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Exact ground states for a class of one-dimensional frustrated quantum spin models
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We have found the exact ground state for two frustrated quanturr%srpindels on a linear chain. The first
model describes the antiferromagnet-ferromagnet transition point. The singlet state at this point has double-
spiral ordering. The second model is equivalent to special case of thé $qitder. It has a nondegenerate
singlet ground state with exponentially decaying spin correlations, and there is an energy gap. The exact
ground-state wave function of these models is presented in a special recurrent form, and a recurrence technique
for expectation value calculations is developg®0163-18207)03034-9

I. INTRODUCTION considered model has two sites in a unit cell, and it is equiva-
lent to the special case of a spin ladder. In some limit this
Last decade, frustrated Heisenberg models were a subjegtodel reduces to the effective spin-1 chain for which the
of intensive studies™'?2 Of the main interests are ground- ground-state wave function coincides with that for the AKLT
state properties with respect to variations of exchange intenodel.
grals and the character of the phase transitions. In particular, This paper is organized as follows. In the Sec. Il we will
these properties may be important in the theory of High- consider a model of the first type and describe the exact
superconductivity. singlet ground-state wave function as well as details of the
There is much interest in quantum spin systems with comspin correlation function calculations. Section Ill and the Ap-
peting interactions for which an exact ground state can b@endix present the study of a model of the second type. The
constructed. An example of such a model has been given bigsults of the paper will be summarized in Sec. IV.
Majumdar and Ghostt They have considered a 3 chain
with antiferromagnetic nearest- and next-nearest-neighbar. FRUSTRATED SPIN CHAIN AT ANTIFERROMAGNET-
interactions, and the strength of the second interaction is FERROMAGNET TRANSITION POINTS
one-half of the first. The ground state of this model is two-
fold degenerate, it consists of dimerized singlets, and there is
a gap in the spectrum of excited states. Let us consider ars=3 spin model with nearest- and
Another example found by Affleck Kennedy, Lieb, and next-nearest-neighbor interactions given by the Hamiltonian
Tasaki* (AKLT) is anS=1 spin chain with special bilinear
and biquadratic interactions. This model has a unique .
valence-bond-solid ground state, and ground-state correla- H:—E (SZil'SZi_Z
tions have an exponential decay. Besides there is the gap =
between the ground and excited states. Further generaliza- N 1
tions of the AKLT model have been studied in a number +312>, ($-$+2— —), 1)
recent papers =1 4
[n this paper we present two classessgf% chains for . with periodic boundary conditions and evish=2M.
which the exact ground-state wave function has a special If J,5<1, then the ground state of Ed) is ferromagnetic

recurrent form. These models have competing ferro- and ar-.. _ -
) T ) . singley at 6<0 (5>0), where 6=J13tJ,92(1—J53) (Fig.
tiferromagnetic interactions, and their ground states can br% The equations=0 defines the line of transition points

either ferramagnetic or singlet deper_lding on the relation befrom the ferromagnetic to the singlet state, when energies of
tween the exchange integrals. The first type of exactly SOIthese states are zero. The moBl along this line is given

ablg models is rela.tt.ad to .systems at the ferrom_agne by the Hamiltonian depending on the parametép>0):
antiferromagnet transition point when the ferromagnetic an

A. Exact ground-state wave function

M

. 1
+323§1 (SZi'SZiJrl_Z

singlet states are degenerate. The calculation of the spin cor- M 1 M 1

relation function in the singlet ground state shows spiral j— (Szi—l'SZi__)_(V_ 1)> (SZi'SZi+1_ _>

magnetic order at this point. =1 4 =1 4
The model of the second type has the nearest-, next- N

nearest-, and next-next-nearest-neighbor interactions depend- " V;l D (S S g E) )

ing on one parameter. This model has a nondegenerate sin- 2v =1 2 4)

glet ground state for cyclic chains and for a certain region of

the parameter, and its ground-state properties are similar With periodic boundary conditions.

that of the AKLT model. In other words, this model has ~We note that Hamiltoniari2) has a symmetry: Its spec-
some properties of the “Haldane scenaritf,though itis the  trum coincides with the spectrum &f(») obtained by the
model with half-integer spin. We note, however, that thetransformation
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FIG. 1. T=0 phase diagram of mod€l). The solid line is the
boundary between the ferromagnetic and singlet phases. Mbdel
along this line is given by Hamiltonia(®). Circles correspond to
the special cases of this Hamiltonian.

ﬁ(v)z(v—l)H(VTvl), y>1,
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Vo(M)=Po¥y, 4
where
Wy=(s]+vs, +vsy - +vsy)(S; +vSy - +vsy)
X (Sgn_1+ VSon -+ vSy) - (Sy_1+ vsy)|1,2,...N),
5

wheres" is thes= 3 raising operator.

