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Angular dependence of giant magnetoresistance in magnetic multilayers

J. Barnas´*
Laboratorium voor Vaste-Stoffysika en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, 3001 Leuven, Be
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Dependence of the current-in-plane giant magnetoresistance~GMR! in magnetic multilayers on the anglef
between the magnetizations of successive magnetic films is analyzed theoretically in the quasiclassical and
quantum limits. Spin dependent electron scattering on impurities as well as on interfacial roughness is taken
into account. In the quasiclassical limit GMR is shown to vary approximately linearly with sin2(f/2). In the
quantum limit the linear behavior occurs only for symmetrical structures with a crystal electronic potential
independent of the electron spin orientation. Deviations from the linear behavior occur when either the crystal
potential is spin dependent or the structure is asymmetrical.@S0163-1829~97!08534-2#
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I. INTRODUCTION

In most theoretical descriptions of the giant magnetore
tance~GMR! in magnetic multilayers, only parallel and an
tiparallel orientations of the magnetizations of success
magnetic films were considered.1–8 Only a few papers have
addressed the question of variation of the effect with
anglef between the magnetizations.9,10 This angular depen
dence, however, is very interesting for several reasons
pointed out in Ref. 10, it can give some information on t
relative contributions of different kinds of electrons to t
electrical conductivity, and particularly to GMR. It can als
give an information on the spin dependence of electron
tentials.

The problem of angular dependence was first discusse
Ref. 9 for an infinite superlattice with a uniform periodic pa
of the electron potential~potential in a defect-free system
called here also crystal potential!, where a linear variation o
GMR with sin2(f/2) was found. The problem was examine
later in more details by Vedyayevet al.,10 who calculated the
angular dependence of GMR in a system composed of
magnetic films in direct contact~no nonmagnetic spacer i
between!. For the crystal potential independent of the ele
tron spin ~no potential steps at the interface! the authors
found the linear variation of GMR with sin2(f/2). If, how-
ever, some potential bariers occurred at the interfaces~due to
the spin dependent crystal potential in their case!, significant
deviations from the linear behavior were found.

The angular dependence of GMR was also investiga
experimentally for both current-in-plane11–13 ~CIP! and
current-perpendicular-to-plane14 ~CPP! geometries. In the
former case almost a linear dependence of the effect
sin2(f/2) was found. In the CPP case, however, remarka
deviations from this linear behavior were observed in so
systems.14

In this paper we consider angular variation of CIP GM
in two opposite limits, i.e., in the quasiclassical limit and
560163-1829/97/56~10!/6079~7!/$10.00
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the limit of strong quantum interference of electron wav
reflected from interfaces and/or outer surfaces~quantum
limit !.

Within the quasiclassical approach the angular variat
of GMR was introduced approximately in Ref. 15via an
angular dependence of transmission coefficients. This sim
fied description gives correct amplitude of the effect. In t
limit of small values of GMR, it also gives reasonable resu
for the angular dependence. However, exact variation of
effect with the anglef, particularly for larger values of
GMR, requires a more accurate analysis. The quasiclas
approach developed here is based on the Boltzmann kin
equation, with nondiagonal components of the electron d
tribution function taken into account.

The method used in the quantum limit is a generalizat
of the formalism developed earlier for collinear configur
tions of the film magnetizations.16 This formalism is adapted
here to the case where the magnetizations are not collin
but still in the film plane.

We show in this paper that in the quasiclassical lim
GMR varies approximately linearly with sin2(f/2). Devia-
tions from this behavior occur in the limit of quantum tran
port, where interference of electron waves reflected from
terfaces and/or surfaces leads to formation of sharp quan
energy levels. But even then the linear dependence occur
symmetrical structures with a crystal potential independ
of the spin orientation. Consider first the quasiclassical lim

II. QUASICLASSICAL LIMIT

We will consider a trilayer in which two ferromagneti
films ~corresponding to the layer indexa51 anda52! of
thicknessesd1 andd2 are separated by a nonmagnetic lay
of thicknessd0 (a50). However, by imposing perfectly re
flecting boundary conditions at the external surfaces~as will
be discussed later!, one can obtain results which correspo
to a superlattice with doubled thickness of the magne
films.15
6079 © 1997 The American Physical Society
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Electronic structure of the system will be considered
the free-electron approximation for conducting electro
Consider first the case where the crystal potential is unifo
across the structure. Consequently, the conduction elect
do not feel potential barriers at the interfaces and are enti
transmitted when the interfaces are perfectly flat. This i
large simplification as in real structures there is always so
misfit of electronic bands at interfaces. However, this
proximation is reasonable fors electrons. A general case
where electrons are subject to a spin dependent superla
potential, will be discussed later.

