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Variational study of vacancies in solid 4He with shadow wave functions
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We employ the shadow wave function~SWF! formalism to obtain estimates of the energy of formation of a
vacancy in hcp, fcc, and bcc4He crystal atT50 K. We find that this energy is a strong function of density, in
agreement with experiment. The use of a more efficient sampling with a smart Monte Carlo technique, allowed
us to observe the motion of the vacancy through the crystal. We also present data on the occupation of the
Wigner-Seitz cells. The occupation of the cells changes along the run, showing the mobility of the particles and
of the vacancy. As a byproduct of this study we present results for the energy of perfect hcp and bcc crystals
described by a SWF.@S0163-1829~97!09134-0#
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I. INTRODUCTION

A quantum crystal, such as solid4He, differs from a nor-
mal solid in that the atoms execute very large amplitu
vibrations about their lattice sites. As a consequence the
netic energy of the crystal is comparable to the poten
energy. In a normal crystal, at low temperature, the kine
energy is typically only a few percent of the potential ener
The properties of impurities and vacancies in a quant
crystal are also strikingly different. The large amplitude m
tion leads to a different picture of these entities, both beco
delocalized and can travel through the crystal.1 The experi-
ments to measure the energy of formation are unfortuna
in conflict with one another. This data has recently be
carefully reviewed by Burns and Goodkind.2 An earlier re-
view was given by Fraas, Granfurs, and Simmons.3 The main
focus of this paper is a calculation of the energy of format
of a vacancy in solid helium four. We have chosen to co
pare our results with those obtained by x-ray measureme3

of the change in lattice parameter with temperature. The
ues obtained in this way for the formation energy are gen
ally lower than those found in other experiments. Wh
these experiments are not unambiguous in th
interpretation2 they appear to be less so than others wh
also show the presence of thermally activated defects.

There have been several theoretical studies of vacan
in solid helium. It is possible to account for the main featu
of delocalization using semiphenomenological models.4 A
recent paper5 provides a description of the motion of vaca
cies based on a lattice-gas model. The static properties
vacancy in a quantum crystal can be described using
560163-1829/97/56~10!/5909~9!/$10.00
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Lekner-Feynman approach.6 This calculation shows how im
portant it is to include the delocalization effects if one is
reproduce the correct density dependence of the forma
energy. Recent work by Stillinger and Hodgdon7 obtained an
estimate of the vacancy concentration at absolute zero.
subject, which has received considerable theoret
attention,1,8–10 is however outside the scope of this wor
The estimate was based on a Jastrow model wave func
which provides a ‘‘classical’’ description of solid helium. I
particular, near melting the zero-point motion described
this wave function has the Lindeman value, which is mu
smaller than that found in solid helium. The theoretical wo
which is closest to our own was carried out b
Hetherington.11 Using the well-known Nosanow-Jastro
wave function he estimated both the formation energy o
static vacancy and the band structure of a delocalized
cancy in solid3He. This work was limited by the structur
of the wave function that was used. A Nosanow-Jastr
function will always tend to produce a very localized pictu
of a vacancy. This is because the atoms in the solid
placed in Gaussian orbitals on predetermined lattice s
with only a small overlap of the orbitals. We believe that it
essential to use a wave function to describe the solid
which the atoms are free to relax in the neighborhood of
vacancy and in which delocalization can occur.

The energy of formation of a single vacancy in a syst
of N particles andNl lattice sites with a densityr5N/V can
be defined as

DEvac5E~V8, N21, Nl5N!2
N21

N
E~V,N,Nl5N!,

~1!
5909 © 1997 The American Physical Society
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whereV85V@(N21)/N#. The formation energyDEvac can
be represented as a sum of terms due to the energy of a
vacancy, to the lattice distortion around the defect and to
tunneling of atoms in the crystal.4,11 There is no reason to
expect that any of these contributions is small in a hig
quantum crystal such as low-density solid4He. This obser-
vation places stringent requirements on any microsco
theory of vacancies in4He. The shadow wave function12,13

~SWF! formalism has, we believe, the necessary flexibility
describe this system. The main feature of a SWF is tha
allows for a spontaneous symmetry breaking when the d
sity is above the melting point of the solid.14 As a conse-
quence there is no need to impose ana priori crystal struc-
ture on the system, particles can exchange positions, and
lattice structure can relax around the defect. Thus the SW
a suitable trial wave function for variational Monte Car
~VMC! calculations to study the energy of formation, po
sible modifications in the local structure, and the delocali
tion of vacancies. If we used a Nosanow-Jastrow wave fu
tion, which localizes the particles in Gaussian orbit
centered on predetermined lattice sites, then the neces
flexibility in the wave function is no longer present. A va
cancy, modeled using this wave function, is basically
model of a static vacancy. We will compare the results of
simulations with those based on the Nosanow-Jastrow fu
tion.

