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Common universality class for the three-dimensional vortex glass and chiral glass

Carsten Wengel and A. Peter Young
Department of Physics, University of California, Santa Cruz, California 95064

~Received 22 April 1997!

We present a Monte Carlo study of thed53 gauge glass and theXY spin glass models in the vortex
representation. We investigate the critical behavior of these models by a scaling analysis of the linear resistivity
and current-voltage characteristics, both in the limits of zero and strong screening of the vortex interactions.
Without screening, both models show a glass transition at a finite temperature and, within the numerical
accuracy, exhibit thesamecritical exponents:z'3.1 andn51.360.3. With strong screening, the finite-
temperature glass transition is destroyed in both cases and the same exponentn51.0560.1 is found at the
resulting zero-temperature transition.@S0163-1829~97!08834-6#
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I. INTRODUCTION

It has been suggested1,2 that defects may collectively pin
flux lines ~vortices! in a type-II superconductor in a field
leading to a vortex glass phase with vanishing linear re
tance. In many numerical studies of the vortex glass tra
tion, a simple model called the ‘‘gauge glass’’ has be
used.3–7 A related model is theXY spin glass, which has
been studied extensively in order to understand the magn
ordering of a variety of magnetic compounds with rando
and frustrated interactions.XY spin glasses are of speci
interest since they potentially exhibit two distinct kinds
ordering: spin glass ordering due to freezing of the spins,
‘‘chiral glass’’ ordering due to freezing of local chiral~vor-
tex! degrees of freedom.8–16 It has been well established17,18

that the spins do not have a finite-temperature spin g
transition in three dimensions, whereas Kawamura14,16 has
argued that a finite-temperature chiral glass transition d
occur. This intriguing claim provides one of the main mo
vations for the present study.

In this paper we present a comprehensive Monte C
study of the vortex glass transition in the gauge glass mo
and the chiral glass transition in theXY spin glass in three
dimensions. We consider both the situation where scree
between the vortices is neglected,~which is the case in mos
of the earlier work! and also where there is strong screen
of the vortices. We find that both with and without screenin
the chiral glass and gauge glass have very similar beha
Without screening they have a finite-temperature transi
with numerically very similar values for exponents, sugge
ing that they may lie in the same universality class. For b
models, we find that screening destroys the fini
temperature transition.

Our paper is organized as follows: In Sec. II we define
models under consideration. In Sec. III we discuss the qu
tities that we calculate and explain the finite size scal
techniques used in the analysis. In Sec. IV we present
results for the gauge glass model without screening,
briefly review results for the gauge glass with screening t
we found earlier in Ref. 7@referred to as WY~Wengel-
Young!#. In Sec. V we present results for theXY spin glass
with and without screening. We summarize our results a
draw our conclusions in Sec. VI.
560163-1829/97/56~10!/5918~7!/$10.00
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II. THE MODELS

In the absence of screening the Hamiltonian of both
XY spin glass and the gauge glass can be written in thephase
representationas

H52J(
^ i , j &

cos~f i2f j2Ai j !, ~1!

where thef i are interpreted either as phases of a superc
ducting order parameter~gauge glass! or as the angles o
two-dimensional spins~spin glass!. Here,J is the interaction
strength~henceforth set to unity!, and the sum is taken ove
all nearest-neighbor siteŝi , j & on a simple cubic lattice. In
the case of the gauge glass, the effects of the external m
netic field and the disorder are represented by quenched
tor potentialsAi j , taken to be uniformly distributed in the
interval @0,2p#. In the case of the6J XY spin glass, the
random sign of the bonds between spins is represented
quenched vector potentialsAi j taken randomly to be 0 (1J)
or p (2J).

The Hamiltonian~1! obviously possesses a U~1! symme-
try, i.e., the model is invariant under the transformati
f i→f i1C ; i , whereC is a constant. For the gauge gla
this is the only symmetry. However, for theXY spin glass
there is an additional ‘‘reflection’’ symmetry,f i→2f i ; i .

It is convenient to rewrite the Hamiltonian in such a w
that the chiral~vortex! variables, which are our main con
cern, appear explicitly. This transformation involves repla
ing the cosine in Eq.~1! with the periodic Gaussian Villain
function, separating spin-wave and vortex variables, and t
performing fairly standard manipulations19–21 to obtain

HV52
1

2(i , j G~ i 2 j !@ni2bi #•@nj2bj #. ~2!

