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Common universality class for the three-dimensional vortex glass and chiral glass

Carsten Wengel and A. Peter Young
Department of Physics, University of California, Santa Cruz, California 95064
(Received 22 April 1997

We present a Monte Carlo study of tlde=3 gauge glass and theY spin glass models in the vortex
representation. We investigate the critical behavior of these models by a scaling analysis of the linear resistivity
and current-voltage characteristics, both in the limits of zero and strong screening of the vortex interactions.
Without screening, both models show a glass transition at a finite temperature and, within the numerical
accuracy, exhibit thesamecritical exponentsz~3.1 and v=1.3+=0.3. With strong screening, the finite-
temperature glass transition is destroyed in both cases and the same experded®+ 0.1 is found at the
resulting zero-temperature transitig®0163-18207)08834-§

I. INTRODUCTION Il. THE MODELS

In the absence of screening the Hamiltonian of both the

It has been_sugg_estjeﬂthat defects may collec_tlvely_ PNy spin glass and the gauge glass can be written iphiase
flux lines (vorticeg in a type-ll superconductor in a field, representatioras

leading to a vortex glass phase with vanishing linear resis-
tance. In many numerical studies of the vortex glass transi-
tion,3ai\75imple model called the “gauge glass” has been H:_JZ cos ¢ — ¢~ Ay)), (1
used:™" A related model is theXY spin glass, which has {0)
been studied extensively in order to understand the magnetic ) )
ordering of a variety of magnetic compounds with randomWheTe theg; are interpreted either as phases of a supercon-
and frustrated interactionXY spin glasses are of special ducting order parameteigauge glassor as the angles of
interest since they potentially exhibit two distinct kinds of two-dimensional spingspin 9|<’%S$ Here,J is the interaction
ordering: spin glass ordering due to freezing of the spins, angtrength(henceforth set to unily and the sum is taken over
“chiral glass” ordering due to freezing of local chiror-  all nearest-neighbor sitgs,j) on a simple cubic lattice. In
tex) degrees of freedofiT*® It has been well establishEd®  the case of the gauge glass, the effects of the external mag-
that the spins do not have a finite-temperature spin glasdetic field and the disorder are represented by quenched vec-
transition in three dimensionS, whereas Kawarf'ﬁ;ﬂ%has tor pOtentialSAij s taken to be Uniformly distributed in the
argued that a finite-temperature chiral glass transition doel§iterval [0,2m]. In the case of thetJ XY spin glass, the
occur. This intriguing claim provides one of the main moti- random sign of the bonds between spins is represented by
vations for the present study. quenched vector potentiadg; taken randomly to be 0 J)

In this paper we present a comprehensive Monte Carl®’ 7 (—J).
study of the vortex glass transition in the gauge glass model The Hamiltonian(1) obviously possesses a1) symme-
and the chiral g|ass transition in they Spin g|aSS in three try, i.e., the model is invariant under the transformation
dimensions. We consider both the situation where screeningi— ¢i+C Vi, whereC is a constant. For the gauge glass
between the vortices is neglectédhich is the case in most this is the only symmetry. However, for th€Y spin glass
of the earlier work and also where there is strong screeningthére is an additional “reflection” symmetryh— — ¢; Vi.
of the vortices. We find that both with and without screening, It is convenient to rewrite the Hamiltonian in such a way
the chiral glass and gauge glass have very similar behaviothat the chiral(vortex) variables, which are our main con-
Without screening they have a finite-temperature transitiorgern, appear explicitly. This transformation involves replac-
with numerically very similar values for exponents, suggesting the cosine in Eq(l) with the periodic Gaussian Villain
ing that they may lie in the same universality class. For botHfunction, separating spin-wave and vortex variables, and then
models, we find that screening destroys the finite-performing fairly standard manipulatiois®*to obtain
temperature transition.

