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Angular dependence of giant magnetoresistance in magnetic multilayers

J. Barna$
Laboratorium voor Vaste-Stoffysika en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium
and UniteMixte de Physique CNRS homson, 91404 Orsay, France

O. Baksalary
Adam Mickiewicz University, Institute of Physics, ul Matejki 48/49, 60-769 PoZPaland

A. Fert
Unite Mixte de Physique CNRShomson, 91404 Orsay, France
(Received 1 July 1996; revised manuscript received 29 April 1997

Dependence of the current-in-plane giant magnetoresist@M&) in magnetic multilayers on the angie
between the magnetizations of successive magnetic films is analyzed theoretically in the quasiclassical and
guantum limits. Spin dependent electron scattering on impurities as well as on interfacial roughness is taken
into account. In the quasiclassical limit GMR is shown to vary approximately linearly witi/#®). In the
quantum limit the linear behavior occurs only for symmetrical structures with a crystal electronic potential
independent of the electron spin orientation. Deviations from the linear behavior occur when either the crystal
potential is spin dependent or the structure is asymmetfigall63-18207)08534-2

[. INTRODUCTION the limit of strong quantum interference of electron waves
reflected from interfaces and/or outer surfadgsiantum
In most theoretical descriptions of the giant magnetoresislimit). . . o
tance(GMR) in magnetic multilayers, only parallel and an- ~ Within the quasiclassical approach the angular variation
tiparallel orientations of the magnetizations of successiv®f GMR was introduced approximately in Ref. 14a an
magnetic f||mS were Considerédg_ On'y a feW papers have angular dependence of transmission coefficients. This Slmpll-
addressed the question of variation of the effect with theied description gives correct amplitude of the effect. In the
angle ¢ between the magnetizatiof& This angular depen- limit of small values of GMR, it also gives reasonable results
dence, however, is very interesting for several reasons. ARr the angular dependence. However, exact variation of the
pointed out in Ref. 10, it can give some information on the€fT€Ct With the angle¢, particularly for larger values of
relative contributions of different kinds of electrons to theGMR’ requires a more accurate analysis. The quasiclassical

electrical conductivity, and particularly to GMR. It can also approach developed here is based on the Boltzmann kinetic

ive an information on the soin dependence of electron o(_aquation, with nondiagonal components of the electron dis-
tgentials P P PO%ibution function taken into account.

Th bl f lar d d first di di The method used in the quantum limit is a generalization
e problem of angular dependence was first discussed g e formalism developed earlier for collinear configura-

Ref. 9 for an infinite superlatticg wi'th a uniform periodic part ons of the film magnetizatiort€. This formalism is adapted

of the electron potentialpotential in a defect-free system, pere to the case where the magnetizations are not collinear,
called here also crystal potenfiaivhere a linear variation of 1yt still in the film plane.

GMR with sirf(¢/2) was found. The problem was examined  Wwe show in this paper that in the quasiclassical limit
later in more details by Vedyayest al.° who calculated the GMR varies approximately linearly with €@4/2). Devia-
angular dependence of GMR in a system composed of tW@ons from this behavior occur in the limit of quantum trans-
magnetic films in direct conta¢dho nonmagnetic spacer in port, where interference of electron waves reflected from in-
betweei. For the crystal potential independent of the elec-terfaces and/or surfaces leads to formation of sharp quantum
tron spin (no potential steps at the interfacthe authors energy levels. But even then the linear dependence occurs for
found the linear variation of GMR with sfty/2). If, how-  symmetrical structures with a crystal potential independent

ever, some potential bariers occurred at the interfédes to  of the spin orientation. Consider first the quasiclassical limit.
the spin dependent crystal potential in their ¢asignificant

deviations from the linear behavior were found. _ . Il. QUASICLASSICAL LIMIT
The angular dependence of GMR was also investigated
experimentally for both current-in-plaHe®® (CIP) and We will consider a trilayer in which two ferromagnetic

current-perpendicular-to-platfe (CPP geometries. In the films (corresponding to the layer index=1 and a=2) of
former case almost a linear dependence of the effect othicknessesl; andd, are separated by a nonmagnetic layer
sir’(¢/2) was found. In the CPP case, however, remarkablef thicknessd, (a=0). However, by imposing perfectly re-
deviations from this linear behavior were observed in somdlecting boundary conditions at the external surfa@eswill
systems? be discussed latgrone can obtain results which correspond

