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In the presence of a time-periodic incoming flow the diffusion problem on finite random media has been
studied. Particular importance has been stressed on different boundary conditions~reflecting or absorbing!. The
problem has been worked out by generalizing the finite effective-medium approximation~FEMA!. Thus a
perturbative theory, in the time-asymptotic regime, has been built up in the Laplace representation~small-u
parameter! for weak and strong site disorder. This theory separates in a natural way the contribution given by
the effective medium~from other higher-order corrections! which appears as the zeroth-order step in the
perturbation scheme. Asymptotic results for the current of probability~inside the finite domain! are obtained
for different time-dependent incoming external flows. Exact results beyond FEMA are obtained for the low-
frequency behavior of the evolution equation for the averaged Green’s function on a finite lattice. Monte Carlo
simulations have been carried out in order to compare them with our theoretical predictions. In the absence of
an incoming external flow, the problem of the first passage time distribution through only one frontier~in a
random media! and for different boundary conditions has been revisited.@S0163-1829~97!01033-3#
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I. INTRODUCTION

Diffusion on random media has been a topic of lon
standing interest, particularly because of its success in
scribing conductivity in amorphous materials.1 Analytic
techniques have been used to tackle this problem; spe
roles are played by the effective-medium approximat
~EMA!,2 the continuous-time random-walk theory,3 and its
multistate approach.4

It is known that EMA gives the correct anomalous exp
nents for unbiased walks;1,5 more complex systems, such a
conductivity in granular metal film,6 can also be described i
the context of EMA. Also the study of the first passage tim
distribution ~FPTD! in random media7,8 has been done with
success in the context of the finite effective-medium appro
mation ~FEMA!. Recently the FPTD has been studied
presence of bias9 to get a direct access to the fluctuation
the quenched disorder, and to the evaluation on the m
time for particles to go across a random medium.

In random media, of particular importance is the study
the one-dimensional~1D! averaged probability distribution
with special boundary conditions because this quantity c
ries information about the scaling properties on a finite s
tem. In the presence of arbitrary boundary conditions, w
or strong disorder can, in principle, be worked out by do
560163-1829/97/56~10!/5897~12!/$10.00
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a similar analysis as the one done with FEMA„i.e., in order
to study the FPTD to leave a finite domainD5@2L,L# ~Ref.
7!….

In this paper we are interested in the study of the avera
probability distribution in the presence of periodically force
boundary conditions—on one extreme of the lattice. The
fore by studying the output flow of probability—close to th
opposite extreme—we will be able to predict the type
disorder ~in the sample! by measuring the time-depende
behavior of the probability distribution at the end of the la
tice. The goal of this work is to study this profile in porou
media,10 giving in this way a direct access to the experime
tal measures made with the frequency response method,11 or
in the trap-limited electronic transport investigated by inte
sity modulated photocurrent spectroscopy.12

II. THEORY

Let us consider a general one-step Markovian rand
walk ~RW! in a finite chainD[@2L,L#. The forward master
equation has the general form13

] tP~n,tun0 ,t0!5(
n8

Hn,n8P~n8,tun0 ,t0!, ~2.1!
5897 © 1997 The American Physical Society
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5898 56MANUEL O. CÁCERESet al.
where P(n,tun0 ,t0) is the probability of being at siten at
time t with the condition to start atn0PD at timet0,t. Here
Hn,n8 is a finite square matrix whose indices run over t
sites in the chainnPD.

Disorder is described as assigning a probability to e
possible configuration of the hopping transition probabil
vn61,n , per unit time, from siten to n61 of the chain. This
assignment of probabilities defines a RW in random me
The statistical properties of this RW process can be obta
by averaging, over configurations of disorder, the expr
sions for the quantities of interest obtained for fixed hopp
transitionsvn61,n .

We are interested in the particular situation when the m
ter HamiltonianHn,n8 models strong or weak disorder, an
the diffusion is forced to time-periodic boundary conditio
~BC! on site 2(L11), and to a static absorbing BC o
L11; i.e., at the left frontier ofD we have a dynamic BC
and on the right frontier we have a static one. Let us cons
a site-disorder model so that we can use the short nota
vn61,n[vn . If from the left side we introduce a flowJ2L

e

~on site2L) the evolution equation for the conditional pro
ability P(2L,tun0 ,t0)[P(t)2L,n0

will read

Ṗ~ t !2L,n0
5v2L11P~ t !2L11,n0

2v2LP~ t !2L,n0
1J2L

e .
~2.2!
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The right side ofD is assumed to be an absorbent site,
the evolution equation for the conditional probabili
P(L,tun0 ,t0)[P(t)L,n0

is

Ṗ~ t !L,n0
5vL21P~ t !L21,n0

22vLP~ t !L,n0
. ~2.3!

