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Exact ground states for a class of one-dimensional frustrated quantum spin models

D. V. Dmitriev V. Ya. Krivnov, and A. A. Ovchinnikov
Joint Institute of Chemical Physics of RAS, Kosygin str.4, 117977, Moscow, Russia

~Received 28 February 1997!

We have found the exact ground state for two frustrated quantum spin-1
2 models on a linear chain. The first

model describes the antiferromagnet-ferromagnet transition point. The singlet state at this point has double-
spiral ordering. The second model is equivalent to special case of the spin-1

2 ladder. It has a nondegenerate
singlet ground state with exponentially decaying spin correlations, and there is an energy gap. The exact
ground-state wave function of these models is presented in a special recurrent form, and a recurrence technique
for expectation value calculations is developed.@S0163-1829~97!03034-8#
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I. INTRODUCTION

Last decade, frustrated Heisenberg models were a su
of intensive studies.1–12 Of the main interests are ground
state properties with respect to variations of exchange i
grals and the character of the phase transitions. In partic
these properties may be important in the theory of highTc
superconductivity.

There is much interest in quantum spin systems with co
peting interactions for which an exact ground state can
constructed. An example of such a model has been give
Majumdar and Ghosh.13 They have considered ans5 1

2 chain
with antiferromagnetic nearest- and next-nearest-neigh
interactions, and the strength of the second interaction
one-half of the first. The ground state of this model is tw
fold degenerate, it consists of dimerized singlets, and the
a gap in the spectrum of excited states.

Another example found by Affleck Kennedy, Lieb, an
Tasaki14 ~AKLT ! is anS51 spin chain with special bilinea
and biquadratic interactions. This model has a uniq
valence-bond-solid ground state, and ground-state corr
tions have an exponential decay. Besides there is the
between the ground and excited states. Further genera
tions of the AKLT model have been studied in a numb
recent papers.15

In this paper we present two classes ofs5 1
2 chains for

which the exact ground-state wave function has a spe
recurrent form. These models have competing ferro- and
tiferromagnetic interactions, and their ground states can
either ferromagnetic or singlet depending on the relation
tween the exchange integrals. The first type of exactly so
able models is related to systems at the ferromag
antiferromagnet transition point when the ferromagnetic a
singlet states are degenerate. The calculation of the spin
relation function in the singlet ground state shows sp
magnetic order at this point.

The model of the second type has the nearest-, n
nearest-, and next-next-nearest-neighbor interactions dep
ing on one parameter. This model has a nondegenerate
glet ground state for cyclic chains and for a certain region
the parameter, and its ground-state properties are simila
that of the AKLT model. In other words, this model ha
some properties of the ‘‘Haldane scenario,’’16 though it is the
model with half-integer spin. We note, however, that t
560163-1829/97/56~10!/5985~11!/$10.00
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considered model has two sites in a unit cell, and it is equi
lent to the special case of a spin ladder. In some limit t
model reduces to the effective spin-1 chain for which t
ground-state wave function coincides with that for the AKL
model.

This paper is organized as follows. In the Sec. II we w
consider a model of the first type and describe the ex
singlet ground-state wave function as well as details of
spin correlation function calculations. Section III and the A
pendix present the study of a model of the second type.
results of the paper will be summarized in Sec. IV.

II. FRUSTRATED SPIN CHAIN AT ANTIFERROMAGNET-
FERROMAGNET TRANSITION POINTS

A. Exact ground-state wave function

Let us consider ans5 1
2 spin model with nearest- an

next-nearest-neighbor interactions given by the Hamilton

Ĥ52(
i 51

M S S2i 21•S2i2
1

4D1J23(
i 51

M S S2i•S2i 112
1

4D
1J13(

i 51

N S Si•Si 122
1

4D , ~1!

with periodic boundary conditions and evenN52M .
If J23,1, then the ground state of Eq.~1! is ferromagnetic

~singlet! at d,0 ~d.0!, whered5J131J23/2(12J23) ~Fig.
1!. The equationd50 defines the line of transition point
from the ferromagnetic to the singlet state, when energie
these states are zero. The model~1! along this line is given
by the Hamiltonian depending on the parametern ~n.0!:

Ĥ52(
i 51

M S S2i 21•S2i2
1

4D2~n21!(
i 51

M S S2i•S2i 112
1

4D
1

n21

2n (
i 51

N S Si•Si 122
1

4D , ~2!

with periodic boundary conditions.
We note that Hamiltonian~2! has a symmetry: Its spec

trum coincides with the spectrum ofH̃(n) obtained by the
transformation
5985 © 1997 The American Physical Society
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5986 56D. V. DMITRIEV, V. YA. KRIVNOV, AND A. A. OVCHINNIKOV
H̃~n!5~n21!HS n

n21D , n.1.

This transformation permutes the factors at the first a
second terms in Hamiltonian~2!. Thus, due to the symmetry
it is sufficient to consider the range 0<n<2.

First, we will show that the ground-state energy of Eq.~2!
is zero. Let us represent Hamiltonian~2! as a sum of Hamil-
toniansHn of cells containing three sites:

Ĥ5(
i 51

M

~H2i 211H2i !, ~3!

where

H2i 2152
1

2 S S2i 21•S2i2
1

4D2
n21

2 S S2i•S2i 112
1

4D
1

n21

2n S S2i 21•S2i 112
1

4D ,

H2i52
1

2 S S2i 11•S2i 122
1

4D2
n21

2 S S2i•S2i 112
1

4D
1

n21

2n S S2i•S2i 122
1

4D .

