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Coherent production of phonons from time-dependent strains

Loris Ferrari*
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A simple model of a classical oscillator, with time-dependent frequency, is applied to the normal modes of
condensed systems. Taking advantage of the analogy with the stationary Schro¨dinger equation in one dimen-
sion, the existence of special modes~s modes!, with exponentially increasingamplitude, is proven, both for
disordered and for periodic time-dependent strains. Anharmonic effects are then accounted for in terms of
absorption processes for the excess phonons~s phonons!, coherently produced by the strain. A nonmetallic
continuum lattice is used as a reference system for applications. Possible macroscopic effects, such as the
resonant activation of optical modes and the production of time-controlled shock waves, are outlined.
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I. INTRODUCTION

The recent debate about cold fusion1–4 raised the question
whether it is at least conceivable for a metallic system
transfer such a large energy to light ions, as to enhance
rate of any nuclear reaction up to significant values. T
question has stimulated a number of unusual insights, a
the way in which the elastic energy can be accumulated
released, under certain critical conditions. In particular, C
sandro, Gallavotti, and Jona-Lasinio5 and Maiani, Parisi, and
Pietronero,6 put forth an explanation of the experiment of D
Ninno et al.,3 based on a local structural phase transitio
with a sudden release of elastic energy, in the form of sh
waves. The energy of the shock wave should be initia
stored at the surface of small hydrogen-rich dots. Statist
arguments are then used by Tabet and Tenebaum,7 to justify
the crucial point of the question, that is, thecoherenceof the
energy release. The shock wave in Refs. 5–7 can indee
regarded as a sort of phononic laser, whose quanta
spherical phonons imploding from the border of a small cr
cal region to its center. Apart from any possible applicat
to the cold fusion, the preceeding arguments do actu
open a stimulating field of investigation, about the possibi
that coherently producedphonons do accumulate~and re-
lease! large amounts of energy, well above the ‘‘natura
thermal values characteristic of each phonon. The pre
paper aims to approach this problem from a general vi
point.

In Sec. II the ‘‘storage’’ of the elastic energy is ap
proached, as a preliminary step to the coherent productio
phonons. The basic mechanism of energy storage is ge
ated by a very simple mathematical model, that is, a class
oscillator whose elastic constant~or proper frequency! is af-
fected by time-dependent fluctuations. It will be shown th
under very general conditions, the energy of the oscilla
may increaseexponentiallyin time, at the expense of th
external source producing the frequency fluctuations, in
absence of dissipative processes. In Sec. III, we discuss
possible physical realization of the source, while in Secs.
and V the anharmonic effects are accounted for in terms
phonon-phonon scattering processes. In Sec. VI, the cohe
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production of phonons is studied for an ideal continuum l
tice model~CLM!. Indications for macroscopic effects of th
coherent production of phonons are given.

II. ENERGY STORAGE

The classical equation of an oscillator with time
dependent frequency reads

2
d2Q

dt2
5@V0

21d~ t !#Q, ~1!

whereQ is any generalized coordinate of the system, a
d(t) is a suitable function of time. We will discuss in Sec. I
some possible physical realizations of Eq.~1!. For the mo-
ment, we simply study the nature of the solutions, accord
to the behavior ofd(t). First of all, we justify the use of the
classical approximation~for an outline of the quantum case
see the end of the present section! by assuming that the sys
tem is in thermal contact with a bath at temperatureT such
that kT@\(V0

21dM)
1/2, dM being the maximum value at

tained byud(t)u. Thoughclassical in nature, Eq.~1! can be
formally mapped into aquantumproblem, that is, the station
ary Schro¨dinger equation in one dimension, provided

t ~ time!→x ~spatial coordinate!,

Q~ t !→cE~x! ~energy eigenfunction!,

V0
2→E ~energy eigenvalue!32m/\2,

2d~ t !→V~x! ~potential energy!32m/\2. ~2!

The mapping Eq.~2! is very convenient for the present aim
since the nature of the solutions of the corresponding Sc¨-
dinger equation are well known, ifV(x) fluctuates without
limit in a finite range of values, forx→6`. If the fluctua-
tions are disordered~in any sense!, for any value ofE be-
longing to a set$Eloc% of ‘‘allowed’’ values, the eigensolu-
tions cE(x) are localized, that is, their envelope is
exponentially decreasing forx→6`! ~Anderson localiza-
tion in one dimension8!. Otherwise, any solution of the
593 © 1997 The American Physical Society
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594 56LORIS FERRARI
Schrödinger equation isexponentially increasingin uxu, apart
from possibleisolated values $Eext% corresponding toex-
tendedsolutions, that fluctuate periodically in a limited rang
of values forx→6`.9 Apart from the isolated point spec
trum $Eext%, the general solution of the Schro¨dinger equation
in case a always includeexponentially divergingcompo-
nents, whose elimination on both sides of thex axis, is pos-
sible forEP$Eloc% only, and for very special choices of th
initial conditions. Coming back to Eq.~1!, by means of Eq.
~2!, we can conclude as follows:

~a! If d(t) fluctuatesdisorderly in time, within a limited
range of values, the envelope ofQ(t) increases exponen
tially in time, for almost all initial conditions and unper
turbed frequencies.

The other case of interest for the present aims is a p
odic potentialV(x)5V(x1a), in the ‘‘equivalent’’ Schro¨-
dinger equation. If the eigenvaluesE belong to special inter-
vals, denoted as ‘‘allowed bands,’’ there are acceptable~in
the quantum sense! solutionscE(x), expressed as a linea
combination of two Bloch functions, whose square modu
have the same periodicitya as the potentialV(x). If, instead,
E belongs to the complementary intervals, denoted as ‘‘f
bidden bands’’~or gaps!, the general solution is a linea
combination of two functions, whose envelopsdiverge expo-
nentially for x→1` or x→2`. Allowed bands and gap
are alternate on theE axis, without upper limit, and can b
thereby labeled by an indexj51,2,... . Inconclusion, ac-
cording to the mapping~2!:

~b! If d(t) is a periodic function of time of periodt, the
nature of the solutions of Eq.~1! is twofold: if V0

2 falls into
an ‘‘allowed band’’ of the periodical ‘‘potential’’2d(t), the
coordinateQ(t) is a periodic function of time, of period
2p/V0 ~the unperturbed solution!, modulated by another pe
riodic function of periodt. Instead, ifV0

2 falls into a ‘‘gap’’
of the periodic potential2d(t), Q(t) is split into two oscil-
lating components, with unperturbed period 2p/V0 , one of
which is modulated by anexponentially increasingfunction
of time, while the other is damped by an exponentially d
creasing function. At long times, it is clear that the form
will always dominate, except for very special initial cond
tions, having zero measure in phase space, for which
exponentially diverging component has rigorously ze
weight att50 ~the initial time at which the time-depende
stress is applied!.

