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Universality and logarithmic corrections in two-dimensional random Ising ferromagnets

F. D. A. Aarão Reis, S. L. A. de Queiroz, and Raimundo R. dos Santos
Instituto de Fı´sica, Universidade Federal Fluminense, Avenida Litoraˆnea s/n, 24210-340 Nitero´i RJ, Brazil

~Received 29 January 1997!

We address the question of weak versus strong universality scenarios for the random-bond Ising model in
two dimensions. A finite-size scaling theory is proposed, which explicitly incorporates lnL corrections (L is
the linear finite size of the system! to the temperature derivative of the correlation length. The predictions are
tested by considering long, finite-width strips of Ising spins with randomly distributed ferromagnetic couplings,
along which free energy, spin-spin correlation functions, and specific heats are calculated by transfer-matrix
methods. The ratiog/n is calculated and has the same value as in the pure case; consequently conformal
invariance predictions remain valid for this type of disorder. Semilogarithmic plots of correlation functions
against distance yield average correlation lengthsjav, whose size dependence agrees very well with the
proposed theory. We also examine the size dependence of the specific heat, which clearly suggests a diver-
gency in the thermodynamic limit. Thus our data consistently favor the Dotsenko-Shalaev picture of logarith-
mic corrections~enhancements! to pure system singularities, as opposed to the weak universality scenario.
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I. INTRODUCTION

In the study of random magnetic systems, a frequen
asked question is whether or not quenched disorder des
a sharp phase transition and, in the latter case, whether
cal exponents are the same as for the corresponding
magnets.1–3 The Harris criterion4 provides useful guidance in
a number of cases: if the exponenta, characterizing the di-
vergence of the specific heat at the critical point of the p
system, is positive then randomness induces crossover
different universality class; for negativea the disordered
system is expected to exhibit the same critical behavio
the unperturbed one. However, such a rule is inconclus
for the subject of this work, the two-dimensional Isin
model, where the specific heat of the pure system diver
logarithmically~that is, witha50) at the critical point. Fur-
ther, the Harris approach is perturbative in the sense
only weak randomness is considered. Nonperturbative m
ods are thus required, especially when one wishes to in
tigate strongly disordered systems. A suitable way to d
with this sort of problem is through numerical calculatio
on finite systems. One then has to account for finite-s
effects before extrapolating to the thermodynamic limit. T
is done by testing specific hypotheses bearing upon the
ture of asymptotic behavior.

In the present paper we investigate the theoretical pre
tion ~see Refs. 2 and 3, and references therein! that disorder
affects the phase transition of the two-dimensional Is
model only via a specific, well-defined set of logarithm
corrections to pure-system critical behavior; here we exte
and give further details of, the results preliminarily report
in Ref. 5. Such a prediction is in contrast to recent work,6–8

according to which critical quantities such as the zero-fi
susceptibility and correlation length display power-law s
gularities, with the corresponding exponentsg andn chang-
ing continuously with disorder so that the ratiog/n is kept
constant at the pure system’s value~the so-calledweak uni-
versalityscenario9!.
560163-1829/97/56~10!/6013~8!/$10.00
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Here we calculate free energies and spin-spin correla
functions on long, finite-width strips of two-dimensional di
ordered Ising systems. The main motivation for the use
this geometry is that strip calculations, together with fini
size scaling~FSS! concepts,10,11are among the most accura
techniques to extract critical points and exponents for n
random low-dimensional systems.12,13 The rate of decay of
correlation functions determines correlation lengths alo
the strip. These latter are, in turn, an essential piece of Nig
ingale’s phenomenological renormalization scheme,12,13 and
have been given further relevance via the connection w
critical exponents provided by conformal invarian
concepts.14 Early extensions of strip scaling to rando
systems15 have since been pursued further5,16,17and put into
a broader perspective. In particular, it has been shown
although in-sample fluctuations of correlation functions
not die out as strip length is increased, averaged values
verge satisfactorily;18 throughout the present paper we sh
make use of this fact to calculate error bars of related qu
tities.

