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Coherent production of phonons from time-dependent strains
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A simple model of a classical oscillator, with time-dependent frequency, is applied to the normal modes of
condensed systems. Taking advantage of the analogy with the stationaryliBgkreequation in one dimen-
sion, the existence of special modasmodes, with exponentially increasingmplitude, is proven, both for
disordered and for periodic time-dependent strains. Anharmonic effects are then accounted for in terms of
absorption processes for the excess phonsrghonon$, coherently produced by the strain. A nonmetallic
continuum lattice is used as a reference system for applications. Possible macroscopic effects, such as the
resonant activation of optical modes and the production of time-controlled shock waves, are outlined.
[S0163-182607)02826-9

I. INTRODUCTION production of phonons is studied for an ideal continuum lat-
tice model(CLM). Indications for macroscopic effects of the
The recent debate about cold fusiohraised the question coherent production of phonons are given.

whether it is at least conceivable for a metallic system to
transfer such a large energy to light ions, as to enhance the Il. ENERGY STORAGE
rate of any nuclear reaction up to significant values. This The classical . f i ith time-
guestion has stimulated a number of unusual insights, abou e classical equation of an oscillator with time
the way in which the elastic energy can be accumulated angtependent frequency reads
released, under certain critical conditions. In particular, Cas- d2Q
sandro, Gallavotti, and Jona-Lasin@nd Maiani, Parisi, and ———=[Q3+8(1)]Q, 1)
Pietronerd put forth an explanation of the experiment of De dt
Ninno et al,® based on a local structural phase transition,where Q is any generalized coordinate of the system, and
with a sudden release of elastic energy, in the form of shocks(t) is a suitable function of time. We will discuss in Sec. Il
waves. The energy of the shock wave should be initia”ysome pOSSibIe physica| realizations of Em) For the mo-
stored at the surface of small hydrogen-rich dots. Statisticahent, we simply study the nature of the solutions, according
arguments are then used by Tabet and Tenebaonustify o the behavior o(t). First of all, we justify the use of the
the crucial point of the question, that is, theherenceof the  classical approximatioffor an outline of the quantum case,
energy release. The shock WaVe. in Refs. 5—7 can indeed Q%e the end of the present Seclib,y assuming that the Sys-
regarded as a sort of phononic laser, whose quanta afgm js in thermal contact with a bath at temperafttirsuch
spherical phonons imploding from the border of a small criti-¢,5¢ KT>ﬁ(QS+ sy)Y2 8, being the maximum value at-
cal region to its center. Apart from any possible application;gineq by|8(t)|. Thoughclassicalin nature, Eq(1) can be

to the cold fusion, the preceeding arguments do actually,rma|iy mapped into guantumproblem, that is, the station-
open a stimulating field of investigation, about the pOSS|b|I|tyary Schralinger equation in one dimension, provided
that coherently produceghonons do accumulat@nd re- ’

lease large amounts of energy, well above the “natural” t (time)—x (spatial coordinate
thermal values characteristic of each phonon. The present
paper aims to approach this problem from a general view- Q(t)— ¢e(x) (energy eigenfunction
point.
In Sec. Il the “storage” of the elastic energy is ap- Q2-E (energy eigenvalye< 2m/#?,
proached, as a preliminary step to the coherent production of
phonons. The basic mechanism of energy storage is gener- —8(t)—V(x) (potential energyx 2m/#2. )

ated by a very simple mathematical model, that is, a classical

oscillator whose elastic constaar proper frequencyis af- ~ The mapping Eq(2) is very convenient for the present aims,
fected by time-dependent fluctuations. It will be shown thatsince the nature of the solutions of the corresponding Schro
under very general conditions, the energy of the oscillatodinger equation are well known, W(x) fluctuates without
may increaseexponentiallyin time, at the expense of the limit in a finite range of values, fok— . If the fluctua-
external source producing the frequency fluctuations, in th&ons are disorderedn any sensg for any value ofE be-
absence of dissipative processes. In Sec. lll, we discuss thenging to a se{E,} of “allowed” values, the eigensolu-
possible physical realization of the source, while in Secs. IMions ¢g(x) are localized that is, their envelope is
and V the anharmonic effects are accounted for in terms oéxponentially decreasing fax— =) (Anderson localiza-
phonon-phonon scattering processes. In Sec. VI, the coheretion in one dimensiof). Otherwise, any solution of the
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Schralinger equation iexponentially increasing |x|, apart \
from possibleisolated values {E,} corresponding toex- 8w
tendedsolutions, that fluctuate periodically in a limited range
of values forx— *.% Apart from the isolated point spec-
trum {Eg,¢, the general solution of the Scldiager equation
in case a always includexponentially divergingcompo-
nents, whose elimination on both sides of thexis, is pos- i R —
sible for E e {E,,¢} only, and for very special choices of the
initial conditions. Coming back to Eq1), by means of Eq.
(2), we can conclude as follows:

(@) If 8(t) fluctuatesdisorderlyin time, within a limited
range of values, the envelope Qf(t) increases exponen-
tially in time, for almost all initial conditions and unper-
turbed frequencies.

The other case of interest for the present aims is a peri-
odic potentialV(x)=V(x+a), in the “equivalent” Schre FIG. 1. A “potential-barrier” model for the fluctuations in time
dinger equation. If the eigenvaluEsbelong to special inter- of the square proper frequency of an oscillator. The perturbation
vals, denoted as “allowed bands,” there are acceptéble Starts at=0.
the quantum sen¥esolutions ¢g(x), expressed as a linear , ) 2
combination of two Bloch functions, whose square modulud€ctangular barriergwells), of height(depth &= — 6y /g,
have the same periodicityas the potentiaV(x). If, instead, ~ Width As=Q,A 7, and periodically distributed on theaxis,

E belongs to the complementary intervals, denoted as “forWith period so=(,7. Settings'=s,—As, it can be easily
bidden bands”(or gap$, the general solution is a linear shown that the solution of the problem stated above is given
combination of two functions, whose envelatiserge expo- PY the quantity

nentially for x— +0o or x— —o. Allowed bands and gaps

[t— A1—W

<+ —p|°

are alternate on thE axis, without upper limit, and can be r_ .oqs’)cog As1—&)— 1-é2 sin(s’)sinAsvVi—¢
thereby labeled by an index=1,2,... . Inconclusion, ac- gs)cog ) J1-¢§ In(s")sinC o
cording to the mapping2): (4)

(b) If 8(t) is aperiodic function of time of periodr, the
nature of the solutions of Eq1) is twofold: if Q3 falls into
an “allowed band” of the periodical “potential™ §(t), the
coordinateQ(t) is a periodic function of time, of period
27/ (the unperturbed solutignmodulated by another pe-
riodic function of periodr. Instead, ifﬂg falls into a “gap”
of the periodic potential- 6(t), Q(t) is split into two oscil-
L?EPC% ?Sﬁ%%ﬁ;t:a Vg'thagngsg;?%ﬂ pﬁ}g?g;gg@%réﬁoﬂ the special valuegm (j=0,£1,£2,...). Theresulting rate

y b Y of increasdin s) is s, | ¢ sin(Ag)|/2, to the lowest order ig.