In this paper we consider angular variation of CIP GMRto a superlattice with doubled thickness of the magnetic
in two opposite limits, i.e., in the quasiclassical limit and in films.*®
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Electronic structure of the system will be considered inferromagnet, and in a coordinate system with the quantiza-
the free-electron approximation for conducting electronstion axis collinear with the magnetization direction, the elec-
Consider first the case where the crystal potential is uniforntron distribution is described by two diagonal components,
across the structure. Consequently, the conduction electroris(y,v) andf (y,v), respectively for spin-majority and spin-
do not feel potential barriers at the interfaces and are entirelyninority electrons. Herey is the electron velocity and the
transmitted when the interfaces are perfectly flat. This is axisy is normal to the films. In magnetic multilayers with
large simplification as in real structures there is always someoncollinear magnetizations of successive films, electron ex-
misfit of electronic bands at interfaces. However, this apchange between the magnetic films leads to nondiagonal
proximation is reasonable fa electrons. A general case, components; (y,v) andf (y,v) of the distribution func-
where electrons are subject to a spin dependent superlattiti®n, even in a coordinate system with the local quantization
potential, will be discussed later. axis (by local quantization axis we mean the axis opposite to

Conduction electrons at the Fermi lev&}l are scattered the local magnetization directipn
by impurities distributed inside the films and by rough inter- Assume now a quantization axis which is at an angle
faces and surfaces. Electron scattering by impurities is takewith respect to the local one, but still in the film plane. The
into account by appropriate relaxation times, which in thedistribution functionf(y,v) has then two diagonal compo-
magnetic films ¢=1,2) arer,; for spin-majority electrons nents, f,(y,v) and f_(y,v), and two nondiagonal ones.
(electrons with spin parallel to the spin of electrons responf __(y,v) andf__(y,v). We use here the notation according
sible for the magnetic momenand 7,, for spin-minority  to which the spin projection on the local quantization axis is
electrons, while in the spacer layer it is independent of thelenoted ag and |, respectively for spin-majority and spin-
electron spin orientationzy, = 79, = 7o. In the following we  minority electrons, while projection on a nonlocal or global
will use the electron mean free pattMFP’s) A ,;(;) and\,  quantization axis is denoted by and —. The distribution
instead of the corresponding relaxation timgs |, and 7. function can be decomposed in two partgy,v)="fy(Vv)

To include diffuse scattering due to interface and surfacetg(y,v), whereg(y,v) is a deviation from the equilibrium
roughness, we assume the same model as in Ref. 15. Withdistributionfy(v). The Boltzman kinetic equation for the dis-
this approach the electron scattering due to roughness tsibution functiong(y,v) can be now written in the form
taken into account by spin dependent coefficients of specular

transmission through the interfaces and specular reflection agly,v) 1 . eE of,

from the surfaces. ay o, 9(y.v) = moy vy L @

The electron distribution function, and finally electronic
conductivity, can be calculated by solving the correspondingvhereE is the electric field applied along the in-plane axis
Boltzmann kinetic equation together with the appropriatex. € andm denote the electron charge>X0) and electron
boundary conditions at all interfaces and surfaces. In a bulknass,1 is a 2X2 unit matrix, and

_((Ur)co$(012)+ (LUr))si?(0/2) (117~ 1I7))sin(6/2)cod 6/2)

=l Wy - Vrsin(B2)cos 012)  (Ur)SIN(812) + (L) cod(012) @

Equations(1) and (2) apply to each layer. Note thaf ! is gi(y:yﬂi o):TBgi(y:yB: 0), 3
diagonal for nonmagnetic film. When writing E(L) it was
assumed thaty(v)~fy(v)1l. Following the standard proce- where + and — at the distribution functiorg correspond
dure, Eq.(1) will be solved in each film separately, and the respectively tay,>0 andv,<0. For clarity of notation, the
solutions will be matched with the assistance of some boundargumentv of the distribution function has been omitted in
ary conditions. Since it is more convenient to deal with Eq.the above formulas. Apart from thig=y;—0 andy=y,
(1) (and also with the appropriate boundary Condit)o'ms + 0 mean that the distribution function is taken reSpeCtively
the local coordinate systems, we introduce, as in Ref. 15, 8n the left and right sides of thath interface(y,=d, and
fictitious plane inside the internal layer, sayyaty,, and Y2=d17do). In Eq.(3) T is defined as
will use fory<yj, the local quantization axis of the left mag-
netic film, while fory>y, the local quantization axis of the T.= ( Tgr 0 )
right magnetic film. B\ o Ty )