In case~b!, it is possible to study the exponentially in
creasing solutions on the assumption thatdM5max$ud(t)u%
!V0

2 ~small fluctuations!, and for the model sketched in Fig
1: d(t) is therein depicted as a piecewise function~for t
.0!, such that ‘‘rectangular wells’’ of depthdM and duration
Dt, appear periodically, with periodt(.Dt). In this case,
the quantum problem equivalent to Eq.~1! @according to the
mapping Eq.~2!#, becomes a standard exercise for und
graduate students.10 First, Eq.~1! can be put in a dimension
less form:

s5
def

V0t; F~s!5
def

Q~s/V0!⇒2
d2F

ds2
5F11

d~s/V0!

V0
2 GF.

~3!

Now the question is whether value 1 does or does not be
to one of the allowed bands generated by a distribution
ri-

s

r-

-
r

e

-
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rectangular barriers~wells!, of height~depth! j52dM /V0
2,

width Ds5V0Dt, and periodically distributed on thes axis,
with period s05V0t. Settings85s02Ds, it can be easily
shown that the solution of the problem stated above is gi
by the quantity

R5cos~s8!cos~DsA12j!2
12j/2

A12j
sin~s8!sin~DsA12j!.

~4!

Value 1 does or does not belong to an allowed band acc
ing to whetherR2<1 or R2.1 respectively. In the latter
case, the rate of the exponential increase ins of F @Eq. ~3!#
is s0

21ln@uRu1AR221#.11 Sincej is assumed small, we ca
study Eq.~4! to the first significant order~i.e., j2!. It follows
that the conditionR2.1 is realized when the quantitys0
2Dsj/2 falls in small intervals of widthuj sin(s8)u, around
the special valuesjp ( j50,61,62,...). Theresulting rate
of increase~in s! is s0

21uj sin(Ds)u/2, to the lowest order inj.
Recalling the definitions in Eq.~3!, and coming back to the
t scale, we can conclude that the oscillator Eq.~1!, in the
model fluctuation Fig. 1, becomes aspecialmode, adsorbing
energy exponentially in time, if

V0t1
DtdM

2V0
5p j ~ j50,1,2,...! ~resonance condition!,

~5a!

for which the rate of exponential increase~in time! of the
Q coordinate becomes

vs5
dM

2V0
2t

usin~V0Dt!u. ~5b!

Equation~5a! is not strictly a ‘‘resonance’’ condition, since
there is a frequency band of widthuj sin„V0(t2Dt)…ut21,
around each value in the right-hand side~rhs! of Eq. ~5a!, for
which an exponential increase applies as well. The value~5b!
is, indeed, themaximumrate within the band. Sincej5
2dM /V0

2 is our smallness parameter, in the present case
justified to neglect any bandwidth effect~these will be recon-
sidered in Sec. V!. From now on, we will call ‘‘smodes’’ all
the special modes, whose amplitude’s envelop increases

FIG. 1. A ‘‘potential-barrier’’ model for the fluctuations in time
of the square proper frequency of an oscillator. The perturba
starts att50.
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56 595COHERENT PRODUCTION OF PHONONS FROM TIME- . . .
ponentially in time under the action of Eq.~1!. However, we
anticipate that dissipation effects will, in general, suppr
the exponential rate of increase, as discussed in Secs. IV
V.

At first sight, it might appear far more convenient to ref
to disorderedfluctuations@case~a!#, than toperiodical fluc-
tuations@case~b!#, in view of an exponential energy storag
in the oscillator Eq.~1!. In fact, case~a! gives rise to the
required effect forall values ofV0t, except at most for a
zero measure set. Instead, case~b! requires a quasiresonanc
condition aroundisolatedvalues ofV0t ~for small periodical
fluctuations!, and looks thereby much more selective.
practice, however, the situation is not so different. If w
assumesmall disorderedfluctuations in case~a! too, it is
possible to see that the disorder is a second-order eff
(}j2), with respect to a suitableperiodicpotential, denoted
as a coherent potential.8 The periodic problem~coherent po-
tential approximation!, yields the same results as in case~b!,
that is, a resonance condition onV0t, giving rise to a rate of
exponential increasevs}j @Eq. ~6c!#. The reason for the
general exponential increase atall V0 is that in the presen
one-dimensionalcase, the disorder itself, no matter ho
small, is shown to produce a finite rate of exponential
creasevdis.

8 However, it follows thatvdis}j2, while vs
}j. Thus in case~a!, we expect that forV0t fulfilling the
condition ~5a!, there is a rate of exponential increasevs
}j, much largerthan the ratevdis}j2, corresponding to the
V0t ’s not fulfilling the same condition. This will have rel
evant consequences when the dissipation effects are
counted for.

As a concluding remark on the elementary mechanism
energy storage, we comment about the validity of theclassi-
cal approximation underlying Eq.~1!. Does the exponentia
increase of the energy hold true for aquantumoscillator too?
The question can be approached from the well-known re
that the quantum mean energy of a harmonic oscillatorcan-
not be smaller than the corresponding classical mean ene
The exponential increase of the latter is thereby a suffic
condition for the former to increaseat leastwith the same
rate. However, the quantitative aspects of the quantum o
lator’s problem with fluctuating frequency are far fro
trivial, and require a separate analysis, which will appear
forthcoming paper.

III. PHYSICAL ORIGIN OF THE FREQUENCY
FLUCTUATIONS

Before discussing the applications of the preceeding a
ments to microscopic scales, it is worth stressing that Eq.~1!
describes, in the small oscillation limit, the dynamics of
child sitting on a swing.12 In fact, the child’s movements ca
actually change the swing frequency in time, by changing
inertial moment. In agreement with cases~a! and ~b!, dis-
cussed in Sec. II, it is a matter of common experience
moving disorderly@case~a!# is not a good strategy for in
creasing the oscillation amplitude. The resulting exponen
rate is indeed small, and may be suppressed by all dissipa
effects influencing a real swing. Instead, there are opti
periodic movements@case~b!#, corresponding to the reso
nance condition~5a!, which yield an effective rate of in-
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crease, and quickly drive the swing out of the small oscil
tion regime.

Coming back to microscopic scales, Eq.~1! can be ap-
plied to normal elastic modes in condensed systems, p
vided the applied stress field does produce anadiabatictime-
dependent strain, such that, at each instant, the normal el
modes themselves can be defined, even in the strained
tem. For this to occur, the rate of change of the strain m
be small compared to the proper frequency of any mode.
a periodic strain of periodt, the condition above readst
@max$V0

21%, $V0% being the set of unperturbed proper fr
quencies. If the strains are nonadiabatic, it is impossible
separate the elastic part of the Hamiltonian from the inter
tion part coupling the atomic coordinates to the stress fie
In this case,viscoelasticeffects, which we neglect here at a
should be accounted for. In conclusion, an adiabatic strai
one producinganharmoniceffects only, as we will assume in
what follows.

