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In the presence of a time-periodic incoming flow the diffusion problem on finite random media has been
studied. Particular importance has been stressed on different boundary cordéflasing or absorbing The
problem has been worked out by generalizing the finite effective-medium approxin{&iA). Thus a
perturbative theory, in the time-asymptotic regime, has been built up in the Laplace represestatti
parameterfor weak and strong site disorder. This theory separates in a natural way the contribution given by
the effective medium(from other higher-order correctionsvhich appears as the zeroth-order step in the
perturbation scheme. Asymptotic results for the current of probalfitiside the finite domainare obtained
for different time-dependent incoming external flows. Exact results beyond FEMA are obtained for the low-
frequency behavior of the evolution equation for the averaged Green'’s function on a finite lattice. Monte Carlo
simulations have been carried out in order to compare them with our theoretical predictions. In the absence of
an incoming external flow, the problem of the first passage time distribution through only one flonger
random medipand for different boundary conditions has been revisif€0163-18207)01033-3

. INTRODUCTION a similar analysis as the one done with FENi., in order
to study the FPTD to leave a finite domdin=[ —L,L] (Ref.

Diffusion on random media has been a topic of long-7)).
standing interest, particularly because of its success in de- In this paper we are interested in the study of the averaged
scribing conductivity in amorphous materidlsAnalytic  probability distribution in the presence of periodically forced
techniques have been used to tackle this problem; specifbundary conditions—on one extreme of the lattice. There-
roles are played by the effective-medium approximationfore by studying the output flow of probability—close to the
(EMA),? the continuous-time random-walk theorynd its ~ opposite extreme—we will be able to predict the type of
multistate approach. disorder (in the samplg by measuring the time-dependent

It is known that EMA gives the correct anomalous expo_behavior of the probability distribution at the end of the lat-
nents for unbiased walks> more complex systems, such as tice. The goal of this work is to study this profile in porous
conductivity in granular metal filfi,can also be described in Media;® giving in this way a direct access to the experimen-
the context of EMA. Also the study of the first passage timetal measures made with the frequency response methard,
distribution (FPTD) in random medi&® has been done with in the trap-limited electronic transport investigated by inten-
success in the context of the finite effective-medium approxiSity modulated photocurrent spectroscdpy.
mation (FEMA). Recently the FPTD has been studied in

presence of bidsto get a direct access to the fluctuation of Il. THEORY
the guenched disorder, and to the evaluation on the mean _ _
time for partides to go across a random medium. Let us consider a general one-step Markovian random

In random media, of particular importance is the study ofwalk (RW) in a finite chainD=[ —L,L]. The forward master
the one-dimensionallD) averaged probability distribution €equation has the general fotin
with special boundary conditions because this quantity car-
ries information about the scaling properties on a finite sys-
tem. In the_presence of. arbi_tra(y boundary conditions, wgak dP(n,t|ng,tg) = E Hn,an(n',tlno,to), (2.2
or strong disorder can, in principle, be worked out by doing n’
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where P(n,t|ng,to) is the probability of being at site at The right side ofD is assumed to be an absorbent site, so
timet with the condition to start aiye D at timety<t. Here  the evolution equation for the conditional probability
H, . is a finite square matrix whose indices run over theP(L,t|n0,t0)EP(t)|_,nO is
sites in the chaim e D.

Disorder is described as assigning a probability to each : _ _
possible configuration of the hopping transition probability OLng= 0L 1POL- 10y = 20LP(O1 0y (23
®n+1n, PEr unit time, from siten to n=1 of the chain. This . .
assighment of probabilities defines a RW in random media. The rest of the equations f‘E)‘(t)”'”o (for n# £ L) remain
The statistical properties of this RW process can be obtainednchanged:
by averaging, over configurations of disorder, the expres-
sions for the quantities of interest obtained for fixed hopping P(tnn,= @n+1P(Dn+ 10yt ©n—1P(Dn-1n, = 20,P(t)5 ..
transitionswp+ 1, . (2.4

We are interested in the particular situation when the mas-
ter HamiltonianH., ,, models strong or weak disorder, and ¢ 1) set of equations fé¥(t), , can be written in a
the diffusion is forced to time-periodic boundary conditions : o "
(BC) on site —(L+1), and to a static absorbing BC on compact form. Consider a master Hamﬂtonidﬁ‘n, repre-
L+1; i.e., at the left frontier ofd we have a dynamic BC senting reflecting and absorbing boundary conditions on sites
and on the right frontier we have a static one. Let us conside¥ (L+1). Then introducing the matrix curred, , the
a site-disorder model so that we can use the short notatioproblem posed from Eq$2.2) to (2.4) can be rewritten as
wh+1n=w,. If from the left side we introduce a flod®
(on site— L) the evolution equation for the conditional prob- . RA R
ability P(—L,t|ng,tg)=P(t) - will read P(t)n,no=§ Hp o P(Onr gt Inng (2.9

P(t)fL,nOZw*LJrlP(t)fLJrl,no_w*LP(t)fL,no"_JiL- whereP(t), HRA andJ® are (A +1)x(2L+1) matrices.
(2.2 The master Hamiltoniahi }%, is

W W—) +1 0
w_|  —20_141
0 W +1
HRAZ 0 26
W —1 0
—204 W
O W -1 - 2(1)|_
|
and matrixJ€ represents an incoming flow at siteL: Here we have assumed that the initial conditR(t=0)
and the curreni®(u) do not depend on the different configu-
I =358 1. (2.7)  rations of disorder, thus we only need to know the averaged

Green’s function(GR*A(u))={((u1—HR" 1), This matrix
Taking the Laplace transforrft—u} in Eq. (2.5, the can be calculated in the context of an effective media. Of

formal solutionP(u) is course the averaged Green’s function will depend on the par-
ticular BC that we impose on the master HamiltonkénFor
P(u)=(ul—HR " P(t=0)+J%u)]. (2.8)  the absorbing-absorbing case this calculation was done using