We consider the two-dimensional Ising model on a squ
lattice with bond randomness. The particular version of d
order studied in this work is a binary distribution of ferro
magnetic interaction strengths for both vertical and horiz
tal bonds,

P~Ji j !5
1

2
@d~Ji j 2J0!1d~Ji j 2rJ0!#, 0<r<1, ~1!

which is the prototypical random-bond Ising system, and
hibits the unique advantage that its critical temperat
bc51/kBTc is exactly known19,20 as a function ofr through

sinh~2bcJ0!sinh~2bcrJ0!51. ~2!

For given r one can then sit atT5Tc(r ) and be sure tha
numerical errors due to imprecise knowledge of the criti
point are absent. Also, a vast amount of simulational w
6013 © 1997 The American Physical Society
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has been done on this same model~see Ref. 3!, thus com-
parison is made easier when appropriate.

The layout of the paper is as follows. We first recall
Sec. II the main predictions2,3 concerning logarithmic correc
tions to the singular behavior of bulk quantities for a dis
dered two-dimensional Ising model, and discuss how s
corrections should show up in the corresponding finite-s
quantities. In particular, we show that a logarithmic term
expected to be the leading correction to the finite-size beh
ior of the temperature derivative ofjav. In Sec. III we outline
numerical aspects of our calculational approach for the m
netic susceptibility, the correlation length, and the spec
heat; also, the numerical results are presented and discu
Section IV summarizes our findings.

II. LOGARITHMIC CORRECTIONS
AND FINITE-SIZE SCALING

For infinite-system quantities close to the critical poi
with t[(T2Tc)/Tc , the following forms have been pro
posed~see Refs. 2 and 3, and references therein! for the
correlation lengthj`(t) and initial susceptibilityx`(t):

j`;t2n@11Cln~1/t !# ñ , ~3!

x`;t2g@11Cln~1/t !# g̃, ~4!

wheren51, ñ 51/2, g57/4, g̃57/8, andC is a disorder-
dependent positive constant; forC50 one recovers pure
system behavior. Corresponding expressions have been
rived for magnetization and specific heat, which will n
concern us for now. Thus theory predicts that the domin
power-law singularities~with the same indices as for the un
form system! will actually beenhancedby logarithmic diver-
gences. We shall keep to current use in the field2,3 and refer
to these latter ascorrections, though strictly speaking the
term is inappropriate.

In searching for signatures of such diverging logarithm
corrections in systems of finite size, one must be care
about applying recipes used when the bulk singularity
purely of a power-law nature. For instance, a naive appl
tion, to Eq.~3!, of the usual shortcut11 t→L21 to extract the
size dependence at criticality, would yield a correlati
length growing faster thanL, which clearly cannot be true
Instead, one must consider the relationship between b
quantities predicted by theory and exemplified by Eqs.~3!
and ~4!, namely

x`;~j`!g/n. ~5!

To see what this implies, recall the FSS hyphotesis10,11 for a
generic quantityQL(t) :

QL~ t !5 f ~L !G~z!, z[
j`~ t !

L
, ~6!

whereL is the linear lattice size and one assumes smat,
large L. As is well known, theL dependence must be re
moved asz→0. It is immediate that, whenever the relatio
ship betweenQ`(t) andj`(t) is a power law such as in Eq
~5! above,f (L) will be a power law as well. This, togethe
with the complementary condition that only theL depen-
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dence must remain asymptotically forz@1, ensures in this
case that the finite-size susceptibility at the critical po
must be

xL~0!;Lg/n5L7/4. ~7!

In other words, FSS implies that logarithmic correctio
mustnot show up, and the finite-size susceptibility atTc will
exhibit pure power-law behavior againstL, with the same
power as in the homogeneous case. The same argument
course, valid forjL(t) which must then scale linearly withL
at Tc . As shown below, numerical data bear out such p
dictions, for bothxL(0) andjL(0).

This raises the question of how, on finite systems, to s
evidence for effects of the bulk corrections predicted in E
~3! and ~4!. In the following we show that the proper quan
tities to consider are temperature derivatives of, e.g.,jL(t).
We apply standard FSS concepts to show that, although
dominant behavior of such quantities is in powers ofL, the
leadingcorrectionsto FSS must depend on lnL. This is in
contrast with the corresponding~non-diverging! corrections
to FSS for, say,j which can be fitted by inverse power law
~see Ref. 17 and below!.