of time, while the other is damped by an exponentially de- . 0, ) .
creasing function. At long times, it is clear that the formerRecaIIIng the definitions in E3), and coming bacl_< to the
t scale, we can conclude that the oscillator En, in the

will always dominate, except for very special initial condi- . . ) .
tions, having zero measure in phase space, for which th@Odel fluctuatlon. F'g'.l’ _becomespemalmode, adsorbing
' ' energy exponentially in time, if

exponentially diverging component has rigorously zero

Value 1 does or does not belong to an allowed band accord-
ing to whetherR?><1 or R>>1 respectively. In the latter
case, the rate of the exponential increase of ® [Eq. (3)]

o o1 17 11 g ;

is s In[|R|+R?—1].! Since ¢ is assumed small, we can
study Eq.(4) to the first significant ordefi.e., £2). It follows

that the conditionR?>>1 is realized when the quantits,
—Asé/2 falls in small intervals of width¢ sin(s')|, around

weight att=0 (the initial time at which the time-dependent A7éy,

stress is applied Qo7+ 50 = (j=0,1,2...) (resonance condition
In case(b), it is possible to study the exponentially in- 0

creasing solutions on the assumption tiéigt=max|&t)|} (53

<Q§ (small fluctuationy and for the model sketched in Fig. for which the rate of exponential increage time) of the
1: 5(t) is therein depicted as a piecewise functidar t  Q coordinate becomes

>0), such that “rectangular wells” of depth, and duration
A7, appear periodically, with period(>A 7). In this case,
the quantum problem equivalent to Ed) [according to the

mapping Eq.(2)], becomes a standard exercise for under-

raduate studentS.First, Eq.(1) can be put in a dimension- Equation(5a) is not strictly a “resonance” condition, since
I%ss form: Yy P there is a frequency band of widtl sin(Qq(7—A7))| 72,

around each value in the right-hand sides) of Eq. (5a), for
def def d2d 8(s/Qy) yvhi_ch an exponenti_al increase a}pp_lies as well. Th(_a védoe
s=Qpt; ®(s)=Q(s/g)=— 4 =[1+ 2 } is, indeed, themaximumrate within the band. Sincé=
0 — /QS is our smallness parameter, in the present case it is
3 justified to neglect any bandwidth effethese will be recon-
Now the question is whether value 1 does or does not belongidered in Sec. ¥ From now on, we will call ‘s modes” all
to one of the allowed bands generated by a distribution othe special modes, whose amplitude’s envelop increases ex-

|sin(QoA 7). (5b)

M
Ws= -7
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ponentially in time under the action of E(L). However, we crease, and quickly drive the swing out of the small oscilla-

anticipate that dissipation effects will, in general, suppresgion reg.ime. . .

the exponential rate of increase, as discussed in Secs. IV and Coming back to microscopic scales, H@4) can be ap-

V. plied to normal elastic modes in condensed systems, pro-
At first sight, it might appear far more convenient to refer Vided the app"?d stress field does prpducadmbatlctlme- .

to disorderedfluctuations|case(a)], than toperiodical fluc- dependent strain, such that, at each instant, the normal elastic

. o : modes themselves can be defined, even in the strained sys-
tuations[case(b)], in view of an exponential energy storage

. . ) , tem. For this to occur, the rate of change of the strain must
in the oscillator Eq.(1). In fact, case(@) gives rise to the o sma)l compared to the proper frequency of any mode. For

required effect forall values of(,7, except at most for a 4 periodic strain of period, the condition above reads
zero measure set. Instead, c@serequires a quasiresonance >max{le}, {Q,} being the set of unperturbed proper fre-
condition aroundsolatedvalues of(2o7 (for small periodical  quencies. If the strains are nonadiabatic, it is impossible to
fluctuationg, and looks thereby much more selective. Inseparate the elastic part of the Hamiltonian from the interac-
practice, however, the situation is not so different. If wetjon part coupling the atomic coordinates to the stress field.
assumesmall disorderedfluctuations in caséa) too, it is  |n this caseyiscoelasticeffects, which we neglect here at all,
possible to see that the disorder is a second-order effeckhould be accounted for. In conclusion, an adiabatic strain is
(=£%), with respect to a suitablperiodic potential, denoted  one producingnharmoniceffects only, as we will assume in
as a coherent potenti&The periodic problentcoherent po-  what follows.

tential approximatiop yields the same results as in cdbg The proper frequency of a normal mode, in a crystalline
that is, a resonance condition 6ky7, giving rise to arate of material, has the general fornf)(k)=Q({a,};{ka,}),
exponential increasexs=¢ [Eq. (60)]. The reason for the where the a,’s are the elementary lattice vectorsy (

general exponential increaseadt (), is that in the present =1 2 3). For an adiabatic strain preserving the crystal sym-
one-dimensionalcase, the disorder itself, no matter how metry, such that

small, is shown to produce a finite rate of exponential in-
creasewys.® However, it follows thatwgsx &2, while wg a,(t)=ag, +Aa,(t), (6a)

*&. Thus in casda), we expect that fo€)o fulfilling the it js immediately seen that the scalar produkas’s are in-

condition (5a), there is a rate of exponential increasg  variant, since the wave vectoks determinedfor examplé

£, much largerthan the rateoqx €, corresponding to the py periodic boundary conditions, do change with time as

Qo7's not fulfilling the same condition. This will have rel- ell, in such a way thaka,=2m(n/N), n being an integer,

evant consequences when the dissipation effects are agnd N being the number of unit cells in the lattice. As

counted for. stressed above, changes in the proper frequency
As a concluding remark on the elementary mechanism Oh({aa};{kaa}) can only come from thanharmoniceffects

energy storage, we comment about the validity ofdfassi-  accounted for by the explicit dependence on ahis them-

cal approximation underlying Eq1). Does the exponential gg|ves. For example, Gmeisen’s theory takes the densjty

increase of the energy hold true fogaantumoscillator too? 55 the most important quantity related to thgs, and as-
The question can be approached from the well-known resul;mes that

that the quantum mean energy of a harmonic oscillesor- ,
not be smaller than the corresponding classical mean energy. P

The exponential increase of the latter is thereby a sufficient Q{agh{kas) =Q(p,{kaq}) = %) Qo(po.tkaa),
condition for the former to increasa leastwith the same (6b)
rate. However, the quantitative aspects of the quantum osci
lator's problem with fluctuating frequency are far from
trivial, and require a separate analysis, which will appear in %)
forthcoming paper.

