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Variational study of vacancies in solid *He with shadow wave functions
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We employ the shadow wave functi¢g8WHF formalism to obtain estimates of the energy of formation of a
vacancy in hep, fcc, and bctHe crystal aff=0 K. We find that this energy is a strong function of density, in
agreement with experiment. The use of a more efficient sampling with a smart Monte Carlo technique, allowed
us to observe the motion of the vacancy through the crystal. We also present data on the occupation of the
Wigner-Seitz cells. The occupation of the cells changes along the run, showing the mobility of the particles and
of the vacancy. As a byproduct of this study we present results for the energy of perfect hcp and bcc crystals
described by a SWHS0163-182697)09134-0

[. INTRODUCTION Lekner-Feynman approaélthis calculation shows how im-
portant it is to include the delocalization effects if one is to
A quantum crystal, such as solftHe, differs from a nor- reproduce the correct density dependence_of the formation
mal solid in that the atoms execute very large amplitudeEnergy. Recent work by Stillinger and Hodgdahbtained an
vibrations about their lattice sites. As a consequence the kEStimate of the vacancy concentration at absolute zero. This

netic energy of the crystal is comparable to the potentiaF‘UbJECt’ which  has received ~considerable theoretical

enerav. In a normal crvstal. at low temperature. the kineti attention*®-1%is however outside the scope of this work.
gy- ystal, W p ure, INUCTHa estimate was based on a Jastrow model wave function

energy is typically only a few percent of the potential energy.hich provides a “classical” description of solid helium. In
The properties of impurities and vacancies in a quantunharticular, near melting the zero-point motion described by
crystal are also strikingly different. The large amplitude mo-thjs wave function has the Lindeman value, which is much
tion leads to a different picture of these entities, both becomemaller than that found in solid helium. The theoretical work
delocalized and can travel through the cryétihe experi- which is closest to our own was carried out by
ments to measure the energy of formation are unfortunateletheringtont! Using the well-known Nosanow-Jastrow
in conflict with one another. This data has recently beenyave function he estimated both the formation energy of a
carefully reviewed by Burns and GoodkifdAn earlier re-  static vacancy and the band structure of a delocalized va-
view was given by Fraas, Granfurs, and Simmdiise main  cancy in solid®He. This work was limited by the structure
focus of this paper is a calculation of the energy of formationgf the wave function that was used. A Nosanow-Jastrow
of a vacancy in solid helium four. We have chosen to com-unction will always tend to produce a very localized picture
pare our results with those obtained by x-ray measurementsf a vacancy. This is because the atoms in the solid are
of the change in lattice parameter with temperature. The valplaced in Gaussian orbitals on predetermined lattice sites
ues obtained in this way for the formation energy are generwith only a small overlap of the orbitals. We believe that it is
ally lower than those found in other experiments. Whileessential to use a wave function to describe the solid in
these experiments are not unambiguous in theikyhich the atoms are free to relax in the neighborhood of the
interpretatiol they appear to be less so than others whichyacancy and in which delocalization can occur.
also show the presence of thermally activated defects. The energy of formation of a single vacancy in a system
There have been several theoretical studies of vacancig N particles and\, lattice sites with a density=N/V can
in solid helium. It is possible to account for the main featurespe defined as
of delocalizéation using semiphenomenological modess. N_1
recent paperprovides a description of the motion of vacan- _ , _ - _
cies based on a lattice-gas model. The static properties of a ABvac= BV, N=1, Ny =N)= == E(V,N,Ni=N),
vacancy in a quantum crystal can be described using the @
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whereV'=V[(N—1)/N]. The formation energAE, . can TABLE I. Optimal values of variational parameters appearing in
be represented as a sum of terms due to the energy of a stati¢ SWF at the densities considered in this work. For the definition
vacancy, to the lattice distortion around the defect and to thef the parameters see text. In the table are reported also the values
tunneling of atoms in the cryst&t! There is no reason to ©f the sideo of the fcc elementary cubic cell, ara=2.556 A.