First we recall that the FSS form forj is, from Eq.~6!,

jL~ t !5L f~z!, f~z!→H z, z!1,

const, z@1.
~8!

The temperature derivative ofjL is then

mL~ t ![
djL~ t !

dt
5m`~ t !f8~z!, f8~z!→H 1, z!1,

0, z@1,
~9!

where m`(t)[dj` /dt and the prime denotes a derivativ
with respect toz. While the bulk limit z!1 of Eq. ~9! is a
straightforward identity, the vanishing off8(z) for z@1 @as
implied by Eq.~8!# must be qualified. Indeed,mL(t) does not
diverge in the latter regime, whilem`(t) does whent→0.
Thusf8(z);@m`(t)#21, in the sense that the dependence
f8 on t throughj` must be such as to cancel the divergi
t dependence ofm` . Since the FSS ansatz predicts that
only arises through the ratioj`(t)/L, one can deduce theL
dependence ofmL(t) for z@1. Up to now, the argument is
entirely general and variations of it have been commo
used in the FSS literature.

Turning to the two-dimensional random-bond Isin
model, where the bulk quantities are expected to behave a
Eqs.~3! and~4!, one has fort!1 ~consistent with our goal of
deriving expressions suitable for thez@1 regime!:

j`;t2n~ ln1/t ! ñ , ~10!

which can be iteratively inverted to givet as a function of
j` :

t;j`
21/n~ lnj`! ñ /n. ~11!

The expression form`(t) is

m`~ t !;t2~11n!@11Cln~1/t !# ñ , ~12!

plus less-divergent terms, which fort!1 can be put as
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m`~ t !;t2~11n!~ ln1/t ! ñ.j` /t5j`
111/n~ lnj`!2 ñ /n,

~13!

where Eq.~11! was used in the last step. It follows immed
ately that

f8~z!;z2~111/n!~ lnz! ñ /n ~14!

which, when plugged back into Eq.~9! together with Eq.
~13!, gives

mL;L111/n@12 lnL/ lnj`# ñ /n, z@1, ~15!

so all diverging factors related toj` are removed, but a
nondivergingj`-dependent term remains which eventua
vanishes. Strictly speaking, Eq.~15! means that for both
t!1 and L@1, but such thatz@1, one must observe esse
tially the leading power-law formmL;L111/n. However,
even though Eq.~2! enables one to sit exactly att50, Eq.
~15! suggests the existence of a regime in which the lead
correction to power-law behavior is;(12AlnL)ñ/n for finite
and not very large strip widthsL, thus defining an effective
~nondiverging! screening lengthjs[e1/A. This heuristic pro-
cedure draws on ideas used to interpret experimental dat
systems where a full divergence of the correlation length
hindered by percolation,21 random field,22 or frustration23 ef-
fects. Defining the inverse correlation lengthsk ~actually ob-
served!, k0;tn and ks[(js)

21 ~representing the physica
factor that smears the divergence, e.g., domain size!, one
writes

k5k01ks ~16!

with good results.21–23 Here, ks does not originate from a
physical feature of the infinite system; instead, it reflects
overall effect of higher-order corrections in such a preasym
totic region~strip widthsL&15). While js is of a different
nature to the crossover lengthLC setting the scale abov
which disorder effects are felt,2,3 the two lengths vary simi-
larly with disorder, as explained below.

We now describe the numerical procedures used to
the predictions given by Eqs.~7! and~15!, and the respective
results.

III. CALCULATIONAL METHOD AND RESULTS

We have used long strips of a square lattice, of wid
4<L<14 sites with periodic boundary conditions. In ord
to provide samples that are sufficiently representative of
order, we iterated the transfer matrix13 typically along 107

lattice spacings.
At each step, the respective vertical and horizontal bo

between first-neighbor spinsi and j were drawn from the
probability distribution Eq.~1! above. We have mainly use
three values ofr in calculations:r 50.5, 0.25, and 0.1; the
two smallest values have been chosen for the purpos
comparing with recent Monte Carlo simulations wheren and
g are evaluated.24 The critical temperatures, from Eq.~2!, are
Tc (0.5)/J051.641. . . ; Tc (0.25)/J051.239. . . ; Tc (0.1)/
J050.9059 . . . ~to be compared with Tc (1)/J0
52.269. . . ). We also evaluated critical correlation length
and their derivatives forr 50.01 and 0.001, with respectiv
critical temperaturesTc /J050.5089 . . . and0.3426 . . . .
g
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A. Susceptibility