The proper frequency of a normal mode, in a crystalli
material, has the general formV(k)5V($aa%;$kaa%),
where the aa’s are the elementary lattice vectors (a
51,2,3). For an adiabatic strain preserving the crystal sy
metry, such that

aa~ t !5a0a1Daa~ t !, ~6a!

it is immediately seen that the scalar productskaa’s are in-
variant, since the wave vectorsk, determined~for example!
by periodic boundary conditions, do change with time
well, in such a way thatkaa52p(n/N), n being an integer,
and N being the number of unit cells in the lattice. A
stressed above, changes in the proper freque
V($aa%;$kaa%) can only come from theanharmoniceffects
accounted for by the explicit dependence on theaa’s them-
selves. For example, Gru¨neisen’s theory takes the densityr
as the most important quantity related to theaa’s, and as-
sumes that

V~$aa%,$kaa%!5V~r,$kaa%!5S r

r0
D g

V0~r0 ,$kaa%!,

~6b!

wherer0 is a reference density andg(>2) is the Gru¨neisen
parameter. Within the limits of validity of this approxima
tion, one may taker0 as the unperturbed density, and intr
duce a time-dependent uniform pressure, such thatr(t)
5r01Dr(t). From Eq.~6b! it follows that

V~ t,k!>V0~k!F11g
Dr~ t !

r0
G , ~6c!

V0(k) being the unperturbed proper frequency. It is wo
stressing the analogy existing between the systems desc
by Eq. ~6c! and thecavitating gases,13 implemented by a
resonant pressure wave, on a liquid with dissolved gas.
to the steady nature of the process, bubbles of gas are for
at the nodes of the pressure wave. The radius of each bu
follows the periodic change in time of the pressure. An a
cumulation of energy in the bubble is observed, under cer
critical conditions, leading the bubble radius to ‘‘collapse
from sizes of about 40 m to about 0.5mm. Accordingly, the
internal temperature is suddenly raised up to 104 K. A theo-
retical picture of the process can be given in terms of cl
sical fluids’ equations. The analogy between the cavitat
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596 56LORIS FERRARI
effect and the present theory will become even more m
fest in Sec. VI, where Eq.~6c! will be applied to a continuum
lattice model.

While Eq.~6c! refers toextendednormal modes, a simila
description can be applied tolocalizedmodes too, provided
their localization lengthl is large compared to the inter
atomic distance. In this case, it still makes sense to introd
a density of particlesr(R,t), in a spatial region of linear size
l, around the positionR, where the elastic mode is localize
The application of Gru¨neisen’s theory yields, in this case

V~R,t !>V0~R!F11g~R!
Dr~R,t !

r0~R! G , ~7!

for the proper frequency of the localized mode. Note tha
Eq. ~7! both g and r0 have been assumed~through the de-
pendence onR! as locally defined quantities, since the ma
terial is expected to be nonhomogeneous, forlocalized
modes to exist.

Equation~7! may be relevant for systems containingmo-
bile atoms, such as liquids, hydrogenated metals, ionic c
ductors, for which the local densityr(R,t) may change in
time because ofinternalatomic motions, even in the absen
of external fields. Clearly, the fluctuations originated
these ‘‘internal’’ strains are necessarilydisordered, while
those originated by external fields, under experimental c
trol, can be periodic by choice. Hydrogen-rich dots in hyd
genated metals, like those envisaged in Refs. 5–7, ap
good candidates for the application of Eq.~7!, since they are
relatively large defects, corresponding to localized ela
modes, whose frequency follows the fluctuations in time
the hydrogen density in each dot.

Beside Gru¨neisen’s theory, leading to Eqs.~6c! and ~7!,
more complicated cases could be realized by time-depen
electromagnetic fields, if the material is stronglypiezoelec-
tric ormagnetostrictive. These effects, however, are strong
model dependent, while Eqs.~6c! and ~7! are ‘‘universal,’’
within the limits of Grüneisen’s approximation.

IV. DISSIPATION EFFECTS: LOW DENSITY
OF s PHONONS

The formal analogy@Eq. ~2!# underlying the preceeding
arguments, is obviously based on the assumption that
unperturbed potential in Eq.~1! is harmonic. It is only under
this approximation that the exponential storage of energy
be described in the ideal scheme proposed above. In a
system, anharmonicity is just responsible for thermalizat
~or dissipation!.14 Thermalization makes the energy of th
thermal modes~that we call ‘‘T modes’’! fluctuate around
the equilibrium value, and transforms the initial energy o
nonthermal phonon into thermal energy. What happens to
s modes, adsorbing energy also from the time-depend
strains, is better understood in terms of the correspond
phonons. In the classical limit, the amplitudeQ(t) of any
normal mode can be easily related to the average num
^n(t)& of phonons, sincên(t)&5^Q2(t)&mV0 /\, with m
5particle mass. ForT modes, the time average is equivale
to a thermal average, that iŝnT(t)&5kT@V0\#21. For s
modes, the amplitudeQs(t) can be set equal to
QT(t)exp(vst)/Aa, in the absence of dissipation, where t
i-
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pre-exponential factorQT behaves like aT-mode amplitude.
The numerical factora.1 accounts for the fact that, de
pending on the initial conditions, only a fraction~that we
denote as 1/Aa! of the initial amplitude does contribute t
the exponentialincrease, while the remaining fraction 1
21/Aa refers to the exponentiallydecreasingcomponent of
the motion. The importance ofa will become manifest in
Sec. VI. If the rate of increasevs is small compared to the
proper frequencyV0 ~weakly enhanced oscillations! the
‘‘fast’’ factor QT fits the thermal average, so that thetotal
average number of phonons in thes mode readŝ ntot(t)&
5kT@aV0\#21 exp(2vst), and the number ofexcess
phonons~that we calls phonons!, produced by the time-
dependent strain, turns out to be

^ns~ t !&5
kT

\V0
Fe2vst

a
21G for t.tm5

def ln a

2vS ~8!

50 for t,tm .

Equation ~8! is actually an approximation, replacing
smooth transition to the long-time behavior, occurri
around the time scaletm , with a sharp transition occurring
just at tm . This amounts to neglect the details of the initi
steps of the process, during which the decreasing and
creasing components of the amplitude are comparable
magnitude. From Eq.~8!, the differential equation for̂ns& in
the absence of dissipation is

d^ns&
dt

52vs~^ns&1^nT&! ~ t.tm!, ~9a!

with ^ns(t5tm)&50. Note that Eq.~9a! is completelydeter-
ministic, since it has been obtained from the solution itse
as deduced from Eq.~1!. In particular, Eq.~9a! refers to an
intensivequantity like ^ns& ~the number ofs phonons in a
singles mode!. In contrast, dissipation effects areprobabi-
listic in nature. As discussed in Appendix A, the resulti
fluctuations decrease with the square root of the numbe
phonons themselves, so that a deterministic equation inc
ing the dissipative effects does make sense only for thetotal
numberNs(vs ,t) of s phonons with frequencyvs in the
system. SettingNs(vs ,t)5M (vs)^ns&, with M (vs) the
number ofs modes in the system~anextensivevariable!, the
equation determiningNs(vs ,t) is obtained from the balanc
between the~deterministic! rate of creation 2vs in Eq. ~9a!,
and the~probabilistic! rate of single-phonon decayv1(T),
including all anharmonicity effects~phonon-phonon interac
tion, phonon-electron interaction in metals, scattering on
fects, scattering on the surface,...!. The resulting balance
equation is

dNs

dt
5@2vS2v1~T!#SNs1M

kT

\V0
D ~ t.tm!. ~9b!