Conduction electrons at the Fermi levelEF are scattered
by impurities distributed inside the films and by rough inte
faces and surfaces. Electron scattering by impurities is ta
into account by appropriate relaxation times, which in t
magnetic films (a51,2) areta↑ for spin-majority electrons
~electrons with spin parallel to the spin of electrons resp
sible for the magnetic moment! and ta↓ for spin-minority
electrons, while in the spacer layer it is independent of
electron spin orientation,t0↑5t0↓5t0 . In the following we
will use the electron mean free paths~MFP’s! la↑(↓) andl0
instead of the corresponding relaxation timesta↑(↓) andt0 .
To include diffuse scattering due to interface and surf
roughness, we assume the same model as in Ref. 15. W
this approach the electron scattering due to roughnes
taken into account by spin dependent coefficients of spec
transmission through the interfaces and specular reflec
from the surfaces.

The electron distribution function, and finally electron
conductivity, can be calculated by solving the correspond
Boltzmann kinetic equation together with the appropri
boundary conditions at all interfaces and surfaces. In a b
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ferromagnet, and in a coordinate system with the quant
tion axis collinear with the magnetization direction, the ele
tron distribution is described by two diagonal componen
f ↑(y,v) and f ↓(y,v), respectively for spin-majority and spin
minority electrons. Here,v is the electron velocity and the
axis y is normal to the films. In magnetic multilayers wit
noncollinear magnetizations of successive films, electron
change between the magnetic films leads to nondiago
componentsf ↑↓(y,v) and f ↓↑(y,v) of the distribution func-
tion, even in a coordinate system with the local quantizat
axis ~by local quantization axis we mean the axis opposite
the local magnetization direction!.

Assume now a quantization axis which is at an angleu
with respect to the local one, but still in the film plane. T
distribution functionf(y,v) has then two diagonal compo
nents, f 1(y,v) and f 2(y,v), and two nondiagonal ones
f 12(y,v) and f 21(y,v). We use here the notation accordin
to which the spin projection on the local quantization axis
denoted as↑ and↓, respectively for spin-majority and spin
minority electrons, while projection on a nonlocal or glob
quantization axis is denoted by1 and 2. The distribution
function can be decomposed in two parts,f(y,v)5f0(v)
1g(y,v), whereg(y,v) is a deviation from the equilibrium
distributionf0(v). The Boltzman kinetic equation for the dis
tribution functiong(y,v) can be now written in the form

]g~y,v!

]y
1

1

vy
t21g~y,v!5

eE

mvy

] f 0

]vx
1, ~1!

whereE is the electric field applied along the in-plane ax
x. e and m denote the electron charge (e.0) and electron
mass,1 is a 232 unit matrix, and
t215S ~1/t↑!cos2~u/2!1~1/t↓!sin2~u/2!

~1/t↑21/t↓!sin~u/2!cos~u/2!

~1/t↑21/t↓!sin~u/2!cos~u/2!

~1/t↑!sin2~u/2!1~1/t↓!cos2~u/2! D . ~2!
in

ely

is-
nd
Equations~1! and ~2! apply to each layer. Note thatt21 is
diagonal for nonmagnetic film. When writing Eq.~1! it was
assumed thatf0(v)' f 0(v)1. Following the standard proce
dure, Eq.~1! will be solved in each film separately, and th
solutions will be matched with the assistance of some bou
ary conditions. Since it is more convenient to deal with E
~1! ~and also with the appropriate boundary conditions! in
the local coordinate systems, we introduce, as in Ref. 1
fictitious plane inside the internal layer, say aty5y0 , and
will use for y,y0 the local quantization axis of the left mag
netic film, while fory.y0 the local quantization axis of th
right magnetic film.