The calculation of finite-size susceptibility data and th
extrapolation goes as follows. First, we include a unifo
longitudinal fieldh in the Hamiltonian, and obtain the large
Lyapunov exponentLL

0 for a strip of width L and length
N@1 in the usual way.15,25 Starting from an arbitrary initial
vectorv0, one generates the transfer matricesTi that connect
columnsi andi 11, drawing bonds from the distribution Eq
~1!, and applies them successively, to obtain

LL
05

1

N
lnH iP i 51

N Tiv0i
iv0i J . ~17!

The average free energy per site is th
f L

av(T,h)52 (1/L) LL
0 , in units of kBT. The initial suscep-

tibility of a strip, xL(Tc), is given by

xL~Tc!5
]2f L

av~T,h!

]h2 U
T5Tc ,h50

5Lg/nQ~0!, ~18!

where, according to the discussion in the preceding sect
we assume a pure power-law dependence onL at T5Tc .

As f L
av(T,h) is expected to have a normal distribution,26,25

so will xL . Thus the fluctuations are Gaussian, and relat
errors must die down with sample size~strip length! N as
1/AN. Typical strip lengths varied fromN523106 ~for
r 50.5) to N523107 ~for r 50.1), which are much longe
than those used in Ref. 17; they provide estimates for
free energy with an accuracy of 0.01%, which is crucial
compute reliable numerical derivatives. In order to get rid
startup effects, the firstN05105 iterations were discarded
The intervals~of external field values, in this case! used in
obtaining finite differences for the calculation of numeric
derivatives must be strictly controlled, so as not to be
important additional source of errors. We have managed
minimize these latter effects by usingdh typically of order
1024 in units of J when calculatingf L

av(Tc ;h50, 6dh) for
the derivative in Eq.~18!. We estimated the first Lyapuno
exponent at (T5Tc ,h50) and (T5Tc ,h56dh) with four
different realizations of the impurity distribution, each on
giving a separate estimate of the initial susceptibility. Fro
them the averagexL(Tc) and the error bars~twice the stan-
dard deviation among the four overall averages! are taken.

A succession of estimates, (g/n)L , for the ratiog/n, is
then obtained from Eq.~18! as follows:

S g

n D
L

5
ln@xL~Tc!/xL21~Tc!#

ln@L/~L21!#
. ~19!

The respective error bars follow from those of the cor
sponding finite-size susceptibilities. In order to extrapol
this sequence, we refer to early work on the eigenvalue sp
trum of the transfer matrix for pure systems with a margin
operator in the Hamiltonian.27 There, it is shown that the
critical free energy per site is affected only by an additi
logarithmic term in the coefficient of the leading
L22-dependent, finite-size correction~proportional to the
conformal anomaly,28 c): f (L)2 f (`)52(p/6L2)@c
1B(lnL)231•••#. Since disorder is expected to be margi
ally relevant in the present case, and assuming that the
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derivatives commute with theL dependence~at least as
dominant terms are concerned!, we expect a similar picture
to hold here. Of course, with the imprecisions introduced
randomness one can only expect to see the leading po
law dependence~see, e.g., Ref. 17 for further illustrations o
this point!.

Least-squares fits for plots of (g/n)L against 1/L2 provide
the following extrapolations:g/n51.74860.012, 1.749
60.008, and 1.74660.013, respectively, forr 50.50, 0.25,
and 0.10; the latter two estimates agree with 1.7460.03 and
1.7360.05, obtained in Ref. 24.

The overall picture is thus consistent with the predicti
of Eq. ~7!, that isg/n57/4, the same as for the pure syste
for all degrees of disorder. Recalling the Introduction, t
still is not enough to distinguish between weak- and stro
universality scenarios, as both coincide in their predictio
for the ratio of exponents. One needs to try and isolate
single exponent, which will be done in the next subsect
through investigation of correlation lengths.