. _ ~ Terwiel's cumulant*by introducing a diagrammatic pertur-
For the particular case when the current is a constant in timgation theory. This perturbation corresponds to the one-loop

we get for the Laplace transform of E@.7) resummation in diagrammatic representations, known as the
single-site approximation in condensed matter.
3°(u)= }Je_ By using the method of imagEswe have worked out in
u Appendix A the correspondingrdered Green’s function

GRA(u); i.e., with reflecting-absorbing BC. In Appendix B
Therefore in general the average over the disorder givesve have summarized the mathematical details to obtain
(GRA(u)). Section IV is concerned with the absorbing-
(P(u))=(GRA())[P(t=0)+J%u)]. (2.9  absorbing case with an incoming flalk at any arbitrary site
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n® and considering different domain®=[—L,L] and and a reflecting BC placed midway between sites

Dy=[1.L,]. n=—(L+1) and—L." The solution of Eq(2.17, in the
The result for the reflecting-absorbing case, withn ~ Laplace representation, is the one given by €410.
e D=[—L,L], gives The average over the disorder is easily obtained by re-

placingu— w(u) in Eq. (2.10), i.e.,
GRAU)p m=B(W[ANM+KAZ- IR, ], (2.10
where (G”MNY=[G™],_ . - (2.18

Rym=Rpm(U) =A"TM— pAdLFntm+3 4 A6L=n+mt+5 Another important quantity in Eq2.16 to work out is
J(U) n.m=H°G*(u),, m, which in the asymptotic regime

2L— 2 -n— 1 AL—n— 4 . . .
—AZETIEmEE_ AT Ly AfLTRTmE (see Appendix Ais characterized by

+A6L+nfm+5_A2L+nfm+2 (21:D
1 1+L—maxn,m) )
u u2 1/2 ﬂu)n,mz_ﬁgn,m"' Mz U+O(U )
A=A(W) =1+ ———|—+—| , 2.1
) LT D (212 (2.19
K=K(u)=(1—A8"6)~1 (2.13 Specifying the probability measulld () and using Eg.
(2.19 in Eqg. (2.16 we can obtain in a self-consistent way
1[u w2 %? p(u), and therefore we can study different random media.
B(u)= > -t — , (2.149  The type of disorder that we have considered in this paper is
KA Au the same that one of us studied in Ref. 7. Thus from Eq.
and u is the hopping transition ratesee Appendix A (2.16 we get: _

The long time limit of the Green'’s functiof2.10 can be (1) For weak dlslf)rde(model A of Ref. }, all the inverse
studied by analyzing the limiti—0 in its Laplace represen- Moments B=(1/wy), k=1.2,..., arefinite, therefore,
tation: from Eq.(2.16 in theu—0 limit we get

1+L—ma{n,m u=0)"t=(1/ =p;. 2.2
GRA(U)n,mE( ){ ])+O(U3/2); (215) /’L( ) ( w)H(w) Bl ( @
(2) Model B of Ref. 1. The probability distribution for
heren,me D. each statistical independent variaklg is
A. Taking the average in a site-disorder model 1 if we[0,1],
As we have mentioned before, a diffusion process in ran- ()= 0 otherwise,

dom media forced to a dynamic and static BC is character-

ized by Eq.(2.9). For the particular reflecting-absorbing situ- therefore from Eq(2.16 in theu—0 limit we get
ation, the effective hopping transitigp(u) must be obtained

from the self-consistent equatideee Appendix B

o—p(u)
=0; 2.1
<1—[w—M(U)]HOGRA(u)>H(w) (219

In(L+1)
e
Inu

,u(u)z—(lnu)‘l<1 el (22D

(3) Model C of Ref. 1. The probability distribution for

herell(w) is the probability measure characterizing the typeeaCh statistical independent variahlg is

of disorder on the random medium and _ .
(1-a) o * if we[0,1],
HO=[ET+E —2] M{w)= 0 otherwise,

is the ordered master Hamiltonian for an infinite lattice,

whereE™ are shifting operators: therefore from Eq(2.16 in the u—0 limit we get
E*G™(u =G*MUW)na1m- sin(wma

( )n,m ( )n,l,m ,(L(U)E(L‘Fl)aﬂ_(nj(-—_a))ua- (222
The ordered Green’s functioBR* (in time representa-

tion) is the solution of the initial-value problem . . . .
) P Using these effective hopping transitiopgu) we can

RA(++'\ — ,, I4O~RA ¢4’ calculate from Eqs(2.9) and (2.18—for different type of
HGTHE) = uH G L), .19 disorders—the long-time limit behavior of the averaged
GRAt|t) =1, probability distribution for the proposed problem. We want
to remark that FEMA, as well as EMA, give the correct
with absorbing BC ah=L+1: exponent in the asymptotic long-time regime, nevertheless

RA , for strong disorder the coefficient @f(u) is overestimated
Glim(t[t)=0 (see, for example, Refs. 7 and 5 and Appendjx C
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B. The long-time limit 104
Let us consider the weak disorder model A and the situ-
ation when the current® is constant in time. In this case we 103
get from Egs(2.7), (2.9), and(2.18) in the u—0 limit
2 10
1+L—max{n,m]f 1. o=
(P(U)nny)~ 2 W | P=0 g 2
m K m.ng < 10!
(2.23 "8
For this case, from Eq2.20 u(u=0)=(1/w)~ %, then us- n‘: 10°
ing the matrix expression af, , we immediately see that in
the long-time regime and for weak disorder, the averaged 10!
RW probability distribution is given by 2 B ; .
102 7 100100 108 10°
1 1 | 1 1
<P(t)n,n0>~‘]e< 5> (1+L—n). (2.29 10° 10 102 10° 10*
Therefore we have got, inside the lattice, a renormalized cur- Time

rent flow of probability; its time-scale is now characterized
by the disorder in terms of the inverse momébiw) 1. As
expected, in the long-time regime the probability distribution
(P(t)n'%) is independent of the initial conditiamy and it has

