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Universality and logarithmic corrections in two-dimensional random Ising ferromagnets
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We address the question of weak versus strong universality scenarios for the random-bond Ising model in
two dimensions. A finite-size scaling theory is proposed, which explicitly incorporatésdorrections [ is
the linear finite size of the systerto the temperature derivative of the correlation length. The predictions are
tested by considering long, finite-width strips of Ising spins with randomly distributed ferromagnetic couplings,
along which free energy, spin-spin correlation functions, and specific heats are calculated by transfer-matrix
methods. The ratigy/v is calculated and has the same value as in the pure case; consequently conformal
invariance predictions remain valid for this type of disorder. Semilogarithmic plots of correlation functions
against distance yield average correlation lengifi$ whose size dependence agrees very well with the
proposed theory. We also examine the size dependence of the specific heat, which clearly suggests a diver-
gency in the thermodynamic limit. Thus our data consistently favor the Dotsenko-Shalaev picture of logarith-
mic corrections(enhancemen}sto pure system singularities, as opposed to the weak universality scenario.
[S0163-18297)05833-3

[. INTRODUCTION Here we calculate free energies and spin-spin correlation
functions on long, finite-width strips of two-dimensional dis-

In the study of random magnetic systems, a frequentiordered Ising systems. The main motivation for the use of
asked question is whether or not quenched disorder destroyis geometry is that strip calculations, together with finite-
a sharp phase transition and, in the latter case, whether criize scalingFSS concepts?**are among the most accurate
cal exponents are the same as for the corresponding putechniques to extract critical points and exponents for non-
magnet<~3The Harris criteriofi provides useful guidance in  random low-dimensional systerts!® The rate of decay of
a number of cases: if the exponent characterizing the di- correlation functions determines correlation lengths along
vergence of the specific heat at the critical point of the purdhe strip. These latter are, in turn, an essential piece of Night-
system, is positive then randomness induces crossover toigale’s phenomenological renormalization schéfé,and
different universality class; for negative the disordered have been given further relevance via the connection with
system is expected to exhibit the same critical behavior asritical exponents provided by conformal invariance
the unperturbed one. However, such a rule is inconclusivéoncepts’ Early extensions of strip scaling to random
for the subject of this work, the two-dimensional Ising System$® have since been pursued furth&'”and put into
model, where the specific heat of the pure system diverged broader perspective. In particular, it has been shown that
logarithmically (that is, witha=0) at the critical point. Fur-  although in-sample fluctuations of correlation functions do
ther, the Harris approach is perturbative in the sense thdtot die out as strip length is increased, averaged values con-
only weak randomness is considered. Nonperturbative metterge satisfactorily® throughout the present paper we shall
ods are thus required, especially when one wishes to inve@?ke use of this fact to calculate error bars of related quan-
tigate strongly disordered systems. A suitable way to deallties.
with this sort of problem is through numerical calculations We consider the two-dimensional Ising model on a square
on finite systems. One then has to account for finite-sizdattice with bond randomness. The particular version of dis-
effects before extrapolating to the thermodynamic limit. Thisorder studied in this work is a binary distribution of ferro-
is done by testing specific hypotheses bearing upon the nanragnetic interaction strengths for both vertical and horizon-
ture of asymptotic behavior. tal bonds,

In the present paper we investigate the theoretical predic-
tion (see Refs. 2 and 3, and references thereiat disorder
affects the phase transition of the two-dimensional Ising
model only via a specific, well-defined set of logarithmic
corrections to pure-system critical behavior; here we extendyhich is the prototypical random-bond Ising system, and ex-
and give further details of, the results preliminarily reportedhibits the unique advantage that its critical temperature
in Ref. 5. Such a prediction is in contrast to recent work, B.=1/kgT, is exactly knowh®?°as a function of through
according to which critical quantities such as the zero-field
susceptibility and correlation length display power-law sin- SinN(2B.Jo)sinh(2B.rdg)=1. 2
gularities, with the corresponding exponentand v chang-
ing continuously with disorder so that the ratjdv is kept  For givenr one can then sit al=T.(r) and be sure that
constant at the pure system’s valiibe so-calledveak uni- numerical errors due to imprecise knowledge of the critical
versality scenarid). point are absent. Also, a vast amount of simulational work