expect that any of these contributions is small in a highly

quantum crystal such as low-density sofile. This obser- (G b/ Ca?  5(K™ a alo

vation places stringent requirements on any microscopig goggg 1.080 57 0.11 0.870  2.021
theory of vacancies ifHe. The shadow wave functih® 95919 1.080 57 011 0870 2017
(SWH formalism has, we believe, the necessary flexibility to 5 55940 1.080 57 011 0875 2012
describe this system. The main feature of a SWF is that i5.03294 1.095 59 010 0.890 1937

allows for a spontaneous symmetry breaking when the den-
sity is above the melting point of the sofii. As a conse-

quence there is no need to imposeaapriori crystal struc-  helium atoms at every order. In the VMC method one com-

ture on the system, particles can exchange positions, and ﬂﬂ)%tes the average value of the Hamiltonian operBtarith

lattice structure can relax around the defect. Thus the SWF i§1e trial wave function¥

a suitable trial wave function for variational Monte Carlo

(VMC) calculations to study the energy of formation, pos- <q,||i|q,> R 52
sible modifications in the local structure, and the delocaliza- ET:W' H=- m. E Vi2+_2 v(ri;), 4
tion of vacancies. If we used a Nosanow-Jastrow wave func- 41=1 =]

tion, which localizes the particles in Gaussian orbitalsand minimize<E; with respect to the parameters entering the
centered on predetermined lattice sites, then the necessagave function. The inter-atomic potentia(r) for “He can
flexibility in the wave function is no longer present. A va- be accurately represented by the Aziz potertfiahs we
cancy, modeled using this wave function, is basically ahave already mentioned an important feature of the SWF is
model of a static vacancy. We will compare the results of outhat it provides a stable crystalline phase without imposing
§imu|ations with those based on the Nosanow-Jastrow fungne-body localizing factors at assumed equilibrium posi-
tion. tions; localization arises as the result of the implicitly intro-

Our variational calculation is likely to converge rather quced many-body correlations. The functiogis, «=R,S
slowly due to slow structural relaxation processes. Moreovegnd ¢g(R,S) have the following forms:

the energy of a vacancy must be evaluated as a difference

between two large numbers. Thus such calculations are very 1

demanding, and require improved sampling methods in con- r( R)=ex;( 3 ; Upp(rii)>*
junction with the use of large parallel machines. In this paper .

we present in Sec. Il a review of the SWF method, in Sec. llI

a description of the technical procedures used in the simula- :,sz(S):exp( —2 usg(sij)),
tion, in Sec. IV the results of simulations performed with <]

108/107 and 256/255 particles in a face-centered-cubic lat- N
tice, and 180/179 particles in an hexagonal-close-packed lat- _

tice. An estimate of the vacancy formation energy in the Q(R’S)_eXp( -2 UPS(“‘_S"))' ®)
body-centered-cubic lattice is also presented. Section V is

N

i=1

devoted to conclusions. We parametrize the correlation pseudopotentigls as in
Ref. 16:
1. SHADOW WAVE FUNCTIONS (M (b)5
U (H) =1~
The shadow wave functidf® for a system ofN “He r

atoms can be written in the form
uSS(r):(sv(ar)l

ups(r)zcrzy (6)

whereb, 8,«,C are variational parameters ands the inter-
atomic Aziz potential. These functional forms provide good
results for the equation of state over a wide range of
densitiest® They give the same equilibrium density as found
in Green’'s function Monte CarldGFMC) calculations,p
=0.021 86 A3, an energy 10% off the experimental value.
The melting and freezing densities reproduce the values of
GFMC  calculations! (p;=0.02623A % and p,,
=0.029 40 A3, respectively, and above the melting den-
K(R,S) = ¢r(R)6(R,S). (3)  sity, a stable solid phase is found. In Table | we report the
optimal values for the variational parameters at the four val-
The integration over the shadow variables in E2). intro-  ues of density of the solid we considered. For three of these
duces in¥(R), in an implicit way, correlations between the densities we can make accurate comparisons with the exist-

‘P(R)=f dSKR,S)¥4(9), )

where R=r,...ry are the coordinates of the atoms a8d
=s;...5 is a set of auxiliary(“shadow”) variables. The
function ¢5(S) is a many-body function for the shadows,
while K(R,S) is the product of a many-body function for the
atoms ¢z(R) and of a termd(R,S), which correlates real
and shadow degrees of freedom:
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ing experimental data. However we note that the two lowest TABLE Il. Estimated energy per particle and formation energy
densities are below the melting density of our crystals, asf a vacancy in fcc, hep, and béte atT=0K.