Here, the vortex variablesniP$0,61,62, . . .% sit on the
links of thedual lattice ~which is also a simple cubic lattice
here!, G( i 2 j ) is the lattice Green’s function

G~ i 2 j !5
~2p!2

L3 (
kÞ0

12exp@ ik•~r i2r j !#

2(n51
d @12cos~kn!#

, ~3!
5918 © 1997 The American Physical Society
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56 5919COMMON UNIVERSALITY CLASS FOR THE THREE- . . .
~with d53), and thebi are quenched fluxes given by (1/2p)
times the directed sum of the quenched vector potentialAi j
on the original lattice surrounding the link on the dual latti
on which bi lies. Due to periodic boundary conditions, w
have the global constraints( ibi5( ini50. There are also the
local constraints,@¹•n# i5@¹•b# i50, where the latter jus
follows trivially from the definition ofbi as a lattice curl.

Since the Hamiltonian only depends onni2bi it is con-
venient to discuss the distribution of the quenched flu
when all the weight is shifted into the interval22 0<bi

a,1
~where a is a Cartesian component!. For the gauge glas
model, the distribution of the shiftedba is uniform, i.e.,

P~ba!51 ~0<ba,1!

50 ~otherwise!, ~4!

while for the 6J spin glass the shiftedba have a bimodal
distribution with equal weight at 0~corresponding to an un
frustrated square on the original lattice! and 1/2~correspond-
ing to a frustrated square!:

P~ba!5 1
2 @d~ba!1d~ba2 1

2 !#. ~5!

Recent work on the gauge glass model and on theXY spin
glass have investigated the role of screening of the vor
vortex interactions, which is a relevant perturbation near
critical temperature.2,6 It was found by WY and in Ref. 6
that the vortex glass phase vanishes when strong screen
included in thed53 gauge glass model, and subsequ
work by Kawamura and Li16 found the same effect for th
chiral glass transition. We therefore also discuss the eff
of screening here.

In the vortex representation, the Hamiltonian is still re
resented by Eq.~2! but now the interactionG( i 2 j ) has the
screened form

G~ i 2 j !5
~2p!2

L3 (
kÞ0

12exp@ ik•~r i2r j !#

2( n51
d @12cos~kn!#1l0

22
, ~6!

wherel0 is a bare screening length. Note that in the lon
wavelength limit, the denominator is justk21l0

22.
In the simulations presented here, we consider just

cases:~i! l5`, where there is no screening and the inter
tions between the vortices are long range, and~ii ! l→0,
where there is strong screening. In the latter caseG(r
Þ0)5(2pl0)2 with corrections which are exponentiall
small, i.e., of order exp(2r/l0). Because( i(ni2bi)50 we
can always add a constant toG(r ) for all r without affecting
the results. We therefore add2(2pl0)2, as a result of which
the only interaction is on site, and then divide the interact
by (2pl0)2 to have a well-defined limit forl0→0. The
resulting Hamiltonian then has the very simple form

HV5
1

2(i
~ni2bi !

2 ~l0→0!. ~7!

Note,23 however, thatHV is not trivial because the local con
straint @¹•n# i50 effectively generates interactions betwe
the ni .

To summarize, we study four models in this paper:
~1! The gauge glass in the absence of screening.

Hamiltonian is given by Eq.~2! where theG( i 2 j ) are given
s
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by Eq. ~3!, and the distribution of the fluxes~shifted22 into
the interval from 0 to 1! is given by Eq.~4!.

~2! The gauge glass with strong screening. The Ham
tonian is given by Eq.~7! in which the distribution of the
~shifted! fluxes is given by Eq.~4!.

~3! The chiral glass~i.e., vortex degrees of freedom in th
XY spin glass! in the absence of screening. The Hamiltoni
is given by Eq.~2! where theG( i 2 j ) are given by Eq.~3!,
and the distribution of the~shifted! fluxes is given by Eq.~5!.

~4! The chiral glass with strong screening. The Ham
tonian is given by Eq.~7! in which the distribution of the
~shifted! fluxes is given by Eq.~5!.