1
5[0(Jij—=Jo)+6(Jij—rdp)], Osr=1, (1)

P(Jij)) =3
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has been done on this same mo¢sde Ref. 3 thus com- dence must remain asymptotically fo¥-1, ensures in this

parison is made easier when appropriate. case that the finite-size susceptibility at the critical point
The layout of the paper is as follows. We first recall in must be

Sec. Il the main predictioS concerning logarithmic correc-

tions to the singular behavior of bulk quantities for a disor- xL(0)~LY"=L"", (7)

dered two-dimensional Ising model, and discuss how sucly, ower words, FSS implies that logarithmic corrections
corrections should show up in the corresponding finite-size,, \<tnot show up, and the finite-size susceptibilityTatwill

guantities. In particular,. we show .that a Iogari_thmi.c term isexhibit pure power-law behavior against with the same
expected to be the leading correction to the finite-size beha\ﬁower as in the homogeneous case. The same argument is, of
ior of the temperature derivative ¢*. In Sec. lll we outline ' ’

. 4 course, valid fofz| (t) which must then scale linearly with
numerical aspects of our calculational approach for the Magds T As shown below. numerical data bear out such pre-
netic susceptibility, the correlation length, and the specificdi tit(?).ns for bothy, (0) e,mdgL(O)

heat; also, the numerical results are presented and dlscussed‘il-hiS raises the question of how, on finite systems, to seek

evidence for effects of the bulk corrections predicted in Egs.
(3) and(4). In the following we show that the proper quan-
Il. LOGARITHMIC CORRECTIONS tities to consider are temperature derivatives of, &g(t).

AND FINITE-SIZE SCALING We apply standard FSS concepts to show that, although the
dominant behavior of such quantities is in powerd ofthe
'leading correctionsto FSS must depend onln This is in
contrast with the correspondiri@on-diverging corrections
to FSS for, say¢ which can be fitted by inverse power laws
(see Ref. 17 and belgw

Section IV summarizes our findings.

For infinite-system quantities close to the critical point
with t=(T—-T.)/T., the following forms have been pro-
posed(see Refs. 2 and 3, and references therém the
correlation lengthré..(t) and initial susceptibilityy..(t):

§m~t‘”[1+CIn(1/t)];, 3 First we recall that the FSS form fdris, from Eq.(6),
~ z, z<1,
X-~1"1+CIn(1/)]7, 4 &=L &(2), ¢(Z)—>‘00nst, 1 8

wherev=1, v=1/2, y=7/4, y=7/8, andC is a disorder-
dependent positive constant; f@=0 one recovers pure-
system behavior. Corresponding expressions have been de-

The temperature derivative @f is then

: L - . X 1, z<1,
rived for magnetization and specific heat, which will not ()= déL(t) =1, (0) ' (2), ¢,(Z)H[ z
concern us for now. Thus theory predicts that the dominant dt 0, z>1,
power-law singularitiegwith the same indices as for the uni- C)

form system will actually beenhancedy logarithmic diver-  \yhere wo(t)=d&, /dt and the prime denotes a derivative
gences. We shall keep to current use in the fiéhd refer it respect taz. While the bulk limitz<1 of Eq. (9) is a
to these latter agorrections though strictly speaking the straightforward identity, the vanishing @f (z) for z>1 [as

term is inappropriate. . . implied by Eq.(8)] must be qualified. Indeeg, (t) does not
In searching for signatures of such diverging logarithmic iverge in the latter regime, whilg..(t) does whert—0.

corrections in systems of finite size, one must be caref husé’(2)~[ w(t)]~ L, in the sense that the dependence of
about applying recipes used when the bulk singularity is¢, on't throughé., mus’t be such as to cancel the diverging
purely of a power-law nature. For instance, a naive applicaf dependence oft... Since the FSS ansatz predicts that
tion, to Eq.(3), of the usual shortcttt—L ~* to extract the only arises through the ratig,,(t)/L, one can deduce the

size dependence at criticality, would yield a correlationdependence ofu, (1) for z=1. Up to now, the argument is
length growing faster tha_h, which C'ea?”y cannot be true. ntirely general and variations of it ha\,/e been commonly
Instead, one must consider the relationship between bul sed in the FSS literature

quantities predicted by theory and exemplified by E@. Turning to the two-dimensional random-bond Ising
and(4), namely model, where the bulk quantities are expected to behave as in