determined by a double tangent construction. Both of these
densities are however above the experimental melting dere (A% N Lattice e(N—1) (K)  €(N) (K)  AEy(K)
sity. We know from previous simulations that at these den-ol02898 108 fcc —4.931(16) —5.089(16) 16.31.5
sities the solid is stable over very long runs. For this reasoR 1,095 150 hcp —5.082(15) —5.147(15) 11.62.0
we think it reasonable to carry out vacancy calculations eve|a'02919 108 fec 74'924(16) 75'102(15) 19'& 2'0
though we are below the thermodynamic melting point ofo'02919 180 hep _5'027(15) _5'105(15) 13'&2'0

our crystal.
0.02940 54 bcc —4.640(30) —5.026(30) 20.82.5
0.02940 108 fcc —4.900(15) —5.079(15) 19.%1.5
Ill. SIMULATION METHODS AND SAMPLING 0.02940 180 hcp —5.025(15) —5.107(15) 14.%22.0

i writing Ea. (1) we h dih o 0.03294 108 fcc —3.276(16) —3.630(16) 37.¢1.6
n writing Eq. (1) we have assumed that we have a wavey n359, 189  hep —3.443(15) —3.633(15) 34.82.0

function which can describe a crystal with one vacancy. In a
wave function with localization factors this can be easily .
achieved, because the remainMg 1 particles are localized space. The average value of a local oper&¢R) with the
in the neighborhood of lattice sites. It is less obvious that &WF is evaluated by computing an integral of the form:
SWF can provide such a description. The fact that localiza-
tion of the particles derives from high-order correlations f f f dRdSd%m(R,S,S')O(R), (7
does not guarantee that when we start the system from a
configuration corresponding to a solid in which one particlewhere
has been taken out, the system will not evolve toward some , 2 , )
disordered state. N is very large, this may be a real danger, 7(R,S,S")=yr(RIK(R,SK(R,S") ¢5(S) s(S') /N,
but the use of a relatively small systerfa few hundred ®
particleg with periodic boundary conditions should favor the and A is a normalization such thatdR|¥ (R)|?=1. The
stability of a defective crystal which fits the simulation cell. function 7(R,S,S’) is the probability distribution for all the
We have monitored the stability of our crystal in two ways. real and shadow degrees of freedom entering the calculation.
First by very careful measurements of the occupancy of thén all previous work with the SWF this probability was
Wigner-Seitz cells. Second by computing the structure funcsampled by means of a Metropolis algorithm, moving par-
tion at a reciprocal-lattice vector. Both methods show venyticles and the two sets of shadows sequentially. However,
convincingly that our crystal with one vacancy is stable overlooking at the structure of the probability distributienone
long Monte Carlo runs. Thus our shadow wave function notcan see that due to the form of the kerKelthe system can
only describes a perfect crystal but can also describe a crysthe viewed® as being composed of “trimers,” each formed
with point defects. It is worth pointing out that the concen-by a particle and by two shadows. The harmonic force con-
tration of vacancies in our simulations is large; up to 1%. necting particles and shadows makes it very difficult to break
The simulation of a quantum crystal with a vacancy doeshe trimer, and if one moves the three components sepa-
not present, in principle, any additional difficulty in compari- rately, the possibility of leaving the original lattice site is
son with simulating a perfect lattice. Nevertheless one has temall. In order to increase the efficiency of the sampling we
face two important problems. First of all, the estimate of thehave used collective moves of the trimers. This is however
energy of the vacancy can be obtained only as the differencenly effective if we increase efficiency of the moves by in-
of the total energy in two different simulatiofsee Eq(1)],  troducing a pseudoforce, in the way that is often used in
one with N and one withN—1 particles, whereN is the  classical simulation¥ We give details of this “smart Monte
number of particles needed to fit the lattice in the simulationCarlo” in the Appendix.
box. This difference is of relative orderN/ and therefore For a given densityp =N/V, simulations were performed
increasing the number of particles, one needs to increase tlie pairs, one withN particles at volume/ and one withN
accuracy in the energy estimation, and, consequently, the 1 particles at volum&/’=V[(N—1)/N]. The density of
computer time needed for the calculations. On the othethe two systems is thus the same. For the fcc crystal we used
hand, the number of particles cannot be made too small. In 8X3X3 elementary cubic cells accommodatiig=108
small system there can be finite-size effects due both to thparticles. With this system we performed four pairs of simu-
incorrect treatment of the tail of the potential energy and tdations at four different values of the average denpitigee
the possible interaction of the vacancy with its periodic im-Table ). In order to check size dependence we performed a
ages. Due to the periodic boundary conditions the vacancy ipair of simulations at a densitp=0.0294 A~3 with N
our simulation cell is a member of a periodic array of vacan-=256 particles, corresponding tox#4 x4 elementary cells
cies. It is therefore especially important to minimize any ef-of the fcc lattice. For the hcp lattice, the equilibrium phase
fects from this periodic array by simulating large enoughfor solid “He for at low temperatures, we performed four
systems. pairs of simulations, at the same densities of the fcc crystal,
The second problem arises from the slow convergence afith N= 180 particles, corresponding to<8 X 3 elementary
the computation due to fairly rare events corresponding taells, in an hcp lattice. The length of each run wa$ Monte
atoms leaving their original lattice site to occupy a vacantCarlo stepgMCS), where a MCS is defined as a complete
site. In order to improve the convergence we can use a difsweep of trial moves over all the trimers in the system. Fi-
ferent way to generate the random walk in configurationnally, we estimated the vacancy formation energy
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in the bcc phase at densipy=0.0294 A3, with a pair of