Eigenvalues of eachHn are

l15l250, l35
n22n11

2n
.0.

We will present a singlet wave function which is the exa
one of eachHn with zero energy and, therefore, it is th
exact ground-state wave function of Eq.~2!. This function
has a form

FIG. 1. T50 phase diagram of model~1!. The solid line is the
boundary between the ferromagnetic and singlet phases. Mode~1!
along this line is given by Hamiltonian~2!. Circles correspond to
the special cases of this Hamiltonian.
d

t

C0~M !5P0CM , ~4!

where

CM5~s1
11ns2

11ns3
1•••1nsN

1!~s3
11ns4

1•••1nsN
1!•••

3~s2n21
1 1ns2n

1 •••1nsN
1!•••~sN21

1 1nsN
1!u1,2,...,N&,

~5!

wheresi
1 is thes5 1

2 raising operator.
Equation~5! containsM5N/2 operator multipliers, and

the vacuum stateu1,2,...,N& is the state with all spins pointing
down. The functionCM is the eigenfunction ofSz with Sz
50, but it is not the eigenfunction ofS2. P0 is a projector
onto the singlet state. This operator is17

P05
1

8p2 E
0

2p

daE
0

2p

dbE
0

p

sing dg eiaŜzeigŜxeibŜz,

whereŜx(z) are components of the total spin operator.
The functionCM contains components with all possib

values of spinS (0<S<M ), and in fact a fraction of the
singlet is exponentially small at largeN. This component is
filtered out by the operatorP0 .

It is not difficult to check that

HnCM50 ~6!

for n51,...,(N22), and therefore the ground-state energ
for all values of spinS of an open chain described by th
Hamiltonian

Hop5 (
n51

N22

Hn ~7!

are zero.
The operatorsHN21 and HN do not give zero acting on

CM , but

HN21~N!P0CM5P0HN21~N!CM50. ~8!

The latter equation can be easily checked using the fact
first set of parentheses in Eq.~5! can be replaced by
(12n)s1

1 under the projectorP0 .
Equations~6! and ~8! mean thatC0(M ) is the exact sin-

glet ground-state wave function of Eq.~2! for anyM and that
the ground-state energy is zero. We note that the grou
state energy coincides with its exact lower bound becausH
is the sum of non-negative defined operators@Eq. ~3!#. Of
course, the trivial ferromagnetic state has zero energy
well.

In the particular casen52, whenJ125J23521 andJ13
5 1

4 , another form of the exact singlet ground-state wa
function has been found in Ref. 18. It reads

C5( @ i , j #@k,l #@m,n#•••,

where @ i , j # denotes the singlet pair and the summation
made for any combination of spin sites under the condit
that i , j , k, l , m,n, ... . However, it is not clear how this
function can be generalized tonÞ2.

The following general statements relevant to Hamilton
~2! can be proved.
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56 5987EXACT GROUND STATES FOR A CLASS OF ONE- . . .
~1! The ground states of open chains described by Eq.~7!
in the sector with fixed total spinS are nondegenerate an
their energies are zero.

~2! For cyclic chains the ground state in theS50 sector
is nondegenerate and has momentump. The ground-state
energies for 0,S,M are nonzero.

~3! The singlet ground-state wave functions for open a
cyclic chains coincide with each other.

~4! The singlet ground-state wave functionC0(M ) is
superstable19 with respect to any cell operatorHn ; i.e.,
C0(M ) is the ground-state wave function of the Hamiltoni
H1lHn for 21,l,`.

B. Norm of the ground-state wave function

Let us return to the problem of the projection of the fun
tion CM . As one can see from Eq.~5!, the functionCM
satisfies a recurrent equation

CM5@~s1
11ns2

1!1nS1~N22!#u1,2&CM21 , ~9!

whereCM21 is the function~5! for the system of (N22)
spins on sites 3,4,...,N andS1(N2 l )5( i 5 l 11

N Si
1 .

In principle, it is possible to generateC0(M ) starting
from M51 and using Eqs.~4! and ~9!. However, it is more
convenient to obtain the recurrent formulae for expectat
values ~norm and correlators! with respect to the function
C0(M ) directly.

First, we consider a norm ofC0(M ), which has a form

GM5^C0~M !C0~M !&5^CMP0CM&

5
1

2 E
0

p

FM~g!sing dg, ~10!

where

FM~g!5FM~g1 ,g2!ug15g25g

and

FM~g1 ,g2!5 K CMexpS i
g1

2
S1~N!1 i

g2

2
S2~N! DCM L .

(11)

Commuting operators in Eq.~11! and using the fact tha
SzCM50, we rewrite Eq.~11! in the form

FM~g1 ,g2!5^CMexp@ izS2~N!#exp@ iz8S1~N!#CM&,
~12!

where

z5Ag2

g1
tan

Ag1g2

2
, z85Ag1

g2

sinAg1g2

2
.

It follows from Eqs. ~9! and ~12! that the function
FM(g1 ,g2) satisfies the equation

FM~g1 ,g2!5F11n22~11n!2zz81n~n11!~12zz8!