!/'vherepo is a reference density ang=2) is the Gruneisen
arameter. Within the limits of validity of this approxima-
on, one may take, as the unperturbed density, and intro-
duce a time-dependent uniform pressure, such &)
=pot+Ap(t). From Eq.(6b) it follows that

Ap(t)}

I1l. PHYSICAL ORIGIN OF THE FREQUENCY 1+
y ——=
Po

FLUCTUATIONS Q(t,k)=Qq(k) (60)

Before discussing the applications of the preceeding arguf) (k) being the unperturbed proper frequency. It is worth
ments to microscopic scales, it is worth stressing that(B)g.  stressing the analogy existing between the systems described
describes, in the small oscillation limit, the dynamics of aby Eq. (6c) and thecavitating gases® implemented by a
child sitting on a swind? In fact, the child’s movements can resonant pressure wave, on a liquid with dissolved gas. Due
actually change the swing frequency in time, by changing theo the steady nature of the process, bubbles of gas are formed
inertial moment. In agreement with cas@ and (b), dis-  at the nodes of the pressure wave. The radius of each bubble
cussed in Sec. ll, it is a matter of common experience thafollows the periodic change in time of the pressure. An ac-
moving disorderly[case(a)] is not a good strategy for in- cumulation of energy in the bubble is observed, under certain
creasing the oscillation amplitude. The resulting exponentiatritical conditions, leading the bubble radius to “collapse”
rate is indeed small, and may be suppressed by all dissipatifeom sizes of about 40 m to about QuBn. Accordingly, the
effects influencing a real swing. Instead, there are optimainternal temperature is suddenly raised up t& KO A theo-
periodic movements/case(b)], corresponding to the reso- retical picture of the process can be given in terms of clas-
nance condition(5a), which yield an effective rate of in- sical fluids’ equations. The analogy between the cavitation
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effect and the present theory will become even more manipre-exponential factoQ; behaves like &-mode amplitude.
festin Sec. VI, where Ed6¢) will be applied to a continuum The numerical factorw>1 accounts for the fact that, de-
lattice model. pending on the initial conditions, only a fractidthat we
While Eq.(6¢) refers toextendedormal modes, a similar denote as 4/«) of the initial amplitude does contribute to
description can be applied tocalizedmodes too, provided the exponentialincrease while the remaining fraction 1
their localization length\ is large compared to the inter- —1//o refers to the exponentiallgecreasingcomponent of
atomic distance. In this case, it still makes sense to introducghe motion. The importance af will become manifest in
a density of particlep(R,t), in a spatial region of linear size Sec. VI. If the rate of increase, is small compared to the
\, around the positio.ﬁ{, where the elastic mode is localized. proper frequencyQ, (weakly enhanced oscillationghe
The application of Groeisen’s theory yields, in this case  “fast” factor Q; fits the thermal average, so that ttotal
average number of phonons in tisemode readsn(t))

Ap(R,t) =kT[aQoh] ! exp(2od), and the number ofexcess

Q(R)=00(R)| 1+ ¥(R) ()

po(R) |’ phonons(that we calls phonon$, produced by the time-
dependent strain, turns out to be
for the proper frequency of the localized mode. Note that in
Eq. (7) both y and p, have been assuméthrough the de- kT [e2ost def |n o
pendence orR) aslocally defined quantities, since the ma- (ng(t))= 0. —-1| for t>t,= Yo
terial is expected to be nonhomogeneous, Focalized ol @ “s (8
modes to exist.
=0 for t<t,,.

Equation(7) may be relevant for systems containimg-

bile atoms, such as liquids, hydrogenated metals, ionic conequation (8) is actually an approximation, replacing a
ductors, for which the local density(R,t) may change in  smooth transition to the long-time behavior, occurring
of external fields. Clearly, the fluctuations originated ijust att,,. This amounts to neglect the details of the initial
these “internal” strains are necessaritfisordered while  gieps of the process, during which the decreasing and in-
those originated by external fields, under experimental congreasing components of the amplitude are comparable in

trol, can be periodic by choice. Hydrogen-rich dots in hydro'magnitude. From Eq8), the differential equation fofng) in
genated metals, like those envisaged in Refs. 5-7, appeg{e absence of dissipation is

good candidates for the application of E@), since they are

relatively large defects, corresponding to localized elastic d(n)

modes, whose frequency follows the fluctuations in time of T =2w((ng) +{(ny)) (t>ty), (99
the hydrogen density in each dot.

Beside Grueisen's theory, leading to Eq&c) and (7),  with (ny(t=t,,))=0. Note that Eq(9a) is completelydeter-
more complicated cases could be realized by time-dependeffinistic, since it has been obtained from the solution itself,
electromagnetic fields, if the material is strongliezoelec-  as deduced from Eq1). In particular, Eq.(9a) refers to an
tric or magnetostrictiveThese effects, however, are strongly intensivequantity like (ns) (the number ofs phonons in a

model dependent, while Eq&c) and (7) are “universal,”  singles mode. In contrast, dissipation effects apeobabi-
within the limits of Grineisen’s approximation. listic in nature. As discussed in Appendix A, the resulting
fluctuations decrease with the square root of the number of
IV. DISSIPATION EEFECTS: LOW DENSITY phonons themselves, so that a deterministic equation includ-
OF s PHONONS ing the dissipative effects does make sense only fordted

numberNg(ws,t) of s phonons with frequencyg in the
The formal analogy{Eqg. (2)] underlying the preceeding system. SettingNy(ws,t)=M (wg)(ns), with M(wg) the
arguments, is obviously based on the assumption that th@umber ofs modes in the systertan extensivevariable, the
unperturbed potential in Eq1) is harmonic. It is only under equation determinind(ws.,t) is obtained from the balance
this approximation that the exponential storage of energy capetween thédeterministi¢ rate of creation @, in Eq. (9a),
be described in the ideal scheme proposed above. In a reghq the(probabilistio rate of single-phonon decay;(T),
system, anharmonicity is just responsible for thermalizationncjyding all anharmonicity effectgohonon-phonon interac-
(or dissipation.’* Thermalization makes the energy of the tion, phonon-electron interaction in metals, scattering on de-

thermal modesthat we call “T modes’) fluctuate around fects, scattering on the surfac,.The resulting balance
the equilibrium value, and transforms the initial energy of agquation is

nonthermal phonon into thermal energy. What happens to the

s modes, adsorbing energy also from the time-dependent dNg

strains, is better understood in terms of the corresponding 5 =[2ws~ wa(T)]
phonons In the classical limit, the amplitud®(t) of any

normal mode can be easily related to the average numbeJntil the number of phonons per unit volume is small, one
(n(t)) of phonons, sincén(t))=(Q?%(t))mQy/#A, with m  can neglect the effects of their scattering on the actual tem-
= particle mass. Fof modes, the time average is equivalent perature(the opposite case is considered in Seg,. 36 that

to a thermal average, that ®11(t))=«T[Q¢h] 1. Fors  the temperature im,(T) is constant, and fixed only by the
modes, the amplitudeQq(t) can be set equal to external conditions. The solution of E(b), in the same
Q+(t)explwd)/\a, in the absence of dissipation, where the approximation leading to Eq8), is immediately found as

KT

Ns+M 7o

) (t>t,). (9b)
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def  |n o A

for t>thiss— m, ERLIES

(90

No— M kT
S RO,

e(2ws— w)t

-1
a

=0 fOI‘ t<tdiSS'