III. DATA ANALYSIS

We simulate the Hamiltonians in Eqs.~2! and ~7! on
simple cubic lattices withN5L3 sites where 4<L<12. Pe-
riodic boundary conditions are imposed. We start with co
figurations with allni50, which clearly satisfies the con
straints, and a Monte Carlo move consists of trying to cre
a loop of four vortices around a square. This trial state
accepted with probability 1/@11exp(bDE)#, whereDE is the
change of energy andb51/T. Each time a loop is formed i
generates a voltageDQ561 perpendicular to its plane, th
sign depending on the orientation of the loop. This leads t
net voltage5

V~ t !5
h

2e
I V~ t ! with I V~ t !5

1

LDt
DQ~ t !, ~8!

where I V is the vortex current andt denotes Monte Carlo
‘‘time’’ incremented byDt for each attempted Monte Carl
move. We will work in units whereh/(2e)51, and we set
Dt51/(3N) so that an attempt is made to create or dest
one vortex loop per square in each direction, on average,
unit time.

The linear resistivity can be calculated from the volta
fluctuations via the Kubo formula24

r lin5
1

2T (
t52`

`

Dt^V~ t !V~0!&. ~9!

Here,^•••& denotes the combined thermal and disorder
erage. Near a second-order phase transition the linear r
tivity obeys the scaling law2

r lin~T,L !5L2~22d1z! r̃ „L1/n~T2Tc!…, ~10!

wherej is the correlation length exponent, i.e.,

j;~T2Tc!
2n, ~11!

z is the dynamical exponent, andr̃ is a scaling function. At
the critical temperature,r̃ becomes a constant and therefo
r lin(Tc ,L);L2(22d1z). If we plot the ratio ofr lin for differ-
ent system sizes againstT, then

ln@r lin~L !/r lin~L8!#

ln@L/L8#
5d222z at Tc , ~12!

i.e., all curves for different pairs (L,L8) should intersect and
one can read off the values ofTc andz. We will refer to this
kind of data plot as the ‘‘intersection method.’’ With th
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5920 56CARSTEN WENGEL AND A. PETER YOUNG
values ofTc andz determined by the intersection method w
can then use a scaling plot according to Eq.~10! to obtain the
value ofn.

In the case of strong screening we find a zero-tempera
transition and a plot according to Eq.~10! to determinen
does not work, sincez5` because there is activated d
namical scaling at theT50 transition. However, one can sti
obtain static exponents by measuring the voltage gener
by a finite external current, i.e., byI -V characteristics. In rea
superconductors, transport currents generate a nonuni
magnetic field because of Ampe`re’s law, ¹W 3B5J. It is in-
convenient to simulate a nonuniform system, so instead
effectively assume that the current is the same everywher
eachvortex feels a Lorentz forceni3J. The scaling behavior
of the response to such a perturbation should be the sam
that derived earlier for response to an actual transp
current.2 We can therefore use this approach to determ
critical exponents, which is our objective. The Lorentz for
biases the moves and sets up a net flow of vortices per
dicular to the current, whose time average gives the volt
according to5 Eq. ~8!.

To analyze our data we need to understand the sca
behavior of theI -V curves near a second-order phase tran
tion. The scaling theory gives2,5

T
E

J

t

jd22
5gS Jjd21

T D , ~13!

whereE is the electric field,J the current density,t a relax-
ation time, andg is a scaling function. At a zero-temperatu
transition one has

j;T2n, ~14!

so, in three dimensions, Eq.~13! becomes

T11n
E

J
t5gS J

T112nD . ~15!

From this equation we can see that the current scale,JNL , at
which nonlinear behavior sets in varies withT as
JNL;T112n. Since the linear resistivity is defined by

r lin5 lim
J→0

E

J
, ~16!

andg(0) can be taken to be unity, we can write

E

Jr lin
5gS J

T112nD . ~17!

Furthermore, we expect that near theT50 transition, long-
time dynamics will be governed by activation over barrie
Hence we expect

T11nr lin5
1

t
5Aexp@2DE~T!/T#, ~18!

whereDE is the typical barrier that a vortex has to cross
move a distancej. One can define a barrier height expone
c by DE;jc;T2cn in terms of which
re

ed
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e
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e
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e

g
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t

T11nr lin5Aexp~2C/T11cn!. ~19!

We are able to obtain a rough estimate forc from our data of
the linear resistivity.

In a finite system, theI -V characteristics will also depen
on the ratioL/j. One can generalize the scaling function, E
~17!, to account for finite-size effects as follows:

E

Jr lin
5 g̃S J

T112n
,L1/nTD . ~20!