(e ) ) Egs.(3) and(4), one has fot<1 (consistent with our goal of
X o deriving expressions suitable for the-1 regime:
To see what this implies, recall the FSS hyphot@sisfor a -
generic quantityQ, (t) : E.~t7"(Inlk)", (10
£.(1) which can be iteratively inverted to giteas a function of
QaW=fL)4(2), z=——, 6) &
whereL is the linear lattice size and one assumes siall t~& V" (Ing,) . (11)

large L. As is well known, theL dependence must be re-
moved az—0. It is immediate that, whenever the relation-
ship betweerQ,.(t) and¢..(t) is a power law such as in Eq. )y ~t~ A1+ CIn(1/)1” 12
(5) above,f(L) will be a power law as well. This, together pae(t) [ SOL (12
with the complementary condition that only the depen- plus less-divergent terms, which fo1 can be put as

The expression fop.(t) is
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Mm(t)Nt—(1+V)(|n1/t);zgoc Jt= 3.0+1/V(|n§x)—;/vl A. SUSCEptibi”ty
(13 The calculation of finite-size susceptibility data and their
where Eq.(11) was used in the last step. It follows immedi- extrgpol_aﬂon_ goes as fOHOW.S' F.'rSt’ we mclu.de a uniform
ately that longitudinal fieldh in the Hamiltonian, and obtain the largest
Lyapunov exponent\f for a strip of widthL and length
b (2)~2 (L) (Inz) "I (14  N>1 in the usual way>** Starting from an arbitrary initial
_ ) ) vectorvy, one generates the transfer matri@eshat connect
which, when plugged back into E¢9) together with EQ.  columnsi andi+ 1, drawing bonds from the distribution Eq.

(13), gives (1), and applies them successively, to obtain
p~ L= InLng ", 21, (15 ool {Hni“ltfivt)ll] a7
= — n —_—
so all diverging factors related té, are removed, but a LN [[Voll

nondivergingé..-dependent term remains which eventualIyThe
vanishes. Strictly speaking, Eq15 means that for both
t<1 and L>1, but such thaz>1, one must observe essen-
tially the leading power-law formu, ~L"Y”. However,
even though Eq(2) enables one to sit exactly &0, Eq. 263T h
(15) suggests the existence of a regime in which the leading YU(To) = L(T.h)