3S z
]

]z
1z8

]

]z8D
d

-

n

2n2~12zz8!2
]2

]z]z8GFM21~g1 ,g2!.

Using this equation, we obtain, forFM(g),

FM~g!5F11n22~11n!2sin2
g

2
1n~n11!sing

d

dg

2n2 cos2
g

2 S d2

dg2 1
1

sing

d

dg D GFM21~g!.

~13!

The solution of Eq.~13! is

FM~y!5LM~y!F0~y!, ~14!

where

L~y!5
~12n!2

2
1

~11n!2

2
y2n~n11!~12y2!

3
d

dy
2

n2

2
~11y!2

d

dy
~12y!

d

dy
, ~15!

y5cosg, andF0(y)51.
According to Eq.~15!, FM(y) is a polynomial iny of

orderM . It turns out that further calculations will be simpl
fied if FM(y) is expanded over Legendre polynomia
Pn(y):

FM~y!5 (
n50

M

cn~M !Pn~y!. ~16!

The coefficientscn( l ) are defined by the recurrent equatio

cn~ l 11!5
n

2n21

~nn11!2

2
cn21~ l !

1
n2~n21n!1~n21!2

2
cn~ l !

1
n11

2n13

~nn1n21!2

2
cn11~ l !, ~17!

with initial condition c0(0)51. Besides,cn( l )50 at n. l .
The normGM is given by

GM5
1

2 E
21

1

FM~y!dy5c0~M !. ~18!

C. Spin correlations

The spin correlation functions can be found in the sa
way as GM . It is convenient to express the scal
productSi•Sj by the permutation operatorpi j 52Si•Sj1

1
2 .

Then non-normalized expectation value Q( i , j )
5^C0(M )(Si•Sj2

1
4 )C0(M )& is

Q~ i , j !52 1
4 ^C0~M !~pi , j21!2C0~M !&

52 1
4 ^CM~pi , j21!P0~pi , j21!CM&. ~19!
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The equations forQ( i , j ) can be obtained as in the derivatio
of Eqs.~14! and~15!. They are somewhat different for eve
and oddi . For example, the equations forQ(1,n) have the
forms

Q~1,2l !52
~n21!2

4 E
21

1 11y

2
~Ll 22L1LM211!dy,

~20!

Q~1,2l 21!52
n2~n21!2

4 E
21

1 11y

2
~Ll 22L2LM2 l1!dy,

~21!

where

L15122n~12y!
d

dy
2n2~11y!

d

dy
~12y!

d

dy
,

L25122~12y!
d

dy
2~11y!

d

dy
~12y!

d

dy
.

It is clear, that

Q~2,n12!5Q~1,N2n11!.

Making use consequent integration of Eqs.~20! and~21!, we
obtain

E
21

1 11y

2
~Ll 22L1~2!L

M2 l1!dy

5E
21

1 11y

2
~ L̃ l 221!~L1~2!L

M2 l1!dy

5E
21

1

~ L̃1~2!L̃
l 221!~LM2 l1!dy,

where

L̃5L̃15
1

2
1

~2n21!2

2
y2n~2n21!~12y2!

d

dy

2
n2

2
~11y!2

d

dy
~12y!

d

dy
,

L̃25
11y

2
2~12y2!

d

dy
2

~11y!2

2

d

dy
~12y!

d

dy
.

So Eqs.~20! and ~21! can be rewritten as

Q~1,2l !52
~n21!2

4 E
21

1

F̃l 21~y!FM2 l~y!dy, ~22!

Q~1,2l 21!52
n2~n21!2

4 E
21

1

~ L̃2F̃l 22~y!!FM2 l~y!dy,

~23!

where

F̃l~y!5L̃ l~y!1. ~24!

The functionF̃l(y) can be expanded over Legendre po
nomials similarly toF l(y),
F̃l~y!5 (
n50

l

an~ l !Pn~y!, ~25!

and the coefficientsan( l ) satisfy the equations

an~ l 11!5
n

2n21

~nn1n21!2

2
an21~ l !

1
n2~n21n!11

2
an~ l !

1
n11

2n13

~nn11!2

2
an11~ l !. ~26!

with initial conditionsa0(0)51 andan( l )50 at n. l .
Using Eqs.~18!, ~22!, and ~23!, we can express the cor

relation functionK(1,n)5^S1•Sn&/GM in the forms

K~1,2l !5
1

4
2

~n21!2

2c0~M ! (
n50

l 21
an~ l 21!cn~M2 l !

2n11
, ~27!

K~1,2l 21!5
1

4
2

n2~n21!2

2c0~M ! (
n50

l 21
bn~ l 21!cn~M2 l !

2n11
,

~28!

where coefficientsbn( l 21) are defined byan( l 22) as fol-
lows:

bn~ l 21!5
1

2

n3

2n21
an21~ l 22!1

n21n11

2
an~ l 22!

1
1

2

~n11!3

2n13
an11~ l 22!. ~29!

Therefore, the calculation of the spin correlation functi
reduces to the solution of the recurrent equations~17! and
~26!, which were used for numerical calculations of the sp
correlation function for finite systems.