The initial “waiting time” tgss, including the dissipative
effects, now replaces,, appearing in Eq(8). The condition
N>0 [first Eqg. (90)] yields

def In »
wei(T) =205~ w1(T)>——. (10 0 —  —» t
If condition (10) is satisfied,w.(T) is the effective rate of FIG. 2. Qualitative sketch of the behavior in time of the number
exponential increase of thephonons’ number. If, instead, of phonons in asingle smode, in the presence of a resonant ad-
wei(T) is negative or zerolNs remains equal to zero at any sorption process involving* phonongEgs.(12)], in the ideal limit
time. n* @* — oo,
Once condition(10) is satisfied, the steady time fluctua-

tion of the proper frequency does produce an exponentiarharniC limit, as we did in Eq49), becausény,y is an inten-

d:ﬁve_rgelncehof thesbmodetjs amopflltude, evert\hln the prr]esgncesive variable. The problem raised by E¢K2) is to calculate,
ot single-phononabsorption. course, other mechanismsy, o given instant> 0, the probability for a single mode to

are expected to prevent the divergence of the oscillation aMontain a given number af phonons, on account of the fact

plrlél;dci. .Isntgaaréfgl?]rt' fgﬁeaﬁiﬁaitﬁgsofntgf _pnerturbl zt:\éitap'that there is aleterministicprocess producing phonons with
P : u involving a rate 2vg, and twoprobablistic processes of dissipation,

ks)cattefrlr?_g r?B phonons. Thesebch?nnels maly '?}CIUde aNUMyne of which is activated only when the number of phonons
chr1 c(;/ folrgm;-a?ig?]rggctri)\r/;giisgf ggtic'sat:uni?(;gw%i?;%jﬁlga- itself is larger tham*. The resulting equation is rather com-
' ; plicated, and its general discussion is left to further investi-
be norr_nally forbidden toT phonons._ Intr_oducmg a rate gations. The only limit case leading to a simple solution is
wi(T) (j=1) for the coherent adsorption pfphonons, the n*>(n7)>1 andn* w,«—. The first condition ensures

total rate of dissipation fos phonons becomes that we can approximately use E@b) for (n.) too, when-

(ny) ever{n,,)<n* (Appendix A). This leads one to define a time
we((N)) =2, joj, (11  interval
=1
replacingw; in Eq. (9b). However, Eq.(9b) makes sense t*:w;ﬁl In(n* +(n7)) + tyiss:

only if the total number of scattered phonons can be taken as
a differential quantity in the Ihs. As shown in Appendix A, during which(ng) increases from 0 to* —(n;). The limit
this can be done only in a limiting case, that does not diffei* o . — allows one to claim that the resonant adsorption
too much from the discussion reported above for the singleof n* phonons occurs with probability 1 in any arbitrarily
phonon process; . In contrast, a remarkable difference ex- small interval of time, after the activation of the resonant
ists when there is eesonantchannel for the coherent absorp- channel. This resets the mode to the initial state of zero
tion of n* (>1) phonons, leading todiscontinuosehavior  phonons, and makes the “loading” of phonons start again,
of w. For instance, let with t replaced byt—t*. The resulting picture is thus a
periodical(with periodt*) increase of ny,), up to the value
n*, followed by a sharp decrease to zero, due to the resonant
W= 01+ N* oy for (ng)=n*, (123 _ads_orption(Fig. 2). It is worth stressing that a physical real-
ization of Egs.(12) could be, for example, the periodical

where(nyy=(ng)+{ny) is thetotal number of phonons in the “pumping” of n* acousticphonons into theptical phonon
s mode 6 phonons-T phonons). The problem comes ponch.

from noticing that the resonant absorption channel is inac-

tive, for anysingle mode, until the total number of phonons

(nyyp is less tham*. If 2w is smaller than the minimum V. DISSIPATION EFFECTS FOR MANY s PHONONS:
rate w, the average number sfphonons in the whole sys- SELF-CONSISTENT THERMALIZATION

tem is obviously zero. If @4 is larger than the maximum The atomic displacemenf(r,,.t) in any siter, of a crys-

. ;
ratewlfn wps , the average nu.mb.er sfp_honons me.ach talline lattice can be written, in the presencesahodes
s mode increases exponentially in time with decreasing fluc-

tuations, as shown in Appendix A. Instead, the condition

w=w;  for  (ngy<n*

1 .
01<2w< w1+ N* (12b) q(r,.t)= N > ek)Qq(k,t)e'k
makes it necessary to split in time the two caéeg)<n* K7k
and (ny=n* for any single mode. Hence, the problem of . . ikt
the fluctuations cannot be avoided by taking the thermody- +2 e(k*)Qy(k* e | (133
k*
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wherek* are the wave vectors of temodesQ¢(k*,t) and  phononsland the value of the actual temperatdrg), Eq.
Q+(k,t) are thes modes’ andT modes’ amplitudes, respec- (15)] to saturate at long times to finite limiting values.
tively, ande(k) is the polarization unit vector of the mode

(for brevity, we do not distinguish here between transversal VI. THE CONTINUUM-LATTICE MODEL

and longitudinal modgsTaking the square of E¢133, and ) i

using the random-phase approximatioralid at high tem- In the continuum-lattice modelCLM), the frequency)

peraturey the average on time @f(r ,,t) results from sum- = C(p)k(p) of each normal modes involves the sound veloc-

ming up the average square moduli, whence, from the disly ¢(p) and the wave vector's moduligp), both depend-

cussion in Sec. IV ing on the homogeneous density In particular, in three
dimensionsk(p) =k(po)¥po/p, po being a reference value,

(QP(rp,))=02(T)+q(T,t), (13p  that we take as the unperturbed density. The expression for

k(p) simply follows from the boundary conditions, accord-

where ing to the discussion in Sec. lll. At this stage, we can set

k(pg) =k, with the implicit assumption that refers to the
D«T _ unperturbedsystem, so that its upper limiting valkg (the
2 —_ 2 1
qr(T)= mN k%‘:* Qo °(k) (143 Debye wave vectoris independenbf time. Equation(6¢),
describing the effect of a uniform time-dependent pressure in
is the thermal part of the square amplitu@e=dimension of ~ Gruneisen’s approximation, can be now applied to the CLM,

the system depending on the temperature only, and with the resuft®
D% (ng(k*,1)) Ap(t)}
2 ——— s s Q(k,t)=cgk| 1+ , (163
as(T.0=—5 %} ) (14b) (k) =Cok| 14y —

for k<kp . The quantityc, is the unperturbed sound velocity
(for simplicity, we use the same formalism both fivans-
versaland forlongitudinal modes. From Eq.(16a one can
define a time-dependent sound velocift) =cq+ Ac(t),
§uch that

is the “special” part, following the behavior in time of the
s phonons. The important quantity in EL4b) is actually
the number ofs phonons per unit volume. So far, any pos-
sible effect of the “dissipated”s phonons on the thermal
bath itself, has been neglected at all. This is possible only i
the concentration a§ phonons produced by the strains does Ap(t)
remain small. Instead, suppose that the sum in(Ed. con- Ac(t)=cpy
verges to an upper limiting valuey(T) for (ng)—c. In