runs of 2x10° MCS, with N=54, corresponding to 83 50
X 3 elementary cubic cells. For this lattice structure we did

not carry out a search for the best set of parameters, corre-

|

*

sponding to the lowest energy. We merely fixed three of the 40
parameterd, &, «, at the values found for the fcc and hcp %
crystals. The Gaussian coupling consténtvas, however, —_ L * E
decreased from 5472 to 5.002. Unless this is done the = 30

bcce crystal is unstable at the lowest densities. Our aim in the
bcc crystal was to establish that it is stable in our simulations
both with and without a vacancy. Since the system size, 54
particles, is small and the wave function has not been opti-
mized it is rather likely that the formation energy we report
can be improved. In order to keep the centers of vibration for
the atoms fixed we use a frame of reference with the origin at 10
the center of mass of the system which is recomputed for

each configuration generated in the random walk. L T .

vac

AE

20
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IV. RESULTS p(A-3)

For the three highest densities, the energies of the hcp and

fcc crystals are very close, within the statistical noise of ou FIG. 1. Vacancy formation energiE,q. vs reduced density.

SR o .

: - . . Solid triangles: data from Ref. 3, open squares: variational esti-
— 3

simulations. Only at the lowest density=0.028 98 A3, mates for the fcc phase; filled squares: for the hep phase; open

f{he hep result is Signi_ficatively below the fcc. The bCC_ So"dcircle: for the bce phase. Stars: formation energy of a static vacancy
is less bound than either the fcc and the hcp, as might b&ee Eq.(10) in texi].

expected. From our simulations we extracted information on

the formation energy of the vacancy as function of the deng formation energies have rather large statistical uncer-

sity, the crystal structure and the number of particles in thgainties. These arise because, as we have pointed out, we are

simulation box. In Table Il we report the values of the eN-doing a “1N” calculation. We can of course reduce these

ergy per particle as a function of the density for the differentgiagistical uncertainties by performing longer MC runs. How-

lattices for a perfect crystal and for a crystal with a vacancyeyer the uncertainties we report are of the same magnitude as

together with the estimataE,,; of the formation energy. {hose in the experimental results. Before carrying out much

Expressed in terms gs=N/V=N—1N', AEc, EQ. (1),  |onger MC simulations we need to carefully investigate how

becomes sensitive are our results to system size, type of shadow wave

function, and two-body potential.
AByac=[e(N=1,0,N;=N)—€(N,p,Ni=N)}(N—1), g In Table Il we compare the estimated energy for a static
©) vacancy at density, which is given by

wheree is the energy per particle. It should be noted that the

thermodynamic limit ofAE, . in Eq. (9) corresponds to the AESt =— w +Pv (10

vacancy formation energy in the limit of zero vacancy con- vac N '

centration. For this reason it is important to study the behav- . . .

ior of AE, .. as function ofN. We performed runs witiN where(V) is the_: average \{a_llue of the poter_mal energy in the

=256 atoms at densitp=0.029 40 A3, with the results samplep =1/p is the ;pemﬁc volume, an@ is the psrte§sure