At large M the solutions of the recurrent equations~17!
and ~26! have scaling forms

cn~M !52M ~M ! !2n2MsexpS M f 0~s!1
22n

n
lnM1 f 1~s! D ,

~30!

an~M !52M ~M ! !2n2Ms

3expS M f 0~s!2
22n

n
lnM1g1~s! D , ~31!

where the parameter

s5
2n11

2M

can be considered as a continuous variable.
We note that Eqs.~30! and ~31! are not valid for special

values ofn, n51/(m11) (m50,1,2,...). For thesen the last
term in Eq.~17! vanishes whenn5m and Eq.~17! reduces to
(m11) equations forcn( l ) with n<m.

The recurrent equations~17! and ~26! at M@1 and n
Þ1/(m11) reduce to differential ones forf 0(s), f 1(s) and
g1(s). For example,f 0(s) satisfies the equation
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expS f 0~s!2s
d f0~s!

ds D5s2cosh2S 1

2

d f0~s!

ds D ,

with the initial conditionf 0(1)52 ln 4.
Its implicit solution is

f 0~s!522 lnj12
sinj

j
ln tan

j

2
, ~32!

where

s5
sinj

j
.

As follows from Eq.~32!, an(M ) andcn(M ) as functions of
n have a sharp maximum atn/M52/p.

The functionsf 1(s) andg1(s) are given by

f 1~s!52
21n

n
ln j1

42n

2n
ln sinj

2
1

2
lnS sinj

j2 2
cosj

j D1C
n21

n2 , ~33!

g1~s!5
223n

n
lnj1

3n24

2n
ln sinj

2
1

2
lnS sinj

j2 2
cosj

j D1C
n21

n2 , ~34!

where the constantC.0.969.
To obtainK(1,2l ) at N→` we substitute Eqs.~30!–~34!

into Eq.~27! and replace the sum overn by the integral over
s. This integral is calculated by the method of steepest
scent. The saddle point iss05(1/p)sin(2pl/N), and the inte-
grand does not depend on parametern. The final result for
the spin correlation functionK(1,2l ) at N→` is also inde-
pendent ofn:

K~1,2l !5
1

4
cos

2p~2l 21!

N
1OS 1

ND . ~35!

For the particular casen52, Eq.~35! has been obtained ea
lier in Ref. 18.

The corresponding calculations forK(1,2l 21) to within
terms;1/N lead to the same expression~35!. But taking into
account terms;1/N, we find that the differenceK(1,2l
21)2K(1,2l ) is

K~1,2l 21!2K~1,2l !5
p

N

n21

n
sin

4p l

N
1OS 1

N2D .

The latter equation means that the double-spiral struc
exists. The pitch angle of each spiral is 4p/N and there is a
small shift angleDw5(2p/N)(22n)/n between them:

K~1,2l !5
1

4
cosS 2p~2l 21!

N
2Dw D , ~36!

K~1,2l 11!5
1

4
cos

4p l

N
. ~37!
e-

re

This shift angle reflects the fact that the unit cell conta
two sites unlessn52. Equations~36! and ~37! show that
long-range spiral order exists in the singlet ground state
Hamiltonian ~2! in the thermodynamic limit and that
double-spiral state is formed.

It is interesting to note that correlators~36! and ~37! co-
incide with those obtained by using the simple ‘‘quasiclas
cal’’ trial wave function in the form

ccl5expS (
n51

N

znsn
1D u1,2,...,N&,

where

zn5expS 2pn

N
1

~21!np

N

n22

n D .

Thus the quantum ground state of the large-N limit re-
sembles the classical one, though for small-size syst
quantum fluctuations are essential.

The formation of spirals having a period which is equal
the system size reflects the tendency to the creation of
incommensurate spiral state at the antiferromagnetic reg
whend.0. The behavior of the system in the vicinity of th
transition point has been studied by us7 for model ~1! with
J125J23521, J135

1
4 1d. For d!1 the period of the spira

is finite and is proportional tod21/2. The transition from the
ferromagnetic to the singlet state is a phase transition of
second order with respect tod.

D. Special cases of the model

There are the special pointsn51/m (m51,2,...) at which
Eqs. ~36! and ~37! are not valid. Atn51

2 the function ~4!
reduces to the product of singlets

C0~M !5@2,3#@4,5#•••@N,1# ~38!

and K(2,3)5K(4,5)5•••5K(N,1)52 3
4 . Other spin corr-

elators are zero.
Analysis of Eqs.~17!, ~26!, and ~27! shows that the

ground-state correlations of model~2! with n51/m (m>3)
have antiferromagnetic character with an exponentially
cay:

K~1,n11!;~21!nexpS 2
n

r c
D ,

where the correlation length is

r c522 ln21S 12
2

m~m21! D . ~39!

The crossover between the spiral state at 1/m,n,1/(m
21) and the antiferromagnetic state atn51/m occurs in the
exponentially small ~at N@1! vicinity of these special
points.

At m@1,

r c5m2 ~40!

and the correlation length diverges whenn trends to zero
along the special points and there is the Ne´el ordering in this
limit.
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5990 56D. V. DMITRIEV, V. YA. KRIVNOV, AND A. A. OVCHINNIKOV
At n51, whenJ12521, J235J1350, the system is di-
vided into ferromagnetic pairs 1-2, 3-4,... .