Now we are left with a rather complicated scaling functi
since it depends on two variables. To simplify the analy
we first estimaten by determining the current wher
E/(Jr lin)52, at which point nonlinear effects start to b
come significant. Denoting these values ofJ by JNL , then,
from Eq. ~20!, it follows that

JNL

T112n
5 g̃̃~L1/nT!, ~21!

where g̃̃ is another function. Hence we determinen by re-
quiring that the scaling in Eq.~21! is satisfied. We then col-
lect data for sizes and temperatures such thatL1/nT is con-
stant. The scaling function in Eq.~20! then only depends on
one variable, and so data forE/Jr lin for different sizes
should scale when plotted againstJ/T112n, with the same
value ofn as obtained from the scaling ofJNL . We find, in
fact, that the results are only weakly dependent on the sec
argument of Eq.~20!.

IV. RESULTS FOR THE GAUGE GLASS

In this section we consider the critical behavior of t
gauge glass model with and without screening. Recall t
the distribution of the~shifted! fluxes is given by Eq.~4!.

A. No screening,l0˜`

For the gauge glass with no screening we have meas
the linear resistivityr lin as a function of temperature. In Fig
1 we show data ofr lin plotted according to the intersectio
method vsT for sizesL54,6,8. We were not able to includ

FIG. 1. Plot of ln@rlin(L)/r lin(L8)#/ ln@L/L8# versusT for the
gauge glass withl0→`. The curves intersect atTc50.9360.05.
At the intersection point, they value is approximately22.2, corre-
sponding tozGG'3.2.
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56 5921COMMON UNIVERSALITY CLASS FOR THE THREE- . . .
data fromL510 into this plot since we could not equilibra
the systems down to the lowest temperatures (T50.8,0.9).
All curves intersect at aboutT50.9360.05 indicating a
phase transition to a vortex glass. The correspondingy-axis
value at the intersection point is 12z'22.2, therefore
zGG'3.2. Having established these values, we tried a sca
plot according to Eq.~10! and the result is shown in Fig. 2
Best scaling was achieved withTc50.93, zGG53, and
nGG51.360.3. Only far away from the transition point doe
one observe deviations from scaling, which is expected
such small sizes and high temperatures, but the overall s
ing works quite well.

It is interesting to compare this result with earlier Mon
Carlo simulations of the gauge glass without screening in
phase representation by Regeret al.4 These authors did a
finite-size scaling analysis of static quantities which in
cated a finite-temperature transition, but they could not co
pletely rule out the possibility that the lower critical dime
sion is dl.3. The clear intersection of the data in Fig.
however, strongly confirms the notion that there is a fini
temperature transition in the three-dimensional gauge g
model, and hencedl,3. Additionally, our correlation length
exponentnGG agrees well with the estimate given by Reg
et al.,4 nGG51.360.4. There is, however, a considerable d
ference between our estimate of the dynamic critical ex
nent z'3.1 and theirs,z54.760.7. It is possible, though
that thedynamicaluniversality classes of the models in th
phase and vortex representations may be different, e
though the static behavior is the same. If so, there is
contradiction in the results.

B. Strong screening,l0˜0

In this paragraph we review quickly the results for t
gauge glass model with strong screening found earlier
WY, in order to compare them in the next section with o
data for thed53 XY spin glass model with screening. A
shown by WY the vortex glass transition in the gauge gl
is destroyed by screening of the vortex interactions. T
main indication for the lack of a transition at finiteT was the
absence of an intersection if the resistivity was plotted
cording to the intersection method. A scaling plot of t
current-voltage characteristics for different temperatures

FIG. 2. Scaling plot of the lineage resistivity for the gauge gla
with l0→`. Using Tc50.93 andzGG53 from Fig. 1 we obtain
nGG51.360.3.
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sizes also revealedTc50 andnGG51.0560.1. Finally, the
barrier exponentc, as defined in Eq.~19!, was determined to
be close to zero, so the conclusion was drawn that ene
barriers diverge only weakly, possibly logarithmically,
one approaches the zero-temperature transition.

V. RESULTS FOR THE 6J XY SPIN GLASS

Recall that the only difference between the6J XY spin
glass and the gauge glass discussed in the last section is
the distribution of shifted fluxes is given by Eq.~5! rather
than by Eq.~4!.