Our variational calculation is likely to converge rath
slowly due to slow structural relaxation processes. Moreo
the energy of a vacancy must be evaluated as a differe
between two large numbers. Thus such calculations are
demanding, and require improved sampling methods in c
junction with the use of large parallel machines. In this pa
we present in Sec. II a review of the SWF method, in Sec
a description of the technical procedures used in the sim
tion, in Sec. IV the results of simulations performed w
108/107 and 256/255 particles in a face-centered-cubic
tice, and 180/179 particles in an hexagonal-close-packed
tice. An estimate of the vacancy formation energy in t
body-centered-cubic lattice is also presented. Section V
devoted to conclusions.

II. SHADOW WAVE FUNCTIONS

The shadow wave function12,13 for a system ofN 4He
atoms can be written in the form

C~R!5E dSK~R,S!cs~S!, ~2!

where R5r1 ...rN are the coordinates of the atoms andS
5s1 ...sN is a set of auxiliary~‘‘shadow’’! variables. The
function cS(S) is a many-body function for the shadow
while K(R,S) is the product of a many-body function for th
atomscR(R) and of a termu(R,S), which correlates rea
and shadow degrees of freedom:

K~R,S!5cR~R!u~R,S!. ~3!

The integration over the shadow variables in Eq.~2! intro-
duces inC(R), in an implicit way, correlations between th
tic
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helium atoms at every order. In the VMC method one co
putes the average value of the Hamiltonian operatorĤ with
the trial wave functionC

ET5
^CuĤC&

^CuC&
, Ĥ52

\2

2m4
(
i 51

N

¹ i
21(

i , j
v~r i j !, ~4!

and minimizesET with respect to the parameters entering t
wave function. The inter-atomic potentialv(r ) for 4He can
be accurately represented by the Aziz potential.15 As we
have already mentioned an important feature of the SWF
that it provides a stable crystalline phase without impos
one-body localizing factors at assumed equilibrium po
tions; localization arises as the result of the implicitly intr
duced many-body correlations. The functionsca , a5R,S
andu(R,S) have the following forms:

cR~R!5expS 2
1

2 (
i , j

upp~r i j ! D ,

cS~S!5expS 2(
i , j

uss~si j ! D ,

u~R,S!5expS 2(
i 51

N

ups~ ur i2si u!D . ~5!

We parametrize the correlation pseudopotentialsuab as in
Ref. 16:

urr ~r !5S b

r D 5

,

uss~r !5dv~ar !,

ups~r !5Cr2, ~6!

whereb,d,a,C are variational parameters andv is the inter-
atomic Aziz potential. These functional forms provide go
results for the equation of state over a wide range
densities.16 They give the same equilibrium density as fou
in Green’s function Monte Carlo~GFMC! calculations,r
50.021 86 Å23, an energy 10% off the experimental valu
The melting and freezing densities reproduce the value
GFMC calculations.17 ~r f50.026 23 Å23 and rm
50.029 40 Å23, respectively!, and above the melting den
sity, a stable solid phase is found. In Table I we report
optimal values for the variational parameters at the four v
ues of density of the solid we considered. For three of th
densities we can make accurate comparisons with the e

TABLE I. Optimal values of variational parameters appearing
the SWF at the densities considered in this work. For the defini
of the parameters see text. In the table are reported also the v
of the sides of the fcc elementary cubic cell, anda52.556 Å.

r (Å) 23 b/s Cs2 d (K21) a a/s

0.02898 1.080 5.7 0.11 0.870 2.021
0.02919 1.080 5.7 0.11 0.870 2.017
0.02940 1.080 5.7 0.11 0.875 2.012
0.03294 1.095 5.9 0.10 0.890 1.937
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ing experimental data. However we note that the two low
densities are below the melting density of our crystals,
determined by a double tangent construction. Both of th
densities are however above the experimental melting d
sity. We know from previous simulations that at these d
sities the solid is stable over very long runs. For this rea
we think it reasonable to carry out vacancy calculations e
though we are below the thermodynamic melting point
our crystal.