addition, let the number o6 modes such that @y(k*)  With Ac(t) behaving like the model fluctuation in Fig. 1,
>wy(T;), at the initial temperaturd;, be anextensive Eqgs.(5) and(16b) readily yield

guantity. If so, the terms increasing exponentially at long

times[with ratesweg=2wyk*) — wy(T;)], yield afinite con- k*=kj=jm(rco+ArAcy) ™" (j=0,1,2...), (173
tribute to the sum Eq(14b), even in the thermodynamic
limit, and make the oscillation amplitudes afi atoms di-
verge in turn. In this case, the basic assumption thatsthe
phonons do not influence the thermal bath, does not make
sense any more, at long times. In order to account for the/
effects of the dissipatesl phonons on the thermal bath, one defp

may define theactual temperaturel (t) at any instant, just gzﬂ (179
from the square oscillation amplitude in the coordinate Co

space, that is

<Acy. (16b

ws(kj)57§_ |sin(jmA 7l 7)], (17b

here

is the smallness parameter of the problem. In particular, the
mN 1 special choice\ 7/ 7= 1/2 (which makes Fig. 1 as similar as

T(t)= — (g*(r, ,t))[E Qoz(k)} ) (15)  possible to a sin-cos perturbatjoleads to a further simpli-
D« k fication, since Eqs(17) become

From Egs.(13), (14), and (15), it follows that T(t) is an (2j+1)a

increasingfunction of time, ifs phonons are produced. Be- ki=————(1-¢2); (j=012..), (183
ing an increasing function of (t) itself, the maximum rate 0

of dissipationw (T(t)) behaves accordingljsee, for ex- wy(k)=¢7=ws (independent of}), (18b)

ample, Eqg.(19) in Sec. VI. Then the condition &.(k*)

>y (T(t)) for a s mode to produces phonons, becomes so thatwg is the samefor all the s modes, whose wave
more and more stringent, with increasing tirftleat is, with  vectors satisfy the quasiresonance conditid8g. From
increasing number of phonons. In practice, the larger the now on, we will neglect the small tergin Eq. (189. If we
concentration ofs phonons, the smaller the number ®f are interested in conditiol0), marking the onset of any
modes that can produce them. Accounting for this nonlineamacroscopic effect related to the existence of nonthermalized
countereffect is what we call “self-consistent thermaliza-s phonons, we need an explicit formula for the rate of decay
tion” of the s phonons. As we will see in the next section, w; of a singlephonon of wave vectdk, into p(>1) differ-

the self-consistent thermalization may lead the numbes of ent phonons. For aonmetallicsolid at high temperatures
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(T>Debye temperatujew; is usually calculated as the sum 1/2. Ina
of three terms, that is, normal and umklapp processes with X=2ogd—In &)™ f(x)=x| 1+ vzl
p=2, and normal processes wifh=3.® The resulting ex-
pression reads as follows: ko [ Twpr| 2
F(T)=Kko/ky(T,»)=from Eq. (200=7y — ( ) .
) T T 2 k 2 kD Tog 1h
w1(k,T)=2y"wp T_0+A T_o> (E) (21b)

At constant volumé’ ky,(T,) is the only quantity depend-
4 . .. .
(19 ing explicitly on T(t), while at constant pressure bokh,
' andk, would be explicit functions off (t), through the spe-

+30m% — | —
TO kD
. - . cific volume andcy, respectively. Limiting ourselves to pro-
wherey is the Grineisen parametetp = Cokp, is the Debye cesses at constant volume, the solution of 4.8 can be

fre_quency,T0=mc§/K is a characteristic temperature, an_d given analytically in the limitx— o (t—o) as
A is a geometric factor somewhat larger than 1. On setting

T(k

k=k; in Eq.(19), with k; given by Eq.(18d, condition(10) IN(2wgt)
yields a lower limiting value forr, below which all s T(t)sz[ el (22
phonons are thermalized, even for the lowest possible value S
ko of the quasiresonant wave vector. In practice, conditiorwith
(10) necessarilyimplies that
wpT
rop_#r[T (T ﬂ 208 T.=£T, (7%)2 for r<L/co. (233
2m 26 | To To The conditionT<<L/c, in Eq. (233 is equivalent to assume
provided that k, [Eq. (18a)] is larger than the minimunk valuek,
=q/L for a system of linear dimensioh. Otherwise, the
TWp lower limit f(x)kqy/ky, of the integral in Eq.(21) must be
2 >1. (20D replaced byf(x)k,,/ky . The preceeding calculations for the

self-consistent thermalization do not change, but the value of

In general, if T/To<10 ' (that means, typically, the saturation temperatufle, becomessize dependent
T<10® K), even the second term in square brackets in Eq.

(203 can be neglected, as we will do from now on. Condi- kpL?
tion (10) also yields an upper limiting value for the wave T.=E&To m

vectors satisfying Eq18a):
TO g |n o
Y Twp (;_ 2t ) (apart from the second term in square brackets, which has

) N ) been neglected Physically, Eqs(23) indicate that the sys-
Since, from condition208 and (20b), 7 is large (but not  tem initially at the temperaturg, , is driven by the periodic
arbltrarly large: see belowit is rea;onable to approximate stress to a higher temperatuFe (independent of;), with a
the discrete set of values determined by E200 with &  gmgoth asympthotic evolution It (see Fig. 3 The period
continuous bancbf k values, ranging fronk, to ky (S€€ . of the perturbation cannot be arbitrarly largesiphonons
Appendix B. If now we neglect any coherent scattering ef- haye 10 be produced in the initial steps of the process. In fact,
fect, on settingw,=wy, the self-cons_|stent thermalization the finitenessof the system yields a size-dependent upper
can be approached as follows: Efc) yields the number of  jimjiting value 7, for 7. This follows from requiring that, at
s phonons(proportional to theinitial temperatureT;), for e injtial time, the maximum valule, (T;) of the wave vec-
anyk; ranging fromko to ky . On inserting Eq(9¢) into EQ.  or5 corresponding te phonons, is larger than the minimum