In the local coordinate systems general solutions for the
four components of the distribution function can be foundwith Tz, andT, being the coefficients of specular transmis-
very easily from Eq.1). The appropriate constants, which sion across the interface, respectively, for spin-majority and
occur in those solutions, can be then determined from boundspin-minority electrons.
ary conditions at the interfaces and surfaces. In a local coor- At the left (y;=0) and right ¢, =d;+d,+d,) outer sur-
dinate system the boundary conditions for transmissioriaces we use the Fuchs-type boundary conditions,
across thesth (8=1,2) interface between the ferromagnetic
and nonmagnetic films are gt (y=y)=Pg (y=y)), (5)

(4)
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g (y=y)=Pg"(y=vyy), (6) 1.0 ———————————
where
Pyt O 08|
P|<r>:( ; @) —_
0 piry 3
with pyy; andpy(, being the corresponding coefficients of = 4L
specular reflection, respectively for spin-majority and spin- %
minority electrons. 5)
At the fictitious plane aty=y, within the nonmagnetic é_ 04
film, the boundary conditions are Z '
-+ — -+ §
9" (y=Yot0)=R™H(#)g"(y=yo—O0)R(¢).  (8) I
Since the distribution functions on the right and left sides of '
the fictitious plane are written in different local coordinate
systems, we matched them after rotating the spin quantiza 0.0 P T S S T
tion axis on one side by the angfebetween the magnetiza- 0.0 02 0.4 0.6 0.8 1.0

tions. This rotation is described by the matrix

cog ¢p/2) —sin( /2
R(¢)= sirifjf/Z)) COJ(Z/)Z)) : 9 FIG. 1. Angular dependence of GMR for a superlattice with a

uniform electronic potential across the structure. Different curves

Equation(8) does not depend explicitly oy,. For calcula- correspond to different values afy; \o=100 A (solid line), Ao
tions one can simply assunyg at one of the interfaces. =300 A (dotted ling, and\,=1000 A (dashed ling In each case,

In the following we will consider two cases:(i) when  however,\y /Ny =Ny /Ny =5 and Qg +Nq))/2=(Ng+ Nz )/2
the GMR effect is of bulk origin, andii) when it is due to =\ was assumed. The other parametersiye4 eV, T;; =Ty,
interfacial scattering. In the former case we assume some T2;= Tz, =1 (no roughnessdy=20 A, while the magnetic films
spin asymmetry in the relaxation timésr equivalently in ~are 100 A thick.
MFP’s) in the magnetic films, while transmission coeffi-
cients across the interfaces are assumed to be independentlo@ electron potential in the magnetic films< 1,2) is equal
the electron spin. In the latter case, on the other hand, MFP*® U, for spin-majority electrons and,, for spin-minority
are independent of the spin orientation, whilg, # T, . To  Ones, while in the nonmagnetic spacer it is equaltpfor
simulate a superlattice we assume in both cases perfectlyoth spin orientations. The corresponding results are shown
reflecting boundary conditions at the external surfacesin Fig. 3 for three different values of the potential barriers at
Piyry=1- _ _

Numerical results for the magnetoresistance normalized tc
its maximum value, GMRp)/GMR(¢= ), are shown in 0 ot
Figs. 1 and 2, respectively for the ca@eand casdii), as X 7
described above. Different curves in Fig. 1 correspond to 5
different values of the electron MFR, in the nonmagnetic 08 L
spacer. For all curves, howeverh,, /AN, =5 and i ’
2No/(N g+ +A,-)=1 was assumed for bothk=1 and «
=2. GMR varies almost linearly with si($/2) and only a
small difference between the curves corresponding\ o
=100 A (solid line) and \y=1000 A (dashed ling can be
noticed. One has, however, bear in mind the fact that for
large MFP’s the quasiclassical description ceases to be valic