correction to power-law behavior is (1 — AlnL)*"” for finite Ih?
and not very large strip widthis, thus defining an effective
(nondiverging screening lengtii;=eA. This heuristic pro- where, according to the discussion in the preceding section,
cedure draws on ideas used to interpret experimental data f@re assume a pure power-law dependencé @i T=T,.
systems where a full divergence of the correlation length is As f3(T,h) is expected to have a normal distributiif>
hindered by percolatioff, random field’? or frustratio* ef-  so will y, . Thus the fluctuations are Gaussian, and relative
fects. Defining the inverse correlation lengthgactually ob-  errors must die down with sample sizstrip length N as
served, ko~t” and ks=(&;) ' (representing the physical 1/\/N. Typical strip lengths varied fronN=2x10° (for
factor that smears the divergence, e.g., domain)si@ee r=0.5) toN=2x10" (for r=0.1), which are much longer
writes than those used in Ref. 17; they provide estimates for the
free energy with an accuracy of 0.01%, which is crucial to
K=Kot Ks (16) compute reliable numerical derivatives. In order to get rid of
with good result$'-23 Here, x does not originate from a Startup effects, the firso=10" iterations were discarded.
physical feature of the infinite system; instead, it reflects thel he intervals(of external field values, in this casased in
overall effect of higher-order corrections in such a preasympobtaining finite differences for the calculation of numerical
totic region(strip widthsL <15). While & is of a different ~ derivatives must be strictly controlled, so as not to be an
nature to the crossover lengthe setting the scale above important additional source of errors. We have managed to
which disorder effects are félf: the two lengths vary simi- Minimize these latter effects by usirdh typically of order
larly with disorder, as explained below. 10~* in units of J when calculating (T, ;h=0, + sh) for
We now describe the numerical procedures used to teghe derivative in Eq(18). We estimated the first Lyapunov
the predictions given by Eqé7) and(15), and the respective exponent at T=T.,h=0) and (T=T.,h= = sh) with four
results. different realizations of the impurity distribution, each one
giving a separate estimate of the initial susceptibility. From
lIl. CALCULATIONAL METHOD AND RESULTS them the. ayeragQL(TC) and the error bar&wice the stan-
dard deviation among the four overall averggase taken.
We have used long strips of a square lattice, of width A succession of estimatesy/(v), , for the ratioy/v, is
4<L <14 sites with periodic boundary conditions. In order then obtained from Eq.18) as follows:
to provide samples that are sufficiently representative of dis-
order, we iterated the transfer matfixypically along 10 y IN[x (Te) xL-1(To)]
lattice spacings. T n[LA(L-1)]
At each step, the respective vertical and horizontal bonds -
between first-neighbor spirisand j were drawn from the The respective error bars follow from those of the corre-
probability distribution Eq(1) above. We have mainly used sponding finite-size susceptibilities. In order to extrapolate
three values of in calculations:r=0.5, 0.25, and 0.1; the this sequence, we refer to early work on the eigenvalue spec-
two smallest values have been chosen for the purpose ofum of the transfer matrix for pure systems with a marginal
comparing with recent Monte Carlo simulations wherand  operator in the Hamiltoniaff. There, it is shown that the
y are evaluated’ The critical temperatures, from E(), are  critical free energy per site is affected only by an additive
T.(0.5)/1y=1.641...; T.(0.25)07=1.239...; T. (0.1)/ logarithmic term in the coefficient of the leading,
Jp=0.9059... (to be compared with T; (1)/Jg L ~2-dependent, finite-size correctiofproportional to the
=2.269...). Wealso evaluated critical correlation lengths conformal  anomaly® c):  f(L)—f(»)=—(=/6L?)[c
and their derivatives for=0.01 and 0.001, with respective +B(InL) 3+-..]. Since disorder is expected to be margin-
critical temperature3./J,=0.508... and0.3426. .. . ally relevant in the present case, and assuming that the field

average free energy per site is then
f2(T,h)=— (1/L) A?, in units ofkgT. The initial suscep-
tibility of a strip, x.(T.), is given by

=L""Q(0), (19

T=T,,h=0

(19

14
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derivatives commute with thé dependencdgat least as (oooR)~exp(—RIEY), (20)
dominant terms are concerneave expect a similar picture

to hold here. OF course, with the imprecisions introduced byand is calculated from least-squares fits of straight lines to

Ir:vrc/dgéngi?j?ar?g(;e%ane onIszple;:tfé(r) fi?teh;??"li?gggnzog}/egémilog plots of the average correlation function as a func-
b ' €9 ' tion of distance, in the range #R<100. And, finally,"is

this poind. ; . A > .
Least-squares fits for plots of/(»), against 12 provide :jnistttrjirt?u?gr?;aged over the different realizations of impurity

the following extrapolations: y/v=1.748+0.012, 1.749 Recall that, as explained in Ref. 17, the inverse®fis

+0.008, and 1.7460.013, respectively, for=0.50, 0.25, : .
| . . not the same as the difference between the two leading
and 0.10; the latter two estimates agree with 843 and Lyapunov exponents, which gives the decay of thest

1.73+0.05, obtained in Ref. 24. . :
The overall picture is thus consistent with the predictionprObableugg,st%/ pical (as opposed to averagedorrelation