(14b), and on transforming the sum into an integral, the valuek,,= /L. From Eq.(200 (with T=T,), this condition
part of the square oscillation amplitude is obtained as a funcreyqs

tional of w4(T,k*), whereT is now taken as theunknowrn)

for 7>L/cg. (23b

The saturation valud,, obviously coincides with the tem-

12 def perature at which the inequalit20a becomes an identity

—ky(T,1). (200

ki<kp

actual temperature. By means of E(L49 (with T replaced defeT o L \2
by T,), the total square amplitude is obtained, as a function < TM:—zu (—) (243
of T, from Eq. (13b). The resulting expression can be put YT \Com
into Eq. (15), that becomes the evolution equation for the A |ower limiting value 7, for 7 follows from Eg. (234, on
actual temperature itse(Appendix B: requiring thatT,<T,.:
2
&ko e jx 2 def T
=T 4+ | — -y — - i
T T'{ 1 wkpF(T) | f(x) f(x)F(T)e dy-1 7> 1= wp (ym)° Toé (240
If one of the conditiong24) is violated, nos phonons are
TR, (218 present in the system, and the actual temperature coincides

with the initial temperature. From Eg&3), it is easy to see
where that
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T /T, ApM> Ta 27
e TY =,
[ R po "7 T
[ M L)
00 « * : : « " where a is the interatomic distance, so thaip=cqkp
A =cy(m/a). Inequality (27) provides the(size-dependept
onl * . lower limit on the maximum density fluctuation, in order that
¢ = there are macroscopically detectablphonons. In the clas-
« sical limit, the state equation of CLM reads
0.7
o - 3
o6 P(T,p)=3vp KT—g hwp |,
05 ... : } = > so that the lower limit for the maximum pressure change
100 200 300 204t APy, is readily obtained from Eq27):
FIG. 3. Numerical solution of Eqg21) [see also Eq(B5)] for AP >y E (28)

the actual temperatufE(t) in a continuum lattice, under the action P(T«,po) ToL~

?f a timf'dipe.ndfnlz untifo.rm Streiss as in tr:: ig. 1t lT?e Sat“rtatio%ince the pressure of solids at relatively high temperatures is
emperaturet.. 1 taken twice as a_rge,aSS 1€ Inftal Iemperature o order 1§ atm, Eq.(28) tells us that for goure nonmetal-
T;. Two plots are reported, fof'=10"° (circles and for I - . . .
e . , lic monocrystal of cubic form, with sides about 1 cm long,
=10"° (squares Note the steep increase at times of order t initial t t f hundred Kelvin. th iodi
10/wg, and the slow saturation &t.. The numerical data are prac- at initia e?:pera ure of some hun lre fe Vmi% € periodic
tically insensitive to the specific value of for « of order unity. pressqre change must exceed a Va_ue of about &€m (y
=2), in order thats phonons can raise the actual tempera-
ture up to macroscopically detectable values. This threshold
value for the pressure might look surprisingly low, since
10" 2 atm corresponds to nothing but a delicate finger touch.
However, one should now recall that the theory, in the
The upper limiting valueT,, of the saturation temperature present form, holds only fardiabaticstrains. As stressed in
corresponds ta=L/cy, at which the two expressior{23a Sec. lll, this means that the frequency of the strain fluctua-
and (23b) do coincide. The full dependence ®f, on 7is  tion must be small compared to theinimum proper fre-

def wDL
T.<Ty=¢To

Co(my)? @9

sketched in Fig. 4, under the obvious conditidp<T),, guency of the normal modes. For an ideal solid of linear size
which yields, from Eq(25) L, this condition impliesr>L/cy, which shifts the region of
applicability of the theory well across the top of the peak in
, TiCo Fig. 4. The expression to be accounted for is now 28b),
&> (my) 7 - (260 showing that the condition foF.. to be larger tha; actu-
o%p ally reads
The opposite casé&y,<T, is not excluded mathematically, AP a
but it simply means that the dissipation rate is always larger —M>7T7 —— for >Llc,. (29)
than the production rate sfphonons, so that the temperature P(T=.po) Tol

remains at the initial valud;, and the average number of
s phonons is zero. Recalling Eq4.7¢) and(16b), condition
(26) becomes

Instead, Eq(28) refers to the case=L/c,, that makes the
strain nonadiabatic for the low-frequency modes of the sys-
tem. As stressed in Sec. lll, the adiabaticity condition
>L/cq is equivalent to assuming that the time-dependent
T A perturbation does produce anharmonic effects only. In this
case one is sure that the predicted temperature increase is
entirely due to thes phonons, and not to the thermalization
of T phonons produced by viscoelastic effects.

Now we wish to stress an apparent paradox emerging
from Egs.(23b) and(24): since¢ is linear in the Grineisen
parametery [Eqg. (179] the limit y—0 yields T,— oo,
™— 0 and r,,— 0. Thus a perfectly elastic lattice would be
able to store an arbitrarly large amountsgbhonons, for any
value of the perturbation’s period. But a perfectly elastic
lattice cannot contais phonons by definitioiSec. lll). The
problem looks unescapable, for it has a first-principles ori-

FIG. 4. Dependence on (the period of the stre3of the satu- ~ 9in: the exponential increase of the numbes @honons is a
ration temperaturd., for a continuum lattice model of linear size first-order effect in y, while the contrasting dissipation rate
L [Egs.(29b)]. Note the “window” | ,,,, [ of allowed values of [EQ. (19)] is asecond-ordeeffect. The key for the solution
7, giving rise to an increase of the actual temperature above thés just the parametet. As reported in the caption of Fig. 3,
initial value [see Eqs(24)]. the value ofa, unless not too large, is irrelevant for the data
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in Fig. 3, obtained frondinite (though small values ofé&. But  sinceviscoelasticeffects (coupling the normal modes to the
the limit y—0 also yieldstgss— [EQ. (9¢)], even fora  strain velocity are made negligeable. Equatiti) is thereby
arbitrarly close to 1. Equation€3b) and (24) have been assumed as a pusnharmoniceffect, to which Graeisen’s
deduced under the implicit conditidft4ss—, that is, over theory provides the most elementary and “universal” ap-
time scales large compared to the initial waiting time intervalproach. Explicit formulas are obtained fextendednodes in
tgiss» during which the behavior of the harmonic oscillator’s crystals, whose proper frequencies can be made time depen-
amplitude is not still exponential. Withy,s diverging, the dent by periodic externalstresses. Similar expressions for
system does not contagphonons at all, and the limit of the localized modes in nonhomogeneous materials do apply as
perfectly elastic CLM is recovered. Note that the conditionwell, but the proper frequencies’ changes are now attributed
a=1, for which tysc=0 anyway, is statistically irrelevant, to disorderedfluctuations of the local density, dueitternal
since it corresponds to a zero-measure setlafssical ini- ionic motions.
tial conditions. In a forthcoming paper, concerned with the In Sec. IV, the dissipation effects are considered in the
guantumoscillator with time-dependent frequency, we will case of lows modes’ concentration. This means that the
show thate=2 is the suitable value for the problem underionic oscillations are only negligibly influenced by tle
consideration. However, the “paradox” discussed abovephonons. Once stressed that the creatios phonons is a
points out an interesting result: the waiting time for the deterministicprocess, while their absorption gobabilistic
phonons’ production does actually increase with increasingn nature, a detailed-balance equation can be written for the
elasticity, but theintensity of the resulting effects does in- total number ofs phonons present in the sample, provided
crease in turn, when the coherent production finally startsthe number ofs modes which they originate from is an ex-
This could have relevant consequences in view of more retensive variable. This can be easily done for single-phonon
alistic approaches to the anharmonicity, introducing a temscattering processes, whereas the inclusion of multiphonon
perature dependence in the Geisen parameter. processes may considerably complicate the matter. In par-