Equation(5) containsM =N/2 operator multipliers, and
the vacuum statgl,2,...N) is the state with all spins pointing
down. The function¥,, is the eigenfunction o5, with S,
=0, but it is not the eigenfunction &. P, is a projector
onto the singlet state. This operatot’is

1 27 2 T R
Po==— f daJ dﬁf siny dy €' *Se'7SelF,
87 Jo 0 0

wheresS,, are components of the total spin operator.

The function¥,, contains components with all possible
values of spinS (0=S<M), and in fact a fraction of the
singlet is exponentially small at lardé. This component is
filtered out by the operatd®.

It is not difficult to check that

HaWy=0 (6

for n=1,...,(N—2), and therefore the ground-state energies
for all values of spinS of an open chain described by the

This transformation permutes the factors at the first angHamiltonian

second terms in Hamiltoniaf2). Thus, due to the symmetry,
it is sufficient to consider the range<<2.

First, we will show that the ground-state energy of ).
is zero. Let us represent Hamiltoni&?) as a sum of Hamil-
toniansH,, of cells containing three sites:

M
ﬁ=i§1 (Hyi 1+ Ha), &)

where

v—1

1 1 1
Hai-1=—35 (Szi—l'szi_Z)_T <Szi'52i+1_ Z)

v—1 1
t5, (52i1'52i+1— Z)'
1 1 v—1 1
Hai=-5 <52i+1'82i+2_ Z)_T (SZi’SZi+1_ Z)
v—1 1
T, (Szi'szwz—z)-

Eigenvalues of eacH , are

v—v+1

> >0.

)\1:)\220, )\3:

We will present a singlet wave function which is the exactthati <j, k<I, m<n, ..

N-2
Hop= 2, Hy )
n=1
are zero.
The operatorddy_, andHy do not give zero acting on
W\, but

HN—1(N)P0‘I’M:PoHN—l(N)‘I’MZO- 8

The latter equation can be easily checked using the fact the
first set of parentheses in Ed5) can be replaced by
(1—wv)s; under the projectoPy.

Equations(6) and (8) mean that¥V',(M) is the exact sin-
glet ground-state wave function of E@) for anyM and that
the ground-state energy is zero. We note that the ground-
state energy coincides with its exact lower bound bec&lise
is the sum of non-negative defined operatfs. (3)]. Of
course, the trivial ferromagnetic state has zero energy as
well.

In the particular case=2, whenJ;,=J,3=—1 andJ;3
=%, another form of the exact singlet ground-state wave
function has been found in Ref. 18. It reads

¥=2 [i,jllkI][mn]--,

where[i,j] denotes the singlet pair and the summation is
made for any combination of spin sites under the condition
. . However, it is not clear how this

one of eachH, with zero energy and, therefore, it is the function can be generalized 6~ 2.

exact ground-state wave function of Eg). This function
has a form

The following general statements relevant to Hamiltonian
(2) can be proved.
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(1) The ground states of open chains described by(Bq.

in the sector with fixed total spi® are nondegenerate and

their energies are zero.

(2) For cyclic chains the ground state in tBe=0 sector
is nondegenerate and has momentaThe ground-state
energies for &S<M are nonzero.

(3) The singlet ground-state wave functions for open and

cyclic chains coincide with each other.
(4) The singlet ground-state wave functioliy(M) is
superstabf€ with respect to any cell operatdd,; i.e.,

¥y(M) is the ground-state wave function of the Hamiltonian

H+X\H,, for —1<\<oe,

B. Norm of the ground-state wave function

Let us return to the problem of the projection of the func-

tion ¥, . As one can see from Ed5), the functionW¥,
satisfies a recurrent equation

Wy=[(s{ +v8;)+vS"(N=2)][1,2¥y-1, (9

whereWV, _, is the function(5) for the system of {l—2)
spins on sites 3,4,N,andS"(N—1)=3N . ,S".

In principle, it is possible to generat®,(M) starting
from M=1 and using Eqs(4) and(9). However, it is more
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2
—1?(1-22)?

Dp-1(y1,72)-

0297’

Using this equation, we obtain, fdpy, (),

d
By (y)=| 1+ v2— (14 1)2SiFPL + p(v+1)siny —
2 dy
2
_ 2 y(d 1 4d
(13
The solution of Eq(13) is
Dy (y)=LM(y)Do(y), (14)
where
(1-v)2 (1+v)?
Ly)= —5—+—5—y—u(r+1)(1-y?)
d ¥ oy layd 15
X@‘f( +y) @( —Y)a. (15

convenient to obtain the recurrent formulae for expectatiory =Ccosy, and®q(y) = 1.

values (norm and correlatojswith respect to the function
¥o(M) directly.
First, we consider a norm o¥F (M), which has a form

Gu=(¥o(M)¥o(M))=(¥yPo¥\)

1 (= ,
=5 | "@usiny a. (10

where

®M(7):¢M(71172)|71=72=7

and

<I>M(71,72)=<‘I’Mexra(i % ST(N)+i % S(N))WM>.
(11)