. function: It has been predicté@ithat typical correla-
of Eq. (7), that isy/v=7/4, the same as for the pure system, . ; - - :
. ; ; .'tions in bulk two-dimensional random Ising magnets deca
for all degrees of disorder. Recalling the Introduction, this g mag y

o A as (ogoRr)~R ™ Y4(InR) "8, while for averaged ones as in
still is not enough to distinguish between weak- and strong-Eq_ (20) logarithmic corrections are washed away, resulting

universality scenarios, as both coincide in their predictionsg ~ simple power-law dependence. For strips one could

fqr the ratio of exponents. One need; to try and isolatg xpect, in analogy with the case of pure systems with mar-
single exponent, which will be done in the next subsectmr‘binal operatoré! additive logarithmic corrections to the

through investigation of correlation lengths. . 1 : . (e Al D
. leading L™ behavior of typical correlationsA{—A/
Taken together with the results of Ref. 17 wheravas = (/) 4+ D(INL) "1+ - - -] with »=1/4.

found to be 1/4 through an analysis of averaged correlation It has been conjectured that the averaged correlation func-

lengths, and using .the spalmg relza_t|9ﬂv=2_— 7 the tions at criticality of the random-bond Ising model are iden-
present analysis of finite-size susceptibilities gives indepen:

. = tical to those of the pure cas®numerically the two quanti-
dent support to the view thdfl) the conformal invariance . . 30, 1 ] )
relatiort =L/ (T,) still holds for disordered systems, ties are indeed very clog&°while most-probable and pure

. . system correlation functions do no fit each other so well,
prowde(_j that aravergged—as opposed toypical, see next though theirL dependence is simildf. Given the exact
subsgcuon—corrglanon length is used, 'and tt?atthe_ ap-  resulfs that, for strips of pure Ising spins the corrections to
propriate correlation length to be used is that coming fron}he leadingL ! behavior of ¢3! as given by Eq(20)
the slope of semilog plots of correlation functions against g 9 y =0

72 . X .
distance!’ Interestingly, the connection with the conformal ?:spt)eepq[hgzl_in\;e;tseselgmasritLen?isgenr?nbslea:goeﬁpetiﬁg (rltlaes'(’ant
invariance prediction also rules out any explicit diverging 9 P

logarithmicL dependence of, case. _This has been shown to work well, with the same
’ x=2, in Ref. 17.
We now proceed to testing E¢L5). We calculateu, at
B. Correlation lengths T, [see Eq(9)] numerically, from values of{" evaluated at

: — —3
The aim of this subsection is to check on the validity of Te= 0T, with 5T/T=10"".

Eq. (15), or rather, its predicted consequences in the preas- ASSuming a simple power-law divergenée~t™"—i.e.,
ymptotic region within our reach<1, L=<15. ignoring, for the time being, less-divergent terms such as

The first difference to the free energy calculation de-logarithmic corrections—we obtain the estimates for systems

scribed above is that the correlation functions are expected @ SizesL andL—1:

have a distribution close tog-normaf®?®rather than a nor-

mal one. This has been thoroughly checked recéfithhus 1 In(py /g —1)7=1
self-averaging is not present, and fluctuations for a given —= c
sample donot die down with increasing sample size. How- YL In(L/L-1)
ever, it has been numerically verified that the spread among

overall averages(i.e., central estimatgsfrom different This is slightly different from the usual fixed-point
samples does shrinkapproximately asN™'?) as the calculation'® and is more convenient in the present case
samples’ size ) increasegsee Fig. 2 of Ref. 18 Accord-  where the exact critical temperature is known. Our data for
ingly, in what follows the error bars quoted arise from fluc- each pair of [,L— 1) strips have appeared in Ref. 5, and we
tuations among four central estimates, each obtained from guote here, for completeness, just the extrapolésgginst
different impurity distribution. Similar procedures seem to1/.2) values: »=1.032+0.031 (for r=0.5; here we have
have been followed in Monte Carlo calculations of correla-extended the previous calculations up th=14),

tion functions in finite { XL) systems” y=1.083+0.014 (=0.25), andp=1.14+0.06 (=0.10).