Our paper is organized as follows: In Sec. Il we define the 1 o
models under consideration. In Sec. Ill we discuss the quan- Hy=— 52 G(i—j)[n—b;]-[n;—b;]. 2
tities that we calculate and explain the finite size scaling "
techniques used in the analysis. In Sec. IV we present oy
results for the gauge glass model without screening, anﬁ
briefly review results for the gauge glass with screening th
we found earlier in Ref. {referred to as WY(Wengel-
Young]. In Sec. V we present results for teY spin glass .
with and without screening. We summarize our results and Gi—j)= (2”)22 1-exdik-(ri—rj)]
draw our conclusions in Sec. VI. L3 &b 239_[1-cogk,)]’

ere, the vortex variableg; €{0,=1,=2, ...} sit on the
nks of thedual lattice (which is also a simple cubic lattice
aﬁere), G(i—j) is the lattice Green’s function

()
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(with d=3), and theb; are quenched fluxes given by (&2 by Eq. (3), and the distribution of the fluxeshifted? into

times the directed sum of the quenched vector poteAtial the interval from O to 1is given by Eq.(4).

on the original lattice surrounding the link on the dual lattice  (2) The gauge glass with strong screening. The Hamil-

on whichb; lies. Due to periodic boundary conditions, we tonian is given by Eq(7) in which the distribution of the

have the global constrainib;=2;n;=0. There are also the (shifted fluxes is given by Eq(4).

local constraints[V-n];=[V-b];=0, where the latter just (3) The chiral glassi.e., vortex degrees of freedom in the

follows trivially from the definition ofb; as a lattice curl. XY spin glasgin the absence of screening. The Hamiltonian
Since the Hamiltonian only depends on-Db; it is con-  is given by Eq.(2) where theG(i—j) are given by Eq(3),

venient to discuss the distribution of the quenched fluxesand the distribution of théshifted fluxes is given by Eq(5).

when all the weight is shifted into the inter%bsbf’<1 (4) The chiral glass with strong screening. The Hamil-
(where « is a Cartesian componentFor the gauge glass tonian is given by Eq(7) in which the distribution of the
model, the distribution of the shiftelo* is uniform, i.e., (shifted fluxes is given by Eq(5).

P(b%)=1 (0<b®<1) Ill. DATA ANALYSIS
=0 (otherwise, 4 We simulate the Hamiltonians in Eq$2) and (7) on
while for the +J spin glass the shifted® have a bimodal simple cubic lattices wittN=L3 sites where 4&L<12. Pe-
distribution with equal weight at (corresponding to an un- riodic boundary conditions are imposed. We start with con-
frustrated square on the original latfi@nd 1/2(correspond- figurations with alln;=0, which clearly satisfies the con-
ing to a frustrated square straints, and a Monte Carlo move consists of trying to create
N N N a loop of four vortices around a square. This trial state is
P(b%)=3[8(b*)+8(b*—3)]. (5 accepted with probability L1+ exp(BAE)], whereAE is the
Recent work on the gauge glass model and orXiifespin change of energy and=1/T. Each tin_1e a Ioop_ is formed it
glass have investigated the role of screening of the vortexdenerates a voltageQ=+1 perpendicular to its plane, the
vortex interactions, which is a relevant perturbation near théign depending on the orientation of the loop. This leads to a
critical temperaturé® It was found by WY and in Ref. 6, net voltagé
that the vortex glass phase vanishes when strong screening is h 1
included in thed=3 gauge glass model, and subsequent V() ==—IY(t) with 1Y(t)= ——AQ(1), (8)
work by Kawamura and Ef found the same effect for the 2e LAt
chiral glass transition. We therefore also discuss the effectynere |V is the vortex current antl denotes Monte Carlo
of screening here. _ o “time” incremented byAt for each attempted Monte Carlo
In the vortex representatlon,. the qulltqnlqn is still rep-move. We will work in units wheré/(2e)=1, and we set
resented by Eq(2) but now the interactios(i —j) has the  A¢—1/(3N) so that an attempt is made to create or destroy
screened form one vortex loop per square in each direction, on average, per

2 _ (e unit time.
G(i—j)= (ZLZ’) 1exdik-(ri—r))] , (6 The linear resistivity can be calculated from the voltage
k#0 _ i i
230 [1-cogky)]+N;2 fluctuations via the Kubo formufa
. . . 1 =
where)  is a bare screening length. Note that in the long- p"”:ﬁt;w AL(V(1)V(0)). )

wavelength limit, the denominator is jukst+ X\, 2.