€(256)= —5.043+0.015 K and €(255)= —4.970 of the system. The d_lffer_ence betweAit, .. a@ndAE\,ac is a

+0.015 K. This givesAE,,.—18.61+5.3 K, which agrees measure Qf the contributions due to the lattice relaxatlon and

within the error bars with the value obtained with=108. to the motion of the vacancy through the crystal. The dnffer-

This enables us to assume that our results are a good rep@ce between the static energy and the SWF estimate

sentation of the thermodynamic limit. The lattice structureStrongly depsends on the density. At density

does have an influence on the value of the vacancy formatiofr 0-032 94 A™* the nonstatic effects appear to be much less

energy. In the hcp phaseE, .. is abou 4 K lower than in the important than close to the melting point. This is due to th_e

fcc phase. In all cases, the formation energy of the vacancy f&ct, discussed below, that the mobility of the vacancy is

strongly dependent on the density, in good qualitative agree- ) «

ment with present experimert©ur results are summarized = TABLE lll. Energy of the static vacancyE,; vs VMC result

in Fig. 1. From Table Il we see thaE, . for the bce crystal for the_ fcc lattice. The difference is due to lattice relaxation and

is very close to that of the fcc lattice. As we have mentioned"""en9-

the vacancy energy in this structure is subject to larger un-

-3 st
certainties due to the small system size and unoptimizefl (A7) AEyc (K) AE ¢ (K)
wave function. Its value {21 K) is larger than the experi- 0.02898 38.3 14315
mental valué (~ 10 K) for bcc “He. Again we note that the 0.02940 385 19415
experimental value is subject to fairly large uncertainties due 03294 46.5 37916

to the choice of vacancy model used to interpret the data
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quite strongly depressed at the higher density. At the lower
densities, the energy is not only reduced by about 50% with
respect to the static case, but it shows a much stronger den- g gga
sity dependence. This means that at low density the dynamic

effects are as important as the static effects.

We can obtain information both on lattice relaxations and 0.003
on the vacancy mobility by analyzing the configurations gen-
erated in the simulations. The deformation of the lattice can
be studied by looking at the distribution of the particles near
the vacancy. This can be done dividing the sample into
Wigner-Seitz(WS) cells. We have performed this analysis
only in the fcc lattice. Each WS cell is centered on the sites
of the original lattice, and the boundaries are given by the 12

planes: o E
- DDDDDHED//
a a 0 -’

(ExXxy)==; (ixiz)=§; (iyiz)=g. (11 (; ‘

p(A-9)