Taken together with the results of Ref. 17 whereh was
found to be 1/4 through an analysis of averaged correla
lengths, and using the scaling relationg/n522h, the
present analysis of finite-size susceptibilities gives indep
dent support to the view that~1! the conformal invariance
relation14 h5L/pjL(Tc) still holds for disordered systems
provided that anaveraged—as opposed totypical, see next
subsection—correlation length is used; and that~2! the ap-
propriate correlation length to be used is that coming fr
the slope of semilog plots of correlation functions agai
distance.17 Interestingly, the connection with the conform
invariance prediction also rules out any explicit divergi
logarithmicL dependence onjL .

B. Correlation lengths

The aim of this subsection is to check on the validity
Eq. ~15!, or rather, its predicted consequences in the pre
ymptotic region within our reach,t!1, L&15.

The first difference to the free energy calculation d
scribed above is that the correlation functions are expecte
have a distribution close tolog-normal29,26 rather than a nor-
mal one. This has been thoroughly checked recently.18 Thus
self-averaging is not present, and fluctuations for a giv
sample donot die down with increasing sample size. How
ever, it has been numerically verified that the spread am
overall averages~i.e., central estimates! from different
samples does shrink~approximately asN21/2) as the
samples’ size (N) increases~see Fig. 2 of Ref. 18!. Accord-
ingly, in what follows the error bars quoted arise from flu
tuations among four central estimates, each obtained fro
different impurity distribution. Similar procedures seem
have been followed in Monte Carlo calculations of corre
tion functions in finite (L3L) systems.30

The direct calculation of correlation functions,^s0sR&,
follows the lines of Sec. 1.4 of Ref. 13, with standard ad
tations for an inhomogeneous system.17 For fixed distances
up to R5100, and for strips with the same length as tho
used for averaging the free energy, the correlation functi
are averaged over an ensemble of 104–105 different esti-
mates to yield̂ s0sR&.

The average correlation length,jav, is defined by
y
er-
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t
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e
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^s0sR&;exp~2R/jav!, ~20!

and is calculated from least-squares fits of straight lines
semilog plots of the average correlation function as a fu
tion of distance, in the range 10<R<100. And, finally,jav is
in turn averaged over the different realizations of impur
distributions.

Recall that, as explained in Ref. 17, the inverse ofjav is
not the same as the difference between the two lead
Lyapunov exponents, which gives the decay of themost
probable, or typical ~as opposed to averaged!, correlation
function.17,25,31 It has been predicted32 that typical correla-
tions in bulk two-dimensional random Ising magnets dec
as ^s0sR&;R21/4(lnR)21/8, while for averaged ones as i
Eq. ~20! logarithmic corrections are washed away, resulti
in a simple power-law dependence. For strips one co
expect, in analogy with the case of pure systems with m
ginal operators,27 additive logarithmic corrections to th
leading L21 behavior of typical correlations:LL

12LL
0

5(p/L)@h1D(lnL)211•••# with h51/4.
It has been conjectured that the averaged correlation fu

tions at criticality of the random-bond Ising model are ide
tical to those of the pure case;30 numerically the two quanti-
ties are indeed very close,18,30while most-probable and pure
system correlation functions do no fit each other so w
though their L dependence is similar.18 Given the exact
result33 that, for strips of pure Ising spins the corrections
the leadingL21 behavior of (jav)21 as given by Eq.~20!
depend onL22, it seems reasonable to expectL2x ~i.e.,
faster than inverse logarithmic! terms also in the presen
case. This has been shown to work well, with the sa
x52, in Ref. 17.

We now proceed to testing Eq.~15!. We calculatemL at
Tc @see Eq.~9!# numerically, from values ofjL

av evaluated at
Tc6dT, with dT/Tc51023.

Assuming a simple power-law divergencej`;t2n—i.e.,
ignoring, for the time being, less-divergent terms such
logarithmic corrections—we obtain the estimates for syste
of sizesL andL21:

1

nL
5

ln~mL /mL21!T5Tc

ln~L/L21!
21. ~21!

This is slightly different from the usual fixed-poin
calculation,13 and is more convenient in the present ca
where the exact critical temperature is known. Our data
each pair of (L,L21) strips have appeared in Ref. 5, and w
quote here, for completeness, just the extrapolated~against
1/L2) values: n51.03260.031 ~for r 50.5; here we have
extended the previous calculations up toL514),
n51.08360.014 (r 50.25), andn51.1460.06 (r 50.10).
Taken at face value, these data show a systematic tren
wards values ofn slightly larger than the pure-system valu
of 1, though the variation is smaller than that shown in R
24.