The rest of the equations forP(t)n,n0
~for nÞ6L) remain

unchanged:

Ṗ~ t !n,n0
5vn11P~ t !n11,n0

1vn21P~ t !n21,n0
22vnP~ t !n,n0

.
~2.4!

The total set of equations forṖ(t)n,n0
can be written in a

compact form. Consider a master HamiltonianHn,n8
RA repre-

senting reflecting and absorbing boundary conditions on s
6(L11). Then introducing the matrix currentJn,n0

e , the

problem posed from Eqs.~2.2! to ~2.4! can be rewritten as

Ṗ~ t !n,n0
5(

n8
Hn,n8

RA P~ t !n8,n0
1Jn,n0

e , ~2.5!

whereP(t), HRA, andJe are (2L11)3(2L11) matrices.
The master HamiltonianHn,n8

RA is
HRA[1
2v2L v2L11 0

v2L 22v2L11 •••

0 v2L11 ••• •

••• 0 ••• ••• •••

••• • ••• 0 •••

• ••• vL21 0

••• 22vL21 vL

0 vL21 22vL

2 ~2.6!
-
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and matrixJe represents an incoming flow at site2L:

Jn,n8
e

5Je~ t !dn,2L . ~2.7!

Taking the Laplace transform$t↔u% in Eq. ~2.5!, the
formal solutionP(u) is

P~u!5~u12HRA!21@P~ t50!1Je~u!#. ~2.8!

For the particular case when the current is a constant in t
we get for the Laplace transform of Eq.~2.7!

Je~u!5
1

u
Je.

Therefore in general the average over the disorder giv

^P~u!&5^GRA~u!&@P~ t50!1Je~u!#. ~2.9!
e

s

Here we have assumed that the initial conditionP(t50)
and the currentJe(u) do not depend on the different configu
rations of disorder, thus we only need to know the avera
Green’s function^GRA(u)&5^(u12HRA)21&. This matrix
can be calculated in the context of an effective media.
course the averaged Green’s function will depend on the
ticular BC that we impose on the master HamiltonianH. For
the absorbing-absorbing case this calculation was done u
Terwiel’s cumulant7,14 by introducing a diagrammatic pertur
bation theory. This perturbation corresponds to the one-l
resummation in diagrammatic representations, known as
single-site approximation in condensed matter.5

By using the method of images15 we have worked out in
Appendix A the correspondingordered Green’s function
GRA(u); i.e., with reflecting-absorbing BC. In Appendix B
we have summarized the mathematical details to ob
^GRA(u)&. Section IV is concerned with the absorbin
absorbing case with an incoming flowJe at any arbitrary site
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56 5899THEORY OF DIFFUSION IN FINITE RANDOM MEDIA . . .
ne and considering different domainsD5@2L,L# and
D15@1,L1#.

The result for the reflecting-absorbing case, withm,n
PD[@2L,L#, gives

GRA~u!n,m5B~u!@Aun2mu1KA2L11Rnm#, ~2.10!

where

Rnm[Rnm~u!5An1m2A4L1n1m131A6L2n1m15

2A2L2n1m122A2n2m111A4L2n2m14

1A6L1n2m152A2L1n2m12, ~2.11!

A[A~u!511
u

2m
2F u

m
1

u2

4m2G 1/2

, ~2.12!

K[K~u!5~12A8L16!21, ~2.13!

B~u!5
1

2mF u

m
1

u2

4m2G21/2

, ~2.14!

andm is the hopping transition rate~see Appendix A!.
The long time limit of the Green’s function~2.10! can be

studied by analyzing the limitu→0 in its Laplace represen
tation:

GRA~u!n,m>
~11L2max@n,m# !

m
1O~u3/2!; ~2.15!

heren,mPD.

A. Taking the average in a site-disorder model

As we have mentioned before, a diffusion process in r
dom media forced to a dynamic and static BC is charac
ized by Eq.~2.9!. For the particular reflecting-absorbing sit
ation, the effective hopping transitionm(u) must be obtained
from the self-consistent equation~see Appendix B!

K v2m~u!

12@v2m~u!#H0GRA~u!
L

P~v!

50; ~2.16!

hereP(v) is the probability measure characterizing the ty
of disorder on the random medium and

H05@E11E222#

is the ordered master Hamiltonian for an infinite lattic
whereE6 are shifting operators:

E6GRA~u!n,m5GRA~u!n61,m .

The ordered Green’s functionGRA ~in time representa-
tion! is the solution of the initial-value problem

] tG
RA~ tut8!5mH0GRA~ tut8!, ~2.17!