In the simulations presented here, we consider just tw
cases{i) A=«, where there is no screening and the interac
tions between the vortices are long range, &ing\—0,
where there is strong screening. In the latter c&Xe
#0)=(2m\g)? with corrections which are exponentially pin(T,L)=L~" @ 8+25 (T -T))), (10)
small, i.e., of order exp{r/\y). BecauseX;(n;—b;)=0 we ) ] ]
can always add a constant®r) for all r without affecting ~Where¢ is the correlation length exponent, i.e.,
the results. We therefore ade(27\)?, as a result of which e (T=To) " (11)
the only interaction is on site, and then divide the interaction ¢

by (2m\)? to have a well-defined limit fono—0. The s the dynamical exponent, afdis a scaling function. At
resulting Hamiltonian then has the very simple form the critical temperaturgy becomes a constant and therefore

1 pin(Te,L)~L~ (27972 |f we plot the ratio ofpy;, for differ-
HVZEEi (Ni—b))?  (\o—0). (7)  ent system sizes agairi§f then

c?—|ere,(- -} denotes the combined thermal and disorder av-
‘erage. Near a second-order phase transition the linear resis-
tivity obeys the scaling lafv

NoteZ® however, thaty is not trivial because the local con- In[ piin(L) piin(L")]
straint[V-n];=0 effectively generates interactions between In[L/L'] =d-2-z at T, (12)
then;.
To summarize, we study four models in this paper: i.e., all curves for different paird (L") should intersect and
(1) The gauge glass in the absence of screening. Thene can read off the values ®f andz. We will refer to this
Hamiltonian is given by Eq(2) where theG(i—j) are given  kind of data plot as the “intersection method.” With the




5920 CARSTEN WENGEL AND A. PETER YOUNG 56

values ofT. andz determined by the intersection method we o
can then use a scaling plot according to Bd)) to obtain the
value ofv.

In the case of strong screening we find a zero-temperature
transition and a plot according to E¢LO) to determinev
does not work, since=« because there is activated dy-
namical scaling at th& =0 transition. However, one can still
obtain static exponents by measuring the voltage generated
by a finite external current, i.e., ByV characteristics. In real
superconductors, transport currents generate a nonuniform

magnetic field because of Amges law, VxB=J. It is in-

convenient to simulate a nonuniform system, so instead we

effectively assume that the current is the same everywhere so

eachvortex feels a Lorentz force, X J. The scaling behavior

of the response to such a perturbation should be the same asFIG. 1. Plot of Ifp;,(L)/pjn(L")1/IN[L/L'] versusT for the

that derived earlier for response to an actual transpor@@uge glass witto—o. The curves intersect at.=0.93+0.05.

current> We can therefore use this approach to determiné\t the_intersection point, thg value is approximately- 2.2, corre-

critical exponents, which is our objective. The Lorentz forceSPonding tozge~3.2.

biases the moves and sets up a net flow of vortices perpen- " "

dicular to the current, whose time average gives the voltage TH 7 pjn=Aexp(—C/T" /7). (19

according t8 Eq. (8). _ We are able to obtain a rough estimate fofrom our data of
To _analyze our data we need to understand the scalmgwe linear resistivity.

behavior of thd -V curves near a second-order phase transi-

tion. The scaling theory givés

£.T _ (de_l) (13
T2 9T ) E _N( J L””T). 0

In[ p]in(L)/Iolin(L,)]/ln[L/L,]

L s B

In a finite system, thé-V characteristics will also depend
on the ratioL/¢. One can generalize the scaling function, Eq.
(17), to account for finite-size effects as follows:

: I . JPnn_g Tit2
whereE is the electric field,] the current densityr a relax-
ation time, andj is a scaling function. At a zero-temperature Now we are left with a rather complicated scaling function
transition one has since it depends on two variables. To simplify the analysis
we first estimatev by determining the current where
E~T7, (14 E/(Jpsn)=2, at which point nonlinear effects start to be-
come significant. Denoting these valuesJoby Jy, , then,

s0, in three dimensions, E¢L3) becomes from Eq, (20). it follows that

J
T1+ 2v |’

(15) N
Tl+21/

E
Tl+v_7_:g

3 =g(LT), 21)

From this equation we can see that the current sdaje, at ~ ) )
which nonlinear behavior sets in varies withi as Whereg is another function. Hence we determineby re-

In~T 2", Since the linear resistivity is defined by quiring that thg scaling in Eq21) is satisfied. We t.hen col-
lect data for sizes and temperatures such HHATT is con-
stant. The scaling function in ER0) then only depends on

p“n:limj, (16) one variable, and so data foE/Jp;, for different sizes
-0 should scale when plotted againBfT**2”, with the same
value of v as obtained from the scaling df, . We find, in

andg(0) can be taken to be unity, we can write
9(0) y fact, that the results are only weakly dependent on the second