Before accepting this trend as an indication of the we
universality scenario, we must test for corrections to pu
system behavior caused by less-divergent terms, as b
responsible for the apparent change ofn with disorder. We
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then try to check whether our data fit a form inspired by E
~15! with n51 ~the pure-system value! and ñ 51/2, namely

mL

L2 ;~12AlnL !1/2. ~22!

Prior to displaying our results, we recall that the influence
randomness is expected to show on scales larger tha
disorder-dependent characteristic lengthLC .2,3 For L,LC
one should have apparent pure-system behavior.

A plot of (mL /L2)2 as a function of lnL for different
values ofr , including r 51, is shown in Fig. 1. The pure
system behavior consists of a monotonic approach to a h
zontal line, with an ever-decreasing slope. Forr 50.50 and
0.25 we can see the pure-system trend for smallL, followed
by a clearly marked crossover towards a form consistent w
Eq. ~22!. In each case, log-corrected behavior sets in
suitably largeL, exactly in the manner predicted by theor
the data stabilize onto a straight line with negative slope o
for L*LC , which decreases with increasing disorder.2,3 One
may assume, admittedly with some arbitrariness,LC for each
r to be approximately the location of the maximum of t
respective curve in Fig. 1. This givesLC.8, 5, and 2, re-
spectively, forr 50.50, 0.25, and 0.10~for r 50.10 data for
L52 and 3, not shown in the figure, were used as well!.

An order-of-magnitude guide to the size of the preasym
totic region where Eq.~22! is expected to hold, such that fo
largerL the pure power-law behavior predicted by Eq.~15!
at t50 takes over, is the ‘‘screening length’’js[e1/A of Eq.
~22!. For r 50.50, 0.25, and 0.10 one has the approxim
values js;431016, 73104 and 43102, respectively.
Though any of these is far beyond the largest strip wi
within reach of calculations, the trend against disorder
clearly similar to that ofLC .

FIG. 1. Finite-size scaling plots of logarithmic corrections@Eq.
~22!#. Straight lines are least-squares fits of data, respectively
L59214 (r 50.5), 7212 (r 50.25), and 4212 (r 50.1). The error
bars are smaller than the data points.
.

f
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th
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e
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We thus tried stronger disorder~smaller values ofr ), in
order to look for a signature of pure power-law behavior a
feasibleL&15. In Fig. 2 we show (mL /L2)2 as a function of
lnL for r 50.01 and 0.001. Proximity to the percolatio
threshold is reflected in the large error bars, which render
central estimates virtually meaningless forL&5; for larger
L, fluctuations are reduced, owing to the exponential grow
in the number of intracolumn configurations, so we still c
manage reasonable fits in that range. Unfortunately, no c
sign can be seen of a trend towards a horizontal line.
believe that a conjunction of~i! smallerr , ~ii ! largerL, and
~iii ! longer strip lengthN would eventually unearth the ex
pected stabilization, though we do not feel secure to ven
numerical guesses at this point.

The above correlation length analysis thus provides
with an interpretation of the numerical data which, it shou
be stressed, is backed by theory,2,3 without resorting to
disorder-dependent exponents. Nevertheless, we have f
that the general statistical quality of the data does not al
one to distinguish clearly in favor of either possibility, i
terms, e.g., of least-squares fits. We therefore seek com
mentary quantitative information through the analysis of s
cific heat data.

C. Specific heats

The same theory2,3 that gives rise to Eqs.~3! and~4! pre-
dicts that the singular part of the bulk specific heat per p
ticle for the disordered Ising model, near the critical point,
given by

C`~ t !.~1/C0!ln@11C0ln~1/t !#, ~23!

where againC0 is proportional to the strength of disorde
and the pure-system simple logarithmic divergence is rec
ered asC0→0. For C0Þ0 and t!1 a double-logarithmic
singularity arises, whose amplitude Eq.~23! predicts to de-
crease as disorder increases. The bulk specific heat ca
then be put as a simple function of the correlation len
given in Eq.~3!, and one cannot predict pure-system beh
ior againstL for finite systems, as was the case for the s
ceptibility and correlation length above. Instead, theo
gives3