Of course, the preceeding formulas for CLM are far fromticular, in the case of Eq$12), a resonant absorption chan-
reliable, when applied to real cases. Besides the phonomel, activated only when the number of phonons in a single
phonon scattering accounted for in the ideal CLM, any kindmode is larger tham*(>1), cannot be turned into a
of defects(grain boundaries, dislocations, atomic impurities, detailed-balance equation, but requires a statistical approach
surface scattering, free electrons in metalsuld contribute  based on the single-mode behavior. In the ideal case of a
their own terms to the dissipation rate. Hence,d@honons  diverging resonant rate of absorption, it is possible to guess
to produce measurable effects, one should expect to finthat the population of phonons in eashmode oscillates
more stringent conditions than those predicted in the presemferiodically between 0 and*, as sketched in Fig. 2.
ideal case. However, the low value of the “ideal” threshold  In Sec. V, we account for the influence of thgphonons
pressure[Eq. (28)] provides an encouraging indication, in on the ionic oscillations. In this case the evolution of the
view of a real experimental test. system is described by the so-called “self-consistent ther-
malization” of thes phonons: ifs phonons are dissipated in
the system, thectual temperaturel(t) and the maximum
rate of dissipationw (T(t)) are bothincreasingfunctions of

The problem discussed in the preceeding sections can Bimne. This leads the concentration sfmodes producing
summarized as the application of the swing-with-child Eq.phonons todecreasen time, so that a nonlinear counteref-
(1) to elementary elastic excitation in solids, in the presencdect is produced, making the actual temperature saturate at a
of dissipation effects. The general solution of Ef) has finite limiting valueT., (Fig. 3). It should be noticed that the
been given in Sec. Il, by mapping E@l) into a one- actual temperaturel(t) is quite different from thethermo-
dimensional Shidinger equatiofEqg. (2)]. The cases a of dynamictemperature one would obtain simply by heating the
disordered and b periodic fluctuations of the proper fre-system. In the latter case each oscillator's energy would be
quency have been considered separately. However, the pregharacterized by a Poisson distribution, whose variance in-
ence of dissipation makes the two cases coincide in b, fogreases linearly with the temperature. This is an obvious con-
many practical purposes, with the disordered fluctuation resequence of the chaotic approach to the energy equipartition,
placed by a “coherent” periodic function. The crucial point where each microscopic oscillator is a canonic system ex-
is the existence of special frequencies, at which the elastichanging heat with its neighbors. The actual temperature
modes’ amplitude diverge exponentially in tini@ the ab-  T(t), instead, is merely a thermodynamic measure nba-
sence of dissipationThese special modes are indicated as “chaoticincrease of the number af phonons, due to an ex-
s modes,” while theirexcesgphonons(that is, the phonons ternal perturbation. The only chaotic element is the initial
generated by the time-dependent stramre denoted as temperaturél; [Eq. (21)]. Indeed, the saturation temperature
phonons. Some physical applications of Et). have been T, is independent off; [Egs. (22)], so that the energy of
discussed in Sec. lll, with special reference to what we caleach oscillator tends to the asymptotic value, not only in
an adiabatictime-dependent strain, acting on the proper fre-average, but with a distribution converging &E — «T..).
guencies of normal modes in condensed systems. Adiabatidhis is a fundamental consequence of the cohefenner-
ity means in general that the frequency spectrum of the straigodic) production ofs phonons from the time-dependent
fluctuation(obtained by Fourier time transforminties well  strain. The oscillators in real space can be now regarded to as
belowthe normal modes’ spectrum of the system, with suf-microscopic systems whose energy increment becomes more
ficiently small amplitudes. In this case, there is no way forand morecoherent with increasing time and with increasing
the strain energy to enter the phonon bath, except(Bg. actual temperature. This opens, in principle, the possibility of

VIl. SUMMARY AND CONCLUSIONS
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a time-controlled, coherent-phase transition, if the systenmaximizing InP(AN) with respect toAN, the binomial dis-

can exist in two allotropic phases and B. The resulting
effects are expected to be very similar to those obtained in
cavitating gas? In fact, suppose we apply the CLM calcu-
lations at constant voluméSec. V) to the system in the
phaseA. It is conceivable that in some conditions, a critical
valueT_ of the actual temperature does exist, betw&eand

T, , at which the increasing internal pressure makes the sys-

tem undergo a structural phase transition frArto B. Since
T.<T., the critical temperature is reached ifiwite time.
For T, sufficiently close toT.., the critical pressure is at-
tained by all parts of the systesimultaneouslyIn the re-
sulting coherentphase transition, part of thenacroscopic
elastic energy loaded into the system for reachipgvould
be coherently releasetfor example, by a sudden contraction
of the proper volumg and a shock-wave like those envis-

tribution can be approximated by a Gaussian, close to the

extremantAN=NwAt. Treatingx=AN/N as a continuous
variable, the resulting probability distribution reads

N N(x—p)?|[ (=
me\[ﬁ“*%Hﬁ—p
(A2)

that, in the limitN— oo, tends tos(x— p). Thus, in the same
limit, one getsx=p= wAt as theuniquepossibility of real-
ization. On takingAt—0, this yields the usualeterministic
equationN=* N (with + and — corresponding to cre-
ation and absorption, respectivelit is thereby clear that the
deterministic nature of any equation based on the concept of
probabilistic transition rate depends on the laky#mit. The

5 -1
e “dz

aged in Refs. 5-7, and like those observed in the criticabame limit is also consistent with the further assumption of
cavitation, might be produced. If the self-consistent thermaltreatingAN (a non-negative integgras a differential quan-

ization of s phonons could be repeated for phdsdoo, in

tity. For adsorptionprocesses, the large-limit necessarily

such a way that the system can be driven again to the origiorresponds to the thermodynamic limit. It is only for an
nal phaseA, a steady, periodical emission of shock wavesextensive variable that an expression likét)=N(0)exp

would be produced. The results obtained for itheal CLM,

(—wt) can make sense even at long times, siN¢@) can be

with only anharmonic channels of scattering, indicate thataken as an arbitrarily large quantity. In contrast,daeation
the threshold pressure fluctuation, for the self-consistengrocesses, an expression lik&t)=N(0)expt) becomes
thermalization to produce macroscopic effects, is size depenmore and more correct, just with increasing time, even if
dent and may be very low, for macroscopic monocrystalsN(0) is not arbitrarly large. In this case, in fact, the expo-

This looks encouraging, in view of the experimental verifi-

cation of the predicted effects.

nential increase itself makes the fluctuations become negli-
gible at long times. For example, if conditidd0) is satis-

Another aspect which we can only allude to, is thefied, Eq.(9b) can be indifferently referred to the phonons

electron-phonon interaction in the presencesqfhonons, a

in asingle smode, or taall thes phonongof the same king

field that has not been considered at any level, in the preseptesent in the system. In the opposite case (8).has to be

paper, but actually deserves some attention.