E 3 argument of Eq(20).
= 9( —y) : 17
Jpin T\ T2 IV. RESULTS FOR THE GAUGE GLASS
Furthermore, we expect that near the-0 transition, long- In this section we consider the critical behavior of the
time dynamics will be governed by activation over barriers.gauge glass model with and without screening. Recall that
Hence we expect the distribution of thgshifted fluxes is given by Eq(4).
1 .
T1+VP|in:; =Aexd —AE(T)/T], (18 A. No screening,Ag—®

For the gauge glass with no screening we have measured
whereAE is the typical barrier that a vortex has to cross tothe linear resistivityp;;, as a function of temperature. In Fig.
move a distanc&. One can define a barrier height exponentl we show data opj;, plotted according to the intersection
W by AE~&EY~T 7 in terms of which method vsT for sizesL =4,6,8. We were not able to include
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FIG. 2. Scaling plot of the lineage resistivity for the gauge glass  FIG. 3. Plot of Iip;,(L)/p;in(L")]/IN[L/L"] versusT for the =J
with Ng—o. Using T,=0.93 andzgc=3 from Fig. 1 we obtain XY spin glass and ,— . The curves intersect at,=0.94+0.05.
vee=1.3+0.3. At the intersection point, thg value is approximately- 2.2, corre-
sponding tozqg=3.2.
data fromL =10 into this plot since we could not equilibrate
the systems down to the lowest temperaturés-0.8,0.9).  sizes also reveale@l,=0 and vge=1.05+0.1. Finally, the
All curves intersect at aboul=0.93+0.05 indicating @ payrier exponent, as defined in Eq19), was determined to
phase transition to a vortex glass. The correspongliagis  pe close to zero, so the conclusion was drawn that energy
value at the intersection point is—1z~—2.2, therefore parriers diverge only weakly, possibly logarithmically, as
Zg~3.2. Having established these values, we tried a scalingne approaches the zero-temperature transition.
plot according to Eq(10) and the result is shown in Fig. 2.
Best scaling was achieved witfi.=0.93, z;c=3, and
vge=1.3£0.3. Only far away from the transition point does V. RESULTS FOR THE +J XY SPIN GLASS
one observe deviations from scaling, which is expected for
such small sizes and high temperatures, but the overall scal- Recall that the only difference between the] XY spin
ing works quite well. glass and the gauge glass discussed in the last section is that
It is interesting to compare this result with earlier Monte the distribution of shifted fluxes is given by E¢p) rather
Carlo simulations of the gauge glass without screening in théhan by Eq.(4).
phase representation by Regafral? These authors did a
finite-size scaling analysis of static quantities which indi-
cated a finite-temperature transition, but they could not com-
pletely rule out the possibility that the lower critical dimen-  As already discussed in the Introduction, théd XY spin
sion isd,=3. The clear intersection of the data in Fig. 1, glass is known to have no finite-temperature transition to an
however, strongly confirms the notion that there is a finite-ordered state below four dimensiotfisFor the d=3,%J
temperature transition in the three-dimensional gauge glassodel one can, however, identify a chiral glass transition in
model, and hencd,<3. Additionally, our correlation length Monte Carlo simulations due to freezing out of the discrete
exponentrgg agrees well with the estimate given by Regerdegrees of freedom, as has been done by Kawaetsh'*
et al,* vgg=1.3+0.4. There is, however, a considerable dif- The associated chiral glass exponents estimated in the phase
ference between our estimate of the dynamic critical exporepresentation with periodic boundary conditithsare
nentz~3.1 and theirsz=4.7+0.7. It is possible, though, vcs=1.5+0.3 andncg=—0.4*=0.2. Subsequent work with
that thedynamicaluniversality classes of the models in the free  boundary conditiod® finds similar values,
phase and vortex representations may be different, even.g=1.3+=0.2 andncg=—0.2=0.2.
though the static behavior is the same. If so, there is no Figure 3 displays a plot of our data fpf,, according to
contradiction in the results. the intersection method v§ for the XY spin glass. One
observes, very similarly to Fig. 1, an intersection point at
T=0.93+0.05 and a dynamic critical exponentg~3.2.
Also, the scaling plot opy;, in Fig. 4 shows best results with
In this paragraph we review quickly the results for thealmost the same values as in the long-range gauge glass case,
gauge glass model with strong screening found earlier byjpamelyT.=0.93, z;=3.1, andvcg=1.3+0.3. This result
WY, in order to compare them in the next section with ourindicates a finite-temperature transition into a chiral glass
data for thed=3 XY spin glass model with screening. As state for thed=3 XY spin glass and thereby confirms Monte
shown by WY the vortex glass transition in the gauge glas<arlo results performed in the phase representdfiarery
is destroyed by screening of the vortex interactions. Thesurprisingly, we find that our data for the linear resistivity is
main indication for the lack of a transition at finifewas the  virtually indistinguishable from the corresponding measure-
absence of an intersection if the resistivity was plotted acments of the gauge glass model. We observe a maximum
cording to the intersection method. A scaling plot of thedeviations of 1.6. We will come back to this in the last
current-voltage characteristics for different temperatures andection.