Commuting operators in Eqll) and using the fact that
S,¥ =0, we rewrite Eq(11) in the form

Dy(y1,v2)=(¥yexdizS (N)]exdiz' ST (N)]¥y),

(12)
[Y2 VY172 , \/ism Y172
= —tan——, 2z'= T
71 2 Y2 2

It follows from Egs. (9) and (12) that the function
D u(y1,v,) satisfies the equation

where

Dy(y1,y2)=|1+v>—(1+v)?zZ +v(v+1)(1—27)

According to Eq.(15), ®(y) is a polynomial iny of
orderM. It turns out that further calculations will be simpli-
fied if dy(y) is expanded over Legendre polynomials
Pn(y):

M
Dy(y)=2 co(M)PL(y).

n=0

(16)

The coefficientx, (1) are defined by the recurrent equation

n  (vn+1)>?
Cl+1)=5—7——> Cn-1(D)
v2(n?+n)+(v—1)>?

2 Cn(l)

n+1 (vn+pr—1)>2
+2n+3 2 Cn+1(|)u

17

with initial condition co(0)=1. Besidesc,(1)=0 atn>I.
The normG,, is given by

1 r1
GMZE fﬁlq)M(y)dy:Co(M)- (18)

C. Spin correlations

The spin correlation functions can be found in the same
way as Gy . It is convenient to express the scalar
productS-S; by the permutation operatqrij=28i~8j+%.
Then non-normalized  expectation  value Q(i,j)
=(Vo(M)(S-§—7)Wo(M)) is

Q(i,j)= _%<\P0(M)(pi,j_1)2w0(M)>

=—2(Pm(pij—DPo(pij—D¥y). (19
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The equations fo@(i,j) can be obtained as in the derivation
of Egs.(14) and(15). They are somewhat different for even

and oddi. For example, the equations f@(1,n) have the
forms
-1)2 (1 1+
Q(1,2!)=—(V ) f y(L"ZLlLM‘ll)dy,
4 -1 2
(20)
2(v—=1)% (1 1+
Q(1,2|—1)=—V(V4 ) f y(L' 2L,LM-11)dy,
-1
(21)
where

d d d
L;=1-2p(1-y) ay (1+y) dy (1-y) dy’

d d
Ly=1-2(1-y) 5y~ (1+Y) gy

1-
( y) dy
It is clear, that

Making use consequent integration of E(&0) and(21), we
obtain

1 1+y
f_l (L'72Ly o LM '1)dy

_Jl 1+y
o

1~ -
:J (LypL'21) (LM '1)dy,
-1

(L'21) Ly LM '1)dy

1 (2v—1)2 ,. d
+———y—v(2r=1)(1-y9) dy

d 1 d
d_y( —y)ﬁ,

~ 1+y d (1+ Y)Z
= 1 yz)@ 5

( —y)
So Egs.(20) and(21) can be rewritten as

_1\2
v 4) J' CI)I (y)Py_i(y)dy, (22

Q(1,2)=-

B 1/2(1/—1)2 1 - -
Q(l,Z—l)——T 71(L2®|—2(Y))‘1)M—|(Y)dy7
(23
where

®y(y)=L'(y)1. (24)
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|
P(y)= 2, an(1)Pr(y), (25
and the coefficienta,(l) satisfy the equations

n  (vn+pr—1)>2
-1 2 an*l(l)

an(l+1):2

212
v4(n J;n)+1 an(l)

n+1 (vn+1)>2
2n+3 2

an1(1). (26)

with initial conditionsay(0)=1 anda,(I)=0 atn>1.
Using Egs.(18), (22), and(23), we can express the cor-
relation functionK(1,n)=(S;-S,)/Gy, in the forms

1 (v —1)2|71 a,(I—1)c,(M—1)
K(1L.2)=,— 2¢cy(M) & ot 1 27)
2, ay2 -1 _ B
K(L,2-1)= v(v—1) ba(l—1)cy(M—1)

4 2co(M) &6 2n+1

(28)

where coefficientd,(I —1) are defined by, (I —2) as fol-
lows:

1 nd 2+n+1
bn(|—1)=§ﬁan71(|—2)+ 5 an(l—=2)
1(n+1)°3
5 manﬂ(' 2). (29

Therefore, the calculation of the spin correlation function

reduces to the solution of the recurrent equati@hid and

(26), which were used for numerical calculations of the spin

correlation function for finite systems.
At large M the solutions of the recurrent equatiofis’)
and (26) have scaling forms

2—v
ch(M)=2M(M! )2v2Msexp( Mfo(s)+ — INM +f1(s)),
(30

a,(M)=2M(M!1)2p2Mg
2—v
Xexr{ Mfo(s)— - InM +gl(s)) , (31

where the parameter

2n+1
2M

S:

can be considered as a continuous variable.