FIG. 1. Disorder-averaged RW probability distribution at site
n=L, plotted as a function of time for strong disord@nodel C
with «=0.8) and in the presence of an external incoming constant
flow J®=1 at siten®=—L. The inset shows the same function for

its minimum at the absorbing barriéP(t), , )~ J%1/w). different positions[from top to bottomn (=-1,0,1)]. All the
Model B of disorder gives plots correspond to a lattice with=1. The continuous line is the
FEMA result and the dotted line is the Monte Carlo simulations
(P(D)n,ng)~3%(Int+ y)(1+L—n); (2.259  with 10° realizations.

taken from Eqs(2.21) and(2.23 the inverse Laplace trans- Laplace transform of Eq(2.7) with J%(t)~|sin(Qt)], and

form of the dominant contribution (liu). P(t=0)=0 we get
Let us now consider the strong disorder model C. In this
case from Eqs(2.22), (2.23 and using a Tauberian theorem 1+L-n O u
we get (P(u)n,n0)~ I u2+ﬂzcot)—(m). 2.27

(P(t)nn >~Je(1+|__n)(|_+1)7a7’_(1_“)ta_ As before the disorder enters in the explicit expression for
o sin(ma) the effective hopping transition rate(u). For the time-
(2.26 periodic case it must be understood that the long-time limit is

These remarkable results, show that, for strong disordef”1ISO a time average over one period of time/. Thus in

the averaged RW probability distribution increases with(jr(]l.er(;O getdalnqnzero average C(;mem we could C%g%'/der a
time. We can understand this result if we think that the dis-""2¢'¢ :1“0 uhatlon supgrlr?ppse oye(rj_a concsjta;nt. ’ h
order promotes the localization of the diffusion particles andsgwwe show here a typical time-periodic modulation suc

therefore the particles cannot freely diffuse in a disordere

lattice. This fact is ultimately responsible for the increase of Je= A°— codt. (2.29

the probability distribution in the long-time regime. Figure 1

shows the comparison of our theoretical predictions forlherefore we have to use

strong disorder against Monte Carlo simulations. We remark
that this power low is an exact result in the asymptotic re-

gime. Nevertheless, as was pointed out before, the correct

coefficient of(P(tHoo)n,n()) for strong disorder is overesti-
mated in the framework of FEMAsee Appendix €

1
iy L

Je(u)n,n’: u u2+92

oot (229

for the Laplace representation of the matif{u) appearing

in Eg.(2.9). Thus in presence of the incoming flg&.28 on

, o . site n=—L, the long-time averaged RW probability distri-

C. Time-periodic boundary condition bution is given by
Of particular importance, in solid state physics, is the be-

havior of the averaged probability distribution in presence of 1+L- n/ 1 .

a periodic incoming flow of particles. This problem can also <P(u)nvno>~ w(u) \U - W2+ 02

be studied in terms of the analysis that we have carried out in

the previous sections. To do this we just need to introduce wherew(u) is given by Eqs(2.20—(2.22 depending on the

time-periodic current in Eq(2.7). Let for example the cur- type of disorder. In Fig. 2 we show—at the long-time

rent be proportional tdsin(Qt)|; in this case the long-time regime—the comparison of our theoretical predictifinsm

regime of the averaged probability distribution is character£q. (2.30 for strong disorder

, (230
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104 from siteng. Thus distributionF ,(t|0) fulfills the evolution
equation
0 RA
Z aF () =[HFATTR(), (3.
= where the matri¥ HRA]" is the adjoint of the one given in
S Egq. (2.6 and F(t) is a vector with components
e , [F(t)],=F,(t). The initial condition for Eg.(3.1) is
A 10 Fo,(t=0)=1 for all ne[—L,L]=D. For the ordered case
107 the exact solution of E¢3.1) in the Laplace representation
is
10 n—1 L
100 n—m m—n
Fa(W=B(u)] > A" ™+ > A
Time m=-—L m=n
L
FIG. 2. Disorder-averaged RW probability distribution at site JL+1
n=L, plotted as a function of time for strong disordéwith +m:2—L KA Rom( s 3.2

a=0.8) and in presence of an external incoming time-periodic flow

J8(t)=2—cog at siten®= — L. The inset shows the same function whereR,,,, A, K, B(u) were given in Eqs(2.11)—-(2.14.

for different positiongfrom top to bottomn (=—1,0,1)]. All the From Eq.(3.2) it is simple to calculate the exact expression
plots correspond to a lattice with=1. The continuous black lineis  of the MFPT,T,= [gF,(t)dt=F,(u=0):

the FEMA result, and the shaded lines correspond to Monte Carlo

simulations with 18 realizations. 2+5L+3L?—n—2Ln—n?
T,= . 3.3
2
m(1l—a) ) )
(P(t)n n0>~,Ale(1+L—n)(L+ 1)*“mt“ In random media, the average MFPT can be calculated in
’ a

2.3 the framework of the present perturbation the@ge Appen-
-39 dix B) by introducing the effective media. Therefquehas to

_ _ be replaced by the effective hopping transitfu) solution
against the corresponding Monte Carlo simulations. Thef the self-consistent Eq2.16.

agreement is very good for all types of disordstrong or It could be necessary to know the equivalent formulas
weakK. Note that other dynamical incoming flows can also be(3.3) for a different domain, i.e., for exampl&;=[1,.,]
considered in the framework of the present theory, just bywith the reflecting BC am=0 and the absorbing one at

changingd®(u), o - _ n=L,+ 1. Therefore instead of E43.3 we get
Thus we see that due to the strong disorder there will be

an increasing current of probability at site=L [i.e., 1

(P(t)Ln,)~t*]. This is a remarkable result that is only To,= ﬂ[Ll(LlJ“l)_”l(nl_l)]- 3.4
present in strong disordered random media. Thus, formulas . . B _

(2.31) provide a way to classify different types of materialsa][\IOte that with the sbcal_lng11=L+1+n and L,=2L+1
by using a suitable experimental device which measures thEom Eq. (3.4) we reobtain Eq(3.3).