A. No screening,\ g—®

B. Strong screening,Ag—0
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FIG. 4. Scaling plot of the linear resistivity for thed XY spin FIG. 6. Scaling plot of thé-V characteristics witil .=0 and
glass with\y—. Using T,=0.94 andzc;=3.1 from Fig. 3 we  v»-c=1.05+0.1, according to Eq20), choosing sizes and tempera-
obtainveg=1.3+0.3. tures such that /ceT is roughly constant.
B. Strong screening,Ao—0 that the transition is very likely to occur at,=0, but we

In Fig. 5 we show the linear resistivity plotted according c&nnot completely rule out a finite, though extremely small
to the intersection method V& One can see that there is no Tc-
apparent intersection over the entire temperature range that We also determined the barrier exponentby plotting
we have been able to simulate, i.e., downTte 0.07 for 1 Pin Over 1T as was done in Fig. 6 of WY for the gauge
L<8 andT=0.1 forL=<12. At high temperatures all curves 9lass. The data for =12 follow almost a straight line indi-
merge, since the correlation length becomes shorter than t@ting Arrhenius behavior and therefoge=0. As in the
system size and the data pf, for different sizes are the 9gauge glass case one has to be careful though, since such an
same. This rules out a transition down to 1/5 of the critical€Stimate does not allow for finite-size corrections and is only
temperature of the system without disord&g=0.331 (see o_bserved over a small range of temperatures. It is also pos-
WY), and therefore strongly suggests the absence of a chirgible that we only measure an effective exponent and the true
glass transition at finite temperature, in agreement with work/@lue of > changes as one gets closerTte:0. In any case,
by Kawamura and L1® =0 would suggest that barriers increase only very slowly,
Next we studied the current-voltage characteristics of ouP0ssibly logarithmically, as one approaches the zero-
model in order to determine. Figure 6 shows a scaling plot temperature chiral glass transition. _
of differentl-V curves according to Eq20). From the scal- Again it is interesting to compare these results with those
ing of the nonlinear currenly, we estimatedvcg=1, and obtained by WY fqr th.e gauge glass with screening: they
then chose sizes and temperatures for the data in Fig. 6 su@gree perfectly with in the errors, namefj.=0, vge
that LY”ceT = const, and hence the second argument in Eq=1.05, and=0, as described in Sec. IV B. Not only do the
(20) remained roughly constant. The data are seen to scafthal estimates of the exponents for the gauge glass‘ad
very well with T.=0 and roc=1.05+0.1. We also at- XY Spin glass agree but also, as in the case without screen-
tempted scaling our data with an appropriate scaling functiofd. the individual numerical values pfi, and data from the
for finite T, and found that scaling works only moderately |-V characteristics all agree within the error bars, the maxi-
well with T,=0.04 andvg=1.05. We, therefore, conclude Mum discrepancy being o5

L A B VI. SUMMARY AND DISCUSSION

§ 0 5 ] In this article we have presented a Monte Carlo study of
= r ] the gauge glass model and the chiral glass transition in the
= -1 7 XY spin glass model with and without screening, in the vor-
=) C ;i?g ’ tex representation. We have computed dynamic quantities
& 2of °6/8 3 such as the linear resistivity and current-voltage characteris-
= fg/ le ] tics and used finite-size scaling techniques to extract the
3 s12 > .
RS B critical behawor of these models. _
= r ] Our main results are the following:
= E | | | . (1) In the absence of screening there is a finite-

ol 015 02 025 05 temperature transition in .both'cases with numerically indis-

T tinguishable exponents given in Table I.