In Fig. 2 the magnetoresistance is of interfacial origin. As
in Fig. 1, different curves correspond to different values of 02| .5
Ng. However,\,, =\, =N\g for @=1,2 andTg; /Tg =2 |
for B=1,2 was now assumed for all curves. Again, GMR 7
varies linearly with siA(¢/2), although now the difference 0.0 T
between the curves for,=100 A and\ ,=1000 A is more 0.0 02 04 06 08 10
remarkab!e than in Fig. 1. Thus_, independently of the origin, sin2(¢/2)
GMR varies almost linearly with sf¢/2) for a uniform

electronic potential. o _ FIG. 2. Angular dependence of GMR for a superlattice with a
The question arises now, whether a similar behavior als@niform electronic potential for\o=100A (solid line), X,

takes place in the case of a spin dependent superlattice pe-300 A (dotted ling, and\ ,=1000 A (dashed ling In each case,
tential. To check this point the method described above hagowever\ ;=\ =\, =\; =\, was assumed. The other param-
been extended to the model of Hoetlal !’ which takes into  eters areEr=4 eV, T1;=T2=05T;; =T, =1,dy=20A, while
account electron-band misfit at the interfaces. Assume thahe magnetic films are 100 A thick.

sin’(¢/2)

06 i

04} .57

GMR($)/GMR(¢=r)
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1,0 —— distributed inside this film. The impurity potential,(o) is
5 assumed to be diagonal in the spin space when the quantiza-
P tion axis is colinear with the local magnetization direction in
0.8 - R the magnetic films, with respectively,, for the majority
electrons and ,_ for the minority electrons. The scattering
4 potential of impurities in the spacer layer is assumed inde-
06 - S pendent of the electron sping, =vy_=wvg. In the second
S term of Eq.(11) hg(R) describes deviation of thath inter-
04 % face from the perfectly flat plane=y;, with R denoting the
T g in-plane position vector. By definitiorghz)=0 and 7,
7 =(h%)"2is the rms roughness amplitude. For simplicity, the
02 L same exponential form of the correlation functi@f{R/¢)
will be assumed for both interfaces. The correlation length
T & can generally be different for both interfaces. Apart from
oo 0L this, V§'=V@(a)+VE(a), where V{(a)=Ug(o)
0.0 0.2 0.4 08 0.8 1.0 —Uy(o) is the spin dependent potential step at Bik in-
sin2(¢/2) terface andv{y(o) is a scattering potential which effec-
. ~ tively takes into accours-d scattering induced by the inter-
FIG. 3. Angular depen_dence of_ GMR for a super!attlf:e with aface roughnes¥ Both componentS/%l)(a-) andV(ﬁz)(o-) are
spin dependent electronic potential in the magnetic filtdg; diagonal in the local coordinate systems. FinaW,(R)
. =yp+(1/2)hg(R) is the position center of the interfacial
=U, =2¢eV (dotted ling, and U;;=Uy=1eV, U; =U, : .
B . - L scattering potential.
=3 eV (dashed ling The other parameters at¥)=0, Er=4 ¢V, . . . . .
_ N _ _ To find the electronic conductivity within the formalism
(Nap+ N1 )2= (N g1+ X2 )2=Ng=300 A, Ny /Ny; =Ny N3 =5, q ibed in Ref. 16 h ¢ lculate first electroni
do=20 A, while the magnetic films are 100 A thick. The interfaces @ESCIPEC Il;] de .d ! ¥ve ave b'o calcu ale l;rs elec rﬁmc
are assumed perfectly flat. states(n_1|n|_ and e _ge)s or an arbitrary angle between the
magnetizations. This can be done in a similar way as in Ref.

the interfaces. The interfaces were assumed there perfecthf: Where the electronic states for perpendicular orientation
flat and the GMR effect was due to spin dependent impurit;Pf the film magnetizations where calculated. It is convenient

scattering. It is evident that large spin dependent potentidP US€ the local coordinate systems. The corresponding scat-
barriers produce only weak deviations from the perfectly lin-t€1ing potentials are then diagonal in the spin space. The

ear dependence. The same dependence occurs also fppropriate Schudtinger equation was solved first in eac_h
trilayer structures with arbitrary rate of specular electron relayer separately and the relevant constants were determined
flection at the outer surfaces. Thus, the almost linear behaftom the normalization condition and the standard boundary

ior seems to be a general feature of the quasiclassical limi€onditions of continuity of the wave function and its first
derivative across the interfaces. For simplicity, we assume
infinite potential walls at the external surfaces. The eigen-
states have the general form

Let us analyze now how the quantum effects modify the

=n)