Until the number ofs phonons per unit volume is small, on
can neglect the effects of their scattering on the actual t
perature~the opposite case is considered in Sec. V!, so that
the temperature inv1(T) is constant, and fixed only by th
external conditions. The solution of Eq.~9b!, in the same
approximation leading to Eq.~8!, is immediately found as
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Ns5M
kT

\V0
Fe~2vs2v1!t

a
21G for t.tdiss5

def ln a

2vS2v1
,

~9c!
50 for t,tdiss.

The initial ‘‘waiting time’’ tdiss, including the dissipative
effects, now replacestm appearing in Eq.~8!. The condition
Ns.0 @first Eq. ~9c!# yields

veff~T!5
def

2vs2v1~T!.
ln a

t
. ~10!

If condition ~10! is satisfied,veff(T) is the effective rate of
exponential increase of thes phonons’ number. If, instead
veff(T) is negative or zero,Ns remains equal to zero at an
time.

Once condition~10! is satisfied, the steady time fluctua
tion of the proper frequency does produce an exponen
divergence of thes mode’s amplitude, even in the presen
of single-phononabsorption. Of course, other mechanism
are expected to prevent the divergence of the oscillation
plitude. In particular, the next step of the perturbative a
proach is to account for all channels involving thecoherent
scattering ofs phonons. These channels may include a nu
ber of high-energy processes~local structural changes, va
cancy formation, activation of optical modes!, which would
be normally forbidden toT phonons. Introducing a rat
v j (T) ( j>1) for the coherent adsorption ofj phonons, the
total rate of dissipation fors phonons becomes

v tot~^ns&!5(
j51

^ns&

jv j , ~11!

replacingv1 in Eq. ~9b!. However, Eq.~9b! makes sense
only if the total number of scattered phonons can be take
a differential quantity in the lhs. As shown in Appendix A
this can be done only in a limiting case, that does not dif
too much from the discussion reported above for the sin
phonon processv1 . In contrast, a remarkable difference e
ists when there is aresonantchannel for the coherent absor
tion of n* (@1) phonons, leading to adiscontinuosbehavior
of v tot . For instance, let

v tot5v1 for ^ntot&,n*

v tot5v11n*vn* for ^ntot&>n* , ~12a!

where^ntot&5^ns&1^nT& is thetotal number of phonons in the
s mode (s phonons1T phonons). The problem come
from noticing that the resonant absorption channel is in
tive, for anysinglemode, until the total number of phonon
^ntot& is less thann* . If 2vs is smaller than the minimum
ratev1 , the average number ofs phonons in the whole sys
tem is obviously zero. If 2vs is larger than the maximum
ratev11n*vn* , the average number ofs phonons ineach
s mode increases exponentially in time with decreasing fl
tuations, as shown in Appendix A. Instead, the condition

v1,2vs,v11n*vn* ~12b!

makes it necessary to split in time the two cases^ntot&,n*
and ^ntot&>n* for any singlemode. Hence, the problem o
the fluctuations cannot be avoided by taking the thermo
al
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-
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-

-

namic limit, as we did in Eqs.~9!, becausêntot& is an inten-
sive variable. The problem raised by Eqs.~12! is to calculate,
at a given instantt.0, the probability for a singles mode to
contain a given number ofs phonons, on account of the fa
that there is adeterministicprocess producing phonons wit
a rate 2vs , and twoprobablistic processes of dissipation
one of which is activated only when the number of phono
itself is larger thann* . The resulting equation is rather com
plicated, and its general discussion is left to further inve
gations. The only limit case leading to a simple solution
n*@^nT&@1 and n*vn*→`. The first condition ensure
that we can approximately use Eq.~9b! for ^ns& too, when-
ever^ntot&,n* ~Appendix A!. This leads one to define a tim
interval

t*5veff
21 ln~n*1^nT&!1tdiss,

during which^ns& increases from 0 ton*2^nT&. The limit
n*vn*→` allows one to claim that the resonant adsorpt
of n* phonons occurs with probability 1 in any arbitrari
small interval of time, after the activation of the resona
channel. This resets the mode to the initial state of z
phonons, and makes the ‘‘loading’’ of phonons start aga
with t replaced byt2t* . The resulting picture is thus
periodical~with periodt* ! increase of̂ ntot&, up to the value
n* , followed by a sharp decrease to zero, due to the reso
adsorption~Fig. 2!. It is worth stressing that a physical rea
ization of Eqs.~12! could be, for example, the periodica
‘‘pumping’’ of n* acousticphonons into theoptical phonon
branch.

V. DISSIPATION EFFECTS FOR MANY s PHONONS:
SELF-CONSISTENT THERMALIZATION

The atomic displacementq(rn ,t) in any sitern of a crys-
talline lattice can be written, in the presence ofs modes

q~rn ,t !5
1

AN F (
kÞk*

e~k!QT~k,t !e
ik•rn

1(
k*

e~k* !Qs~k* ,t !e
ik* •rnG , ~13a!

FIG. 2. Qualitative sketch of the behavior in time of the numb
of phonons in asingle smode, in the presence of a resonant a
sorption process involvingn* phonons@Eqs.~12!#, in the ideal limit
n*v*→`.
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wherek* are the wave vectors of thesmodes.Qs(k* ,t) and
QT(k,t) are thes modes’ andT modes’ amplitudes, respec
tively, ande(k) is the polarization unit vector of thek mode
~for brevity, we do not distinguish here between transver
and longitudinal modes!. Taking the square of Eq.~13a!, and
using the random-phase approximation~valid at high tem-
peratures!, the average on time ofq2(rn ,t) results from sum-
ming up the average square moduli, whence, from the
cussion in Sec. IV

^q2~rn ,t !&>qT
2~T!1qs

2~T,t !, ~13b!

where

qT
2~T!5

DkT

mN (
kÞk*

V0
22~k! ~14a!

is the thermal part of the square amplitude~D5dimension of
the system!, depending on the temperature only, and

qs
2~T,t !5

D\

mN (
k*

^ns~k* ,t !&
V0~k* !