We note that Eqs(30) and (31) are not valid for special
values ofy, v=1/(m+1) (m=0,1,2,...). For these the last
term in Eq.(17) vanishes when=m and Eq.(17) reduces to
(m+1) equations foc,(I) with n=m.

The recurrent equation€l7) and (26) at M>1 and v

The functlonCI)|(y) can be expanded over Legendre poly- # 1/(m+ 1) reduce to differential ones fdi(s), f;1(s) and

nomials similarly to®,(y),

01(s). For examplef(s) satisfies the equation
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dfq(s) 1 dfy(s) This shift angle reflects the fact that the unit cell contains
eXD(fo(S)—S ds )= 2 ﬁ(z ds ) two sites unlessy=2. Equations(36) and (37) show that
long-range spiral order exists in the singlet ground state of
with the initial conditionfy(1)=—1In 4. Hamiltonian (2) in the thermodynamic limit and that a
Its implicit solution is double-spiral state is formed.
It is interesting to note that correlatog36) and (37) co-
siné 3 incide with those obtained by using the simple “quasiclassi-
fo(s)=—2 I”EJ“Z? In tan;, (32 cal” trial wave function in the form
where N
zpd:exp( > gns;)|1,2,...N>,
sing =1
ST where
As follows from Eq.(32), a,(M) andc,(M) as functions of 2mn  (—1)"m v—-2
n have a sharp maximum atM = 2/7. {n=ex N + N v |

The functionsf,(s) andg,(s) are given by .
Thus the quantum ground state of the laMyjeimit re-

v 4—v sembles the classical one, though for small-size systems
fi(s)=— > In é+ e In siné quantum fluctuations are essential.
The formation of spirals having a period which is equal to
1 [sin¢ cost v—1 the system size reflects the tendency to the creation of the
5 n( 2 ?) +C—7, (33)  incommensurate spiral state at the antiferromagnetic region

when §>0. The behavior of the system in the vicinity of the
transition point has been studied by’ der model (1) with

2-3

g.(s)= v Iné+ In siné :]12.=_‘]23= —1_, J13=%f5. For 6<1 the perioq .of the spiral
v 2v is finite and is proportional té~ 2. The transition from the
1 [siné cost —1 ferromagnetic to the singlet state is a phase transition of the
—-In| —&=—-—]+C —, (34) second order with respect ®
2 3 & v
where the constar®=0.9609. D. Special cases of the model
To obtainK(1,2) atN—< we substitute Eq430)—(34) There are the special points=1/m (m=1,2,...) at which

into Eq.(27) and replace the sum ovarby the integral over Eqs. (36) and (37) are not valid. Aty=3 the function (4)
s. This integral is calculated by the method of steepest dereduces to the product of singlets

scent. The saddle point &= (1/7)sin(2x1/N), and the inte-

grand does not depend on parameteilhe final result for Yo(M)=[2,3][4,5]---[N,1] (39
the spin correlation functioK(1,2) at N—o is also inde-

_ and K(2,3)=K(4,5)=---=K(N,1)=—3. Other spin corr-

pendent ofy. elators are zero.

1 2m(21—-1) 1 Analysis of Eqs.(_17), (26), and (2_7) shows that the

K(1,2)= - cos o( ) (35) ground-state correlations of mod@) with v=1/m (m=3)

4 N N have antiferromagnetic character with an exponentially de-
For the particular case=2, Eq.(35) has been obtained ear- cay.
lier in Ref. 18. n

The corresponding calculations f&r(1,2 — 1) to within K(ln+1)~(- 1)nex;{ — —) ,

terms~ 1/N lead to the same expressi(86). But taking into Fe

account terms~1/N, we find that the differenc&(1,2  \yhere the correlation length is
—-1)—-K(1,2) is
2

D) (39)

mv—1 47l
K(1,21—1)—K(1,2|)=NTS|nT+O

1
N?

rC:—ZIn‘l(l—

The crossover between the spiral state ah<di<1/(m
The latter equation means that the double-spiral structure-1) and the antiferromagnetic stateiat 1/m occurs in the
exists. The pitch angle of each spiral is/N and there is a exponentially small(at N>1) vicinity of these special

small shift angleA ¢=(27/N)(2— v)/v between them: points.
At m>1,
1 2m(21-1)
K(l,Z)—Z Cco T—A(p ) (36) rC:m2 (40
and the correlation length diverges whertrends to zero

1 Axl along the special points and there is theeNerdering in this
K(1,2+1)= 7 cos—. (37) "mit_g pecial p 9
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At v=1, whenJ;,=—1, J,3=J:3=0, the system is di- 2 3 6 7
vided into ferromagnetic pairs 1-2, 3-4,... . ;

Using second-order perturbation theory with respect to
(v—1), we reduce mode(2) at v—1 to the effective spin-1
Hamiltonian

(=12

eﬁ_T {_(Ln'l-n+1_l)+|-n'|-n+2

n=1

1 4 5 8

FIG. 2. Spin ladder representation of mod#h). Different lines

1
- E (Ln' Ln+1)'(|—n+l' Ln+2)

1
_E(Ln+1'|—n+2)'(|—n'|—n+1)]v (41)

with M spinsL=1.