GMR(()/GMR(¢

. QUANTUM LIMIT

angular dependence. To do this we consider the same trilayer (YY) .
structure as in the preceding section and assume that the YudO=1y _(y) expik-R), (12
outer surfaces are perfectly flat. The corresponding single
electron HamiltoniarH is of the form where u is the miniband index ané is the in-plane wave
vector. The corresponding eigenenergy is, =€,
h? ) +#2k2/2m.
H=- 2m Ve+U(y,0)+V(r,0). (10 In the Born approximation the transition probability
) ) o S _ Puu(k,K') is given by
The first term is the usual kinetic term, which is diagonal in
the spin space. The second teti{y, o), is the periodic part o
of the electronic potentidtrystal potentigl The last term in P (kK= - (W lV(r,o)| ¥, )% (13
Eq. (10) is the scattering potential of impurities and interface
roughness, which is assumed in the form On calculating the above transition probabilities and follow-
ing Refs. 16 and 19 one arrives at the following expression
V(rya)zz V(@) 8(r—r,)—(—1)8 for the electronic conductivity:
i
ezhg N N
2 _
x> he(RIVH () 3(y—y§(R)). (1D 9= 5721 ;1 Zl QiQM,[C YER) uw» (19
B =

In the first term on the right side of E(L1) v,(o) denotes whereN is the number of occupied miniband®,, is the
the spin dependent scattering potential of an impurity locateth-plane Fermi wave vector corresponding to fa mini-
inside theath layer and the indek runs over all impurities band, and the matri€C(Eg) is given by the formula
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N 3 . 1.0 T T T T T T T P
[CER) =8, Q52 | 27 2, ngPDL” T
v=1 =1t -7
08 [ e 4
2 2 ,/’/—
+ 2, Ly 2 f doF ¥
2, L5 ngtp)® | (@mﬁ Tul ]
2 3 a
~QuQu 2 L (156p)° Sosf / 1
p=1 =
o ;
2w 02/ 4
X . d6 coIF(£5Q,,,1)- (15 :;
%0 ' o.lz 074 ' ofs ‘ ors 1.0
The factorsD%" are defined as sin’(4/2)

v_ (@) a) (a) 5 FIG. 4. Angular dependence of GMR generated by interfacial
D&"= j dy[va+ i, TR+ o NI, scattering in a symmetrical trilayer witth=d,=20A, d,=94A,
(16) m=mn,=2A, &=¢=2A, and u=3.04 eV. The other param-

eters areU;,=U,, =U;_=U,_=Uy=0, V@=Vv@=05eV,

(2) (2 — o - _ _ _
where the integration is ovey ranging theath layer and \lj - 70\/2\/7(27) f \e,\</z>(ic§t§i\l,'n?}<gi*v?z?§1 ;t)/l(s;|ilézﬁr:@q'5ueV'
(“)(y) are the spinor components in the local coordinate (b_ ’:Olg;\/“u ':U ’:6—9 eVZ_U 0 V(Z):V(Z),:v(l;)
systems. The other two terms in EG5) result from scatter- :V‘Zﬁzol(dasr,]ed 1“’% e PP 0T s Vi o V-

2_

ing on both interfaces, withg"' defined as

is spin dependent. When the potential is uniform across the
V“ ( 1// (yﬁ) ¢( +(Yp) total system ) =0), then—as shown by Zhareg al® in the
limit of infinite superlattice—MR varies linearly with
sir?(¢/2). This is also the case in the trilayer structure con-
"By )¢’<,B+)(yﬁ)> sidered here, as shown in Fig. 4 by the dotted line. Bor
a >0 there is still almost a linear dependence of the effect on

s =
b 1_21

t/f
sin’(¢/2), as shown in Fig. 4 by the solid line. Thus, the
(lp(ﬁ)(yﬁ) ,ﬂ’ (Yp) electron potential which is independent of the electron spin
orientation leads to approximately linear dependence of MR
2 on sirf(¢/2) in symmetrical trilayers. It is noteworthy that in
(17)  that case the electronic levels are independent of the angle
between the magnetizations.