0.002

0.001

LA B T Y I O

o
>‘>°B.JJ,,E
g
1 1 Il 1 ‘ ] 1 1 1 ‘ 1 | 1 L | L 1 1 1 | 1 1 1

The coordinates refer to the center of mass of the system. We
find that the particles in a perfect crystal nearly always oc- F|G. 2. Nearest-neighbor density around a lattice site. Triangles:
cupy the same cell during the simulation. However, due tQjensity around sites in a perfect crystal. Empty squares: density
the large quantum fluctuations, the atoms occasionally Visiiround empty sites in a crystal with one vacancy. Dashed line:
the neighboring cells, creating vacant and doubly occupieaussian fit of the outer part of the density around empty sites. The
WS cells. In a long run we find that close to 1% of the WSdata for the vacancy are fod=255 particles in an fcc lattice at
cells in the perfect crystal are unoccupied with a nearestdensityp=0.029 40 A 3,
neighbor(NN) cell doubly occupied. We call these fluctua-
tions psel_Jd0|nterst_|t_|al-.vacanc(PIV) pairs. We computed center of this Gaussian has also shifted inward with respect
the following quantities: to the distribution for the perfect crystal.
1 We can also use our configurations to study the motion of
pRn(r)= < NN Z > S(|r—rj+ Ri|)>, (120  the vacancy, and its influence on the motion of the particles.
NNV i(F) (1) While we are able to analyze the configurations generated
L from our MC simulations to show unambiguously that the
F _ vacancy is mobile we need to caution the reader that one
Pan(r)= < NnnNe i(EE) <JE>I Alr=rj+ R‘|)>’ 13 cannot literally interpret the motion in terms of a trajectory.
We demonstrate the motion by computing various well-
where Ng and N are the number of empty and of singly defined expectation values, such as the occupancy of the WS
occupied WS cells in a given configuratidsyy is the num-  cells. However since there is no real “time” variable in our
ber of nearest neighborR; are the coordinates of the lattice simulations we cannot immediately think of trajectories or
sitei, andr; are the coordinates of particle The sum over extract a diffusion constant. In Fig. 3 we show the one-body
(i)i is extended over the particles in the cells which aredensity of shadows(r) with respect to their initial posi-
nearest neighbors to cell The sum ori(F) is only extended  tions for the system with =255 particles at average density
to all singly occupied cells, while the sum a(E) is ex- p=0.029 40 A"3. The density profile of the particles is
tended to the empty cells which do not have a doubly occusimilar to that of the shadows, the latter being more resolved
pied cell as nearest neighbor. This is done in order to removeue to the stronger localization of the shadows. The profile is
the contributions from PIV pairs, which are present for 1%split in two parts: on the left we show the density inside the
of the cells for both the systems with andN—1 atoms. sphere of radius equal to half of the nearest-neighbor dis-
The quantitie12) and (13) give direct information on the tance, on the right the density outside, on a larger scale. The
distortion both in terms of the shifting of the equilibrium peak in the outer region means that a fraction of the particles
positions and of the density distribution. In Fig. 2 we plot have left their original lattice sites to reach a new equilib-
pE,N and pEN computed with 947 equally spaced configura-rium position. WithN=256 the outer peak is not present,
tions out of 9.4% 10° at densityp=0.029 40 A3 with 255 this shows that no such displacements are present for the full
particles. As it can be seen the distribution of the nearedfttice. We should note that this effect is due to the finite
neighbors of a vacancy is both broadened and becomdength of the simulation. In the real system, and also in the
asymmetric when compared to that of a filled site. The fol-system described by the SWF, the particles exchange posi-
lowing construction allows one to see this distortion moretions, and if one could measure the true density profile
clearly. We note that the right-hand side of the distributionaround a given site, one should see the particles equally dis-
can be very accurately fitted to a Gaussian. This is shown asibuted over all the sites in the lattice. However in the simu-
the dashed curve in the figure. When we plot this completdation of the perfect crystal spontaneous exchange of par-
Gaussian we immediately see that a large tail emerges, abotieles occurs so rarely that we do not observe it. When a
the Gaussian, on the side near the vacancy. Clearly the negacancy is present the mobility is highly affected, and with
neighbors have moved in, slightly, towards the vacancy. Thefficient sampling we start to observe such events. The jump
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FIG. 3. One-body density profile for shadows around a lattice
site in a crystal with one vacancy. In the left part of the figure we
show the density inside a sphere of radius equal to half of the NN ) . .
distance: on theyrigh(ton a Iat)rger scalewe shocj/v the density out- FIG. 5. The black cells are Wigner-Seitz cells which were un-
side thi’s sphere. Results are foN=255 particles at occupied at some time during the run. The grey cells are these that
002940 A3 ' P were occupied throughout the run. The run consisted bsh@eps.

of particles between different lattice sites can be observefobile particles are those close to the vacancy. No such
also from a direct analysis of the configurations. In Fig. 4 welumps of particles are observed in the perfect crystal during
have plotted the projection of 400 equally spaced configura®ur Ion_gest MC runs. .

tions, out of 4<10°, on thex-y plane. The dark triangles [N Fig. 5 we show the motion of the vacancy. The grey

represent the positions for one specific particle. It can bé&ells are Wigner-Seitz cells which were occupied throughout
seen that at least three different sites are occupied by tH run of 16 sweeps. The black cells are Wigner-Seitz cells

particle. We observe such motions only in a definite regionwhich at some time were empty during the run. To make this
of our simulation box, and from that we can argue that thePlot we ignored all empty cells which also had a doubly

occupied NN cell. That is to say we ignored all PIV pairs. It
is clear from this figure that the vacancy moves over large
distances. In a much longer run it would presumably move
through the entire simulation cell. We can also observe the
motion of the vacancy by determining the distribution of
empty cells in the simulation box. In Fig. 6 we show a his-
togram of the number of times a given WS cell in the simu-
lation box is found empty(computed from 974 equally
spaced configurations out of 9%40°). In the upper graph
we plot the result folN=256, which has to be compared
with the lower graph obtained with = 255 (note the change
of scalg. We can see that the average number of counts is
very different in the two cases. For the perfect crystal, vacant
WS cells are due to the PIV pairs. There are however no
cells which are unoccupied more than 25 times in the run.
However, when a vacancy is present, one observes the pres-
ence of much higher peaks. In this run there are 17 cells
which were empty 40 or more times. We can reasonably
assume that these higher peaks represent positions of the
vacancy. This is again direct evidence that the vacancy oc-
cupies many different positions in the crystal. In Fig. 7 we
show the same plots, as in Fig. 6, but now for data taken at