GRA~ tut !51,

with absorbing BC atn5L11:

GL11,m
RA ~ tut8!50
-
r-

,

and a reflecting BC placed midway between si
n52(L11) and2L.15 The solution of Eq.~2.17!, in the
Laplace representation, is the one given by Eq.~2.10!.

The average over the disorder is easily obtained by
placingm→m(u) in Eq. ~2.10!, i.e.,

^GRA&5@GRA#m5m~u! . ~2.18!

Another important quantity in Eq.~2.16! to work out is
J(u)n,m[H0GRA(u)n,m , which in the asymptotic regime
~see Appendix A! is characterized by

J~u!n,m>2
1

m
dn,m1

11L2max~n,m!

m2
u1O~u2!.

~2.19!

Specifying the probability measureP(v) and using Eq.
~2.19! in Eq. ~2.16! we can obtain in a self-consistent wa
m(u), and therefore we can study different random med
The type of disorder that we have considered in this pape
the same that one of us studied in Ref. 7. Thus from
~2.16! we get:

~1! For weak disorder~model A of Ref. 1!, all the inverse
moments bk[^1/vn

k&, k51,2, . . . , are finite, therefore,
from Eq. ~2.16! in the u→0 limit we get

m~u50!215^1/v&P~v!5b1 . ~2.20!

~2! Model B of Ref. 1. The probability distribution fo
each statistical independent variablevn is

P~v!5H 1 if vP@0,1#,

0 otherwise,

therefore from Eq.~2.16! in the u→0 limit we get

m~u!>2~ lnu!21S 12
ln~L11!

lnu
1••• D . ~2.21!

~3! Model C of Ref. 1. The probability distribution fo
each statistical independent variablevn is

P~v!5H ~12a! v2a if vP@0,1#,

0 otherwise,

therefore from Eq.~2.16! in the u→0 limit we get

m~u!>~L11!a
sin~pa!

p~12a!
ua. ~2.22!

Using these effective hopping transitionsm(u) we can
calculate from Eqs.~2.9! and ~2.18!—for different type of
disorders—the long-time limit behavior of the averag
probability distribution for the proposed problem. We wa
to remark that FEMA, as well as EMA, give the corre
exponent in the asymptotic long-time regime, neverthel
for strong disorder the coefficient ofm(u) is overestimated
~see, for example, Refs. 7 and 5 and Appendix C!.
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B. The long-time limit

Let us consider the weak disorder model A and the s
ation when the currentJe is constant in time. In this case w
get from Eqs.~2.7!, ~2.9!, and~2.18! in the u→0 limit

^P~u!n,n0
&;(

m

11L2max@n,m#

m~u! FP~ t50!1
1

u
JeG

m,n0

.

~2.23!

For this case, from Eq.~2.20! m(u50)5^1/v&21, then us-
ing the matrix expression ofJm,n

e we immediately see that in
the long-time regime and for weak disorder, the avera
RW probability distribution is given by

^P~ t !n,n0
&;JeK 1

v L ~11L2n!. ~2.24!

Therefore we have got, inside the lattice, a renormalized
rent flow of probability; its time-scale is now characteriz
by the disorder in terms of the inverse moment^1/v&21. As
expected, in the long-time regime the probability distributi
^P(t)n,n0

& is independent of the initial conditionn0 and it has

its minimum at the absorbing barrier^P(t)L,n0
&;Je^1/v&.

Model B of disorder gives

^P~ t !n,n0
&;Je~ lnt1g!~11L2n!; ~2.25!

hereg50.5772156••• is the Euler’s constant, and we hav
taken from Eqs.~2.21! and~2.23! the inverse Laplace trans
form of the dominant contribution (lnu/u).

Let us now consider the strong disorder model C. In t
case from Eqs.~2.22!, ~2.23! and using a Tauberian theore
we get

^P~ t !n,n0
&;Je~11L2n!~L11!2a

p~12a!

sin~pa!
ta.

~2.26!

These remarkable results, show that, for strong disor
the averaged RW probability distribution increases w
time. We can understand this result if we think that the d
order promotes the localization of the diffusion particles a
therefore the particles cannot freely diffuse in a disorde
lattice. This fact is ultimately responsible for the increase
the probability distribution in the long-time regime. Figure
shows the comparison of our theoretical predictions
strong disorder against Monte Carlo simulations. We rem
that this power low is an exact result in the asymptotic
gime. Nevertheless, as was pointed out before, the cor
coefficient of^P(t→`)n,n0

& for strong disorder is overesti
mated in the framework of FEMA~see Appendix C!.