The exact singlet ground-state wave function of Hamil-
tonian(41) can be obtained from the Eg&l) and(5). It has

the form
Wo(M)=PolLy (L +Lg+-+Ly)(Ly_s
+LpLyl—1,...— 1), (42

whereL;" are raising operators of spin 1.

The ground-state correlation function of Ed41),
K(1n +1)=(L;-L,+1)/Gy, is found from Eqs(36) and
(37). Itis

2mn
K(1,n+ 1)=cosv.

Finally, we note that it is possible to calculate higher

correspond to different exchange interactions.

H=Hj 34 Haas6 - tHn_an—2n-1nTHN-1N1,2-
(45)

The HamiltoniandH; ;14243 are chosen in the form

1 1
Hi,i+1,i+2,i+3:~]12[<S'SJrl_Z +(3+2'S+3_Z

1 1
"‘2313[(3'3&_ Z)+(3+1'5ﬁ+3_ Z”

1
+2323(3+1'3+2_ 1

+2J,

1
S-Sia- Z). (46)

Thus, the model has neare§i, and J,3), hext-nearest-
(J13), and next-next-neares(d,,) neighbor interactions. In
fact, this model is equivalent to the spjadder with differ-

terms of the perturbation theory and to obtain effective®Nt iNteractions, as is shown in Fig. 2.

spin-1 Hamiltonians which are proportional to the third,

fourth, and higher power of the small parameter1). All
of them have zero ground-state energy as well as(£&L).

Ill. FRUSTRATED SPIN CHAIN
WITH AN ANTIFERROMAGNETIC GROUND STATE

A. Model and its exact ground state

We demand thatv',(M) be the eigenfunction of each
local Hamiltonian with the eigenvalue<O, i.e.,

Hiit1it2i+3Vo(M)=eWo(M). (47)

The exchange integrall; and the energy are defined by
the Schrdinger equation

Hi2z iV u=e¥y. (48)
In the preceding section the spin model at thelet us represent the functiok, in the form
ferromagnet-antiferromagnet transition point has been stud-
ied. The exact singlet ground-state wave function at this¥=[§;+ v,0,S"(N—4)+ v3S"2(N—4)]|1,2,3,4 ¥ _,,
point is given by Eq(4). In this section functiori4) will be (49)
generalized to give the exact ground-state wave function of Bhere
special one-dimensional frustrated sgimodel. This model
has a unique singlet ground stdfer the cyclic chain with q,= stg +vi(si sy +s;5 s;) + visgsf{ +vy(1+ V1)S§ Sy,
an exponential decay of correlations, and there is a gap to the
excitations.
Let us consider the wave function which depends on two ,
parameters and has for(d): The equation

Wo(M)=Po Wy, (43) Hi238111.2.34=20,1234 (50)

reduces to five equations for four exchange integrals and the
energye. The necessary condition of the existence of a so-
lution with ¢<0 is

0o=S; +11S; +(1+vy)s; +(v1+vy)sy .

where
Wy=(S] + 1Sy +vpS; + -+ + 1,8y )(S3 + v1S; + voSe
oSyt (Sh—1+ vasy)| 1,2, N). (44) 1+v,+,=0. (52)

We will construct the Hamiltonian for whicl' (M) is the  So under this condition there is only one parameter
exact ground-state wave function as the sum of the locabf Hamiltonian (45). It is convenient to take the value
four-sites Hamiltonians =(2+wv1)/(2v,+1) as a system parameter. Then, the solu-
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tion of Eq. (500 at v;=(2—w)/(2u—1) and v, model coincides with modéPR) at the special point=3. As
=(u+1)/(1-2p) yields the following expressions fak; follows from Eq.(52), this transition is the phase transition

ande: of first order with respect t.

) At =13 the only nonzero exchange integralis and the

(1-2p)(2—p) _ lp@=p)(p-D) ground state consists of non interacting singlet pairs324
2= 9 rovE 3 (nt1)2 —5,...,1-N. Whenu—1 the first term in Eq(46) dominates

and the system is divided into weakly interacting ferromag-
Cu—1)(2—u)(u—1)2 2u—1)%(u—-1) netic pairs +2,3—4,... . Using second-order perturbation
137 6(u+1)2 ' 14:W’ theory with respect to the small parameter-1), we reduce
(52)  the HamiltonianH [Eq. (45)] to the effective spin-1 model
, given by
3u(pu—1) )
E=—————7. -
(ut1)° H=(M161) Herr,

It turns out that the equation

H1,2,3,4A12|1,2,3-4 = 8a2| 11213:4

M
with J;; ande given by Eq.(52), is satisfied automatically. Hen= Z Slp-LnsitLln-Lnso
As will be proven in the Appendix, the functiolt,, with n=t

where

v1=—wv,—1 contains singlet and triplet components only, 1 )
ie., +E(Ln‘|-n+1_|—n+1'|—n+2) -6 (54)
S*2(N)¥y=0. (53)  andL, is spin-1 operator.