In the local coordinate systems general solutions for
four components of the distribution function can be fou
very easily from Eq.~1!. The appropriate constants, whic
occur in those solutions, can be then determined from bou
ary conditions at the interfaces and surfaces. In a local c
dinate system the boundary conditions for transmiss
across thebth (b51,2) interface between the ferromagne
and nonmagnetic films are
d-
.

a

e

d-
r-
n

g6~y5yb60!5Tbg6~y5yb70!, ~3!

where 1 and 2 at the distribution functiong correspond
respectively tovy.0 andvy,0. For clarity of notation, the
argumentv of the distribution function has been omitted
the above formulas. Apart from this,y5yb20 and y5yb
10 mean that the distribution function is taken respectiv
on the left and right sides of thebth interface~y15d1 and
y25d11d0!. In Eq. ~3! Tb is defined as

Tb5S Tb↑ 0

0 Tb↓
D , ~4!

with Tb↑ andTb↓ being the coefficients of specular transm
sion across the interface, respectively, for spin-majority a
spin-minority electrons.

At the left (yl50) and right (yr5d11d01d2) outer sur-
faces we use the Fuchs-type boundary conditions,

g1~y5yl !5Plg
2~y5yl !, ~5!
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56 6081ANGULAR DEPENDENCE OF GIANT . . .
g2~y5yr !5Prg
1~y5yr !, ~6!

where

Pl ~r !5S pl ~r !↑ 0

0 pl ~r !↓
D , ~7!

with pl (r )↑ andpl (r )↓ being the corresponding coefficients
specular reflection, respectively for spin-majority and sp
minority electrons.

At the fictitious plane aty5y0 within the nonmagnetic
film, the boundary conditions are

g6~y5y010!5R21~f!g6~y5y020!R~f!. ~8!

Since the distribution functions on the right and left sides
the fictitious plane are written in different local coordina
systems, we matched them after rotating the spin quan
tion axis on one side by the anglef between the magnetiza
tions. This rotation is described by the matrix

R~f!5S cos~f/2!

sin~f/2!

2sin~f/2!

cos~f/2! D . ~9!

Equation~8! does not depend explicitly ony0 . For calcula-
tions one can simply assumey0 at one of the interfaces.

In the following we will consider two cases:~i! when
the GMR effect is of bulk origin, and~ii ! when it is due to
interfacial scattering. In the former case we assume so
spin asymmetry in the relaxation times~or equivalently in
MFP’s! in the magnetic films, while transmission coef
cients across the interfaces are assumed to be independ
the electron spin. In the latter case, on the other hand, MF
are independent of the spin orientation, whileTb↑ÞTb↓ . To
simulate a superlattice we assume in both cases perfe
reflecting boundary conditions at the external surfac
pl (r )↑(↓)51.

Numerical results for the magnetoresistance normalize
its maximum value, GMR~f!/GMR(f5p), are shown in
Figs. 1 and 2, respectively for the case~i! and case~ii !, as
described above. Different curves in Fig. 1 correspond
different values of the electron MFPl0 in the nonmagnetic
spacer. For all curves, however,la1 /la255 and
2l0 /(la11la2)51 was assumed for botha51 and a
52. GMR varies almost linearly with sin2(f/2) and only a
small difference between the curves corresponding tol0
5100 Å ~solid line! and l051000 Å ~dashed line! can be
noticed. One has, however, bear in mind the fact that
large MFP’s the quasiclassical description ceases to be v

In Fig. 2 the magnetoresistance is of interfacial origin.
in Fig. 1, different curves correspond to different values
l0 . However,la15la25l0 for a51,2 andTb↑ /Tb↓52
for b51,2 was now assumed for all curves. Again, GM
varies linearly with sin2(f/2), although now the difference
between the curves forl05100 Å andl051000 Å is more
remarkable than in Fig. 1. Thus, independently of the orig
GMR varies almost linearly with sin2(f/2) for a uniform
electronic potential.