The direct calculation of correlation function§goor),  Taken at face value, these data show a systematic trend to-
follows the lines of Sec. 1.4 of Ref. 13, with standard adapwards values o¥ slightly larger than the pure-system value
tations for an inhomogeneous systéhfor fixed distances of 1, though the variation is smaller than that shown in Ref.
up to R=100, and for strips with the same length as thosez4.
used for averaging the free energy, the correlation functions Before accepting this trend as an indication of the weak-
are averaged over an ensemble of 10 different esti-  universality scenario, we must test for corrections to pure-
mates to yield ogoR). system behavior caused by less-divergent terms, as being

The average correlation lengté, is defined by responsible for the apparent changevoWith disorder. We

~1. (22)
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1.05 0.55 T FIG. 2. Finite-size scaling plots of logarithmic correctidfs.
05 3 3 (22)] for strong disorder. Straight lines are least-squares fits of data,
2 _—_— =~ respectively, fol.,=6—-12 (r=0.001) and #12 (r=0.01).
= r ) 12 3 E
\_1 r . 0.45 |
3 r ] 3;' o4 b E We thus tried stronger disord¢ésmaller values of), in
095 1025 7 E r=01 order to look for a signature of pure power-law behavior at a
[ ] 0%p E feasibleL<15. In Fig. 2 we show g, /L?)? as a function of
polintonuslennnl ., o3t il InL for r=0.01 and 0.001. Proximity to the percolation
R R R threshold is reflected in the large error bars, which render our

central estimates virtually meaningless fog5; for larger

L, fluctuations are reduced, owing to the exponential growth
jn the number of intracolumn configurations, so we still can
manage reasonable fits in that range. Unfortunately, no clear
sign can be seen of a trend towards a horizontal line. We
believe that a conjunction df) smallerr, (ii) largerL, and

(iii ) longer strip lengthN would eventually unearth the ex-
pected stabilization, though we do not feel secure to venture
numerical guesses at this point.

The above correlation length analysis thus provides us
with an interpretation of the numerical data which, it should
be stressed, is backed by thedrywithout resorting to
disorder-dependent exponents. Nevertheless, we have found
that the general statistical quality of the data does not allow
Prior to displaying our results, we recall that the influence ofone to distinguish clearly in favor of either possibility, in
randomness is expected to show on scales larger thantarms, e.g., of least-squares fits. We therefore seek comple-
disorder-dependent characteristic length.>® For L<Lc  mentary quantitative information through the analysis of spe-
one should have apparent pure-system behavior. cific heat data.

A plot of (u,/L?)? as a function of Ih for different
values ofr, includingr=1, is shown in Fig. 1. The pure-
system behavior consists of a monotonic approach to a hori- i )
zontal line, with an ever-decreasing slope. Fer0.50 and ~_ The same theofy’ that gives rise to Eqg3) and(4) pre-
0.25 we can see the pure-system trend for sinafbllowed d_lcts that the_ singular part of the bulk specific _h_eat per par-
by a clearly marked crossover towards a form consistent Wiﬂt,lple for the disordered Ising model, near the critical point, is
Eq. (22). In each case, log-corrected behavior sets in fodiven by
suitably largeL, exactly in the manner predicted by theory:
the data stabilize onto a straight line with negative slope only

for L=Lc, which decreases with increasing disordéone yqre againC, is proportional to the strength of disorder,
may assume, admittedly with some arbitrarinéssfor each 54 the pure-system simple logarithmic divergence is recov-
r to be_approxmz_ately the Iocgtlor) of the maximum of the g qq asCo—0. For Co#0 andt<1 a double-logarithmic
respective curve in Fig. 1. This givds=8, 5, and 2, re-  gjngylarity arises, whose amplitude E&3) predicts to de-
spectively, forr=0.50, 0.25, and 0.1(for r=0.10 data for  crease as disorder increases. The bulk specific heat cannot
L=2 and 3, not shown in the figure, were used aswell  then pe put as a simple function of the correlation length
An order-of-magnitude guide to the size of the preasympyiven in Eq.(3), and one cannot predict pure-system behav-
totic region where Eq(22) is expected to hold, such that for o againstL for finite systems, as was the case for the sus-

largerL the pure power-law behavior predicted by B4 ceptibility and correlation length above. Instead, theory
att=0 takes over, is the “screening lengtif;=e'* of Eq.  gives

(22). Forr=0.50, 0.25, and 0.10 one has the approximate
values £~4x10'% 7x10* and 4x10?, respectively.