(2) In the presence of strong screening, there is a transi-
FIG. 5. Plot of Iip;,(L)/pin(L') J/IN[L/L’] vs T for theXY spin  tion at zero temperature in both cases. The correlation length
glass model withy— 0. In contrast to Fig. 3 there is no intersec- €xponent is the same for the two models, as shown in Table
tion over the entire temperature range, indicating the absence of la
phase transition into a chiral glass. (3) Not only do the gauge glass transition and the chiral
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TABLE I. Critical temperatures and exponents of the presumedvyhere thee; are quenched variables taking values 0 or 1, and
common universality class of the gauge glass and the chiral glass ihe S, are statistical Ising-like variables which take values
d=3. v is the correlation length exponerz,is the dynamical ex-  + 1. For the gauge glass one cannot make an analogous
ponent, andy is thg parrier exponent for thE=0 transition in the transformation and Eq2) corresponds to an Ising model
strong screening limit. a random field which is not expected to be in the same
universality class as Ed22). We do not, therefore, under-

Screening T, v z ¥ -

stand why the numerical values of the exponents are the
Np— 0.94+ 0.05 13+ 03 ~ 3.1 n/a same within the uncertainties. Even more surprising is that
No—0 0 1.05+ 0.1 © =0 the individualI-V values for the two models are virtually

indistinguishable. We would expect there to be a more
o ) ) clearly visible difference in these properties. Perhaps for
transition in theXY spin glass model appear numerically to gome reason, the random-field aspect of the gauge glass is

be in the same universality class, but even the individual datg,e|evant. or perhaps the critical behaviors of the two mod-
points for the current-voltage characteristics are virtually in'els just hé\ppen by coincidence to be very close. It would be

distinguishable. interesting to check our results by studying both models by

Earlier Work_ which pro""?'?d GeV|dence for a finite- alternative techniques such as domain-wall renormalization-
temperature chiral glass transitfi® used the phase repre-
group methods.

sentation and constructed the chiralitiesrtices indirectly The correlation length exponent for the unscreened mod-

from the spin configurations. This is only sensible at moder- Is is al imil hat of the Isi in oBssith
ate to low temperatures where correlations in the angles dt'> 'S 2/S0 very similar to that of the Ising spin glassit

nearest-neighbor spins become significant. Our work demoriort-range interactions. Again, it is not obvious to us why

strates the existence of a chiral glass transition using thES should be the case. While the model in Ep) has Ising

vortex representation. In our model vortices are well definey@riables, and the ingredients of randomness and frustration

at all temperatures and so we expect that the region ovepecessary for a spin glass, it also has long-range interactions,

which scaling behavior is obtained will be larger than in theunlike the Ising spin glass.

earlier work in the phase representation. We therefore feel Finally, it is noteworthy, that earlier results for the gauge

that our results make the existence of the chiral glass trans@las$ indicated that the universality class changesid

tion more convincing. henceT; becomes zendor any noninfinite value of the bare
There is also support in two dimensions for the idea thascreening length. By contrast, Kawamura andf lhave ar-

the chiral glass and gauge glass transitions are in the samggied that the transition in the chiral glass persists down to a

universality class since in both cases one fiRds>®!® finite value of\,. It would, therefore, also be interesting to

T.=0 andv~2. study these models with an intermediate range of screening
However, it is unclear to us theoretically why the gaugejn the vortex representation.

glass and the chiral glass transition in thd XY spin glass
should be in the same universality class. For tH& spin
glass, the important low-energy states are those where
n*—b¥=0 on links whereb;*=0 (corresponding to an un-
frus.trated squarae on the original latticend nia__ *?i“: +1/2 We wish to thank Hemant Bokil, Muriel Ney-Nifle, and
on links whereby’=1/2. Thus, as noted by yllla|ﬁpne has  christian Pich for useful discussions. This work has been
a ran(_jom Ising model with long-range antiferromagnetic m'supported by NSF Grant No. DMR 94-11964. The work of
teractions, C.W. has also been supported in part by the German Aca-
demic Exchange ServicéDoktorandenstipendium HSP 1/
H=— EE G(i—j)e eSS (22) AUFE). We would like to thank the Maui High Performance
497 t ’ Computing Center for an allocation of computer time.
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