Using second-order perturbation theory with respect
~n21!, we reduce model~2! at n→1 to the effective spin-1
Hamiltonian

Heff5
~n21!2

8 (
n51

M H 2~Ln•Ln1121!1Ln•Ln12

2
1

2
~Ln•Ln11!•~Ln11•Ln12!

2
1

2
~Ln11•Ln12!•~Ln•Ln11!J , ~41!

with M spinsL51.
The exact singlet ground-state wave function of Ham

tonian~41! can be obtained from the Eqs.~4! and~5!. It has
the form

C0~M !5P0L1
1~L2

11L3
11•••1LM

1 !•••~LM21
1

1LM
1 !LM

1 u21,...,21&, ~42!

whereLi
1 are raising operators of spin 1.

The ground-state correlation function of Eq.~41!,
K(1,n 11)5^L1•Ln11&/GM , is found from Eqs.~36! and
~37!. It is

K~1,n11!5cos
2pn

M
.

Finally, we note that it is possible to calculate high
terms of the perturbation theory and to obtain effect
spin-1 Hamiltonians which are proportional to the thir
fourth, and higher power of the small parameter~n21!. All
of them have zero ground-state energy as well as Eq.~41!.

III. FRUSTRATED SPIN CHAIN
WITH AN ANTIFERROMAGNETIC GROUND STATE

A. Model and its exact ground state

In the preceding section the spin model at t
ferromagnet-antiferromagnet transition point has been s
ied. The exact singlet ground-state wave function at t
point is given by Eq.~4!. In this section function~4! will be
generalized to give the exact ground-state wave function
special one-dimensional frustrated spin-1

2 model. This model
has a unique singlet ground state~for the cyclic chain! with
an exponential decay of correlations, and there is a gap to
excitations.

Let us consider the wave function which depends on t
parameters and has form~4!:

C0~M !5P0CM , ~43!

where

CM5~s1
11n1s2

11n2s3
11•••1n2sN

1!~s3
11n1s4

11n2s5
1

1•••1n2sN
1!•••~sN21

1 1n1sN
1!u1,2,...,N&. ~44!

We will construct the Hamiltonian for whichC0(M ) is the
exact ground-state wave function as the sum of the lo
four-sites Hamiltonians
o

-

r

,

d-
is

a

he

o

al

H5H1,2,3,41H3,4,5,61•••1HN23,N22,N21,N1HN21,N,1,2.
~45!

The HamiltoniansHi ,i 11,i 12,i 13 are chosen in the form

Hi ,i 11,i 12,i 135J12F S Si•Si 112
1

4D1S Si 12•Si 132
1

4D G
12J13F S Si•Si 122

1

4D1S Si 11•Si 132
1

4D G
12J23S Si 11•Si 122

1

4D
12J14S Si•Si 132

1

4D . ~46!

Thus, the model has nearest-~J12 andJ23!, next-nearest-
~J13!, and next-next-nearest-~J14! neighbor interactions. In
fact, this model is equivalent to the spin-1

2 ladder with differ-
ent interactions, as is shown in Fig. 2.

We demand thatC0(M ) be the eigenfunction of eac
local Hamiltonian with the eigenvalue«,0, i.e.,

Hi ,i 11,i 12,i 13C0~M !5«C0~M !. ~47!

The exchange integralsJi j and the energy« are defined by
the Schro¨dinger equation

H1,2,3,4CM5«CM . ~48!

Let us represent the functionCM in the form

CM5@ q̂11n2q̂2S1~N24!1n2
2S12~N24!#u1,2,3,4&CN22 ,

~49!

where

q̂15s1
1s3

11n1~s1
1s4

11s2
1s3

1!1n1
2s2

1s4
11n2~11n1!s3

1s4
1,

q̂25s1
11n1s2

11~11n2!s3
11~n11n2!s4

1 .

The equation

H1,2,3,4q̂1u1,2,3,4&5«q̂1u1,2,3,4& ~50!

reduces to five equations for four exchange integrals and
energy«. The necessary condition of the existence of a
lution with «,0 is

11n11n250. ~51!

So under this condition there is only one parame
of Hamiltonian ~45!. It is convenient to take the valuem
5(21n1)/(2n111) as a system parameter. Then, the so

FIG. 2. Spin ladder representation of model~45!. Different lines
correspond to different exchange interactions.
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tion of Eq. ~50! at n15(22m)/(2m21) and n2
5(m11)/(122m) yields the following expressions forJi j
and«:

J125
~122m!~22m!

9
, J2352

1

3

m~22m!2~m21!

~m11!2 ,

J135
~2m21!~22m!~m21!2

6~m11!2 , J145
~2m21!2~m21!

3~m11!2 ,

~52!

«52
3m~m21!2

~m11!2 .

It turns out that the equation

H1,2,3,4q̂2u1,2,3,4&5«q̂2u1,2,3,4&

with Ji j and« given by Eq.~52!, is satisfied automatically.
As will be proven in the Appendix, the functionCM with

n152n221 contains singlet and triplet components on
i.e.,

S12~N!CM50. ~53!

Therefore, the last term in Eq.~49! vanishes andCM is the
eigenfunction ofH1,2,3,4with the eigenvalue«.