The question arises now, whether a similar behavior a
takes place in the case of a spin dependent superlattice
tential. To check this point the method described above
been extended to the model of Hoodet al.17 which takes into
account electron-band misfit at the interfaces. Assume
-
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the electron potential in the magnetic films (a51,2) is equal
to Ua↑ for spin-majority electrons andUa↓ for spin-minority
ones, while in the nonmagnetic spacer it is equal toU0 for
both spin orientations. The corresponding results are sh
in Fig. 3 for three different values of the potential barriers

FIG. 1. Angular dependence of GMR for a superlattice with
uniform electronic potential across the structure. Different cur
correspond to different values ofl0 ; l05100 Å ~solid line!, l0

5300 Å ~dotted line!, andl051000 Å ~dashed line!. In each case,
however,l1↓ /l1↑5l2↓ /l2↑55 and (l1↑1l1↓)/25(l2↑1l2↓)/2
5l0 was assumed. The other parameters areEF54 eV, T1↑5T1↓
5T2↑5T2↓51 ~no roughness!, d0520 Å, while the magnetic films
are 100 Å thick.

FIG. 2. Angular dependence of GMR for a superlattice with
uniform electronic potential forl05100 Å ~solid line!, l0

5300 Å ~dotted line!, andl051000 Å ~dashed line!. In each case,
however,l1↑5l1↓5l2↑5l2↓5l0 was assumed. The other param
eters areEF54 eV, T1↑5T2↑50.5,T1↓5T2↓51, d0520 Å, while
the magnetic films are 100 Å thick.
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the interfaces. The interfaces were assumed there perf
flat and the GMR effect was due to spin dependent impu
scattering. It is evident that large spin dependent poten
barriers produce only weak deviations from the perfectly l
ear dependence. The same dependence occurs als
trilayer structures with arbitrary rate of specular electron
flection at the outer surfaces. Thus, the almost linear beh
ior seems to be a general feature of the quasiclassical li

III. QUANTUM LIMIT

Let us analyze now how the quantum effects modify
angular dependence. To do this we consider the same tril
structure as in the preceding section and assume tha
outer surfaces are perfectly flat. The corresponding sin
electron HamiltonianH is of the form

H52
\2

2m
¹21U~y,s!1V~r ,s!. ~10!

The first term is the usual kinetic term, which is diagonal
the spin space. The second term,U(y,s), is the periodic part
of the electronic potential~crystal potential!. The last term in
Eq. ~10! is the scattering potential of impurities and interfa
roughness, which is assumed in the form

V~r ,s!5(
ia

va~s!d~r2r ia!2~21!b

3(
b

hb~R!Vb
eff~s!d„y2yb

c ~R!…. ~11!

In the first term on the right side of Eq.~11! va(s) denotes
the spin dependent scattering potential of an impurity loca
inside theath layer and the indexi runs over all impurities

FIG. 3. Angular dependence of GMR for a superlattice with
spin dependent electronic potential in the magnetic films;U1↑
5U2↑50, U1↓5U2↓51 eV ~solid line!, U1↑5U2↑51 eV, U1↓
5U2↓52 eV ~dotted line!, and U1↑5U2↑51 eV, U1↓5U2↓
53 eV ~dashed line!. The other parameters areU050, EF54 eV,
(l1↑1l1↓)/25(l2↑1l2↓)/25l05300 Å, l1↓ /l1↑5l2↓ /l2↑55,
d0520 Å, while the magnetic films are 100 Å thick. The interfac
are assumed perfectly flat.
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distributed inside this film. The impurity potentialva(s) is
assumed to be diagonal in the spin space when the quan
tion axis is colinear with the local magnetization direction
the magnetic films, with respectivelyva1 for the majority
electrons andva2 for the minority electrons. The scatterin
potential of impurities in the spacer layer is assumed in
pendent of the electron spin,v015v02[v0 . In the second
term of Eq.~11! hb(R) describes deviation of thebth inter-
face from the perfectly flat planey5yb , with R denoting the
in-plane position vector. By definition,̂hb&50 and hb

5^hb
2&1/2 is the rms roughness amplitude. For simplicity, t

same exponential form of the correlation functionG(R/j)
will be assumed for both interfaces. The correlation len
jb can generally be different for both interfaces. Apart fro
this, Vb

eff5Vb
(1)(s)1Vb

(2)(s), where Vb
(1)(s)5Ub(s)

2U0(s) is the spin dependent potential step at thebth in-
terface andVb

(2)(s) is a scattering potential which effec
tively takes into accounts-d scattering induced by the inter
face roughness.16 Both componentsVb

(1)(s) andVb
(2)(s) are

diagonal in the local coordinate systems. Finally,yb
c (R)

5yb1(1/2)hb(R) is the position center of the interfacia
scattering potential.