Therefore, the last term in E¢49) vanishes and?,, is the ‘The ground-state wave function of E(34) can be ob-
eigenfunction o , 5 ,with the eigenvalue. tained from Eq(43) at u=1. It reads

Generally, the Hamiltoniaid, , 3 4 has following eigen- W (M)=P(LT = 2Lt — e DL V(L — 2L — e
states: one quintet, three triplets, and two singlets. Two of o(M)=Po(L, 2 w(L2 8
them(one singlet and one triplehave energy, while other —2L) X (Lyo1—2L gyl —1,-1,...—1).

four states have higher energiesuiat0 (u#1). At u<O0 the
ground state of,,34is a quintet with zero energy. In the (59
Appendix we will show that the wave functiodr, is an It is remarkable that the functiofb5) coincides with the
eigenfunction with eigenvalue of each local Hamiltonian ground-state wave function of the AKLT model. Therefore,
Hiit1i+2i+3 excluding that fori=N—1. Therefore, the the ground-state physics of the model given by &4) and
ground-state energy of the open chain @0 is (N/2  the AKLT one are the same, though the Hamiltonians of
—1)e and it coincides with the exact lower bound of the these two models are different.
energy, similarly to the model of Sec. Il. However, in the
contrast with the latter, the present model is fourfold degen- B. Spin correlations in the ground state
erate for the open chain.

As for the HamiltoniarH y_ 1y 12, the function¥, is not
its eigenfunction, but

First, we calculate the norm of the ground-state wave
function. It is convenient to express the functidn, in
terms of the parametex and to introduce a new function

Hn-1n,12Y 0(M) =eWo(M) W
(see Appendixand Wy =(2p—1)"MT,,,
N where
HWo(M)= 5 eWo(M). ~
Wy=[(2u—1)s{ +(2—u)s; —(u+1)S*(N=2)]
As follows from Eq.(52), the spectrum oH(u) coincides N N .
with the spectrum oH(u) which is connected withH () XL2p=1)s3 + (2= w)s —(p+ DSTN=4)]-
by the transformation X[(2u—1)s5_1+(2— w)sy1l1,2,...N).

According to Eq.(18), the norm of\TfO(M)= PO"IVIM is

H(p)= 2H(1
#I=pH

~ - 1 (1
This transformation permutes the factors at the third and last Gu=(Wo(M)¥o(M))= 7 J_lq’m(y)dY-
terms in Eq.(46). Therefore, it is sufficient to consider the
HamiltonianH(w) in the region—1<u=<1. For the present model the functieh(y) is defined by the

The ground state oH is ferromagnetic aju<0. When equation
0<u<1 the ground state of the cyclic chain is the nondegen- o
erate singlet. The pointu=0 is the ferromagnet- @\(y)=L(y)1, (56)
antiferromagnet transition point. At this point the presentwhere
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9(1—w)? (1+pu)? d In the thermodynamic limitM —o and |<M, Egs. (59)—
L(y)= + y+2(1-y?) — (61) reduce to
2 2 dy
d d 3w
_(1+y)2®(1_y)®_ K(1,2)——Zw—1, (62)
The solution of Eq(56) is +1)2(2u—1)2 l
K(1,2+2)=— 2Tl (ﬁ) 63
wll-i- 3w|2 wll—wlz 27w 0, w1
dW=—g 7V
(ut1)? [wp)!
where K(12+1)= == /. (64)

The correlators have the exponential decay, and the correla-
tion lengthr. is

01=6(p’—pu+1), w,=2(p—2)(2p—1).

This form of ®(y) reflects the fact that the functioirM

contains the singlet and triplet components only. _y|o1(p)
M M
G _ w1 3w (57) It follows from Eg. (65 that the ground state has
M™ 4

ultrashort-range correlations. For exampig(0)=2 In"(3)
As |0,/ wq|<1, thenGy =2 atM— . [this value coincides withi; given by Eq.(39) with m=3]
The spin correlation functions can be found in a similar@ndrc(1)=2In"*3. In the latter case, coincides with cor-

way as in the Sec. II. In analogy with Eq49) and(20), we relation length of the AKLT model. Au=3 the only non-
zero correlators ar&(2,3)=K(4,5)=---=K(N,1)=—2 in

in
obta accordance with the dimer character of the ground state.
1 i1, The valuew,(u«) changes the sign at=3 and as follows
QIN=-2I-1N)=-¢ Jll[l- @, 4(y)]dy, (58 from Egs.(62), (63), and(64), the correlators show an anti-
ferromagnetic structure of the ground state &B<3, while
where at 3<u<1 there are ferromagnetic correlations inside the

pairs(1,2),(3,4),... and the antiferromagnetic correlations be-

Dl (y)= <{i}l+l(pN—2I 1N~ DPo(Pn-21-1n8— 1)¢'|+1>- tween the pairs.