: " : : MFPT through n=+L for disordered media.
out-coming flow of probability on the opposite side of th
sample. 9 P y PRosite side ot the (1) Disorder model A: using Eq2.20 in Eq. (3.3) we get

B 2+5L+3L2—n—2Ln—n2/ 1
(To)= 3 \o)- (3.5

Ill. MEAN FIRST PASSAGE TIME

In Ref. 7 the FPTD—in random media—to leave the in- (2) Disorder model B: for this case the MFPT diverges.
terval[ —L,L] was investigated taking into account different Using Eq.(2.21) we get the following divergency low:
types of disorder. A related problem is the calculation of the
first passage time through a specific frontier, i.e., for ex- 2+5L+3L%—n-2Ln-n?
ample, through the site=L. This physical problem can be B 2
mapped into the calculation of the survival probability in the
presence of an absorbing site=L+ 1 and a reflecting one, Thus the same localization phenomena—as for the case with
midway between sites{L—1,—L). Thus the results of the two absorbing frontiers—occurs for the present problem.
previous sections can be used to calculate the required MFPThe only difference with Eq(4.25 of Ref. 7 is the coeffi-
in disordered media. cient of proportionality.

As we have mentioned before, a diffusion process in ran- (3) Disorder model C: for this case the MFPT also di-
dom media with reflecting-absorbing frontiers can be anaverges. Using Eq(2.22 we get the following power low:
lyzed by using Eq(2.9). For the particular situation when 5 5
J¢_ =0 the FPTD through the border=+L can be studied ~ 2+5L+3L"—n—2Ln—n (L+1)- T lim -
in terms of the survival probabilitFnO(t|t0), i.e., the prob- 2 si7a) o

ability to still be in D if the walker had started at timig (3.7

liminu. (3.6)

u—0

(1-a)
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As expected there is also localization due to the strength of K(u)=(1—A%+4-1 (4.6)
the disorder. The difference with EG.29 of Ref. 7 is the
coefficient. 1 u u2 -1

We remark that for weak disorder the MFPT passing B(u)= 4 4.7
through the frontier n=+L is proportional to wlu ap?

(2+5L+3L?—n—2Ln—n?). This coefficient is quite dif-
ferent from the MFPT leaving the domail=[—L,+L],
which is proportional to the distance between the initial po-

The long-time limit of this Green’s function is obtained
by taking theu—0 limit in its Laplace representation:

sition leaving the nearest neighboring frontier. (1+L+min[n,m])(1+L—max{n,m])
For weak disorder and when the domainZig=[1,.,] GAA(U)n m= 2u(1+L

the averaged MFPT can be analyzed in a similar way as was m(1+L)

done in Eq.(3.4) for the ordered case. +O(u¥?); (4.9
IV. INCOMING FLOW AT ANY ARBITRARY SITE here, as before),me D.

The disordered case can now be studied by changitm

In order to consider other geometri¢physica) problems  w(u), the effective hopping transition rate which is solution
it could be interesting to know the average probability dis-of an analogous self-consistent equation
tribution for other types of BC, and the position for the in-
coming flowJ5. In this case the problem must be reformu- o—u(u)
!ated_con_sujerlng a master Hamll_tonlalﬁﬁq, WhICh in fact 1—[w— u(u)JH°GM(u)
is quite similar to the one written in E((;Z 6), with the only ()
difference being its elemerl=tlAA —2w_ . To solve For this particular absorbing-absorbing case, the effective
this problem we need to know the Green s function for thehopping transition rate.(u) has been calculated in Ref. 7.
absorbing-absorbing case, which has already been obtainddherefore in the asymptotic regime we get from E@s3)
in Ref. 7. and(4.8) in theu—0 limit

As in Sec. |, we are interested in the particular situation .
whenH’:ﬁ, models strong or weak site disorder. But now we (P, =S (1+L+min[n,m])(1+L—maxn,m])
consider the situation that there is an incoming fl@gvgen- ™Mo 2p(u)(1+L)
eral, time periodig on the arbitrary site®. Thus the BC to
be considered are absorbing siteqL+1). Other BC's

could also be considered in a similar w&yThe evolution .
equation for the probabilit(t),, , will now read Using the matrix representation d?n (for J®*=const in
o time) we immediately see that for weak disorder, the aver-

) A aged RW distribution is nonhomogeneous on the lattice and
P(t)n,n0=2 Hin P(On 0o+ 30 g » (4.1)  is given by
n!

=0. 4.9

X [P(t=0)+J%U) .. (4.10

where, as before, theP(t), H*, and J°® are (P()nm >5Je< £>
(2L+1)X(2L+1) matrices. Herel®(t) represents an in- oo w
coming flow on siten®, thus their elements are characterized (1+ L+ min[n,n®])(1+ L — maxn,n°])
b
y 2(1+L)
Jn 0 (D =3%(1) 8, pe. 4.2 4.11)

As before, in the Laplace representation, the formal solu- Model B of disorder gives
tion of P(u) is

(P(t)n )
P(u)=(ul-H")"P(t=0)+J°
(W)=(u ) )+ (W) et (I LAmIn[n,n®])(1+L—maxn,n])
=GAA(U)[P(t=0)+J%u)], 4.3 =J9Int| 2140 :
where, in general, the curredf(u), from Eq. (4.2, is a (4.12
Laplace-dependent function. o .
The ordered Green’s functibhas elementa, m given by Considering strong disorder, model C, we get
GMA(U) . m=B(WK(W[ANM - AZLF2(A (M) pn+m) (P(t) >~Je(1+L+min[n,n‘*])(1+L—mav{n,n‘*])
+A4L+4(A—\n—m|)] (4.4) n.Mmg/ ™ 2(1+L)
where L)tz 4.1
2 sin(ma) 4.13
2 112
A=AU)=1+ —— EJF v , (4.5) The disordered case with a time-periodic incoming flow
2M Mo 4u? Jé(t) = A®—codt (at siten®=0), is immediately obtained
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10% external incoming flow, which let us apply our method to
different dynamical models od®(t). Particular importance
103 was put on the case when the fl@(t) is periodic in time.
In that case the asymptotic probabili(d]’(t)n,mO} was also
= 102 characterized dep_ending on the degree of disorder. _
o In the strong disorder cag®odel C), and when the in-
= coming external flow(applied on the left side dD) is time
g 10! periodic [i.e., J°(t) =.A%°—cod)t] an anomalous long-time
o) behavior was founch(t)n,mO)~t“. Note that for weak dis-
ps: 10° order the expected probability current on the right sidé®of
, should be constant. This method provides a very clear
10t - mechanism for characterizingxperimentally the presence
, of strong disorder on the sample. In general, and for any
102 - . ; . ‘ arbitrary time-periodic incoming flow, the degree of disorder