~14b!

is the ‘‘special’’ part, following the behavior in time of th
s phonons. The important quantity in Eq.~14b! is actually
the number ofs phonons per unit volume. So far, any po
sible effect of the ‘‘dissipated’’s phonons on the therma
bath itself, has been neglected at all. This is possible on
the concentration ofs phonons produced by the strains do
remain small. Instead, suppose that the sum in Eq.~11! con-
verges to an upper limiting valuevM(T) for ^ns&→`. In
addition, let the number ofs modes such that 2vs(k* )
.vM(Ti), at the initial temperatureTi , be an extensive
quantity. If so, the terms increasing exponentially at lo
times@with ratesveff52vs(k* )2vM(Ti)#, yield afinite con-
tribute to the sum Eq.~14b!, even in the thermodynami
limit, and make the oscillation amplitudes ofall atoms di-
verge in turn. In this case, the basic assumption that ths
phonons do not influence the thermal bath, does not m
sense any more, at long times. In order to account for
effects of the dissipateds phonons on the thermal bath, on
may define theactual temperatureT(t) at any instant, just
from the square oscillation amplitude in the coordina
space, that is

T~ t !5
mN

Dk
^q2~rn ,t !&F(

k
V0

22~k!G21

. ~15!

From Eqs.~13!, ~14!, and ~15!, it follows that T(t) is an
increasingfunction of time, ifs phonons are produced. Be
ing an increasing function ofT(t) itself, the maximum rate
of dissipationvM„T(t)… behaves accordingly@see, for ex-
ample, Eq.~19! in Sec. VI#. Then the condition 2vs(k* )
.vM„T(t)… for a s mode to produces phonons, become
more and more stringent, with increasing time~that is, with
increasing number ofs phonons!. In practice, the larger the
concentration ofs phonons, the smaller the number ofs
modes that can produce them. Accounting for this nonlin
countereffect is what we call ‘‘self-consistent thermaliz
tion’’ of the s phonons. As we will see in the next sectio
the self-consistent thermalization may lead the number os
al

s-

if

ke
e

r
-

phonons@and the value of the actual temperatureT(t), Eq.
~15!# to saturate at long times to finite limiting values.

VI. THE CONTINUUM-LATTICE MODEL

In the continuum-lattice model~CLM!, the frequencyV
5c(r)k(r) of each normal modes involves the sound velo
ity c(r) and the wave vector’s modulusk(r), both depend-
ing on the homogeneous densityr. In particular, in three
dimensionsk(r)5k(r0)A3 r0 /r, r0 being a reference value
that we take as the unperturbed density. The expression
k(r) simply follows from the boundary conditions, accor
ing to the discussion in Sec. III. At this stage, we can
k(r0)5k, with the implicit assumption thatk refers to the
unperturbedsystem, so that its upper limiting valuekD ~the
Debye wave vector! is independentof time. Equation~6c!,
describing the effect of a uniform time-dependent pressur
Grüneisen’s approximation, can be now applied to the CL
with the result15

V~k,t !5c0kF11g
Dr~ t !

r0
G , ~16a!

for k,kD . The quantityc0 is the unperturbed sound velocit
~for simplicity, we use the same formalism both fortrans-
versaland for longitudinalmodes!. From Eq.~16a! one can
define a time-dependent sound velocityc(t)5c01Dc(t),
such that

Dc~ t !5c0g
Dr~ t !

r0
<DcM . ~16b!

With Dc(t) behaving like the model fluctuation in Fig. 1
Eqs.~5! and ~16b! readily yield

k*5kj5 jp~tc01DtDcM !21 ~ j50,1,2,...!, ~17a!

vs~kj !>
j

t
usin~ jpDt/t!u, ~17b!

where

j5
defDcM

c0
~17c!

is the smallness parameter of the problem. In particular,
special choiceDt/t51/2 ~which makes Fig. 1 as similar a
possible to a sin-cos perturbation! leads to a further simpli-
fication, since Eqs.~17! become

kj>
~2 j11!p

tc0
~12j/2!; ~ j50,1,2,...!, ~18a!

vs~kj !>j/t5vs ~ independent ofj !, ~18b!

so thatvs is the same for all the s modes, whose wave
vectors satisfy the quasiresonance condition~18a!. From
now on, we will neglect the small termj in Eq. ~18a!. If we
are interested in condition~10!, marking the onset of any
macroscopic effect related to the existence of nonthermal
s phonons, we need an explicit formula for the rate of dec
v1 of a singlephonon of wave vectork, into p(.1) differ-
ent phonons. For anonmetallicsolid at high temperature
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~T.Debye temperature!, v1 is usually calculated as the su
of three terms, that is, normal and umklapp processes
p52, and normal processes withp53.16 The resulting ex-
pression reads as follows:

v1~k,T!52g2vDH F TT0 1AS TT0D
2G S kkDD 2

130p2
T

T0
S kkDD 4J , ~19!

whereg is the Grüneisen parameter,vD5c0kD is the Debye
frequency,T05mc0

2/k is a characteristic temperature, an
A is a geometric factor somewhat larger than 1. On set
k5kj in Eq. ~19!, with kj given by Eq.~18a!, condition~10!
yields a lower limiting value fort, below which all s
phonons are thermalized, even for the lowest possible v
k0 of the quasiresonant wave vector. In practice, condit
~10! necessarilyimplies that

tvD

2p
.

g2p

2j F TT0 1AS TT0D
2G , ~20a!

provided

tvD

2p
@1. ~20b!

In general, if T/T0,1021 ~that means, typically,
T,103 K!, even the second term in square brackets in
~20a! can be neglected, as we will do from now on. Con
tion ~10! also yields an upper limiting value for the wav
vectors satisfying Eq.~18a!:

kj,kDF T0
g2TvD

S j

t
2
ln a

2t D G1/25defkM~T,t !. ~20c!

Since, from conditions~20a! and ~20b!, t is large ~but not
arbitrarly large: see below!, it is reasonable to approximat
the discrete set of values determined by Eq.~20c! with a
continuous bandof k values, ranging fromk0 to kM ~see
Appendix B!. If now we neglect any coherent scattering e
fect, on settingv15vM , the self-consistent thermalizatio
can be approached as follows: Eq.~9c! yields the number of
s phonons~proportional to theinitial temperatureTi!, for
anykj ranging fromk0 to kM . On inserting Eq.~9c! into Eq.
~14b!, and on transforming the sum into an integral, thes
part of the square oscillation amplitude is obtained as a fu
tional ofv1(T,k* ), whereT is now taken as the~unknown!
actual temperature. By means of Eq.~14a! ~with T replaced
by Ti!, the total square amplitude is obtained, as a funct
of T, from Eq. ~13b!. The resulting expression can be p
into Eq. ~15!, that becomes the evolution equation for t
actual temperature itself~Appendix B!:

T~x!5Ti H 11
jk0

pkDF~T! F ex2f ~x!
E
f ~x!F~T!

x

e2y2dy21

1F~T!G J , ~21a!

where
th

g

ue
n

.
-

c-

n

x5~2vst2 ln a!1/2; f ~x!5xS 11
lna

x2 D ,
F~T!5k0 /kM~T,`!5from Eq. ~20c!5g

k0
kD

S TvDt

T0j
D 1/2.
~21b!