C. Time-periodic boundary condition

Of particular importance, in solid state physics, is the
havior of the averaged probability distribution in presence
a periodic incoming flow of particles. This problem can al
be studied in terms of the analysis that we have carried ou
the previous sections. To do this we just need to introduc
time-periodic current in Eq.~2.7!. Let for example the cur-
rent be proportional tousin(Vt)u; in this case the long-time
regime of the averaged probability distribution is charact
-

d

r-

s

r,

-
d
d
f

r
rk
-
ct

-
f

in
a

r-

ized as before by Eq.~2.23!, but now considering the
Laplace transform of Eq.~2.7! with Je(t);usin(Vt)u, and
P(t50)50 we get

^P~u!n,n0
&;

11L2n

m~u!

V

u21V2
cothS pu

2V D . ~2.27!

As before the disorder enters in the explicit expression
the effective hopping transition ratem(u). For the time-
periodic case it must be understood that the long-time limi
also a time average over one period of time 2p/V. Thus in
order to get a nonzero average current we could consid
periodic modulation superimposed over a constant flowAe,
so we show here a typical time-periodic modulation su
as16

Je5Ae2cosVt. ~2.28!

Therefore we have to use

Je~u!n,n85F1

u
Ae2

u

u21V2Gdn,2L ~2.29!

for the Laplace representation of the matrixJe(u) appearing
in Eq. ~2.9!. Thus in presence of the incoming flow~2.28! on
site n52L, the long-time averaged RW probability distr
bution is given by

^P~u!n,n0
&;

11L2n

m~u! S 1

u
Ae2

u

u21V2D , ~2.30!

wherem(u) is given by Eqs.~2.20!–~2.22! depending on the
type of disorder. In Fig. 2 we show—at the long-tim
regime—the comparison of our theoretical predictions@from
Eq. ~2.30! for strong disorder#

FIG. 1. Disorder-averaged RW probability distribution at s
n5L, plotted as a function of time for strong disorder~model C
with a50.8) and in the presence of an external incoming cons
flow Je51 at sitene52L. The inset shows the same function fo
different positions@from top to bottomn (521,0,1)#. All the
plots correspond to a lattice withL51. The continuous line is the
FEMA result and the dotted line is the Monte Carlo simulatio
with 105 realizations.
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^P~ t !n,n0
&;Ae~11L2n!~L11!2a

p~12a!

sin~pa!
ta

~2.31!

against the corresponding Monte Carlo simulations. T
agreement is very good for all types of disorder~strong or
weak!. Note that other dynamical incoming flows can also
considered in the framework of the present theory, just
changingJe(u)n,n8 .

Thus we see that due to the strong disorder there wil
an increasing current of probability at siten5L @i.e.,
^P(t)L,n0

&;ta#. This is a remarkable result that is on
present in strong disordered random media. Thus, form
~2.31! provide a way to classify different types of materia
by using a suitable experimental device which measures
out-coming flow of probability on the opposite side of th
sample.

III. MEAN FIRST PASSAGE TIME

In Ref. 7 the FPTD—in random media—to leave the
terval @2L,L# was investigated taking into account differe
types of disorder. A related problem is the calculation of
first passage time through a specific frontier, i.e., for
ample, through the siten5L. This physical problem can b
mapped into the calculation of the survival probability in t
presence of an absorbing siten5L11 and a reflecting one
midway between sites (2L21,2L). Thus the results of the
previous sections can be used to calculate the required M
in disordered media.

As we have mentioned before, a diffusion process in r
dom media with reflecting-absorbing frontiers can be a
lyzed by using Eq.~2.9!. For the particular situation whe
J2L

e 50 the FPTD through the bordern51L can be studied
in terms of the survival probabilityFn0

(tut0), i.e., the prob-

ability to still be in D if the walker had started at timet0

FIG. 2. Disorder-averaged RW probability distribution at s
n5L, plotted as a function of time for strong disorder~with
a50.8) and in presence of an external incoming time-periodic fl
Je(t)522cost at sitene52L. The inset shows the same functio
for different positions@from top to bottomn (521,0,1)#. All the
plots correspond to a lattice withL51. The continuous black line is
the FEMA result, and the shaded lines correspond to Monte C
simulations with 105 realizations.
e

e
y

e

as

he

-

e
-

T

-
-

from siten0. Thus distributionFn(tu0) fulfills the evolution
equation

] tF~ t !5@HRA#†F~ t !, ~3.1!

where the matrix@HRA#† is the adjoint of the one given in
Eq. ~2.6! and F(t) is a vector with components
@F(t)#n[Fn(t). The initial condition for Eq. ~3.1! is
Fn(t50)51 for all nP@2L,L#[D. For the ordered case
the exact solution of Eq.~3.1! in the Laplace representatio
is

Fn~u!5B~u!H (
m52L

n21

An2m1 (
m5n

L

Am2n

1 (
m52L

L

KA2L11RnmJ , ~3.2!

whereRnm , A, K, B(u) were given in Eqs.~2.11!–~2.14!.
From Eq.~3.2! it is simple to calculate the exact expressi
of the MFPT,Tn5*0

`Fn(t)dt[Fn(u50):

Tn5
215L13L22n22Ln2n2

2m
. ~3.3!