(into the sample can be characterized by measuring the
slope of the log-log pIo(P(t)n,m()) as a function of time. For

Time the weak disorder case the present approach gives, immedi-
ately, the quantity1/w) by analyzing the current probability
FIG. 3. Disorder-averaged RW probability distributi¢aver  given in Eq.(2.24). Thus the transport of photogenerated
strong disorder=0.8) at siten=L, plotted as a function of time carriers through a porous network, consisting of nanometer
and in the presence of an external incoming time-periodic flow:sjzed particle§,2 can theoretically be studied by the present
Jé(t)=2—cog (at siten®=0). Note that in this plot the BC are gapproach. Work along this line is in progress and will be
absorbing-absorbing and the lattice has five sfies, L=2). The presented elsewhere.
gont?nuous black line is t_he FEMA rgsult and_ thg continuous gray  Also the problem of the first passage time through one
line is the Monte Carlo simulation with f0ealizations. frontier (+L) was revisited. The exact behavior of the aver-

) aged mean first passage time was found. Generalizations to
from Eg. (4.10 by changing J°—J%u)=[(1u)A°~u/  other domains such @=[1L,] was also given. As was
(u*+Q3)], using the Laplace transform of EQ.28. The  reported before in a related problémmodels B and C of
averaged RW probability distribution inside the sample isgisorder predict a divergence in the averaged mean first pas-

10° 10 10% 103 104

given by sage timg(T,).
, In this paper we presented a diagrammatic calculation
(P(t) >:Ae(1+ L+ minn,0])(1+L—max{n,0]) scheme which fully incorporates the effects coming from the
n,mo -

2(1+L) disorder on a random walk in a finite lattice, and in presence

W of an external incoming flow. The present generalization of
(1~ a) ta (4.14 FEMA was introduced to take into account the nonperturba-
sin(ma) ' tive effects appearing with the issue of strong disorder. A

formal self-consistent perturbation theofin the smallu

here we have used strong disorder Model C. This Iong't'm‘?_aplace variablewas presented for the particular situation

anomalous prediction has been checked with a Monte Carlg " . )

X : : when the boundary conditions are reflecting-absorbing. The
simulation. Figure 3 shows the excellent agreement betWeerneflectin boundary condition introduces some difficulties in
FEMA and the simulation. 9 y

The situation when the domain B, =[1,L,] instead of the formulation of.th.e perturbation theqry, neverthelezss we
_ ; s have overcome this issue by characterizing the eftu-)
D=[—-L,L] can also be analyzed in a similar way as we. duced in th lculati f th
have shown in Eq(3.4 introduced in the calculation of the propagatfy, appear-
e ing in the perturbation around FEMA. Thus, this method
gives a systemati@n smallu) procedure to work out reflect-

V. CONCLUSIONS ing boundary conditions.

The topic addressed here was the study of diffusion in a We have proof(in Appendix Q that FEMA gives the
finite disordered 1D lattice, in presence of a time-dependerf@Xact leading behavior, in the smallparameter, for models
incoming flowJe. Disorder was represented by random vari-Of disorder A and B. We also proved that for model C
ables appearing in the master equation ma#ixhis matrix ~ (Strong disorder FEMA gives the exact power lowong-
was split into a disordered and an ordered part. The fairlfime tai) and got the exaoD(u®) correction to the calcula-
general method FEMA, based on projection-operator techlion of the coefficient—which is overestimated by FEMA.
niques and Terwiel's cumulant, was generalized to tackle/ " mathematical details can be found in Appendixes A, B,
some special boundary conditions required for the preserﬁ"tnd C.
physical problem. This method was applied in detail to the
side-disorder modefweak and strongbut can also be ap-
plied to other models of disorder.

The inhomogeneous averaged probability distribution \.0.C. thanks Fundacion Antorchas and CONICET and
(P(t)n,m,) Was characterized in its long-time asymptotic re-wjishes to acknowledge its suppdi®rants No. A-13359/
gime. We have used arbitrary initial condition &ft) and and1-000050 and No. PMT-PICT0336nd also acknowl-
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— _ 2 2
APPENDIX A: THE GREEN’'S FUNCTION 800m—110m™)+L*(1815-855m

FOR THE REFLECTING-ABSORBING CASE —270m?+30m®) + L (734— 410m— 225m?
The problem of solving a finite-dimensional Green'’s +40m3+5m*) + (120 74m— 65m?
function such asGRA(t|0) with reflecting BC (between , W e o ,
{—L—1,—L}) and absorbing BCatn=L+1) is reduced to +15m°+5m”*—m>) Ju“+ O(u). (A4)

that of solving Eq.(2.17) with the infinite-dimensional op-
erator H'=[E*+E~—2] with suitable BC's. The RW ApPENDIX B: FEMA FOR REFLECTING-ABSORBING BC
method of the images consists of summing to the free _
Green'’s functionG?,(t|0), with indices inD, terms of the It was shown in the context of the FPT(Ref. 7) that
form iGEm(ﬂO) with k being the specular images ofwith strong disorder introduces nonperturbative effects Whlqh
respect to the boundary considered. In the case of the refledj€€d further rearrangement when compared to a perturbation
ing BC the images must be positive, and should be negativ&1€0TY for Weak.dlsorder. In order to establish Wheth.er the
through an absorbing mirror. From this fact it is possible toPr€Sent FEMA gives the exact result for the smaliehavior
see that the reflecting-absorbing BC’s are satisfied if wef (P(U)n,n,) We need to know some properties of the Ter-
write wiel cumulant$* appearing in the diagrammatic perturbation
theory(see Appendix € Here we are going to sketch FEMA
RA 0 ” 0 for reflecting-absorbing BC.
Gnm=Go,ot kZO (=1 GniaL+1)+k@aL+3),-m Following past experienéewe propose to do a sort of
N perturbative analysis around an effective medium to study
the u dependence ofGRA(u),, ). First of all, we write the