Generally, the HamiltonianH1,2,3,4 has following eigen-
states: one quintet, three triplets, and two singlets. Two
them~one singlet and one triplet! have energy«, while other
four states have higher energies atm.0 ~mÞ1!. At m,0 the
ground state ofH1,2,3,4 is a quintet with zero energy. In th
Appendix we will show that the wave functionCM is an
eigenfunction with eigenvalue« of each local Hamiltonian
Hi ,i 11,i 12,i 13 excluding that for i 5N21. Therefore, the
ground-state energy of the open chain atm.0 is (N/2
21)« and it coincides with the exact lower bound of th
energy, similarly to the model of Sec. II. However, in th
contrast with the latter, the present model is fourfold deg
erate for the open chain.

As for the HamiltonianHN21,N,1,2, the functionCM is not
its eigenfunction, but

HN21,N,1,2C0~M !5«C0~M !

~see Appendix! and

HC0~M !5
N

2
«C0~M !.

As follows from Eq.~52!, the spectrum ofH(m) coincides
with the spectrum ofH̃(m) which is connected withH(m)
by the transformation

H̃~m!5m2HS 1

m D .

This transformation permutes the factors at the third and
terms in Eq.~46!. Therefore, it is sufficient to consider th
HamiltonianH(m) in the region21<m<1.

The ground state ofH is ferromagnetic atm,0. When
0,m,1 the ground state of the cyclic chain is the nondeg
erate singlet. The pointm50 is the ferromagnet-
antiferromagnet transition point. At this point the prese
,

f

-

st

-

t

model coincides with model~2! at the special pointn51
3. As

follows from Eq. ~52!, this transition is the phase transitio
of first order with respect tom.

At m51
2 the only nonzero exchange integral isJ23 and the

ground state consists of non interacting singlet pairs 223,4
25,...,12N. Whenm→1 the first term in Eq.~46! dominates
and the system is divided into weakly interacting ferroma
netic pairs 122,324,... . Using second-order perturbatio
theory with respect to the small parameter~m21!, we reduce
the HamiltonianH @Eq. ~45!# to the effective spin-1 mode
given by

H5
~m21!2

16
Heff ,

where

Heff5 (
n51

M H 5Ln•Ln111Ln•Ln12

1
1

2
~Ln•Ln112Ln11•Ln12!226J ~54!

andLn is spin-1 operator.
The ground-state wave function of Eq.~54! can be ob-

tained from Eq.~43! at m51. It reads

C0~M !5P0~L1
122L2

12•••22L M
1 !~L2

122L3
12•••

22L M
1 !•••3~L M21

1 22L M
1 !L M

1 u21,21,...,21&.

~55!

It is remarkable that the function~55! coincides with the
ground-state wave function of the AKLT model. Therefor
the ground-state physics of the model given by Eq.~54! and
the AKLT one are the same, though the Hamiltonians
these two models are different.

B. Spin correlations in the ground state

First, we calculate the norm of the ground-state wa
function. It is convenient to express the functionCM in
terms of the parameterm and to introduce a new function
C̃M :

CM5~2m21!2MC̃M ,

where

C̃M5@~2m21!s1
11~22m!s2

12~m11!S1~N22!#

3@~2m21!s3
11~22m!s4

12~m11!S1~N24!#•••

3@~2m21!sN21
1 1~22m!sN

1#u1,2,...,N&.

According to Eq.~18!, the norm ofC̃0(M )5P0C̃M is

GM5^C̃0~M !C̃0~M !&5
1

2 E
21

1

FM~y!dy.

For the present model the functionF l(y) is defined by the
equation

F l~y!5Ll~y!1, ~56!

where
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L~y!5
9~12m!2

2
1

~11m!2

2 Fy12~12y2!
d

dy

2~11y!2
d

dy
~12y!

d

dyG .
The solution of Eq.~56! is

F l~y!5
v1

l 13v2
l

4
1

v1
l 2v2

l

4
y,

where

v156~m22m11!, v252~m22!~2m21!.

This form of F l(y) reflects the fact that the functionC̃M
contains the singlet and triplet components only.

ThusGM is

GM5
v1

M13v2
M

4
. ~57!

As uv2 /v1u,1, thenGM5 1
4 v1

M at M→`.
The spin correlation functions can be found in a simi

way as in the Sec. II. In analogy with Eqs.~19! and~20!, we
obtain

Q~N22l 21,N!52
1

8 E
21

1

@LM2 l 21F l 118 ~y!#dy, ~58!

where

F l 118 ~y!5^C̃l 11~pN22l 21,N21!P0~pN22l 21,N21!C̃l 11&.

Carrying out the necessary calculations, we find

F l 118 ~y!54~m11!2~22m!2v1
l 211v2

l 111~2m21!2

3@~2m222m15!v1
l 211~2m2110m21!v2

l 21#

3~11y!.

SubstitutingF l 118 (y) into Eq. ~58!, we obtain, for the spin
correlation functionK(1,2l 12)5K(N22l 21,N),

K~1,2!5
1

4
2

~m21!2

2v1

113~v2 /v1!M21

113~v2 /v1!M , ~59!

K~1,2l 12!52
~m11!2

27v1v2

3
~2m21!2~v2 /v1! l1~m22!2~v2 /v1!M2 l

113~v2 /v1!M ,

~60!

wherel 51,2,...,M21.
Similar calculations forK(1,2l 11) result in

K~1,2l 11!5
~m11!2

6v1

~v2 /v1! l1~v2 /v1!M2 l

113~v2 /v1!M . ~61!