Note added in proofThe analogy between El) and the
Schralinger equation was stressed by L. P. Pitae{is&e L.
Landau and E. LifshitzMecauque(MIR Editions, Moscow,
1969, footnote on pp. 214-215.
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APPENDIX A

We first recall here the conditions of applicability for a
time-dependent equation based on the conceptajabilis-
tic transition ratew (for any process With a fixed arbitrary
time intervalAt<w %, and a numbeN of incoherently pro-
cessing systems, the probabil®(AN) that AN of them do
actually perform the process in the time interidlis given
by the binomial distribution

N!

P(AN):AN!(N;AN)! P

AN(L-p)NTAN, (A1)
with p=wAt. Note that the process can be a deGalysorp-

tion), or a duplication of the system itself(creation. By

intended as determining the average behavior of atlodes
in the system, while the behavior of the singlenode could
display relevant fluctuations.

The preceeding discussion is useful whenis replaced
by wi: [EQ. (11)], and the coherent absorption jophonons
is formally accounted for. As soon as we wish to include
processes in which the expected variation may equal the
number of existing phonons, the fluctuations between the

singles mode’s behavior and the average behavior described

Slc))y Eqg. (9b) might become relevant from the physical view
é:)oint. No problem exists if

~ def
2ws> 21 joj=wy. (A3)

=
In this case the rate of creation sfphonons is larger than
any rate of scattering, and the long-time behavior predicted
by Eq.(9b) is exponentially increasing, with an effective rate
2ws—wy . As discussed above, this makes Egpb) more
and more self-consistent, with increasing time, even when
applied to asingle smode.

APPENDIX B

We give in what follows some details about the passage
from Eqgs.(13), (14), and(15), to the self-consistent equation
(21). Calculations are referred specifically to the CLM in
three dimensions. First of all, we calculate the widthfre-
quency AQ(j) of the band ofs modes around each qua-
siresonant value given by E@183. From Eq.(16b and
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from the definition(170), it is easy to see that wherew,(k;) is given by the first term in Eq19) (for suf-
) ) ) ficiently low temperaturesandj, is thej value correspond-
AQ(j)=2¢/7  (independent ofj). (B ing toky(t) [Eq. (209]. Passing to continuoysvalues, the

The numberM(j) of s modes around each quasiresonantsum in Eq.(B3b) can be transformed into an integral kn
valuek; [Eqg. (18a], can be obtained by integrating the CLM Space, since, from Eq18a, dk=(2/7c,)d]. Recalling
density of elastic modes in a frequency interval(sfnal)  Ed- (B3a) and (B2), expressior{B3b) can be finally cast in
width AQ(j), around each quasiresonant frequencythe form
Qo(kj). According to Eq.(B1), the result(to the lowest or-

dering)is I3 ky el20s—@1(K]t
¢ a=af 5 f dk—ky +ko|. (B4)
V; J2 TKo | Jkg
M(1)=¢ wicor (B2) From Eq.(B4), it is not difficult to get Eqs(21), according

to the procedure indicated in the text. In order to approach

From Eq.(14a, one gets for the CLM the solution of Eq.(21a), it is convenient to set?=T/T.,
3VkTikp and verify, with the aid of Eq9234a), (23b), and(21b), that

(B33 F(T)=zin any case. Equatiof218 can be thereby put in a

more convenient form:

expressing the ergodic part of the square oscillation ampli-

tude of each atom. To calculate tlsepart, we make the T,

approximation that all th&1(j) s modes have the same rate Z2(x)= T

of exponential increaseg, given by Eqg.(18b. From Eq. *

(14b), with the aid of Eq.(90¢), it follows that

2 —
qT(Ti) - 2mN( WCO)Z ’

2

T fx Y dy+ 1)
— | — e z— ,
z f(X) zf(x) y
(B5)

whereI'=¢/wp7 for 7<L/cy and I'=¢a/L for 7>L/cy.

AT, )= 3kT; JEM M(J.) elos”erliglt 1} This shows that the only parameters to be defined for a nu-
s 2mN & Qo)) @ ' merical solution of Eq.(21a (Fig. 3), are just the ratio
(B3b) T,/T, andI.

*Electronic address: FERRARI@GPXBOF.DF.UNIBO.IT llgee, for example, J. Chahoud, L. Ferrari, and G. Russo, Nuovo
IM. Fleischmann, M. Hawkins, and S. Pons, J. Electroanal. Chem. Cimento B26, 17 (1975.

261, 301(1989. 2The swing-with-child equation has been considered, with differ-
25, E. Jones, E. P. Palmer, J. B. Grirr, D. M. Decker, G. L. Jensen, €nt methods, also by J. Burns, Am. J. Ph§8, 920(1970; S.

J. M. Thorne, S. F. Taylor, and J. Rafelski, Natgt®ndon M. Curry, ibid. 44, 924 (1976); P. L. Tea and H. Falkbid. 36,

1165(1978.
Bgee, for example, K. S. Suslick and E. B. Flint, Nat(rendon
330, 553(1987; L. A. Crum, Phys. Today7 (9), 22 (1994.
Anharmonicity is also responsible for nonergodicity effects a

338 737(1989.
SA. De Ninno, A. Frattolillo, G. Lollobattista, L. Martinis, M.
Martoni, L. Mori, S. Podda, and F. Scaramuzzi, Europhys. Lett.14

4 S 221(1_989' ) ) ) Fermi-Ulam-Pasta. However, these are low-energy effects, and
S. Focardi, R. Habel, and F. Piantelli, Nuovo Cimentd@v, 163 have no relevance for the present problem. See, for example, J.
(1994. Ford, Phys. Rep213 271(1992.
M. Cassandro, G. Gallavotti, and G. Jona-Lasifuopublishefl ~ 15Equation(16a follows from the expressiok(p)=k(po)3/po/p,
6L. Maiani, G. Parisi, and L. Pietronerf@npublished provided theshear moduluss assumed independent of the den-
7E. Tabet and A. Tenebaum, Phys. Lett1A4, 301(1990. sity [see, for example, J. C. Slatdntroduction to Chemical
8See, for example, M. Plischke and B. Bergensgquilibrium Physics (McGraw-Hill, New York, 1963, Chap. XIV, Egs.
Statistical Physics2nd ed.(World Scientific, Singapore, 1994 (3.9, (4.2, (4.2, and(4.3)].
Chap. 11, p. 432. 18p_ G. Klemens and D. J. Ecsedy, Riionon Scattering in Soligls
°A. A. Gogolin and V. I. Melnikhov, Sov. Phys. JET#6, 369 edited by L. J. Chellis, V. W. Rampton, and A. F. G. Wyatt
(1977); JETP Lett.34, 450 (1981); M. Ya. Abzel, Solid State (Plenum, New York, 1976 p. 367.
Commun.37, 789(1981). 7With “constant volume” (or pressurg we obviously refer to the

0gee, for example, D. Parkntroduction to the Quantum Theory meanvalues around which the time-dependent strains do aver-
(McGraw-Hill, New York, 1964, Chap. 13, p. 362. age to zero.