0
+|<§=:1 (—1 G, kaL+3),-m disordered version of Eq2.17) in the Laplace representa-
tion, adding and subtracting a homogeneous mean-field term

» . A[E*+E™ —2]R"=AHP, A being an arbitrary effective
+k20 (=G 1 2swaL+3)-nm rate to be determined below:
ke UP(U)n,m_ P(tzo)n,m:A[E++Ei_z]RAP(u)n,m
kr~0
& (U Craiam: (AD HETHE =21t &= A)

Using the fact that the free Green’s function time rep- XP(U)nm- (B1)

resentatiohis given by Here we understand that the notation

0 " _ Y 1y E* &P(U)nm= &n+1P(U) h+ 1 m. The superscript RA is put in
Con(tIt) =X =2 (=t jp-ml 2= )]; (A2)  order to remark that we are working in a finite-lattice with
reflecting-absorbing BC. In order to compare Eg§1) with
here 1, (7) is a modified Bessel function. In the Laplace Eq. (2.5), for J®*=0, note thatu+¢&,=w,, i.e., Eq.(B1)
representationt(—u) the sum(Al) can be evaluated. Thus corresponds to a site disorder model whérewith me b,
we obtain for the Laplace transformed Green's functiongre statistical independent random variables with mean value
GFA(U),m in the interval[—L,L] the expression2.10.  zero, and preserving the positive conditiop=0.
From Eq.(Al) it is possible to see that the BCratL+1 is By defining the quantitiesy,=w,— A, we can rewrite
fulfilled: GR*(u), . 1m=0. The reflecting BC is satisfied by Eq. (B1) in time representation:
the mirror construction located midway betweer(L+1)
and—L. 3P(t)=[AHP+®]P(t). (B2)
Another important quantity in the context of Terwiel's

cumulant theory is the propagatg{u), n=H°GRA(U), .  Here
From Eq. (Al) this quantity can be calculated. In the P RA D
asymptotic regime, operatiridE* +E~—2] on GRA(u) we OpP(Unm=[E"+E" = 2] 7P()nm=H"7P()nm.

get The average of EqB2) over the realization ofy, leads to

and effective evolution equatiofmon-Markovian. This av-
W) :_35 " 1+L—maxn,m) u+O(u?) erage can formally be carried out introducing a projector
nme M u? ' operatorP that averages over the disorder:
(A3)

(P)=PP, P=(P)+(1-P)P. (B3)
In order to work out an effective-medium perturba-
tion theory for the reflecting-absorbing problem, it is useful A close exact evolution equation can be obtained operat-
to know the asymptotic behavior ofAGRA(u)__,  ing with this projector technique:
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* tity is of O(u?). The steps made so far are formally the same
5t<P(t)>=AHD<P>+< > [0pM(1-P)]%0p ) (P), as those realized in Ref. 7 for the problem of averaging the
k=0 (B4) survival probability to obtain the MFPT to leave the domain
[—L,L]. In that paper a diagrammatic analysis of the pertur-
whereM is a finite-dimensional convolution operator: bation series was introduced. We remark that by the intro-
: duction of the random operatdr (A ,u), we have summed
- 1 ARA (1117 / up all the terms containing the diagonal parts
[ML(t)]“_% fodt G Ht)Lm(t"). B9 Tan(A,u)=T, . This is equivalent to one-loop perturba-
tion in field theory. Nevertheless note that in the present
Equation(B4) requires that the statistics of the random paper Eq(B6) is only an approximation, so this is different
variable, for each particular model are specified. Note thatwhen compared with original FEMA theofyTerwiel's dia-
Eqg. (B4) contains the Green’s function on a finite domain grams allow us to realize that the best electionfo(the still
D with reflecting-absorbing BC[i.e., Eq. (2.17 with  undefined mean fie)dis that given by the solution
u—A]. Introducing Terwiel’s cumulant of the random vari- (¥ (A,u))=0. This is the best choice in the sense that it
able »,,, using past experience and the explicit form@f allows the vanishing of an infinite number of diagrams. In
and HP, we can rewrite the evolution equaticiB4) (in  the present physical problem it is impossible to have
Laplace representatipin the following way: (¥,(A,u))=0 for all the values oh because the BC im-
plicit in the construction o5*A(A,u),, », destroys the trans-
U(P(U)n,my) = P(t=0)q m, lational invariance(see Appendix A Nevertheless, we can
" tentatively defineA by (¥ ,(A,u))=0 at some particular
:AHD<P(u)n,mO>+ s> Zilteecg(,)r?nd after this explore the consequences of such an
p=0 ny#ninp#ng - ;Np#Ny_q . . . .

In the following, A will be taken as the solution of

><<\I,n\I’nl' : 'q’np>T
(Po(A,u))=0. (B9)
Xjn,nljnl,nz'"jnpfl,anD<P(u)np,m0>! (86)

It will turn out that this election is a very convenient one
where the random operato¥ ,=¥ (A ,u)—acting on the  pecause, although it does not produce a drastic simplification
I’ight—has been defined as in Ref. 7 and the indiceﬁo the diagrams appearing in E(@6), it makes an approach
npeD: related to EMA usefuf. The analogous approximation in the

Mi(A,U) (A, U) present problem would consist of reducing E86) to

Wi(A,u)=M(A,u)—

1+ {M(A,U) T (A,u) u({P(u))—P(t=0)=AHP(P(u)),
XPM(A,U) (B7)  with A defined by Eq(B9) or, more explicitly, using Egs.
. (B7), (B8), and 7= wo— A:
with
wo— A > 0 (B10)
Mk =0,
Mk(A,U)EW- (B8) 1-(wo—A)To(A,U) (w)