In random media, the average MFPT can be calculate
the framework of the present perturbation theory~see Appen-
dix B! by introducing the effective media. Thereforem has to
be replaced by the effective hopping transitionm(u) solution
of the self-consistent Eq.~2.16!.

It could be necessary to know the equivalent formu
~3.3! for a different domain, i.e., for example,D1[@1,L1#
with the reflecting BC atn50 and the absorbing one a
n5L111. Therefore instead of Eq.~3.3! we get

Tn1
5

1

2m
@L1~L111!2n1~n121!#. ~3.4!

Note that with the scalingn1[L111n and L152L11
from Eq. ~3.4! we reobtain Eq.~3.3!.

MFPT through n51L for disordered media.
~1! Disorder model A: using Eq.~2.20! in Eq. ~3.3! we get

^Tn&5
215L13L22n22Ln2n2

2 K 1

v L . ~3.5!

~2! Disorder model B: for this case the MFPT diverge
Using Eq.~2.21! we get the following divergency low:

2
215L13L22n22Ln2n2

2
lim
u→0

lnu. ~3.6!

Thus the same localization phenomena—as for the case
two absorbing frontiers—occurs for the present proble
The only difference with Eq.~4.25! of Ref. 7 is the coeffi-
cient of proportionality.

~3! Disorder model C: for this case the MFPT also d
verges. Using Eq.~2.22! we get the following power low:

215L13L22n22Ln2n2

2
~L11!2a

p~12a!

sin~pa!
lim
u→0

u2a.

~3.7!

lo
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As expected there is also localization due to the strengt
the disorder. The difference with Eq.~4.29! of Ref. 7 is the
coefficient.

We remark that for weak disorder the MFPT pass
through the frontier n51L is proportional to
(215L13L22n22Ln2n2). This coefficient is quite dif-
ferent from the MFPT leaving the domainD4@2L,1L#,
which is proportional to the distance between the initial p
sition leaving the nearest neighboring frontier.

For weak disorder and when the domain isD1[@1,L1#
the averaged MFPT can be analyzed in a similar way as
done in Eq.~3.4! for the ordered case.

IV. INCOMING FLOW AT ANY ARBITRARY SITE

In order to consider other geometrical~physical! problems
it could be interesting to know the average probability d
tribution for other types of BC, and the position for the i
coming flowJn

e . In this case the problem must be reform
lated considering a master HamiltonianHn,m

AA , which in fact
is quite similar to the one written in Eq.~2.6!, with the only
difference being its elementH2L,2L

AA 522v2L . To solve
this problem we need to know the Green’s function for t
absorbing-absorbing case, which has already been obta
in Ref. 7.

As in Sec. I, we are interested in the particular situat
whenHn,n8

AA models strong or weak site disorder. But now w
consider the situation that there is an incoming flow~in gen-
eral, time periodic! on the arbitrary sitene. Thus the BC to
be considered are absorbing sites6(L11). Other BC’s
could also be considered in a similar way.18 The evolution
equation for the probabilityP(t)n,n0

will now read

Ṗ~ t !n,n0
5(

n8
Hn,n8

AA P~ t !n8,n0
1Jn,n0

e , ~4.1!

where, as before, the P(t), HAA, and Je are
(2L11)3(2L11) matrices. HereJe(t) represents an in
coming flow on sitene, thus their elements are characteriz
by

Jn,n8
e

~ t !5Je~ t !dn,ne. ~4.2!

As before, in the Laplace representation, the formal so
tion of P(u) is

P~u!5~u12HAA !21@P~ t50!1Je~u!#

[GAA~u!@P~ t50!1Je~u!#, ~4.3!

where, in general, the currentJe(u), from Eq. ~4.2!, is a
Laplace-dependent function.

The ordered Green’s function7 has elementsn,m given by

GAA~u!n,m5B~u!K~u!@Aun2mu2A2L12~A2~n1m!1An1m!

1A4L14~A2un2mu!#, ~4.4!

where

A[A~u!511
u

2m
2F u

m
1

u2

4m2G 1/2

, ~4.5!
of

-

as

-

ed

n

-

K~u!5~12A4L14!21, ~4.6!

B~u!5
1

2mF u

m
1

u2

4m2G21/2

. ~4.7!