At constant volume,17 kM(T,`) is the only quantity depend
ing explicitly on T(t), while at constant pressure bothkD
andk0 would be explicit functions ofT(t), through the spe-
cific volume andc0 , respectively. Limiting ourselves to pro
cesses at constant volume, the solution of Eq.~21a! can be
given analytically in the limitx→`(t→`) as

T~ t !>T`F12
ln~2vst !

2vst
G , ~22!

with

T`5jT0
vDt

~gp!2
for t,L/c0 . ~23a!

The conditiont,L/c0 in Eq. ~23a! is equivalent to assume
that k0 @Eq. ~18a!# is larger than the minimumk value km
>p/L for a system of linear dimensionL. Otherwise, the
lower limit f (x)k0 /kM of the integral in Eq.~21! must be
replaced byf (x)km /kM . The preceeding calculations for th
self-consistent thermalization do not change, but the valu
the saturation temperatureT` becomessize dependent:

T`5jT0
kDL

2

~gp!2c0t
for t.L/c0 . ~23b!

The saturation valueT` obviously coincides with the tem
perature at which the inequality~20a! becomes an identity
~apart from the second term in square brackets, which
been neglected!. Physically, Eqs.~23! indicate that the sys-
tem, initially at the temperatureTi , is driven by the periodic
stress to a higher temperatureT` ~independent ofTi!, with a
smooth asympthotic evolution ln(t)/t ~see Fig. 3!. The period
t of the perturbation cannot be arbitrarly large, ifs phonons
have to be produced in the initial steps of the process. In f
the finitenessof the system yields a size-dependent upp
limiting value tM for t. This follows from requiring that, at
the initial time, the maximum valuekM(Ti) of the wave vec-
tors corresponding tos phonons, is larger than the minimum
valuekm>p/L. From Eq.~20c! ~with T5Ti!, this condition
reads

t,tM5
defjT0vD

g2Ti
S L

c0p
D 2. ~24a!

A lower limiting valuetm for t follows from Eq. ~23a!, on
requiring thatTi,T` :

t.tm5
def

vD
21~gp!2

Ti
T0j

. ~24b!

If one of the conditions~24! is violated, nos phonons are
present in the system, and the actual temperature coinc
with the initial temperature. From Eqs.~23!, it is easy to see
that
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T`<TM5
def

jT0
vDL

c0~pg!2
. ~25!

The upper limiting valueTM of the saturation temperatur
corresponds tot5L/c0 , at which the two expressions~23a!
and ~23b! do coincide. The full dependence ofT` on t is
sketched in Fig. 4, under the obvious conditionTi,TM ,
which yields, from Eq.~25!

j.~pg!2
Tic0

T0vDL
. ~26!

The opposite caseTM,Ti is not excluded mathematically
but it simply means that the dissipation rate is always lar
than the production rate ofs phonons, so that the temperatu
remains at the initial valueTi , and the average number o
s phonons is zero. Recalling Eqs.~17c! and~16b!, condition
~26! becomes

FIG. 3. Numerical solution of Eqs.~21! @see also Eq.~B5!# for
the actual temperatureT(t) in a continuum lattice, under the actio
of a time-dependent uniform stress as in Fig. 1. The satura
temperatureT` is taken twice as large as the initial temperatu
Ti . Two plots are reported, forG51023 ~circles! and for G
51026 ~squares!. Note the steep increase at times of ord
10/vs , and the slow saturation atT` . The numerical data are prac
tically insensitive to the specific value ofa, for a of order unity.

FIG. 4. Dependence ont ~the period of the stress! of the satu-
ration temperatureT` for a continuum lattice model of linear siz
L @Eqs.~29b!#. Note the ‘‘window’’ ]tm ,tM@ of allowed values of
t, giving rise to an increase of the actual temperature above
initial value @see Eqs.~24!#.
r

DrM

r0
.pg

Tia

T0L
, ~27!

where a is the interatomic distance, so thatvD5c0kD
>c0(p/a). Inequality ~27! provides the~size-dependent!
lower limit on the maximum density fluctuation, in order th
there are macroscopically detectables phonons. In the clas-
sical limit, the state equation of CLM reads

P~T,r!53grS kT2
3

8
\vDD ,

so that the lower limit for the maximum pressure chan
DPM is readily obtained from Eq.~27!:

DPM

P~T` ,r0!
.pg

Tia

T0L
. ~28!

Since the pressure of solids at relatively high temperature
of order 105 atm, Eq.~28! tells us that for apure, nonmetal-
lic monocrystal, of cubic form, with sides about 1 cm long
at initial temperature of some hundred Kelvin, the period
pressure change must exceed a value of about 1022 atm (g
>2), in order thats phonons can raise the actual tempe
ture up to macroscopically detectable values. This thresh
value for the pressure might look surprisingly low, sin
1022 atm corresponds to nothing but a delicate finger tou
However, one should now recall that the theory, in t
present form, holds only foradiabaticstrains. As stressed in
Sec. III, this means that the frequency of the strain fluct
tion must be small compared to theminimumproper fre-
quency of the normal modes. For an ideal solid of linear s
L, this condition impliest@L/c0 , which shifts the region of
applicability of the theory well across the top of the peak
Fig. 4. The expression to be accounted for is now Eq.~23b!,
showing that the condition forT` to be larger thanTi actu-
ally reads

DPM

P~T` ,r0!
@pg

Tia

T0L
for t@L/c0 . ~29!

Instead, Eq.~28! refers to the caset>L/c0 , that makes the
strain nonadiabatic for the low-frequency modes of the s
tem. As stressed in Sec. III, the adiabaticity conditiont
@L/c0 is equivalent to assuming that the time-depend
perturbation does produce anharmonic effects only. In
case one is sure that the predicted temperature increa
entirely due to thes phonons, and not to the thermalizatio
of T phonons produced by viscoelastic effects.