Carrying out the necessary calculations, we find
C. Energy gap

B/, () =4(p+1)%(2- p) el oyt (2p—1)° The HamiltoniarH of the cyclic chain has a singlet-triplet
gapA for finite N. It is evident that foru=3 the gap exists

for N—« and A(3)=%. The existence of a finite gap at the
thermodynamic limit in the range<Qu<1 follows from the
continuity of the functionA(w). It is also clear that\(u) at
N— o vanishes at the boundary poinis=0 andu=1 when

the ground state is degenerate and there are low-lying spin
wave excitations.

X[(2u?—2u+5) 0] 4+ (2u?+10u—1) 0y *
X(1+y).

Substituting®,, ,(y) into Eqg. (58), we obtain, for the spin
correlation functiorK(1,2+2)=K(N—2I—-1N),

1 (M_l)z 1+3(w2/w1)M71

K(1,2)=-— (59 Unfortunately, the method of the exact calculation of
4 20 143(wp/e)M A(w) in the thermodynamic limit is unknown. For=3 the
5 gap can be found by using perturbation theoryn-3). In
+1 i i
K(1,2+2)=— (n+1) this caseA(u) is
27(1)1(1)2 1 112 1
A(u)=5+0((1—2)9), wn<z, 66
(2u=1)%(wp) o))"+ (u—2)%(wp )" (66
% 1+ 3(ap )" ’ A(w)=t-3(u-H+0(u-3?, u=}
(600  Equations(66) show thatA(w) has a cusp ap=3. For the
approximate calculatiol (), we use the trial function of
wherel =1,2,..M—1. , the triplet state in the form
Similar calculations foK (1,2 +1) result in
N
+1)? (wol ) + (@l w )M ™! = +
K(1,2|+1):(,U« )” (wp/w1) + (w2 wq) . (6 v, nZl CnS Wo(M), (67)

6(1)1 1+3(0)2/(U1)M

The correlator& (2,n) have been obtained by using the sym- Where

metry of the systentsee Fig. 2 For example,
C2|—1=aeik|, cz|=be”",

K(2,39=K(1N), etc.
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equals to the difference between the energies of the degen-
erate ground state and the lowest excited one. The extrapo-
lation of the results of finite-chain calculations d— oo
gives a finite gap in the open chains at @<1. Its value is
very close to that for cyclic chains.

IV. SUMMARY

We have studied a class of the one-dimensional quantum
spin4 models with competing interactions. The exact
ground-state wave function of these models is found in a
special recurrent form. The Hamiltonians of these models are
the sums of Hamiltonians that are local and honcommuting
with each other. The ground-state wave function of the total
Hamiltonian is the ground-state one for each of them. This
means that this ground-state wave function is supersthble
with respect to each local Hamiltonian.

One of the studied models describes the transition point
from the ferromagnetic to the spiral state when the energies
of these two states are equal to each other. It is interesting to
compare the exact quantum singlet state with the classical

parameters. The circles denote the results of the extrapolation ofone. Both states are the states of a heIi(_:aI tgq)ecl.uding
exact finite-chain calculations. The solid line represents the depersome special casgsand their spin correlation functions are

denceA(u) given by Eq.(69).
This trial function givesA(uw), which is

25 1 mC €K (N, M) Jy = 23 2l €2 K (N,M) I 1y
A(p)= :

350/ C2l+ 2 2 mCE CK (n,m)
(68)

Function(68) has minima ak=47/N andk= 7 for O<u<
1 and 3<u<1, respectively. Ther(u) at N— o is

8 (u+1)H(u—1)2 1
Ap)= g —————— 0<p<=,
(1) 243 wi(wit+wy) K 69)
2 (UZ 2 1
A(M)=§ 1+w—1 (n—1)%, ><m<l.

The dependence d(u) given by Eqs(69) is shown in Fig.

identical in the thermodynamic limit, though quantum effects
are essential for finite chains. This fact is rather surprising
for the one-dimensional model with spjn

Another exactly solvable Hamiltonian has the antiferro-
magnetic ground state. This state is nondegenerate for closed
chains and is fourfold degenerate for open ones. The Hamil-
tonian depends on the parameterand there are two special
valuesu=0 and u=1 where the singlet and ferromagnetic
states are degenerate. The vajue0 is the ferromagnet-
antiferromagnet transition point where a phase transition of
first order with respect ta. occurs.

The ground state is characterized by the exponential de-
cay of correlators with a very short correlation length, and
there is a gap in the excitation spectrum at©<1l. Thus
this model has some properties suggested by HalGdae
the one-dimensional Heisenberg antiferromagnet with inte-
ger spin. The first model for which these properties have

3 together with the results of extrapolations of exact finite-heen proved rigorously is the AKLT model. Our model is the

chain calculations. Both dependences agree very welLfor
1. In particular, Eqs(69) correctly reproduce Eqg66) at
u=1 However,A(u) given by Eqs(69) is not zero afu=0,
while numerical calculations fit the dependentcéu) ~ vu
at u—0.