The long-time limit of this Green’s function is obtaine
by taking theu→0 limit in its Laplace representation:

GAA~u!n,m>
~11L1min@n,m# !~11L2max@n,m# !

2m~11L !

1O~u3/2!; ~4.8!

here, as before,n,mPD.
The disordered case can now be studied by changingm to

m(u), the effective hopping transition rate which is solutio
of an analogous self-consistent equation

K v2m~u!

12@v2m~u!#H0GAA~u!
L

P~v!

50. ~4.9!

For this particular absorbing-absorbing case, the effec
hopping transition ratem(u) has been calculated in Ref. 7
Therefore in the asymptotic regime we get from Eqs.~4.3!
and ~4.8! in the u→0 limit

^P~u!n,n0
&>(

m

~11L1min@n,m# !~11L2max@n,m# !

2m~u!~11L !

3@P~ t50!1Je~u!#m,n0
. ~4.10!

Using the matrix representation ofJm,n
e ~for Je5const in

time! we immediately see that for weak disorder, the av
aged RW distribution is nonhomogeneous on the lattice
is given by

^P~ t !n,m0
&>JeK 1

v L
3

~11L1min@n,ne# !~11L2max@n,ne# !

2~11L !
.

~4.11!

Model B of disorder gives

^P~ t !n,m0
&

>Jeu lntu
~11L1min@n,ne# !~11L2max@n,ne# !

2~11L !
.

~4.12!

Considering strong disorder, model C, we get

^P~ t !n,m0
&>Je

~11L1min@n,ne# !~11L2max@n,ne# !

2~11L !

3S L11

2 D 2a p~12a!

sin~pa!
ta. ~4.13!

The disordered case with a time-periodic incoming flo
Je(t)5Ae2cosVt ~at sitene50), is immediately obtained
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from Eq. ~4.10! by changing Je→Je(u)5@(1/u)Ae2u/
(u21V2)], using the Laplace transform of Eq.~2.28!. The
averaged RW probability distribution inside the sample
given by

^P~ t !n,m0
&>Ae

~11L1min@n,0# !~11L2max@n,0# !

2~11L !

3S L11

2 D 2a p~12a!

sin~pa!
ta; ~4.14!

here we have used strong disorder Model C. This long-t
anomalous prediction has been checked with a Monte C
simulation. Figure 3 shows the excellent agreement betw
FEMA and the simulation.

The situation when the domain isD15@1,L1# instead of
D5@2L,L# can also be analyzed in a similar way as w
have shown in Eq.~3.4!.

V. CONCLUSIONS

The topic addressed here was the study of diffusion i
finite disordered 1D lattice, in presence of a time-depend
incoming flowJe. Disorder was represented by random va
ables appearing in the master equation matrixH. This matrix
was split into a disordered and an ordered part. The fa
general method FEMA, based on projection-operator te
niques and Terwiel’s cumulant, was generalized to tac
some special boundary conditions required for the pres
physical problem. This method was applied in detail to
side-disorder model~weak and strong! but can also be ap
plied to other models of disorder.

The inhomogeneous averaged probability distribut
^P(t)n,m0

& was characterized in its long-time asymptotic r

gime. We have used arbitrary initial condition onP(t) and

FIG. 3. Disorder-averaged RW probability distribution~over
strong disordera50.8) at siten5L, plotted as a function of time
and in the presence of an external incoming time-periodic flo
Je(t)522cost ~at site ne50). Note that in this plot the BC are
absorbing-absorbing and the lattice has five sites~i.e., L52!. The
continuous black line is the FEMA result and the continuous g
line is the Monte Carlo simulation with 105 realizations.
s
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external incoming flow, which let us apply our method
different dynamical models ofJe(t). Particular importance
was put on the case when the flowJe(t) is periodic in time.
In that case the asymptotic probability^P(t)n,m0

& was also
characterized depending on the degree of disorder.

In the strong disorder case~Model C!, and when the in-
coming external flow~applied on the left side ofD) is time
periodic @i.e., Je(t)5Ae2cosVt# an anomalous long-time
behavior was found:̂P(t)n,m0

&;ta. Note that for weak dis-

order the expected probability current on the right side ofD
should be constant. This method provides a very cl
mechanism for characterizing~experimentally! the presence
of strong disorder on the sample. In general, and for a
arbitrary time-periodic incoming flow, the degree of disord
~into the sample! can be characterized by measuring t
slope of the log-log plot̂P(t)n,m0

& as a function of time. For
the weak disorder case the present approach gives, imm
ately, the quantitŷ1/v& by analyzing the current probability
given in Eq. ~2.24!. Thus the transport of photogenerate
carriers through a porous network, consisting of nanome
sized particles,12 can theoretically be studied by the prese
approach. Work along this line is in progress and will
presented elsewhere.