The correlatorsK(2,n) have been obtained by using the sym
metry of the system~see Fig. 2!. For example,

K~2,3!5K~1,N!, etc.
r

In the thermodynamic limitM→` and l !M , Eqs. ~59!–
~61! reduce to

K~1,2!52
3

4

v2

v1
, ~62!

K~1,2l 12!52
~m11!2~2m21!2

27v1v2
S v2

v1
D l

, ~63!

K~1,2l 11!5
~m11!2

6v1
S v2

v1
D l

. ~64!

The correlators have the exponential decay, and the corr
tion lengthr c is

r c~m!52 ln21Uv1~m!

v2~m!
U. ~65!

It follows from Eq. ~65! that the ground state ha

ultrashort-range correlations. For example,r c(0)52 ln21(3
2)

@this value coincides withr c given by Eq.~39! with m53#
andr c(1)52 ln21 3. In the latter case,r c coincides with cor-
relation length of the AKLT model. Atm51

2 the only non-
zero correlators areK(2,3)5K(4,5)5•••5K(N,1)52 3

4 in
accordance with the dimer character of the ground state

The valuev2(m) changes the sign atm51
2 and as follows

from Eqs.~62!, ~63!, and~64!, the correlators show an ant
ferromagnetic structure of the ground state at 0<m<1

2, while
at 1

2<m<1 there are ferromagnetic correlations inside t
pairs~1,2!,~3,4!,... and the antiferromagnetic correlations b
tween the pairs.

C. Energy gap

The HamiltonianH of the cyclic chain has a singlet-triple
gapD for finite N. It is evident that form51

2 the gap exists
for N→` and D~ 1

2!5
1
6. The existence of a finite gap at th

thermodynamic limit in the range 0,m,1 follows from the
continuity of the functionD~m!. It is also clear thatD~m! at
N→` vanishes at the boundary pointsm50 andm51 when
the ground state is degenerate and there are low-lying
wave excitations.

Unfortunately, the method of the exact calculation
D~m! in the thermodynamic limit is unknown. Form.1

2 the
gap can be found by using perturbation theory in~m21

2!. In
this caseD~m! is

D~m!5 1
6 1O„~m2 1

2 !2
…, m< 1

2 ,
~66!

D~m!5 1
6 2 8

9 ~m2 1
2 !1O„~m2 1

2 !2
…, m> 1

2 .

Equations~66! show thatD~m! has a cusp atm51
2. For the

approximate calculationD~m!, we use the trial function of
the triplet state in the form

C t5 (
n51

N

cnsn
1C0~M !, ~67!

where

c2l 215aeikl , c2l5beikl , k5
4p

N
t, t51,...,M .
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This trial function givesD~m!, which is

D~m!5
2(nÞmcn* cmK~n,m!Jn,m22(nÞmucn

2uK~n,m!Jn,m

3
4 (nucn

2u1(nÞmcn* cmK~n,m!
.

~68!

Function~68! has minima atk54p/N andk5p for 0,m,
1
2 and 1

2,m,1, respectively. ThenD~m! at N→` is

D~m!5
8

243

~m11!4~m21!2

v1~v11v2!
, 0,m,

1

2
,

~69!

D~m!5
2

3 S 11
v2

v1
D ~m21!2,

1

2
,m,1.

The dependence ofD~m! given by Eqs.~69! is shown in Fig.
3 together with the results of extrapolations of exact fini
chain calculations. Both dependences agree very well form>
1
2. In particular, Eqs.~69! correctly reproduce Eqs.~66! at
m.1

2 However,D~m! given by Eqs.~69! is not zero atm50,
while numerical calculations fit the dependenceD(m);Am
at m→0.

We note that the trial function of the type~67! gives a
value 0.7407 for the singlet-triplet gap in the AKLT mode
This estimate is close to the value 0.7143 obtained by
other approach in Ref. 20.

The above consideration refers to a gap in the cy
chain. The open chain has a fourfold-degenerate gro
state. Finite-chain calculations show that the spin of the lo
est excitation isS52. However, there are also two excite
singlet and triplet states, the energies of which are clos
that of S52. The difference of these three eigenvalues
creases to zero exponentially atN→`. We expect that these
states are degenerate in the thermodynamic limit~at m51

2

they are degenerate for finiteN!. The gap in the open chai

FIG. 3. Singlet-triplet gap of model~45! as a function of the
parameterm. The circles denote the results of the extrapolation
exact finite-chain calculations. The solid line represents the de
denceD~m! given by Eq.~69!.
-

n-

c
d
-

to
-

equals to the difference between the energies of the de
erate ground state and the lowest excited one. The extr
lation of the results of finite-chain calculations toN→`
gives a finite gap in the open chains at 0,m,1. Its value is
very close to that for cyclic chains.