Consider now the case when the electronic potential in the
for =1,2. It is assumed here that the potentié{¥(o) and  magnetic films is spin dependent. This, consequently, leads
V®)(0) scatter incoherently. Finally;(£Q,,./) in Eq. (15 to spin dependent potential steps at the interfaces. Now,
is the Fourier transform of the correlation functi®{R/§),  GMR can be generated by the interfacial roughness not only
with Q.. =(Q2 +Q ,—2Q,Q,cox)"2 via the potentiaMV®)(¢), but also viaV)(a). The corre-

Since the role of bulk scattering was considered in Refsponding results are shown by the dashed line in Fig. 4.
10, we will restrict the following numerical calculations There is a large deviation from the linear dependence on
mainly to systems where the interfacial scattering is domisir?(¢/2). Thus, spin dependent potential barriers at the in-
nant. When considering the problem numerically, one has tterfaces generate deviations from the linear behavior, as
take into account variation of the Fermi level with the angleshown first by Vedyayeet al1° and more recently by Wang
between the magnetizations. This variation takes place onlgt al?° Note that now the energy levels depend on the angle
for spin dependent crystal electron potential. The Fermi levebetween the magnetizations.
should be then adjusted to keep the areal electron density When the structure is asymmetrical then deviations from
constant. However, the difference between the case with conhe linear dependence can occur also for a uniform electron
stant particle number and constant chemical potentiagd  potential. Two such situations are shown in Fig. 5. The
rather small, so in the following numerical calculations wedashed line corresponds to the case where the scattering po-
will assume constan. tentials are symmetrical but the magnetic films differ in

Consider first a symmetrical structure and let us begirthicknesses. The solid line, on the other hand, corresponds to
with the situation when the electronic potential in the mag-the case where the thicknesses are the same, but the scatter-
netic films is independent on the spin orientation. Assumeng potentials at the two interfaces are asymmetrical. In both
for simplicity a quantum well in the spacer layer, which is cases there are remarkable deviations from the linear varia-
independent of the spin orientation, i.&l;, =U;_=U,, tion.
=U,_=U>U,=0. The geometrical roughness can gener- For the curves shown in Fig. 4 the maximum value of
ate then GMR only via the compone¥it?) (o), provided it GMR corresponds t@= 7. However, this is not a general

+ % Wy <y5>)
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sin’(9/2) sin’($/2)

FIG. 5. Angular dependence of GMR generated by interfacial FIG. 6. Angular dependence of GMR generated by interfacial
scattering in a trilayer fom,=5,=2A, £&,=¢6,=2A, u=3eV, scattering in an asymmetrical trilayer fdf=d,=20 A, dy=9 A,
and U;,=U,,=U,;_=U,_=Uy=0. The other parameters are »,=7n,=2A, £&=£6=2A, u=3eV, U;,=U,,=0.2eV, U;_
v@=v@=05ev, V@=v?=09eV, d;=20A, d,=15A, =1eV,U, =0.3eV,Uy,=0, andvd=Vv2=v{@=v{@ =0,
and dy=9A (dashed ling V{?=05ev, Vi@=02ev, V¥
=0.6eV,V¥®=09eV,d,=d,=20A, andd,=9 A (solid line).

IV. SUMMARY

rule as shown already by Vedyayeval,'° and what is also We have calculated the angular variation of the giant
visible in Fig. 5(dashed curve Here, we point out an inter- magnetoresistance in magnetic layered structures in the qua-
esting situation, when the scattering potentials of both intersiclassical and quantum limits. In a general case, the quasi-
faces have the same sign of the spin asymmetry, but diffeclassical transport leads to a linear dependence of GMR on
significantly in the magnitude of this asymmetry—it is large sir’(¢/2).?! The situation is qualitatively different in the

at one interface and significantly smaller at the second intefquantum limit. In that case the linear behavior occurs only
face. The corresponding results are shown in Fig. 6, whergpr symmetrical structures with the crystal potential indepen-
GMR is normalized to its value ap=m. The maximum dent of the spin orientation. Significant deviations from the
occurs now akp# 7 and there is a large decrease of GMR jinear dependence of the effect on%ip2) were found ei-

when antiferromagnetic alignment is approached. In the ferther in asymmetrical structures or for spin dependent elec-
romagnetic configuration the electrons in one of the two spifron potential.

channels are weakly scattered, which leads to a large con-
ductivity. In the antiparallel configuration there is also one
spin channel where the electrons are scattered rather weakly,
although stronger than in the ferromagnetic configuration.
For oblique alignment, on the other hand, all electrons are One of us(J.B) acknowledges support through the Re-
subject to the large scattering potential at one of the intersearch Project 2 PO3B 165 10 of Polish Committee for Sci-
faces, which results in a large decrease of the conductivityentific Research.
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