Also the problem of the first passage time through o
frontier (1L) was revisited. The exact behavior of the ave
aged mean first passage time was found. Generalization
other domains such asD5@1,L1# was also given. As was
reported before in a related problem,7 models B and C of
disorder predict a divergence in the averaged mean first
sage timê Tn&.

In this paper we presented a diagrammatic calculat
scheme which fully incorporates the effects coming from
disorder on a random walk in a finite lattice, and in presen
of an external incoming flow. The present generalization
FEMA was introduced to take into account the nonpertur
tive effects appearing with the issue of strong disorder
formal self-consistent perturbation theory~in the small-u
Laplace variable! was presented for the particular situatio
when the boundary conditions are reflecting-absorbing. T
reflecting boundary condition introduces some difficulties
the formulation of the perturbation theory, nevertheless
have overcome this issue by characterizing the errorO(u2)
introduced in the calculation of the propagatorJn,m appear-
ing in the perturbation around FEMA. Thus, this meth
gives a systematic~in smallu) procedure to work out reflect
ing boundary conditions.

We have proof~in Appendix C! that FEMA gives the
exact leading behavior, in the small-u parameter, for models
of disorder A and B. We also proved that for model
~strong disorder!, FEMA gives the exact power low~long-
time tail! and got the exactO(ua) correction to the calcula-
tion of the coefficient—which is overestimated by FEMA
The mathematical details can be found in Appendixes A,
and C.
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APPENDIX A: THE GREEN’S FUNCTION
FOR THE REFLECTING-ABSORBING CASE

The problem of solving a finite-dimensional Green
function such asGRA(tu0) with reflecting BC ~between
$2L21,2L%) and absorbing BC~at n5L11) is reduced to
that of solving Eq.~2.17! with the infinite-dimensional op-
erator H05@E11E222# with suitable BC’s. The RW
method of the images consists of summing to the f
Green’s functionGnm

0 (tu0), with indices inD, terms of the
form 6Gkm

0 (tu0) with k being the specular images ofn with
respect to the boundary considered. In the case of the refl
ing BC the images must be positive, and should be nega
through an absorbing mirror. From this fact it is possible
see that the reflecting-absorbing BC’s are satisfied if
write

Gn,m
RA 5G0,0

0 1 (
k50

`

~21!kGn1~2L11!1k~4L13!,2m
0

1 (
k51

`

~21!kG2n1k~4L13!,2m
0

1 (
k50

`

~21!k11G2L121k~4L13!2n,m
0

1 (
k51

`

~21!kGn1k~4L13!,m
0 . ~A1!

Using the fact that the free Green’s function~in time rep-
resentation! is given by

Gnm
0 ~ tut8!5exp@22m~ t2t8!#I un2mu@2m~ t2t8!#;

~A2!

here I ur u(t) is a modified Bessel function. In the Laplac
representation (t→u) the sum~A1! can be evaluated. Thu
we obtain for the Laplace transformed Green’s funct
GRA(u)n,m in the interval @2L,L# the expression~2.10!.
From Eq.~A1! it is possible to see that the BC atn5L11 is
fulfilled: GRA(u)L11,m50. The reflecting BC is satisfied b
the mirror construction located midway between2(L11)
and2L.

Another important quantity in the context of Terwiel
cumulant theory is the propagatorJ(u)n,m[H0GRA(u)n,m .
From Eq. ~A1! this quantity can be calculated. In th
asymptotic regime, operating@E11E222# on GRA(u) we
get

J~u!n,m52
1

m
dn,m1

11L2max~n,m!

m2
u1O~u2!.

~A3!

In order to work out an effective-medium perturb
tion theory for the reflecting-absorbing problem, it is use
to know the asymptotic behavior ofDGRA(u)2L,m
e

ct-
ve

e

l

[GRA(u)2L21,m2GRA(u)2L,m . From Eq.~A1! it is possible
to see that its long-time regime is characterized by

DGRA~u!2L,m5@L5~361!1L4~14252285m!1L3~2265

2800m2110m2!1L2~18152855m

2270m2130m3!1L~7342410m2225m2

140m315m4!1~120274m265m2

115m315m42m5!#u21O~u3!. ~A4!

APPENDIX B: FEMA FOR REFLECTING-ABSORBING BC

It was shown in the context of the FPTD~Ref. 7! that
strong disorder introduces nonperturbative effects wh
need further rearrangement when compared to a perturba
theory for weak disorder. In order to establish whether
present FEMA gives the exact result for the small-u behavior
of ^P(u)n,n0

& we need to know some properties of the Te
wiel cumulants14 appearing in the diagrammatic perturbatio
theory~see Appendix C!. Here we are going to sketch FEMA
for reflecting-absorbing BC.