To find the electronic conductivity within the formalism
described in Ref. 16, we have to calculate first electro
states~miniband edges! for an arbitrary angle between th
magnetizations. This can be done in a similar way as in R
18, where the electronic states for perpendicular orienta
of the film magnetizations where calculated. It is conveni
to use the local coordinate systems. The corresponding s
tering potentials are then diagonal in the spin space.
appropriate Schro¨dinger equation was solved first in eac
layer separately and the relevant constants were determ
from the normalization condition and the standard bound
conditions of continuity of the wave function and its fir
derivative across the interfaces. For simplicity, we assu
infinite potential walls at the external surfaces. The eig
states have the general form

Cmk~r !5S cm1~y!

cm2~y! Dexp~ ik•R!, ~12!

wherem is the miniband index andk is the in-plane wave
vector. The corresponding eigenenergy isemk5em
1\2k2/2m.

In the Born approximation the transition probabili
Pmm8(k,k8) is given by

Pmm8~k,k8!5
2p

\
u^CmkuV~r ,s!uCm8k8&u

2. ~13!

On calculating the above transition probabilities and follo
ing Refs. 16 and 19 one arrives at the following express
for the electronic conductivity:

gi5
e2\3

2m2L (
m51

N

(
m851

N

Qm
2 Qm8

2
@C21~EF!#mm8 , ~14!

where N is the number of occupied minibands,Qm is the
in-plane Fermi wave vector corresponding to themth mini-
band, and the matrixC(EF) is given by the formula
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@C~EF!#mm85dmm8Qm
2 (

n51

N F2p (
a51

3

na
impDa

mn

1 (
b51

2

Lb
mn~hbjb!2E

0

2p

du F~jbQmn!G
2QmQm8 (

b51

2

Lb
mm8~hbjb!2

3E
0

2p

du cosuF~jbQmm8!. ~15!

The factorsDa
mn are defined as

Da
mn5E

~da!
dy@va1cm1

~a! ~y!cn1
~a!~y!1va2cm2

~a! ~y!cn2
~a!~y!#2,

~16!

where the integration is overy ranging theath layer and
cm6

(a) (y) are the spinor components in the local coordin
systems. The other two terms in Eq.~15! result from scatter-

ing on both interfaces, withLb
mm8 defined as

Lb
mm85 (

j 51,2
FVb1

~ j ! S cm1
~b! ~yb!cm81

~b!
~yb!

1
hb

2

4
cm18~b!~yb!cm81

8~b!
~yb! D

1Vb2
~ j ! S cm2

~b! ~yb!cm82
~b!

~yb!

1
hb

2

4
cm28~b!~yb!cm82

8~b!
~yb! D G2

~17!

for b51,2. It is assumed here that the potentialsV(1)(s) and
V(2)(s) scatter incoherently. Finally,F(jQmm8) in Eq. ~15!
is the Fourier transform of the correlation functionG(R/j),
with Qmm85(Qm

2 1Qm8
2

22QmQm8cosu)1/2.
Since the role of bulk scattering was considered in R

10, we will restrict the following numerical calculation
mainly to systems where the interfacial scattering is do
nant. When considering the problem numerically, one ha
take into account variation of the Fermi level with the ang
between the magnetizations. This variation takes place o
for spin dependent crystal electron potential. The Fermi le
should be then adjusted to keep the areal electron den
constant. However, the difference between the case with
stant particle number and constant chemical potentialm is
rather small, so in the following numerical calculations w
will assume constantm.

Consider first a symmetrical structure and let us be
with the situation when the electronic potential in the ma
netic films is independent on the spin orientation. Assu
for simplicity a quantum well in the spacer layer, which
independent of the spin orientation, i.e.,U115U125U21

5U22[U.U050. The geometrical roughness can gen
ate then GMR only via the componentV(2)(s), provided it
e

f.

i-
to

ly
el
ity
n-

n
-
e

-

is spin dependent. When the potential is uniform across
total system (U50), then—as shown by Zhanget al.9 in the
limit of infinite superlattice—MR varies linearly with
sin2(f/2). This is also the case in the trilayer structure co
sidered here, as shown in Fig. 4 by the dotted line. ForU
.0 there is still almost a linear dependence of the effect
sin2(f/2), as shown in Fig. 4 by the solid line. Thus, th
electron potential which is independent of the electron s
orientation leads to approximately linear dependence of
on sin2(f/2) in symmetrical trilayers. It is noteworthy that i
that case the electronic levels are independent of the a
between the magnetizations.