III. SIMULATION METHODS AND SAMPLING

In writing Eq. ~1! we have assumed that we have a wa
function which can describe a crystal with one vacancy. I
wave function with localization factors this can be eas
achieved, because the remainingN21 particles are localized
in the neighborhood of lattice sites. It is less obvious tha
SWF can provide such a description. The fact that locali
tion of the particles derives from high-order correlatio
does not guarantee that when we start the system fro
configuration corresponding to a solid in which one parti
has been taken out, the system will not evolve toward so
disordered state. IfN is very large, this may be a real dange
but the use of a relatively small system,~a few hundred
particles! with periodic boundary conditions should favor th
stability of a defective crystal which fits the simulation ce
We have monitored the stability of our crystal in two way
First by very careful measurements of the occupancy of
Wigner-Seitz cells. Second by computing the structure fu
tion at a reciprocal-lattice vector. Both methods show v
convincingly that our crystal with one vacancy is stable o
long Monte Carlo runs. Thus our shadow wave function
only describes a perfect crystal but can also describe a cr
with point defects. It is worth pointing out that the conce
tration of vacancies in our simulations is large; up to 1%

The simulation of a quantum crystal with a vacancy do
not present, in principle, any additional difficulty in compa
son with simulating a perfect lattice. Nevertheless one ha
face two important problems. First of all, the estimate of
energy of the vacancy can be obtained only as the differe
of the total energy in two different simulations@see Eq.~1!#,
one with N and one withN21 particles, whereN is the
number of particles needed to fit the lattice in the simulat
box. This difference is of relative order 1/N, and therefore
increasing the number of particles, one needs to increase
accuracy in the energy estimation, and, consequently,
computer time needed for the calculations. On the ot
hand, the number of particles cannot be made too small.
small system there can be finite-size effects due both to
incorrect treatment of the tail of the potential energy and
the possible interaction of the vacancy with its periodic i
ages. Due to the periodic boundary conditions the vacanc
our simulation cell is a member of a periodic array of vaca
cies. It is therefore especially important to minimize any
fects from this periodic array by simulating large enou
systems.

The second problem arises from the slow convergenc
the computation due to fairly rare events corresponding
atoms leaving their original lattice site to occupy a vac
site. In order to improve the convergence we can use a
ferent way to generate the random walk in configurat
st
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space. The average value of a local operatorÔ(R) with the
SWF is evaluated by computing an integral of the form:

E E E dRdSdS8p~R,S,S8!Ô~R!, ~7!

where

p~R,S,S8!5cR
2~R!K~R,S!K~R,S8!cS~S!cS~S8!/N,

~8!

and N is a normalization such that*dRuC(R)u251. The
function p(R,S,S8) is the probability distribution for all the
real and shadow degrees of freedom entering the calcula
In all previous work with the SWF this probability wa
sampled by means of a Metropolis algorithm, moving p
ticles and the two sets of shadows sequentially. Howe
looking at the structure of the probability distributionp one
can see that due to the form of the kernelK, the system can
be viewed13 as being composed of ‘‘trimers,’’ each forme
by a particle and by two shadows. The harmonic force c
necting particles and shadows makes it very difficult to bre
the trimer, and if one moves the three components se
rately, the possibility of leaving the original lattice site
small. In order to increase the efficiency of the sampling
have used collective moves of the trimers. This is howe
only effective if we increase efficiency of the moves by i
troducing a pseudoforce, in the way that is often used
classical simulations.18 We give details of this ‘‘smart Monte
Carlo’’ in the Appendix.