Note that 5= 7,(u) through the implicit dependence on V}h|(c/:1 'j)E_q('l(zz;ﬁ_@;fﬁa;;"’GeRLd(i”tJ;’A:"H"(()é)R'A(“l’JC)JZ“" and
A. The propagatot/y n, = Jnn,(A,u)=HGFA(A, U)o, is ool A5 M) = 4J)o,0= 0,0-
given in terms of the free Green’s functi@i”. We remark
that in Eg. (B4 the true propagator is
jn,nl(A,u)zHDGRA(A,u)n,nl, but in Eq.(B6) HP has been
replaced byH° in the definition of 7, , . Noting that the In this appendix we study EdB6) in order to establish
indicesn,, in the sum(B6) run from —L to L, and that the whether the FEMA(for reﬂecting.—absorbing BCgives the
absorbing BC om=L+1 ensures thaBRA(A,u), ,,,=0, ©€Xact result for the smatl-behavior of(P(u), ). To this
we see that we can us§, n (A,u)= HOGRA(AaU)n,nl- Nev- end we need to use some properttes Terwiel’s cumulant:

ertheless the reflecting BC on the right frontier of the domain<\1, W, W)
D does not allow for this replacement. This is in remarkable* " "~ ™ np/ T

contrast to the case studied in Ref. 7 where the absorbing-

absorbing BC allowed for the simplificatidt®— H°. There- =PV, P1-P)V, (1=-P)---(1-P)¥,, (C)

fore, in order to be able to continue with the present pertur- . . "
bation theory, we ought to justify this replace?‘nent. P appearing in Eq(B6). Using the definition of the random

It is possible to check that the error introduced bygtprﬁgtj?gg ’teltrrlnsspc())fis'le?rlv?/i::cl)’ssiﬁr;ﬁ'fl;?;edemxgrtr? e;’::tcs:luster
doing this replacement is aP(u?). To see this, note that For the moments o, [see Eqs(B7) and(B8)] we shoW
the difference between jml(A,u)=H°GRA(A,u)mnl n q

D ~RA ) ) some explicit examples,
and Jnn, (A,u)=HPG"*(A,u),,, is characterized by
AGRA(A,U)_| . Thus from Eq(A4) we see that this quan- (W) =(M71) = (MPHNLMy), (C2

APPENDIX C: ANALYSIS OF CORRECTIONS
TO THE FEMA WITH REFLECTING-ABSORBING BC
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(W0 ,) = ( MyMy) — (MDHNY(MiMy) p=1, we get(\lfn\lfnl>T=O because of the statistical inde-
endence fon#n,). Therefore we will only be interested in
—(MIMN{My) P ) Y

Terwiel’s cumulant of the type
HMONMIMINA M), €3 for p=0, (¥ )1#0 if n#0

(VW ,W3) = (MyMoMz) = (MPONKMIMoMs) for p=2, (¥, ¥, ¥, )0,

—(MiMONK{ MM
(MMINAM2Ms) for p=3, (V¥ W, W) #0, (¥, ¥, W, ¥, )#0, etc.
—(MyMoMz)N3(Ms) (C9
F(MDONLMIMIN}{ Mo M3) Note from Eq.(B6) that indexn is fixed, so in Eq(C9),
repeated natural indices mean that they must be summed
HMMNHA MoM3) Na( M) with the corresponding’,, ., (nice drawings of these dia-
F(MPONY UMMM H N M) grams can also be designed, for example, in a similar con-
text; see Ref. b
—(MDONIUMIMINK Mo Mz)Na(Ms), Due to the fact that the present demonstration is similar to
(Ca) the one given in Ref. 7, we shall only give here a swift proof
i for models A, B, and C of disorder.
etc., where we have defined Weak disorderin this case and from EqB10),
_ T k(A,u) B2—(B1)?
Ni= T (MO T A ) (CH  A=p(u—0)=(By) Y 1+(L+1) T)u +O(u?).

C10
In order to know the Terwiel cumulagtV ¥, W3} we (10

have to use Eq¥C2)—(C4) in the cluster(C1) itself. Due to ~Remember thaﬁ_’k%(llw") is finite for all k. _
the fact that the Green’s function breaks the translational From the definitiongB7), (B8), and(C8) it is possible to
invariance there is not a drastic simplificatiin Terwiel's ~ See that the first important diagram is

diagram$ by demanding the FEMA condition, i.e(W )t Bo—(B1)?
#0 if n#0. For example, (W )~ — 23—1 nu+O(u?), (C1D)
1
(W1 WWa)r= (W1 W Wq) — (V1 )(VoWa) —(¥1¥2)(¥3) 5o the correction p=0 is beyond FEMA because
F (W W)W ). A_E,u(u=0)~(9(u_°). Note th_gt Eq.(C1) is in agreement
with the self-consistent conditioff o(A,u))+=0.
For more details see Ref. 7. The general analysis of correction comes from the follow-
Following past experience we introduce a convenient eXing considerations. For this cage(u)~O(u®), thus from
pression forM,, in Eq. (B8): Eq. (A3) Ty, ,n,~O(u") for n;#n,, and Ny~ O(u®). From
o Egs.(C6) and (C7) it follows that (M)~ O(u®) for all N,
M”:[A+R“]wnTR’ (ce)  therefore Terwiel's cumulants, such &89), are of O(u°)
n n

[see Egs(C2)—(C4)]. With all this information we can see
where we have useg,=w,— A and the definition from Eq. (C8) that any corrections frorp+# 0 are ofO(uP).
Then FEMA is the dominant contribution for weak disorder.
1 ) Due to the fact that the diagram for=1 vanishes, we see
Rop=—A- J—“—‘(LJr 1-nu+O(u)=gpu+---. that the first correctiong=0) beyond FEMA—and consis-
nn (c7) tent with the analysis of reflecting-absorbing BC—is given
by Eq.(C11). The contributiorp=2 cannot be considered in
Note that in the asymptotic behavior we have assumGths case because the error introduced in Bﬁ) was
lim,_o(u/A)—0. This fact is true for all types of disorder ¢(y2?), as we noted in EqA4). Therefore, for weak disorder
considered in this paper. In order to estimate the contributiocgpa gives the exact leading order. On the other hand, the
coming from thediagrammaticterms of Eq(B6) we have to  present approach allows us to go beyond FEMA. For model
evaluate A and up toO(u) the long-time evolution equation is char-