CL~ t50!.C11aln~11blnL !, ~24!

where, similarly to Eq.~23!, b→0 for vanishing disorder. In
this latter limit the productab must remain finite, but it is

or

FIG. 2. Finite-size scaling plots of logarithmic corrections@Eq.
~22!# for strong disorder. Straight lines are least-squares fits of d
respectively, forL56212 (r 50.001) and 7212 (r 50.01).
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6018 56AARÃO REIS, de QUEIROZ, AND dos SANTOS
not a priori obvious from theory whethera}b21 away from
that. In fact, the form Eq.~24! has been verified by Monte
Carlo simulations ofL3L systems34 with the result that the
slope of plots ofCL against lnlnL decreasesfor increasing
disorder. This shows that in this case the simple FSS re
t→L21 seems to work satisfactorily.

An investigation of the specific heat on strips is clearly
interest, in order to check the consistency of our o
correlation-length data, and also to provide a compari
with the trends found for the specific heat inL3L systems,
both as described above and in recent work6 where a nondi-
verging behavior is apparently found in the thermodynam
limit.

Our results are displayed in Fig. 3, where one can see
the fit to a double-logarithmic form is reasonable; for sm
disorderr 50.5 we get an overall better fit to a pure logarit
mic divergence, similarly to the result forL3L lattices.34

This is again because, as disorder decreases one gets a
ent pure-system behavior for relatively largeL.

The slope of the plots turns smaller for higher disord
again in agreement with the trend found forL3L lattices;34

however, no sign of an eventual trend towar
nondivergence6 can be distinguished.

The recent claims that for strongly disordered Ising s
tems in two dimensions, the specific heat is finite atTc , have
been made on the basis of numerical simulations of s
diluted models.6 Specific heats were plotted againstt
(t.0) for system sizes and temperatures such
L/j`(t).1 ~thus excluding the very close vicinity of th
transition!; see Fig. 1 of Ref. 6. While for impurity concen
tration c51/9 a divergence was clearly seen, data
c51/4 and 1/3 were interpreted as signaling a finite b
specific heat at the transition. Such findings have b
criticized.35 At this point it is worth recalling experimenta
data. First, in bulk systems the specific heat exhibits a br
regular background against which the singular part mus
singled out. Early experiments on the two-dimensional s
diluted Ising system Rb2CoxMg 12xF4 showed that the am
plitude of the singular part of the magnetic specific heatde-
creasesas dilution 12x increases.36 However, owing to
experimental difficulties, chief among them the smearing
Tc due to sample inhomogeneities, clear peaks could
found only for 12x&0.11. Later, results from the more a

FIG. 3. Specific heat per site at criticality forL54212 and
r 50.50 ~squares!, 0.25 ~crosses!, and 0.1~triangles!, against lnlnL
@Eq. ~24!#.
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curate technique of birefringence37 and with a presumably
higher-quality sample confirmed38 that the specific heat di
verges for 12x50.15, apparently with a single logarithmi
dependence identical to that of the pure system; this
ascribed to an extreme narrowness of the region where
ordered ~double-logarithmic! behavior would show up~in
agreeement with theory3,38!. Though, to our knowledge, a
systematic study of the variation of specific heat of tw
dimensional Ising systems against dilution by, e.g., birefr
gence techniques, has not been done, useful hints ma
taken from the corresponding three-dimensional case
FexZn12xF2. There, birefringence experiments39 show that,
as dilution increases, the relative position of the~narrow!
peak atTc against that of the~broad! maximum of a short-
range order background contribution switches from highe
lower temperatures. This fact is not directly related to t
particular three-dimensional features which are used to
plain the dilution dependence of the specific he
amplitude.39 Thus, it is not unlikely that for two dimension
too the apparent nondiverging behavior seen, forT.Tc at
c51/4 and 1/3, represents only the background. To see
actual~probably small! peak one would have to go closer
Tc ; imprecisions in the knowledge ofTc for site-diluted sys-
tems~see, e.g., Ref. 16! may be of capital importance then

In contrast to this, here and in Ref. 34 one sits rightat the
exactly knownTc . Further, according to the discussion
finite-size specific heats above, the amplitude of the pea
the bulk transition translates directly into the slope of t
plot of CL against lnlnL, so the regular background is easi
dealt with.