our highest densityp=0.0324 A3, There is a striking dif-
FIG. 4. Projection on the-y plane of 400 equally spaced con- ference between the data at this density and the data at the

figurations out of 4 10° for N=255 atp=0.02940 A 3. The lower density. Comparatively few cells are frequently unoc-
triangles represents the positions of one given particle in the bogupied and one single cell is unoccupied most of the time.

(see text Clearly at the higher density the vacancy is comparatively
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FIG. 6. Histogram of counts of occurrence of
an empty cell. Abscissas are cell indexes. Upper
part: perfect crystal; lower part: crystal with va-
cancy. The data are from 974 equally spaced con-
figurations in a run of 9.7410° sweeps; no cell
is unoccupied more than 25 times in the perfect
crystal. In the crystal with a single vacancy there
are 17 cells unoccupied at least 40 times.

FIG. 7. Same data as in Fig. 6 but now taken
at the highest densitp=0.032 94 A" 3. Note
that there are now a comparatively small number
of unoccupied cells when a vacancy is present. At
the lower density 17 cells were unoccupied at
least 40 times, now there are only seven such
cells. Moreover one cell is unoccupied nearly 600
times. Clearly the vacancy is much less mobile.
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immobile. This decreased mobility is confirmed by the fact ACKNOWLEDGMENTS
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based on a variational wave function our estimate provide§NFM at Scuola Normale Superiore in Pisa where part of this
an upper bound to the energy of formation. An importantWork was carried out.
result of our simulation is that the vacancy is mobile; in a
moderately long(10° MC sweep$ run it occupies many

different sites in the lattice. We find however that the mobil- APPENDIX
ity is sharply reduced at about 12% above the melting den- o )
sity. The probability distribution sampled in SWF-VMC calcu-

We plan to extend this work in several ways. First, as wdations is defined in E¢(8). In order to be able to move more
have already mentioned, we must investigate how sensitivé'an one particle or shadow at a time, and in particular to
are our results to system size, type of shadow wave functiorP€rform trimeric moves, it is convenient to bias the move
and two-body potential. We have already done some systeong the gradients of the probability distributibtThe tran-
size studies but we believe an even more systematic study fition matrix used for generating successive positions of
warranted. Once these investigations have been completd@eith trimer is the following:
we will improve the accuracy of our results with much
longer MC runs. Two physically interesting systems can also 1
be simulated without great difficulty. First we can simulate a Ton=7—
crystal with a vacancy and a helium three impurity. The in- (4om)
fcerest@ng questic‘J‘n for trlis system is whether the vacancy ar\%herexi is the nine-dimensional vectot, = (r; s ,s') and
impurity form a “bound” state, as has been suggested in the L = :
literaturel® Since we can study the correlation between thell® Pseudoforcd is given by Fi(X)=V; In m(X), where
vacancy and the impurity we should be able to answer thi¥ =(Vr.Vs,Vs). The moves are performed according to
guestion. Next we can also study a system with two or more
vacancies, and study the correlations between the two vacan- AX"M=cF"+ &g, (A2)
cies. Returning to the system with a single vacancy we can
attempt to measure the change in local kinetic energy due tohereég is taken from a Gaussian distribution of zero mean
the presence of the mobile vacancy. If we can do this we cagnd variance &. Imposing the detailed balance conditién
then separate the contributions to the energy of formation
from lattice distortions and from tunneling. Finally it will TonTn=TnmTm, (A3)
be interesting to extend this work to vacancies in solid
helium three. However this can only be done when weone finds the acceptance-rejection criterion. Typical values
have a shadow wave function of the correct symmetry andor o in our simulations are 0.1 for particles and 0.07 for
which can account for the magnetic properties of the solicshadows, in order to get an acceptance of about one third of
phase. the moves.

e—(Axi’“”— lrFim)2/4<r, (A1)
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