. acterized by
<\I,nq,nl' : 'anp>T~7n,nljn1,n2'"jnpfl,np if pio’

P —P(t=0 —|p-1_ M
(w,) if p=o0. (9 U(P(U)n my) = P(t=0)n m = | B1 5, M
If these contributions are smaller thah=u(u), FEMA ><HD<P(U)nm ). (C12
would not need any correction from diagrams witk 0. oo
Even when the indices, run from —L to L there exists From Eq.(C12 we see that a®(u), the variance of the

an infinite number of those diagrams with different values ofquenched disorder turns out to be important. The correction
p. Among these diagrams, all of them with different verticesto go beyond FEMA, Eq(C12), introduces explicih depen-
will vanish due to the Terwiel propertyfor example, if dence in the coefficient of the finite master equation; never-
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theless, standard methddsan be used to tackle E¢C12). 1] n
A similar situation appeared in the study of the FPTD in U(P(U)nm)—P(t=0)ym = 1+ Inf 1—

; o o |Inul[~ " [Inu] L+1
presence of bia$.

Disorder model BFor this case using EgB10) we get X HD(P(u)n,m()). (C19
1 Ingg Strong disorder model CFor this case, using E¢B10)
A=p(u~0)= Tinu] 1+ o] ) (€13 and taking the average in EGC6) with care, it is possible to
see that
with g, defined in Eq(C7). From Eq.(A3) we get )
do a a I N [Ry(w]*  (L+1)*sinma
M u~ — UCK,
1 1+L—maxn,m) , (1-a)B(l—a,a) (1—a) 20
JWnm=— 7 mt u+O(us).

A 2
A (C14  Wwith R,y defined in Eq.(C7) and whereB(x,y) is the B
function (note that the difference in the effective rate with
Ref. 7 is a factor 2). As before we know thaff(u), n, is
given by Eq.(C14) with A characterized by EqC20), and
from Eg. (C5 N,~O(—1/A). Using Egs.(C6) and(C7) it

is possible to see that

Thus, from Eq.(C5) in the smallu limit we obtain

+ In%

A== A Yo

(C1H

(My=[1-(L+21)*(L+1—n)“]A,

In general for model B, using Eq$C6) and (C7) it is
possible to see that (MNy=0[ = (A?/u)Nu~]. (C21)

Note that(M,,) is in agreement with the self-consistent con-

(M) = Azlng” In( 1— n ) dition {( M,)=0. From Eqs(C20) and(C21) we can see that
n 9o |Inu|? L+1)’ the leading contributior(for small u) in the moments of
M, are characterized for the mean value:
N\ __ _ A2 N
(Mp)y=u(—A“lu)™. (C1e (Mo My - My M, - .anan>~(A2/u)p+1u|(1—a)’

o . . 22
Note that(.M,,) is in agreement with the self-consistent con- (€22

dition  (Wo(A,u))r=(Mo)—No(Mo)*=0. Using Egs. in WhICh only| of the indices{ng,n;, ... ,n,} are different
(C13—(C19), it is possible to see that the leading contribu- (Zj'mj=p+1).

tion (for small u) in the type of diagrams appearing in EQ. = We remark that now there is a difference with model B;
(C9 are characterize@isee Eqs(C2—(C4)] for the mean here all the partitions appearing in the moments such as
values (W W, - -\Ifnp> are of the same order. See, for example,

Egs.(C2—(C4). Thus a specific coefficient must be consid-
(MM - Mp M, - -an/\/lnp> ered in front of a term such g\, M, -- -an).
Using Egs(C14) [with A given by Egqs(C20)] and(C22
~<M::1><Mi”2‘2>, : '(M:'>NU|(A2/U)N11 (€17 we prove that the corrections in E(C8) are of the order

in wh|ch only! of the indices{ng,ny,- - -,n,} are different ~u' (A2 U)PT LU/ A P=O[ (A% u)u' @]

(E m;=p-+1). Thus, using Eq4C14) and(Cl?) we prove

that the order of correction in E4CS8) is if p=2,
~Uu'(A2u)PTL(u/ADP=0[U'(A%/u)] if p=2, O(A) if p=0. (C23

9 This means that FEMA gives the correct power low for
O(Azln—”) if p=0. (C19 small u but, as we have remarked before, its coefficient
90 needs a correction from the diagram corresponding to
p=0. Forp=2 the corrections are independentmfthus in
This means that FEMA gives the exact leading contribu-order to obtain higher systematic correctionsiian infinite
tion for smallu. Note that forp=2 the corrections are inde- number of diagrams with different values @f must be
pendent ofp, thus in order to obtain higher systematic cor- summed up.
rections to FEMA, an infinite number of diagrams with  In order to estimate the importance of the correction in the
different values op=2 must be summed up. Beyond FEMA coefficient of FEMA—for strong disorder model C—we
and up toO(A?)—for model B—we should consider the should solve the equation which contains the whole domi-
long-time evolution equation nantO(u®) dependence:
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U<P(u)n,m0>_ P(t:O)n,mO Previous experience has also shown similar conclusions.
For the present problem and in the case=(0.8) theerror
introduced in the coefficient was about 19% for a lattice of
L=1. This fact can be seen in our figures where the agree-
ment with the power law is excellent, but there is a little
L+1 |22 constant shift when compared with the Monte Carlo simula-
m) } ]HD<P(U)n,mO>- (C24  tons. » .
Thus we have finished the proof that for reflecting-
This last expression has been obtained by considering trbsorbing BC problems, FEMA gives the correct leading
Terwiel cumulan{ ¥ ) 1= (M) — (M) Na(M,) in the dia- ~ smallu behavior ofP(u), ) (for all the types of disorder

o

L+1

=A L+1-n

1+]1-

grammatic representatiqic8). considered in this paper
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