A. No screening,l0˜`

As already discussed in the Introduction, the6J XY spin
glass is known to have no finite-temperature transition to
ordered state below four dimensions.17 For the d53,6J
model one can, however, identify a chiral glass transition
Monte Carlo simulations due to freezing out of the discr
degrees of freedom, as has been done by Kawamuraet al.14

The associated chiral glass exponents estimated in the p
representation with periodic boundary conditions14 are
nCG51.560.3 andhCG520.460.2. Subsequent work with
free boundary conditions16 finds similar values,
nCG51.360.2 andhCG520.260.2.

Figure 3 displays a plot of our data forr lin according to
the intersection method vsT for the XY spin glass. One
observes, very similarly to Fig. 1, an intersection point
T50.9360.05 and a dynamic critical exponentzCG'3.2.
Also, the scaling plot ofr lin in Fig. 4 shows best results with
almost the same values as in the long-range gauge glass
namelyTc50.93, zCG53.1, andnCG51.360.3. This result
indicates a finite-temperature transition into a chiral gla
state for thed53 XY spin glass and thereby confirms Mon
Carlo results performed in the phase representation.14 Very
surprisingly, we find that our data for the linear resistivity
virtually indistinguishable from the corresponding measu
ments of the gauge glass model. We observe a maxim
deviations of 1.5s. We will come back to this in the las
section.

s FIG. 3. Plot of ln@rlin(L)/r lin(L8)#/ ln@L/L8# versusT for the6J
XY spin glass andl0→`. The curves intersect atTc50.9460.05.
At the intersection point, they value is approximately22.2, corre-
sponding tozCG.3.2.
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5922 56CARSTEN WENGEL AND A. PETER YOUNG
B. Strong screening,l0˜0

In Fig. 5 we show the linear resistivity plotted accordin
to the intersection method vsT. One can see that there is n
apparent intersection over the entire temperature range
we have been able to simulate, i.e., down toT50.07 for
L<8 andT50.1 for L<12. At high temperatures all curve
merge, since the correlation length becomes shorter than
system size and the data ofr lin for different sizes are the
same. This rules out a transition down to 1/5 of the criti
temperature of the system without disorder,Tc50.331 ~see
WY!, and therefore strongly suggests the absence of a c
glass transition at finite temperature, in agreement with w
by Kawamura and Li.16

Next we studied the current-voltage characteristics of
model in order to determinen. Figure 6 shows a scaling plo
of different I -V curves according to Eq.~20!. From the scal-
ing of the nonlinear currentJNL we estimatednCG51, and
then chose sizes and temperatures for the data in Fig. 6
that L1/nCGT5const, and hence the second argument in
~20! remained roughly constant. The data are seen to s
very well with Tc50 and nCG51.0560.1. We also at-
tempted scaling our data with an appropriate scaling func
for finite Tc , and found that scaling works only moderate
well with Tc50.04 andnCG51.05. We, therefore, conclud

FIG. 4. Scaling plot of the linear resistivity for the6J XY spin
glass withl0→`. Using Tc50.94 andzCG53.1 from Fig. 3 we
obtainnCG51.360.3.

FIG. 5. Plot of ln@rlin(L)/r lin(L8)#/ ln@L/L8# vs T for theXY spin
glass model withl0→0. In contrast to Fig. 3 there is no interse
tion over the entire temperature range, indicating the absence
phase transition into a chiral glass.
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that the transition is very likely to occur atTc50, but we
cannot completely rule out a finite, though extremely sm
Tc .

We also determined the barrier exponentc by plotting
T2r lin over 1/T as was done in Fig. 6 of WY for the gaug
glass. The data forL512 follow almost a straight line indi-
cating Arrhenius behavior and thereforec.0. As in the
gauge glass case one has to be careful though, since su
estimate does not allow for finite-size corrections and is o
observed over a small range of temperatures. It is also p
sible that we only measure an effective exponent and the
value ofc changes as one gets closer toT50. In any case,
c.0 would suggest that barriers increase only very slow
possibly logarithmically, as one approaches the ze
temperature chiral glass transition.

Again it is interesting to compare these results with tho
obtained by WY for the gauge glass with screening: th
agree perfectly with in the errors, namelyTc50, nGG
51.05, andc.0, as described in Sec. IV B. Not only do th
final estimates of the exponents for the gauge glass and6J
XY spin glass agree but also, as in the case without scr
ing, the individual numerical values ofr lin and data from the
I -V characteristics all agree within the error bars, the ma
mum discrepancy being 1.5s.