Now we wish to stress an apparent paradox emerg
from Eqs.~23b! and ~24!: sincej is linear in the Grüneisen
parameterg @Eq. ~17c!# the limit g→0 yields T`→`,
tM→` andtm→0. Thus a perfectly elastic lattice would b
able to store an arbitrarly large amount ofs phonons, for any
value of the perturbation’s period. But a perfectly elas
lattice cannot contains phonons by definition~Sec. III!. The
problem looks unescapable, for it has a first-principles o
gin: the exponential increase of the number ofs phonons is a
first-order effect in g, while the contrasting dissipation rat
@Eq. ~19!# is a second-ordereffect. The key for the solution
is just the parametera. As reported in the caption of Fig. 3
the value ofa, unless not too large, is irrelevant for the da
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in Fig. 3, obtained fromfinite ~though small! values ofj. But
the limit g→0 also yieldstdiss→` @Eq. ~9c!#, even fora
arbitrarly close to 1. Equations~23b! and ~24! have been
deduced under the implicit conditiont/tdiss→`, that is, over
time scales large compared to the initial waiting time inter
tdiss, during which the behavior of the harmonic oscillator
amplitude is not still exponential. Withtdiss diverging, the
system does not contains phonons at all, and the limit of the
perfectly elastic CLM is recovered. Note that the conditi
a51, for which tdiss50 anyway, is statistically irrelevant
since it corresponds to a zero-measure set of~classical! ini-
tial conditions. In a forthcoming paper, concerned with t
quantumoscillator with time-dependent frequency, we w
show thata52 is the suitable value for the problem und
consideration. However, the ‘‘paradox’’ discussed abo
points out an interesting result: the waiting time for thes
phonons’ production does actually increase with increas
elasticity, but theintensityof the resulting effects does in
crease in turn, when the coherent production finally sta
This could have relevant consequences in view of more
alistic approaches to the anharmonicity, introducing a te
perature dependence in the Gru¨neisen parameter.

Of course, the preceeding formulas for CLM are far fro
reliable, when applied to real cases. Besides the phon
phonon scattering accounted for in the ideal CLM, any k
of defects~grain boundaries, dislocations, atomic impuritie
surface scattering, free electrons in metals! would contribute
their own terms to the dissipation rate. Hence, fors phonons
to produce measurable effects, one should expect to
more stringent conditions than those predicted in the pre
ideal case. However, the low value of the ‘‘ideal’’ thresho
pressure@Eq. ~28!# provides an encouraging indication,
view of a real experimental test.

VII. SUMMARY AND CONCLUSIONS

The problem discussed in the preceeding sections ca
summarized as the application of the swing-with-child E
~1! to elementary elastic excitation in solids, in the prese
of dissipation effects. The general solution of Eq.~1! has
been given in Sec. II, by mapping Eq.~1! into a one-
dimensional Shro¨dinger equation@Eq. ~2!#. The cases a o
disordered and b periodic fluctuations of the proper f
quency have been considered separately. However, the
ence of dissipation makes the two cases coincide in b,
many practical purposes, with the disordered fluctuation
placed by a ‘‘coherent’’ periodic function. The crucial poi
is the existence of special frequencies, at which the ela
modes’ amplitude diverge exponentially in time~in the ab-
sence of dissipation!. These special modes are indicated as
s modes,’’ while theirexcessphonons~that is, the phonons
generated by the time-dependent strain!, are denoted ass
phonons. Some physical applications of Eq.~1! have been
discussed in Sec. III, with special reference to what we
anadiabatic time-dependent strain, acting on the proper f
quencies of normal modes in condensed systems. Adiab
ity means in general that the frequency spectrum of the st
fluctuation~obtained by Fourier time transforming! lies well
below the normal modes’ spectrum of the system, with s
ficiently small amplitudes. In this case, there is no way
the strain energy to enter the phonon bath, except Eq.~1!,
l
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sinceviscoelasticeffects~coupling the normal modes to th
strain velocity! are made negligeable. Equation~1! is thereby
assumed as a pureanharmoniceffect, to which Gru¨neisen’s
theory provides the most elementary and ‘‘universal’’ a
proach. Explicit formulas are obtained forextendedmodes in
crystals, whose proper frequencies can be made time de
dent by periodic externalstresses. Similar expressions f
localizedmodes in nonhomogeneous materials do apply
well, but the proper frequencies’ changes are now attribu
to disorderedfluctuations of the local density, due tointernal
ionic motions.

In Sec. IV, the dissipation effects are considered in
case of lows modes’ concentration. This means that t
ionic oscillations are only negligibly influenced by thes
phonons. Once stressed that the creation ofs phonons is a
deterministicprocess, while their absorption isprobabilistic
in nature, a detailed-balance equation can be written for
total number ofs phonons present in the sample, provid
the number ofs modes which they originate from is an ex
tensive variable. This can be easily done for single-phon
scattering processes, whereas the inclusion of multipho
processes may considerably complicate the matter. In
ticular, in the case of Eqs.~12!, a resonant absorption chan
nel, activated only when the number of phonons in a sin
mode is larger thann* (@1), cannot be turned into a
detailed-balance equation, but requires a statistical appro
based on the single-mode behavior. In the ideal case
diverging resonant rate of absorption, it is possible to gu
that the population of phonons in eachs mode oscillates
periodically between 0 andn* , as sketched in Fig. 2.

In Sec. V, we account for the influence of thes phonons
on the ionic oscillations. In this case the evolution of t
system is described by the so-called ‘‘self-consistent th
malization’’ of thes phonons: ifs phonons are dissipated i
the system, theactual temperatureT(t) and the maximum
rate of dissipationvM„T(t)… are bothincreasingfunctions of
time. This leads the concentration ofs modes producings
phonons todecreasein time, so that a nonlinear countere
fect is produced, making the actual temperature saturate
finite limiting valueT` ~Fig. 3!. It should be noticed that the
actual temperatureT(t) is quite different from thethermo-
dynamictemperature one would obtain simply by heating t
system. In the latter case each oscillator’s energy would
characterized by a Poisson distribution, whose variance
creases linearly with the temperature. This is an obvious c
sequence of the chaotic approach to the energy equiparti
where each microscopic oscillator is a canonic system
changing heat with its neighbors. The actual temperat
T(t), instead, is merely a thermodynamic measure of anon-
chaotic increase of the number ofs phonons, due to an ex
ternal perturbation. The only chaotic element is the init
temperatureTi @Eq. ~21!#. Indeed, the saturation temperatu
T` is independent ofTi @Eqs. ~22!#, so that the energy o
each oscillator tends to the asymptotic value, not only
average, but with a distribution converging tod(E2kT`).
This is a fundamental consequence of the coherent~noner-
godic! production of s phonons from the time-depende
strain. The oscillators in real space can be now regarded t
microscopic systems whose energy increment becomes m
and morecoherent, with increasing time and with increasin
actual temperature. This opens, in principle, the possibility
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602 56LORIS FERRARI
a time-controlled, coherent-phase transition, if the sys
can exist in two allotropic phasesA and B. The resulting
effects are expected to be very similar to those obtained
cavitating gas.13 In fact, suppose we apply the CLM calcu
lations at constant volume~Sec. VI! to the system in the
phaseA. It is conceivable that in some conditions, a critic
valueTc of the actual temperature does exist, betweenTi and
T` , at which the increasing internal pressure makes the
tem undergo a structural phase transition fromA to B. Since
Tc,T` , the critical temperature is reached in afinite time.
For Tc sufficiently close toT` , the critical pressure is at
tained by all parts of the systemsimultaneously. In the re-
sulting coherent-phase transition, part of themacroscopic
elastic energy loaded into the system for reachingTc would
be coherently released,~for example, by a sudden contractio
of the proper volume!, and a shock-wave like those envi
aged in Refs. 5–7, and like those observed in the crit
cavitation, might be produced. If the self-consistent therm
ization of s phonons could be repeated for phaseB too, in
such a way that the system can be driven again to the o
nal phaseA, a steady, periodical emission of shock wav
would be produced. The results obtained for theidealCLM,
with only anharmonic channels of scattering, indicate t
the threshold pressure fluctuation, for the self-consis
thermalization to produce macroscopic effects, is size dep
dent and may be very low, for macroscopic monocryst
This looks encouraging, in view of the experimental ver
cation of the predicted effects.