We note that the trial function of the typ&7) gives a

one with spin3. Affleck and LieB* have shown for transla-
tionally invariant and the isotropic Heisenberg Hamiltonians
that for a half-integer spin chain either the excitation spec-
trum is gapless or the ground state is degenerate. The exis-
tence of a finite gap in our model does not contradict the
Affleck-Lieb theorem because this model is not translation-

value 0.7407 for the singlet-triplet gap in the AKLT model. |y invariant. It has two sites in the unit cell and is equiva-

other approach in Ref. 20.

its ground-state wave function reduces to that for the AKLT

The above consideration refers to a gap in the cycliGnodel.

chain. The open chain has a fourfold-degenerate ground
state. Finite-chain calculations show that the spin of the low-
est excitation isS=2. However, there are also two excited
singlet and triplet states, the energies of which are close to
that of S=2. The difference of these three eigenvalues de- We are grateful to Professor M. Ya. Ovchinnikova and
creases to zero exponentiallyMt— . We expect that these Professor V. N. Prigodin for helpful discussions. This work
states are degenerate in the thermodynamic laitu=3  was supported by ISTC under Grant No. 015-94 and in part
they are degenerate for finité¢). The gap in the open chain by RFFR.
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APPENDIX

We prove that square of the total raising operator annihi-
latesW, if condition (51) is satisfied. The recurrent equation

for SY2(N)W, is
SY2N)Wy=2(1+ v+ v)s; S5 [1,DST(N=2)W¥ )y, _,
+[(142vp)8] +(v1+2vy)s,
+1,5"(N=-2)]|1,2ST3(N-2)¥, _;.

(A1)

The first term in Eq(Al) vanishes under conditia®1) and,
therefore.

ST2N)W y=[(1+2v,)s; +(v1+2v,)ss +1,ST(N—2)]
X[(142vp)s; +(v1+2v,)S,
+ 0,8 (N=4)]-+-(s\_1+53)?
X[sy_1+visy11,2,...N)=0.

This equation means that the wave functidn, contains
singlet and triplet components only.

Now we prove that¥y(M) is the eigenfunction of each
local Hamiltonian in Eq.(45). Of course, consequently the
same will be true folo(M).

The functionWV,, satisfies the recurrent equation

E’M:[alzﬁ}M—l_(M_" 1)S+(N_2)E'M—1]|1!2>v

where

(A2)

U2=(2u—1)s] +(2—p)s; .

Let us consider functions go(,,j ST (N)TYy, oy
=S (N)¥y, and yy=S (N)S"(N)¥,,. The recurrent
equations for these functions are obtained from EAR)
using Eq.(Al). They are

om=[(+1)8{ S5 Wy _1+0100m_1111,2),
om=[(+1)(Wy_1—xm_1) +00y_1111,2, (A3)

xm=[(U12= 012 Pp_1+01xm-1F (1 +1)

X(sS; em-1—em-1111.2),

D. V. DMITRIEV, V. YA. KRIVNOV, AND A. A. OVCHINNIKOV

where

D1p=—(2—p)s] —(2u—1)s; .

Equations(A2) and (A3) can be written in a matrix form
R(M)=D,R(M-1),

whereR(M) andD,, are (2X2) matrices:

(A4)

+
Pm
\PM)’

1)s/s,

Wy —xwm

R(M)= _
~—Pm

V1 (pt
—(n+1)
Therefore,R(M) is

D12

)|1,2>.

Ui

R(M)=D1,D3pX "+ XDn_1n- (A5)

As \AI}M contains singlet and triplet components only, the
projection of ¥y, onto the singlet is

Wo(M)=PoWy =2y —xy - (AB)
It follows from Egs.(A5) and (A6) that
’\’i}o(M):Tr D12D34><"‘XDN,1'N. (A?)

This form of ¥o(M) is similar to the matrix product wave
function of the AKLT model and its generalizations, which
has been found in Ref. 15. Each of four matrix elements of
R(M) is the eigenfunction of the local Hamiltonian
Hiitr1j+2i+3 fori=1,3,...N—3 because of matrix elements
of the productD; ;, 1D+, are the eigenfunctions of this
Hamiltonian. Besides, it can be provéthat the four matrix
elements oR(M) are the only ground states of E45) and,
therefore, the ground state of the open chain is fourfold de-
generate.

It is easily to check that the triplet wave functions
Rix(M) and Ryy(M) are not eigenfunctions dfiy_1n 1 2.
On the other hand, using cyclic permutations of matrices
under thetrace, we have

HN—1,N,1,2‘T'0(M )= S{f’o(M )

and, therefore, the ground state of the cyclic chain is the
nondegenerate singlet.
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