Though any of these is far beyond the largest strip width
within reach of calculations, the trend against disorder isvhere, similarly to Eq(23), b—0 for vanishing disorder. In
clearly similar to that ol . this latter limit the produceb must remain finite, but it is

FIG. 1. Finite-size scaling plots of logarithmic correctidits.
(22)]. Straight lines are least-squares fits of data, respectively, fo
L=9-14 (r=0.5), 7-12 (r=0.25), and 412 (r=0.1). The error
bars are smaller than the data points.

then try to check whether our data fit a form inspired by Eq.
(15) with =1 (the pure-system valjil@nd v=1/2, namely

ML

F~(1—AInL)1’2. (22)

C. Specific heats
C,(t)=(1/Cp)In[ 1+ CyIn(14)],

(23

C.(t=0)=C;+aln(1+blnL), (29
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T T curate technique of birefringenteand with a presumably
higher-quality sample confirm&that the specific heat di-
verges for I-x=0.15, apparently with a single logarithmic
dependence identical to that of the pure system; this was
ascribed to an extreme narrowness of the region where dis-
ordered (double-logarithmig behavior would show ugin
agreeement with theotyd). Though, to our knowledge, a
systematic study of the variation of specific heat of two-
dimensional Ising systems against dilution by, e.g., birefrin-
gence techniques, has not been done, useful hints may be
taken from the corresponding three-dimensional case of
Fe,Zn,_,F,. There, birefringence experimefitshow that,
as dilution increases, the relative position of tfmarrow
peak atT. against that of thébroad maximum of a short-
FIG. 3. Specific heat per site at criticality far=4—12 and 219 order background. contribytion svyitches from higher to
r=0.50 (squarey 0.25(crosse} and 0.1(triangles, against Inli. Iowe_:r temperatures. Th_|3 fact is not dlre_ctly related to the
[Eq. (24)]. par_tlcular thrge-c_mmensmnal features which are u_st_ad to ex-
plain the dilution dependence of the specific heat
nota priori obvious from theory whethexr«b ™! away from amplitude® Thus, it is not unlikely that for two dimensions
that. In fact, the form Eq(24) has been verified by Monte too the apparent nondiverging behavior seen, TorT. at
Carlo simulations of. X L system&* with the result that the ¢=1/4 and 1/3, represents only the background. To see the
slope of plots ofC, against Inll. decreasedor increasing actual(probably sma)l peak one would have to go closer to
disorder. This shows that in this case the simple FSS recip&c; imprecisions in the knowledge af; for site-diluted sys-
t—L ! seems to work satisfactorily. tems(see, e.g., Ref. J@may be of capital importance then.
An investigation of the specific heat on strips is clearly of  In contrast to this, here and in Ref. 34 one sits righthe
interest, in order to check the consistency of our ownexactly knownT.. Further, according to the discussion of
correlation-length data, and also to provide a comparisoffinite-size specific heats above, the amplitude of the peak at
with the trends found for the specific heatlirk L systems, the bulk transition translates directly into the slope of the
both as described above and in recent Wavkere a nondi-  plot of C, against Inlih, so the regular background is easily
verging behavior is apparently found in the thermodynamicdealt with.
limit. In short, the evidence presented here clearly indicates that
Our results are displayed in Fig. 3, where one can see thaie specific heat diverges at the transition, with a double-
the fit to a double-logarithmic form is reasonable; for smalllogarithmic behavior. Thus the critical exponedatis non-
disorderr =0.5 we get an overall better fit to a pure logarith- hegative. Through hyperscaling arguments, this ties in with
mic divergence, similarly to the result farx L lattices®  our findings for the correlation length, as shown in the fol-
This is again because, as disorder decreases one gets apgawing. For weak enough disorder, there should be no ques-
ent pure-system behavior for relatively large tion about the dimensionality of the system, as opposed to
The slope of the plots turns smaller for higher disorder,néar the percolation threshold in thluted case[corre-
again in agreement with the trend found fox L lattices®*  sponding tor=0 for the bond distribution Eq(1)], where
however, no sign of an eventual trend towardsOne might argue in favor of substituting theactal dimen-
nondivergencgcan be distinguished. sion for the actual lattice dimensionality. Therefore, hyper-
The recent claims that for strongly disordered Ising sys-scaling should be fully applicable witth=2, which yields
tems in two dimensions, the specific heat is finitd at have
been made on the basis of numerical simulations of site- a
diluted model®. Specific heats were plotted against 5=1-v (25)
(t>0) for system sizes and temperatures such that
L/&.(t)>1 (thus excluding the very close vicinity of the Since our specific heat data implies=0 (most likely
transition; see Fig. 1 of Ref. 6. While for impurity concen- a=0), one must haver<1, thus excluding the disorder-
tration c=1/9 a divergence was clearly seen, data forvarying exponents given in Sec. llIB and in previous
c=1/4 and 1/3 were interpreted as signaling a finite bulkworks®=%24
specific heat at the transition. Such findings have been
criticized3® At this point it is worth recalling experimental
data. First, in bulk systems the specific heat exhibits a broad
regular background against which the singular part must be We have addressed the question of strong versus weak
singled out. Early experiments on the two-dimensional siteuniversality in the two-dimensional random-bofice., ex-
diluted Ising system RyCo,Mg,_,F, showed that the am- change couplings being eith&ror rJ with equal probability;
plitude of the singular part of the magnetic specific h#g&at 0<r=<1 measures the degree of disojdésing model,
creasesas dilution 1-x increases® However, owing to through extensive transfer-matrix calculations. A key ingre-
experimental difficulties, chief among them the smearing ofdient in the analysis of our data has been the consideration of
T. due to sample inhomogeneities, clear peaks could bsubtle finite-size scalingFS9 effects; these come about as a
found only for 1-x=<0.11. Later, results from the more ac- result of constraints imposed by the Dotsenko-Shalaev
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theory? for logarithmic corrections in the thermodynamic dimensional random-bond Ising model, wiit= 1/4 as in the
limit. We have established that while the correlation lengthpure case.