Another aspect which we can only allude to, is t
electron-phonon interaction in the presence ofs phonons, a
field that has not been considered at any level, in the pre
paper, but actually deserves some attention.

Note added in proof.The analogy between Eq.~1! and the
Schrödinger equation was stressed by L. P. Pitaevski@see L.
Landau and E. Lifshitz,Mécauque~MIR Editions, Moscow,
1969!, footnote on pp. 214–215.
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APPENDIX A

We first recall here the conditions of applicability for
time-dependent equation based on the concept ofprobabilis-
tic transition ratev ~for any process!. With a fixed arbitrary
time intervalDt!v21, and a numberN of incoherently pro-
cessing systems, the probabilityP(DN) thatDN of them do
actually perform the process in the time intervalDt is given
by the binomial distribution

P~DN!5
N!

DN! ~N2DN!!
pDN~12p!N2DN, ~A1!

with p5vDt. Note that the process can be a decay~absorp-
tion!, or a duplication of the system itself~creation!. By
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maximizing lnP(DN) with respect toDN, the binomial dis-
tribution can be approximated by a Gaussian, close to
extremantDN̄5NvDt. Treatingx5DN/N as a continuous
variable, the resulting probability distribution reads

P~x!>AN

p
expF2

N~x2p!2

p GF E
2ANp

`

e2z2dzG21

,

~A2!

that, in the limitN→`, tends tod(x2p). Thus, in the same
limit, one getsx5p5vDt as theuniquepossibility of real-
ization. On takingDt→0, this yields the usualdeterministic
equationṄ56vN ~with 1 and 2 corresponding to cre-
ation and absorption, respectively!. It is thereby clear that the
deterministic nature of any equation based on the concep
probabilistic transition rate depends on the large-N limit. The
same limit is also consistent with the further assumption
treatingDN ~a non-negative integer!, as a differential quan-
tity. For adsorptionprocesses, the large-N limit necessarily
corresponds to the thermodynamic limit. It is only for a
extensive variable that an expression likeN(t)5N(0)exp
(2vt) can make sense even at long times, sinceN(0) can be
taken as an arbitrarily large quantity. In contrast, forcreation
processes, an expression likeN(t)5N(0)exp(vt) becomes
more and more correct, just with increasing time, even
N(0) is not arbitrarly large. In this case, in fact, the exp
nential increase itself makes the fluctuations become ne
gible at long times. For example, if condition~10! is satis-
fied, Eq.~9b! can be indifferently referred to thes phonons
in a single smode, or toall thes phonons~of the same kind!
present in the system. In the opposite case, Eq.~9b! has to be
intended as determining the average behavior of alls modes
in the system, while the behavior of the singles mode could
display relevant fluctuations.

The preceeding discussion is useful whenv1 is replaced
by v tot @Eq. ~11!#, and the coherent absorption ofj phonons
is formally accounted for. As soon as we wish to inclu
processes in which the expected variation may equal
number of existing phonons, the fluctuations between
singlesmode’s behavior and the average behavior descri
by Eq. ~9b! might become relevant from the physical vie
point. No problem exists if

2vs.(
j51

`

jv j5
def

vM . ~A3!

In this case the rate of creation ofs phonons is larger than
any rate of scattering, and the long-time behavior predic
by Eq.~9b! is exponentially increasing, with an effective ra
2vs2vM . As discussed above, this makes Eq.~9b! more
and more self-consistent, with increasing time, even wh
applied to asingle smode.

APPENDIX B

We give in what follows some details about the passa
from Eqs.~13!, ~14!, and~15!, to the self-consistent equatio
~21!. Calculations are referred specifically to the CLM
three dimensions. First of all, we calculate the width~in fre-
quency! DV( j ) of the band ofs modes around each qua
siresonant value given by Eq.~18a!. From Eq. ~16b! and
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from the definition~17c!, it is easy to see that

DV~ j !52j/t ~ independent ofj !. ~B1!

The numberM ( j ) of s modes around each quasiresona
valuekj @Eq. ~18a!#, can be obtained by integrating the CLM
density of elastic modes in a frequency interval of~small!
width DV( j ), around each quasiresonant frequen
V0(kj ). According to Eq.~B1!, the result~to the lowest or-
der in j! is

M ~ j !5j
Vkj

2

p2c0t
. ~B2!

From Eq.~14a!, one gets for the CLM

qT
2~Ti !5

3VkTikD
2mN~pc0!

2 , ~B3a!

expressing the ergodic part of the square oscillation am
tude of each atom. To calculate thes part, we make the
approximation that all theM ( j ) s modes have the same ra
of exponential increasevs , given by Eq.~18b!. From Eq.
~14b!, with the aid of Eq.~9c!, it follows that

qs
2~Ti ,t !5

3kTi
2mN (

j50

j M M ~ j !

V0~ j !
Fe@2vs2v1~kj !#t

a
21G ,

~B3b!
t
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wherev1(kj ) is given by the first term in Eq.~19! ~for suf-
ficiently low temperatures!, andj M is the j value correspond-
ing to kM(t) @Eq. ~20c!#. Passing to continuousj values, the
sum in Eq.~B3b! can be transformed into an integral ink
space, since, from Eq.~18a!, dk5(2p/tc0)d j . Recalling
Eq. ~B3a! and ~B2!, expression~B3b! can be finally cast in
the form

qs
25qT

2 j

2pk0
F E

k0

kM e@2vs2v1~k!#t

a
dk2kM1k0G . ~B4!

From Eq.~B4!, it is not difficult to get Eqs.~21!, according
to the procedure indicated in the text. In order to approa
the solution of Eq.~21a!, it is convenient to setz25T/T`

and verify, with the aid of Eqs.~23a!, ~23b!, and~21b!, that
F(T)5z in any case. Equation~21a! can be thereby put in a
more convenient form:

z2~x!5
Ti
T`

F11
G

z S ex
2

f ~x!
E
z f~x!

x

e2y2dy1z21D G ,
~B5!

whereG5j/vDt for t,L/c0 and G5ja/L for t.L/c0 .
This shows that the only parameters to be defined for a
merical solution of Eq.~21a! ~Fig. 3!, are just the ratio
Ti /T` andG.
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