02 N
0.0 100.0 200.0 300.0400.0 500.0 0.0 200.0 400.0600.0800.01000.0
Time (10 secs) B Time (10™ secs) VII. CONCLUSIONS

This paper, together with the PAPS cosubmisSidras
FIG. 9. Oscillation behavior of 1% vacancy plata) Center of  described an interatomic model suitable for the simulation of
gravity versus time at 10 Kb) Center of gravity versus time at 300 bulk crystalline quartz and for the description of quartz crys-
K. Horizontal lines are centers of gravity of ends of plate. tal oscillators. Even though this potential may not duplicate
all the details of experimental quartz, there is sufficient phys-
smaller but still significant one at 4.9510'° Hz. There is ics contained therein that the qualitative details of how
also a feature at 12.4510'° Hz. By dividing the plate into QCO’s behave as a function of system size is likely to be
20y sections and monitoring the CG of each of these versusorrect. The paper has also described a multiple time step
time, it is possible to determine to what modes these frequeralgorithm suitable for anN,P,T) ensemble appropriate for
cies relate. Figure 8 shows the modes for the three freqemulk systems described by three-body potentials.
cies. Note that the 2.44 and 4:930'° Hz states have a The principal objective here has been to obtain elastic
single maximum in the center of the plate, whereas theroperties germane to the analysis of thecut oscillator
12.45< 10'° has two nodes.The 4.9510'° state is therefore frequencies directly evaluated in the latter part of the paper.
a second harmonic and the 12.450'° state represents the These properties were obtained for bulk systems as well as
third excited state of the plate. No second excited state ifor plate geometries as a function of plate cross-sectional
present because it is disallowed by symmetry. Second hasrea. We predict that asymptotic approach to within 1 elastic
monics are only allowed when significant anharmonicity isvalue occurs at device sizes just belovuin. Also, we find
present The difference in behavior for the two temperaturesthat for oscillators that are approximately 20 A long, esti-
is truly dramatic. We strongly suspect that, at the highemates of oscillator frequency based upon continuum me-
temperature, the motion of the surface atoms is highly anharhanics, even when elastic constants appropriate for the spe-
monic which, such is the large surface to volume ratio forcific device size under consideration are used, are in error by
these system sizes, couples significantly to the oscillatorft0—30 % depending upon the temperature.
dynamics of the whole plate. A by-product of this work has been to show that Poisson
Turning now to the systems with vacancies. Figure 9ratios in the directions normal to the “Z cut” are not isotro-
shows, side by side, the dynamics of the 1% vacancy sysic and that theax to B transition is faithfully reproduced
tems at both 10 and 300 K. The 10 K system appears verwith our interatomic potential albeit at a temperature 270 K
harmonic, but notice what has happened to the baseline. Thelow experiment(A brief description of the phase transi-
amplitude fluctuations should be distributed equally aroundion is given in the PAPS cosubmission.
zero; that they are not shows that after the initial displace- We have shown that evaluation of device frequency is
ment, a memory of the event is stored in the system. In othgpossible via direct atomistic simulation and that whereas de-
words, significant plasticity occurs and the plate is permavice behavior is very harmonic at= 10 K, the surface plays
nently curved. In contrast, at 300 K, not only is the platean important role in introducing anharmonicity at 300 K for
permanently curved, but also the oscillatory behavior is ex20 A devices. Behavior of 0.4m devices is presently being
tremely anharmonic. The Fourier transforimet shown of  studied by methods similar to those employed here on paral-
these two systems produce a clean single-peak spectrum alel machines. Such studies will be the subject of a future
a noisy multiple peak spectrum, respectively. paper. We further showed that effects on device characteris-
The frequency spectra obtainable via direct simulatiortics can be observed via atomistic simulation when defects at
can be compared with those predicted from continuum methe 1% level are present.
chanics. The comparison is shown in Table IIl. The Young's
modulus quoted is specific to the plate that was simulated.
For this system size, the discrepancy between the continuum
prediction and the frequency obtained via direct simulation J.Q.B. wishes to thank ONR for partial support of this
would have been much larger if thilk value of the modu- work and C.A.M. wishes to acknowledge the National Re-
lus had been employed. As it is, we still see significant dif-search Council for financial support.
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