In short, the evidence presented here clearly indicates
the specific heat diverges at the transition, with a doub
logarithmic behavior. Thus the critical exponenta is non-
negative. Through hyperscaling arguments, this ties in w
our findings for the correlation length, as shown in the f
lowing. For weak enough disorder, there should be no qu
tion about the dimensionality of the system, as opposed
near the percolation threshold in thediluted case @corre-
sponding tor 50 for the bond distribution Eq.~1!#, where
one might argue in favor of substituting thefractal dimen-
sion for the actual lattice dimensionality. Therefore, hyp
scaling should be fully applicable withd52, which yields

a

2
512n. ~25!

Since our specific heat data impliesa>0 ~most likely
a50), one must haven<1, thus excluding the disorder
varying exponents given in Sec. III B and in previou
works.6–8,24

IV. CONCLUSIONS

We have addressed the question of strong versus w
universality in the two-dimensional random-bond~i.e., ex-
change couplings being eitherJ or rJ with equal probability;
0,r<1 measures the degree of disorder! Ising model,
through extensive transfer-matrix calculations. A key ing
dient in the analysis of our data has been the consideratio
subtle finite-size scaling~FSS! effects; these come about as
result of constraints imposed by the Dotsenko-Shal



ic
t
f
d

a
-

te
o
a

e
in
.
th
r
p
of

y
ve
in

ce-
cific
gs,
her-
to
ling
rted
ies

the
the

k-
-
ve

r to
ld

d on

l-
cial
us-

56 6019UNIVERSALITY AND LOGARITHMIC CORRECTIONS IN . . .
theory2 for logarithmic corrections in the thermodynam
limit. We have established that while the correlation leng
~and the susceptibility! itself should display no signature o
size-dependent logarithmic corrections, its temperature
rivative, mL[djL /dt, shows a lnL dependence (L is the
strip width! over a wide range of system sizes. Actually,
the ~exactly known! critical temperature for the infinite sys
tem and for constant disorder~i.e., fixedr ) the behavior with
linear size is as follows. ForL,LC , with LC being a cross-
over length, the system behaves as in the pure case;LC de-
creases monotonically with disorder and 2<LC<8 for the
values ofr we considered. AboveLC , mL is dominated by a
lnL enhancementover the usual pure system power law; that
is, the numerical data can be explained through consis
theories, without resorting to disorder-varying critical exp
nents. The FSS theory developed here also suggests th
L increases, beyond a~heuristically introduced! screening
length js , one will eventually reach an asymptotic regim
where the logarithmic enhancements will vanish, leav
only pure power-law~pure-system-like! behavior; see Sec
II. This coherence length tracks the crossover length, in
sense of decreasing with increasing disorder, but its orde
magnitude is way beyond the reach of our numerical ca
bilities (js*102) for us to venture a more refined analysis
this issue. Note, however, that whent→0 after the thermo-
dynamic limit has been taken~which is an entirely different
matter! it is expected that ln(1/t) corrections, as predicted b
the Dotsenko-Shalaev theory, should manifest themsel
Also, our data independently confirm that the conformal
variance result jav5L/ph is still valid for the two-
-

os

-
a,

-

h

e-

t

nt
-
t as

g

e
of
a-

s.
-

dimensional random-bond Ising model, withh51/4 as in the
pure case.

As a further test of the consistency of the proposed s
nario, we have examined the size dependence of the spe
heat for this system. Consistently with the above findin
the specific heat was seen to be clearly divergent in the t
modynamic limit. Since there are no physical grounds
invoke a mechanism leading to changes in the hypersca
relation, the case for weak universality cannot be suppo
by our data. Further, it must be noted that a variety of stud
of this problem, both theoretical40,41 and experimental36,38,42

concurs with the idea that the leading singularities remain
same as in the pure case, though they have not dealt with
detection of logarithmic corrections.

As regards works whose conclusion is that wea
universality holds instead,6,7,24thoughjL(T) and the suscep
tibility xL(T) were calculated, no attempt seems to ha
been made to fit the corresponding data to a form simila
Eq. ~22!. Thus it remains to be checked whether they wou
also be consistent with suitable FSS expressions base
strong-universality concepts.
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