VI. SUMMARY AND DISCUSSION

In this article we have presented a Monte Carlo study
the gauge glass model and the chiral glass transition in
XY spin glass model with and without screening, in the v
tex representation. We have computed dynamic quant
such as the linear resistivity and current-voltage characte
tics and used finite-size scaling techniques to extract
critical behavior of these models.

Our main results are the following:
~1! In the absence of screening there is a fini

temperature transition in both cases with numerically ind
tinguishable exponents given in Table I.

~2! In the presence of strong screening, there is a tra
tion at zero temperature in both cases. The correlation len
exponent is the same for the two models, as shown in Ta
I.

~3! Not only do the gauge glass transition and the ch
f a

FIG. 6. Scaling plot of theI -V characteristics withTc50 and
nCG51.0560.1, according to Eq.~20!, choosing sizes and tempera
tures such thatL1/nCGT is roughly constant.
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56 5923COMMON UNIVERSALITY CLASS FOR THE THREE- . . .
transition in theXY spin glass model appear numerically
be in the same universality class, but even the individual d
points for the current-voltage characteristics are virtually
distinguishable.

Earlier work which provided evidence for a finite
temperature chiral glass transition14,16 used the phase repre
sentation and constructed the chiralities~vortices! indirectly
from the spin configurations. This is only sensible at mod
ate to low temperatures where correlations in the angle
nearest-neighbor spins become significant. Our work dem
strates the existence of a chiral glass transition using
vortex representation. In our model vortices are well defin
at all temperatures and so we expect that the region o
which scaling behavior is obtained will be larger than in t
earlier work in the phase representation. We therefore
that our results make the existence of the chiral glass tra
tion more convincing.

There is also support in two dimensions for the idea t
the chiral glass and gauge glass transitions are in the s
universality class since in both cases one finds12,11,5,6,15

Tc50 andn'2.
However, it is unclear to us theoretically why the gau

glass and the chiral glass transition in the6J XY spin glass
should be in the same universality class. For theXY spin
glass, the important low-energy states are those wh
ni

a2bi
a50 on links wherebi

a50 ~corresponding to an un
frustrated square on the original lattice! andni

a2bi
a561/2

on links wherebi
a51/2. Thus, as noted by Villain,8 one has

a random Ising model with long-range antiferromagnetic
teractions,

H52
1

4(i , j G~ i 2 j !e ie jSiSj , ~22!

TABLE I. Critical temperatures and exponents of the presum
common universality class of the gauge glass and the chiral gla
d53. n is the correlation length exponent,z is the dynamical ex-
ponent, andc is the barrier exponent for theT50 transition in the
strong screening limit.

Screening Tc n z c

l0→` 0.94 6 0.05 1.36 0.3 ' 3.1 n/a
l0→0 0 1.056 0.1 ` .0
v

er
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where thee i are quenched variables taking values 0 or 1, a
the Si are statistical Ising-like variables which take valu
61. For the gauge glass one cannot make an analog
transformation and Eq.~2! corresponds to an Ising modelin
a random field, which is not expected to be in the sam
universality class as Eq.~22!. We do not, therefore, under
stand why the numerical values of the exponents are
same within the uncertainties. Even more surprising is t
the individual I -V values for the two models are virtuall
indistinguishable. We would expect there to be a mo
clearly visible difference in these properties. Perhaps
some reason, the random-field aspect of the gauge gla
irrelevant, or perhaps the critical behaviors of the two mo
els just happen by coincidence to be very close. It would
interesting to check our results by studying both models
alternative techniques such as domain-wall renormalizat
group methods.

The correlation length exponent for the unscreened m
els is also very similar to that of the Ising spin glass25 with
short-range interactions. Again, it is not obvious to us w
this should be the case. While the model in Eq.~22! has Ising
variables, and the ingredients of randomness and frustra
necessary for a spin glass, it also has long-range interact
unlike the Ising spin glass.

Finally, it is noteworthy, that earlier results for the gau
glass6 indicated that the universality class changes~and
henceTc becomes zero! for any noninfinite value of the bare
screening length. By contrast, Kawamura and Li16 have ar-
gued that the transition in the chiral glass persists down
finite value ofl0. It would, therefore, also be interesting t
study these models with an intermediate range of scree
in the vortex representation.
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