For a given density,r5N/V, simulations were performed
in pairs, one withN particles at volumeV and one withN
21 particles at volumeV85V@(N21)/N#. The density of
the two systems is thus the same. For the fcc crystal we u
33333 elementary cubic cells accommodatingN5108
particles. With this system we performed four pairs of sim
lations at four different values of the average densityr ~see
Table II!. In order to check size dependence we performe
pair of simulations at a densityr50.0294 Å23 with N
5256 particles, corresponding to 43434 elementary cells
of the fcc lattice. For the hcp lattice, the equilibrium pha
for solid 4He for at low temperatures, we performed fo
pairs of simulations, at the same densities of the fcc crys
with N5180 particles, corresponding to 53333 elementary
cells, in an hcp lattice. The length of each run was 106 Monte
Carlo steps~MCS!, where a MCS is defined as a comple
sweep of trial moves over all the trimers in the system.
nally, we estimated the vacancy formation ener

TABLE II. Estimated energy per particle and formation ener
of a vacancy in fcc, hcp, and bcc4He atT50 K.

r (Å 23) N Lattice e(N21) ~K! e(N) ~K! DEvac ~K!

0.02898 108 fcc 24.931(16) 25.089(16) 16.361.5
0.02898 180 hcp 25.082(15) 25.147(15) 11.662.0
0.02919 108 fcc 24.924(16) 25.102(15) 19.062.0
0.02919 180 hcp 25.027(15) 25.105(15) 13.962.0
0.02940 54 bcc 24.640(30) 25.026(30) 20.862.5
0.02940 108 fcc 24.900(15) 25.079(15) 19.161.5
0.02940 180 hcp 25.025(15) 25.107(15) 14.762.0
0.03294 108 fcc 23.276(16) 23.630(16) 37.961.6
0.03294 180 hcp 23.443(15) 23.633(15) 34.062.0
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in the bcc phase at densityr50.0294 Å23, with a pair of
runs of 23106 MCS, with N554, corresponding to 333
33 elementary cubic cells. For this lattice structure we
not carry out a search for the best set of parameters, co
sponding to the lowest energy. We merely fixed three of
parametersb, d, a, at the values found for the fcc and hc
crystals. The Gaussian coupling constantC was, however,
decreased from 5.7s22 to 5.0s22. Unless this is done the
bcc crystal is unstable at the lowest densities. Our aim in
bcc crystal was to establish that it is stable in our simulati
both with and without a vacancy. Since the system size,
particles, is small and the wave function has not been o
mized it is rather likely that the formation energy we rep
can be improved. In order to keep the centers of vibration
the atoms fixed we use a frame of reference with the origi
the center of mass of the system which is recomputed
each configuration generated in the random walk.

IV. RESULTS

For the three highest densities, the energies of the hcp
fcc crystals are very close, within the statistical noise of o
simulations. Only at the lowest density,r50.028 98 Å23,
the hcp result is significatively below the fcc. The bcc so
is less bound than either the fcc and the hcp, as migh
expected. From our simulations we extracted information
the formation energy of the vacancy as function of the d
sity, the crystal structure and the number of particles in
simulation box. In Table II we report the values of the e
ergy per particle as a function of the density for the differe
lattices for a perfect crystal and for a crystal with a vacan
together with the estimateDEvac of the formation energy.
Expressed in terms ofr5N/V5N21/V8, DEvac, Eq. ~1!,
becomes

DEvac5@e~N21,r,Nl5N!2e~N,r,Nl5N!#~N21!,
~9!

wheree is the energy per particle. It should be noted that
thermodynamic limit ofDEvac in Eq. ~9! corresponds to the
vacancy formation energy in the limit of zero vacancy co
centration. For this reason it is important to study the beh
ior of DEvac as function ofN. We performed runs withN
5256 atoms at densityr50.029 40 Å23, with the results
e(256)525.04360.015 K and e(255)524.970
60.015 K. This givesDEvac518.6165.3 K, which agrees
within the error bars with the value obtained withN5108.
This enables us to assume that our results are a good r
sentation of the thermodynamic limit. The lattice structu
does have an influence on the value of the vacancy forma
energy. In the hcp phaseDEvac is about 4 K lower than in the
fcc phase. In all cases, the formation energy of the vacanc
strongly dependent on the density, in good qualitative ag
ment with present experiments.3 Our results are summarize
in Fig. 1. From Table II we see thatDEvac for the bcc crystal
is very close to that of the fcc lattice. As we have mention
the vacancy energy in this structure is subject to larger
certainties due to the small system size and unoptimi
wave function. Its value (;21 K) is larger than the experi
mental value3 (;10 K) for bcc 4He. Again we note that the
experimental value is subject to fairly large uncertainties d
to the choice of vacancy model used to interpret the d
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Our formation energies have rather large statistical unc
tainties. These arise because, as we have pointed out, w
doing a ‘‘1/N’’ calculation. We can of course reduce the
statistical uncertainties by performing longer MC runs. Ho
ever the uncertainties we report are of the same magnitud
those in the experimental results. Before carrying out mu
longer MC simulations we need to carefully investigate h
sensitive are our results to system size, type of shadow w
function, and two-body potential.