IV. SUMMARY

We have studied a class of the one-dimensional quan
spin-12 models with competing interactions. The exa
ground-state wave function of these models is found in
special recurrent form. The Hamiltonians of these models
the sums of Hamiltonians that are local and noncommut
with each other. The ground-state wave function of the to
Hamiltonian is the ground-state one for each of them. T
means that this ground-state wave function is superstab19

with respect to each local Hamiltonian.
One of the studied models describes the transition p

from the ferromagnetic to the spiral state when the energ
of these two states are equal to each other. It is interestin
compare the exact quantum singlet state with the class
one. Both states are the states of a helical type~excluding
some special cases!, and their spin correlation functions ar
identical in the thermodynamic limit, though quantum effec
are essential for finite chains. This fact is rather surpris
for the one-dimensional model with spin12.

Another exactly solvable Hamiltonian has the antiferr
magnetic ground state. This state is nondegenerate for cl
chains and is fourfold degenerate for open ones. The Ha
tonian depends on the parameterm, and there are two specia
valuesm50 andm51 where the singlet and ferromagnet
states are degenerate. The valuem50 is the ferromagnet-
antiferromagnet transition point where a phase transition
first order with respect tom occurs.

The ground state is characterized by the exponential
cay of correlators with a very short correlation length, a
there is a gap in the excitation spectrum at 0,m,1. Thus
this model has some properties suggested by Haldane16 for
the one-dimensional Heisenberg antiferromagnet with in
ger spin. The first model for which these properties ha
been proved rigorously is the AKLT model. Our model is t
one with spin1

2. Affleck and Lieb21 have shown for transla
tionally invariant and the isotropic Heisenberg Hamiltonia
that for a half-integer spin chain either the excitation sp
trum is gapless or the ground state is degenerate. The e
tence of a finite gap in our model does not contradict
Affleck-Lieb theorem because this model is not translatio
ally invariant. It has two sites in the unit cell and is equiv
lent to the special ladder model. Moreover, in the limitm→1
its ground-state wave function reduces to that for the AK
model.
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APPENDIX

We prove that square of the total raising operator ann
latesCM if condition ~51! is satisfied. The recurrent equatio
for S12(N)CM is

S12~N!CM52~11n11n2!s1
1s2

1u1,2&S1~N22!CM21

1@~112n2!s1
11~n112n2!s2

1

1n2S1~N22!#u1,2&S12~N22!CM21 .

~A1!

The first term in Eq.~A1! vanishes under condition~51! and,
therefore.

S12~N!CM5@~112n2!s1
11~n112n2!s2

11n2S1~N22!#

3@~112n2!s3
11~n112n2!s4

1

1n2S1~N24!#•••~sN21
1 1sN

1!2

3@sN21
1 1n1sN

1#u1,2,...,N&50.

This equation means that the wave functionCM contains
singlet and triplet components only.

Now we prove thatC̃0(M ) is the eigenfunction of each
local Hamiltonian in Eq.~45!. Of course, consequently th
same will be true forC0(M ).

The functionC̃M satisfies the recurrent equation

C̃M5@ û12C̃M212~m11!S1~N22!C̃M21#u1,2&, ~A2!

where

û125~2m21!s1
11~22m!s2

1 .

Let us consider functions wM
15S1(N)C̃M , wM

2

5S2(N)C̃M , and xM5S2(N)S1(N)C̃M . The recurrent
equations for these functions are obtained from Eq.~A2!
using Eq.~A1!. They are

wM
15@~m11!s1

1s2
1C̃M211 v̂12wM21

1 #u1,2&,

wM
25@~m11!~C̃M212xM21!1û12wM21

2 #u1,2&, ~A3!

xM5@~ û122 v̂12!C̃M211 v̂12xM211~m11!

3~s1
1s2

1wM21
2 2wM21

1 !#u1,2&,
er
.

i-

where

v̂1252~22m!s1
12~2m21!s2

1 .

Equations~A2! and ~A3! can be written in a matrix form

R~M !5D12R~M21!, ~A4!

whereR(M ) andD12 are ~232! matrices:

R~M !5S C̃M2xM wM
1

2wM
2 C̃M

D ,

D125S v̂12 ~m11!s1
1s2

1

2~m11! û12
D u1,2&.

Therefore,R(M ) is

R~M !5D12D343•••3DN21,N . ~A5!

As C̃M contains singlet and triplet components only, t
projection ofC̃M onto the singlet is

C̃0~M !5P0C̃M52C̃M2xM . ~A6!

It follows from Eqs.~A5! and ~A6! that

C̃0~M !5Tr D12D343•••3DN21,N . ~A7!

This form of C̃0(M ) is similar to the matrix product wave
function of the AKLT model and its generalizations, whic
has been found in Ref. 15. Each of four matrix elements
R(M ) is the eigenfunction of the local Hamiltonia
Hi ,i 11,i 12,i 13 for i 51,3,...,N23 because of matrix element
of the productDi ,i 11Di 11,i 12 are the eigenfunctions of thi
Hamiltonian. Besides, it can be proved15 that the four matrix
elements ofR(M ) are the only ground states of Eq.~45! and,
therefore, the ground state of the open chain is fourfold
generate.

It is easily to check15 that the triplet wave functions
R12(M ) and R21(M ) are not eigenfunctions ofHN21,N,1,2.
On the other hand, using cyclic permutations of matric
under thetrace, we have

HN21,N,1,2C̃0~M !5«C̃0~M !,

and, therefore, the ground state of the cyclic chain is
nondegenerate singlet.
tat.
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