Consider now the case when the electronic potential in
magnetic films is spin dependent. This, consequently, le
to spin dependent potential steps at the interfaces. N
GMR can be generated by the interfacial roughness not o
via the potentialV(2)(s), but also viaV(1)(s). The corre-
sponding results are shown by the dashed line in Fig
There is a large deviation from the linear dependence
sin2(f/2). Thus, spin dependent potential barriers at the
terfaces generate deviations from the linear behavior,
shown first by Vedyayevet al.10 and more recently by Wang
et al.20 Note that now the energy levels depend on the an
between the magnetizations.

When the structure is asymmetrical then deviations fr
the linear dependence can occur also for a uniform elec
potential. Two such situations are shown in Fig. 5. T
dashed line corresponds to the case where the scattering
tentials are symmetrical but the magnetic films differ
thicknesses. The solid line, on the other hand, correspond
the case where the thicknesses are the same, but the sc
ing potentials at the two interfaces are asymmetrical. In b
cases there are remarkable deviations from the linear va
tion.

For the curves shown in Fig. 4 the maximum value
GMR corresponds tof5p. However, this is not a genera

FIG. 4. Angular dependence of GMR generated by interfac
scattering in a symmetrical trilayer withd15d2520 Å, d059 Å,
h15h252 Å, j15j252 Å, and m53.04 eV. The other param
eters areU115U215U125U225U050, V11

(2) 5V21
(2) 50.5 eV,

V12
(2) 5V22

(2) 51 eV ~dotted line!; U115U215U125U2250.5 eV,
U050, V11

(2) 5V21
(2) 50.5 eV, V12

(2) 5V22
(2) 51 eV ~solid line!; U11

5U2150.5 eV, U125U2250.9 eV, U050, V11
(2) 5V21

(2) 5V12
(2)

5V22
(2) 50 ~dashed line!.
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rule as shown already by Vedyayevet al.,10 and what is also
visible in Fig. 5~dashed curve!. Here, we point out an inter
esting situation, when the scattering potentials of both in
faces have the same sign of the spin asymmetry, but d
significantly in the magnitude of this asymmetry—it is lar
at one interface and significantly smaller at the second in
face. The corresponding results are shown in Fig. 6, wh
GMR is normalized to its value atf5p. The maximum
occurs now atfÞp and there is a large decrease of GM
when antiferromagnetic alignment is approached. In the
romagnetic configuration the electrons in one of the two s
channels are weakly scattered, which leads to a large
ductivity. In the antiparallel configuration there is also o
spin channel where the electrons are scattered rather we
although stronger than in the ferromagnetic configurati
For oblique alignment, on the other hand, all electrons
subject to the large scattering potential at one of the in
faces, which results in a large decrease of the conductiv

FIG. 5. Angular dependence of GMR generated by interfa
scattering in a trilayer forh15h252 Å, j15j252 Å, m53 eV,
and U115U215U125U225U050. The other parameters ar
V11

(2) 5V21
(2) 50.5 eV, V12

(2) 5V22
(2) 50.9 eV, d1520 Å, d2515 Å,

and d059 Å ~dashed line!; V11
(2) 50.5 eV, V21

(2) 50.2 eV, V12
(2)

50.6 eV, V22
(2) 50.9 eV, d15d2520 Å, andd059 Å ~solid line!.
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IV. SUMMARY

We have calculated the angular variation of the gia
magnetoresistance in magnetic layered structures in the
siclassical and quantum limits. In a general case, the qu
classical transport leads to a linear dependence of GMR
sin2(f/2).21 The situation is qualitatively different in the
quantum limit. In that case the linear behavior occurs on
for symmetrical structures with the crystal potential indepe
dent of the spin orientation. Significant deviations from t
linear dependence of the effect on sin2(f/2) were found ei-
ther in asymmetrical structures or for spin dependent el
tron potential.
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