In Table III we compare the estimated energy for a sta
vacancy at densityr, which is given by

DEvac
st 52

^V&
N

1Pv, ~10!

where^V& is the average value of the potential energy in t
sample,v51/r is the specific volume, andP is the pressure
of the system. The difference betweenDEvac andDEvac

st is a
measure of the contributions due to the lattice relaxation
to the motion of the vacancy through the crystal. The diff
ence between the static energy and the SWF estim
strongly depends on the density. At densityr
50.032 94 Å23 the nonstatic effects appear to be much le
important than close to the melting point. This is due to t
fact, discussed below, that the mobility of the vacancy

FIG. 1. Vacancy formation energyDEvac vs reduced density.
Solid triangles: data from Ref. 3, open squares: variational e
mates for the fcc phase; filled squares: for the hcp phase; o
circle: for the bcc phase. Stars: formation energy of a static vaca
@see Eq.~10! in text#.

TABLE III. Energy of the static vacancyDEvac
st vs VMC result

for the fcc lattice. The difference is due to lattice relaxation a
tunneling.

r (Å 23) DEvac
st ~K! DEvac ~K!

0.02898 38.3 14.361.5
0.02940 38.5 19.161.5
0.03294 46.5 37.961.6
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56 5913VARIATIONAL STUDY OF VACANCIES IN SOLID 4He . . .
quite strongly depressed at the higher density. At the lo
densities, the energy is not only reduced by about 50% w
respect to the static case, but it shows a much stronger
sity dependence. This means that at low density the dyna
effects are as important as the static effects.

We can obtain information both on lattice relaxations a
on the vacancy mobility by analyzing the configurations g
erated in the simulations. The deformation of the lattice c
be studied by looking at the distribution of the particles n
the vacancy. This can be done dividing the sample i
Wigner-Seitz~WS! cells. We have performed this analys
only in the fcc lattice. Each WS cell is centered on the si
of the original lattice, and the boundaries are given by the
planes:

~6x6y!5
a

2
; ~6x6z!5

a

2
; ~6y6z!5

a

2
. ~11!

The coordinates refer to the center of mass of the system
find that the particles in a perfect crystal nearly always
cupy the same cell during the simulation. However, due
the large quantum fluctuations, the atoms occasionally v
the neighboring cells, creating vacant and doubly occup
WS cells. In a long run we find that close to 1% of the W
cells in the perfect crystal are unoccupied with a near
neighbor~NN! cell doubly occupied. We call these fluctu
tions pseudointerstitial-vacancy~PIV! pairs. We computed
the following quantities:

rNN
F ~r !5K 1

NNNNF
(
i ~F !

(̂
j & i

d~ ur2r j1Ri u!L , ~12!

rNN
F ~r !5K 1

NNNNE
(
i ~E!

(̂
j & i

d~ ur2r j1Ri u!L , ~13!

where NE and NF are the number of empty and of sing
occupied WS cells in a given configuration,NNN is the num-
ber of nearest neighbors,Ri are the coordinates of the lattic
site i , andr j are the coordinates of particlej . The sum over
^ j & i is extended over the particles in the cells which a
nearest neighbors to celli . The sum oni (F) is only extended
to all singly occupied cells, while the sum oni (E) is ex-
tended to the empty cells which do not have a doubly oc
pied cell as nearest neighbor. This is done in order to rem
the contributions from PIV pairs, which are present for 1
of the cells for both the systems withN and N21 atoms.
The quantities~12! and ~13! give direct information on the
distortion both in terms of the shifting of the equilibrium
positions and of the density distribution. In Fig. 2 we p
rNN

E and rNN
F computed with 947 equally spaced configur

tions out of 9.473105 at densityr50.029 40 Å23 with 255
particles. As it can be seen the distribution of the nea
neighbors of a vacancy is both broadened and beco
asymmetric when compared to that of a filled site. The f
lowing construction allows one to see this distortion mo
clearly. We note that the right-hand side of the distributi
can be very accurately fitted to a Gaussian. This is show
the dashed curve in the figure. When we plot this comp
Gaussian we immediately see that a large tail emerges, a
the Gaussian, on the side near the vacancy. Clearly the
neighbors have moved in, slightly, towards the vacancy. T
r
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center of this Gaussian has also shifted inward with resp
to the distribution for the perfect crystal.