(and the susceptibilifyitself should display no signature of As a further test of the consistency of the proposed sce-
size-dependent logarithmic corrections, its temperature deyario, we have examined the size dependence of the specific
rivative, u =d§& _/dt, shows a Ih dependencel( is the  heat for this system. Consistently with the above findings,
strip width) over a wide range of system sizes. Actually, atthe specific heat was seen to be clearly divergent in the ther-
the (exactly known criti_cal temperature for the infi_nite SYS- modynamic limit. Since there are no physical grounds to
tem and for constant disordre., fixedr) the behavior with  jny0ke a mechanism leading to changes in the hyperscaling
linear size is as follows. Fdr<Lc, with Lc being a cross-  rejation, the case for weak universality cannot be supported
over length, the system behaves as in the pure dasele-  py oyr data. Further, it must be noted that a variety of studies
creases monotonically with disorder ane&Rc<8 for the . tpis problem, both theoretidd1*! and experiment3}-3842
values ofr we considered. Abovec,  is dominated by @  ¢oncuyrs with the idea that the leading singularities remain the
InL enhancementver the usual pure system power lahat  same as in the pure case, though they have not dealt with the
is, the numerical data can be explained through consisteRfetection of logarithmic corrections.

theories, without resorting to disorder-varying critical expo-  ag regards works whose conclusion is that weak-
nents. The FSS theory developed here also suggests that @versality holds instead’**thoughg, (T) and the suscep-

L increases, beyond éheuristically introduced screening tibility y,(T) were calculated, no attempt seems to have
length &, one will eventually reach an asymptotic regime peen made to fit the corresponding data to a form similar to
where the logarithmic enhancements will vanish, IeavingEq_ (22). Thus it remains to be checked whether they would

only pure power-law(pure-system-like behavior; see Sec. aiso be consistent with suitable FSS expressions based on
IIl. This coherence length tracks the crossover length, in thong-universality concepts.

sense of decreasing with increasing disorder, but its order of
magnitude is way beyond the reach of our numerical capa-
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