We can also use our configurations to study the motion
the vacancy, and its influence on the motion of the partic
While we are able to analyze the configurations genera
from our MC simulations to show unambiguously that t
vacancy is mobile we need to caution the reader that
cannot literally interpret the motion in terms of a trajector
We demonstrate the motion by computing various we
defined expectation values, such as the occupancy of the
cells. However since there is no real ‘‘time’’ variable in ou
simulations we cannot immediately think of trajectories
extract a diffusion constant. In Fig. 3 we show the one-bo
density of shadowsrs(r ) with respect to their initial posi-
tions for the system withN5255 particles at average densi
r50.029 40 Å23. The density profile of the particles i
similar to that of the shadows, the latter being more resol
due to the stronger localization of the shadows. The profil
split in two parts: on the left we show the density inside t
sphere of radius equal to half of the nearest-neighbor
tance, on the right the density outside, on a larger scale.
peak in the outer region means that a fraction of the partic
have left their original lattice sites to reach a new equil
rium position. WithN5256 the outer peak is not presen
this shows that no such displacements are present for the
lattice. We should note that this effect is due to the fin
length of the simulation. In the real system, and also in
system described by the SWF, the particles exchange p
tions, and if one could measure the true density pro
around a given site, one should see the particles equally
tributed over all the sites in the lattice. However in the sim
lation of the perfect crystal spontaneous exchange of p
ticles occurs so rarely that we do not observe it. When
vacancy is present the mobility is highly affected, and w
efficient sampling we start to observe such events. The ju

FIG. 2. Nearest-neighbor density around a lattice site. Triang
density around sites in a perfect crystal. Empty squares: den
around empty sites in a crystal with one vacancy. Dashed l
Gaussian fit of the outer part of the density around empty sites.
data for the vacancy are forN5255 particles in an fcc lattice a
densityr50.029 40 Å23.
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of particles between different lattice sites can be obser
also from a direct analysis of the configurations. In Fig. 4
have plotted the projection of 400 equally spaced configu
tions, out of 43105, on thex-y plane. The dark triangles
represent the positions for one specific particle. It can
seen that at least three different sites are occupied by
particle. We observe such motions only in a definite reg
of our simulation box, and from that we can argue that

FIG. 3. One-body density profile for shadows around a latt
site in a crystal with one vacancy. In the left part of the figure
show the density inside a sphere of radius equal to half of the
distance; on the right~on a larger scale! we show the density out
side this sphere. Results are forN5255 particles at r
50.029 40 Å23.

FIG. 4. Projection on thex-y plane of 400 equally spaced con
figurations out of 43105 for N5255 at r50.029 40 Å23. The
triangles represents the positions of one given particle in the
~see text!.
d
e
a-

e
he
n
e

mobile particles are those close to the vacancy. No s
jumps of particles are observed in the perfect crystal dur
our longest MC runs.

In Fig. 5 we show the motion of the vacancy. The gr
cells are Wigner-Seitz cells which were occupied through
a run of 106 sweeps. The black cells are Wigner-Seitz ce
which at some time were empty during the run. To make t
plot we ignored all empty cells which also had a doub
occupied NN cell. That is to say we ignored all PIV pairs.
is clear from this figure that the vacancy moves over la
distances. In a much longer run it would presumably mo
through the entire simulation cell. We can also observe
motion of the vacancy by determining the distribution
empty cells in the simulation box. In Fig. 6 we show a h
togram of the number of times a given WS cell in the sim
lation box is found empty~computed from 974 equally
spaced configurations out of 9.743105!. In the upper graph
we plot the result forN5256, which has to be compare
with the lower graph obtained withN5255 ~note the change
of scale!. We can see that the average number of count
very different in the two cases. For the perfect crystal, vac
WS cells are due to the PIV pairs. There are however
cells which are unoccupied more than 25 times in the r
However, when a vacancy is present, one observes the p
ence of much higher peaks. In this run there are 17 c
which were empty 40 or more times. We can reasona
assume that these higher peaks represent positions o
vacancy. This is again direct evidence that the vacancy
cupies many different positions in the crystal. In Fig. 7 w
show the same plots, as in Fig. 6, but now for data taken
our highest density,r50.0324 Å23. There is a striking dif-
ference between the data at this density and the data a
lower density. Comparatively few cells are frequently uno
cupied and one single cell is unoccupied most of the tim
Clearly at the higher density the vacancy is comparativ

e

N

x

FIG. 5. The black cells are Wigner-Seitz cells which were u
occupied at some time during the run. The grey cells are these
were occupied throughout the run. The run consisted of 106 sweeps.
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FIG. 6. Histogram of counts of occurrence o
an empty cell. Abscissas are cell indexes. Upp
part: perfect crystal; lower part: crystal with va
cancy. The data are from 974 equally spaced c
figurations in a run of 9.743105 sweeps; no cell
is unoccupied more than 25 times in the perfe
crystal. In the crystal with a single vacancy the
are 17 cells unoccupied at least 40 times.

FIG. 7. Same data as in Fig. 6 but now take
at the highest densityr50.032 94 Å23. Note
that there are now a comparatively small numb
of unoccupied cells when a vacancy is present.
the lower density 17 cells were unoccupied
least 40 times, now there are only seven su
cells. Moreover one cell is unoccupied nearly 60
times. Clearly the vacancy is much less mobile
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immobile. This decreased mobility is confirmed by the fa
that the energy of formation at this density is much close
the static energy, see Table III.

V. CONCLUSIONS

In this paper we have presented a calculation of the
ergy of formation of a vacancy in solid4He which allows for
lattice relaxation and delocalization of the vacancy. The
ergy is strongly dependent on the density and is in reas
able agreement with the experimental values obtained
Fraas, Granfors, and Simmons.3 Since our calculation is
based on a variational wave function our estimate provi
an upper bound to the energy of formation. An importa
result of our simulation is that the vacancy is mobile; in
moderately long~106 MC sweeps! run it occupies many
different sites in the lattice. We find however that the mob
ity is sharply reduced at about 12% above the melting d
sity.

We plan to extend this work in several ways. First, as
have already mentioned, we must investigate how sens
are our results to system size, type of shadow wave funct
and two-body potential. We have already done some sys
size studies but we believe an even more systematic stud
warranted. Once these investigations have been comp
we will improve the accuracy of our results with muc
longer MC runs. Two physically interesting systems can a
be simulated without great difficulty. First we can simulate
crystal with a vacancy and a helium three impurity. The
teresting question for this system is whether the vacancy
impurity form a ‘‘bound’’ state, as has been suggested in
literature.19 Since we can study the correlation between
vacancy and the impurity we should be able to answer
question. Next we can also study a system with two or m
vacancies, and study the correlations between the two va
cies. Returning to the system with a single vacancy we
attempt to measure the change in local kinetic energy du
the presence of the mobile vacancy. If we can do this we
then separate the contributions to the energy of forma
from lattice distortions and from tunneling. Finally it wi
be interesting to extend this work to vacancies in so
helium three. However this can only be done when
have a shadow wave function of the correct symmetry
which can account for the magnetic properties of the so
phase.
s
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APPENDIX

The probability distribution sampled in SWF-VMC calcu
lations is defined in Eq.~8!. In order to be able to move mor
than one particle or shadow at a time, and in particular
perform trimeric moves, it is convenient to bias the mo
along the gradients of the probability distribution.18 The tran-
sition matrix used for generating successive positionsm,n of
the i th trimer is the following:

Tmn5
1

A~4sp!3
e2~DXi

mn
2sFi

m
!2/4s, ~A1!

whereX i is the nine-dimensional vectorX i5(r i ,si ,si8) and
the pseudoforceFi is given by Fi(X)5¹̃ i ln p(X), where
¹̃5(¹ r ,¹s ,¹s8). The moves are performed according to

DXi
mn5sFi

m1jG , ~A2!

wherejG is taken from a Gaussian distribution of zero me
and variance 2s. Imposing the detailed balance condition18

Tm,npn5Tn,mpm , ~A3!

one finds the acceptance-rejection criterion. Typical val
for s in our simulations are 0.1 for particles and 0.07 f
shadows, in order to get an acceptance of about one thir
the moves.
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