Following past experience7 we propose to do a sort o
perturbative analysis around an effective medium to stu
the u dependence of̂GRA(u)n,n0

&. First of all, we write the
disordered version of Eq.~2.17! in the Laplace representa
tion, adding and subtracting a homogeneous mean-field t
L@E11E222#RA[LHD, L being an arbitrary effective
rate to be determined below:

uP~u!n,m2P~ t50!n,m5L@E11E222#RAP~u!n,m

1@E11E222#RA~m1jn2L!

3P~u!n,m . ~B1!

Here we understand that the notatio
E6jnP(u)n,m5jn61P(u)n61,m . The superscript RA is put in
order to remark that we are working in a finite-lattice wi
reflecting-absorbing BC. In order to compare Eq.~B1! with
Eq. ~2.5!, for Je50, note thatm1jn5vn , i.e., Eq. ~B1!
corresponds to a site disorder model wherejn, with mPD,
are statistical independent random variables with mean v
zero, and preserving the positive conditionvn>0.

By defining the quantitieshn5vn2L, we can rewrite
Eq. ~B1! in time representation:

] tP~ t !5@LHD1QD#P~ t !. ~B2!

Here

QDP~ t !n,m5@E11E222#RAhnP~ t !n,m[HDhnP~ t !n,m .

The average of Eq.~B2! over the realization ofhn leads to
and effective evolution equation~non-Markovian!. This av-
erage can formally be carried out introducing a projec
operatorP that averages over the disorder:7

^P&5PP, P5^P&1~12P!P. ~B3!

A close exact evolution equation can be obtained ope
ing with this projector technique:



m
a
in

i-

ce

n

ai
bl
in

tu

by
t

-

me
the
in
ur-
tro-

rts
-

ent
t

t it
In
ve

-

an

e
tion

e

ter

56 5905THEORY OF DIFFUSION IN FINITE RANDOM MEDIA . . .
] t^P~ t !&5LHD^P&1K (
k50

`

@QDM ~12P!#kQDL ^P&,

~B4!

whereM is a finite-dimensional convolution operator:

@ML ~ t !#n[(
m

E
0

t

dt8Gn,m
RA ~ tut8!Lm~ t8!. ~B5!

Equation~B4! requires that the statistics of the rando
variablehn for each particular model are specified. Note th
Eq. ~B4! contains the Green’s function on a finite doma
D with reflecting-absorbing BC@i.e., Eq. ~2.17! with
m→L#. Introducing Terwiel’s cumulant of the random var
ablehn , using past experience and the explicit form ofQD
and HD, we can rewrite the evolution equation~B4! ~in
Laplace representation! in the following way:

u^P~u!n,m0
&2P~ t50!n,m0

.LHD^P~u!n,m0
&1 (

p50

`

(
n1Þn;n2Þn1 ;•••;npÞnp21

3^CnCn1
•••Cnp

&T

3Jn,n1
Jn1 ,n2

•••Jnp21 ,np
HD^P~u!np ,m0

&, ~B6!

where the random operatorCn[Cn(L,u)—acting on the
right—has been defined as in Ref. 7 and the indi
npPD:

Ck~L,u!5Mk~L,u!2
Mk~L,u!Jk,k~L,u!

11^Mk~L,u!&Jk,k~L,u!

3PMk~L,u! ~B7!

with

Mk~L,u![
hk

12hkJk,k~L,u!
. ~B8!

Note that hk[hk(u) through the implicit dependence o
L. The propagatorJn,n1

[Jn,n1
(L,u)5H0GRA(L,u)n,n1

is

given in terms of the free Green’s functionGRA. We remark
that in Eq. ~B4! the true propagator is
Jn,n1

(L,u)5HDGRA(L,u)n,n1
, but in Eq.~B6! HD has been

replaced byH0 in the definition ofJn,n1
. Noting that the

indicesnp in the sum~B6! run from 2L to L, and that the
absorbing BC onn5L11 ensures thatGRA(L,u)L11,n50,
we see that we can useJn,n1

(L,u)5H0GRA(L,u)n,n1
. Nev-

ertheless the reflecting BC on the right frontier of the dom
D does not allow for this replacement. This is in remarka
contrast to the case studied in Ref. 7 where the absorb
absorbing BC allowed for the simplificationHD→H0. There-
fore, in order to be able to continue with the present per
bation theory, we ought to justify this replacement.

It is possible to check that the error introduced
doing this replacement is ofO(u2). To see this, note tha
the difference between Jn,n1

(L,u)5H0GRA(L,u)n,n1

and Jn,n1
(L,u)5HDGRA(L,u)n,n1

is characterized by

DGRA(L,u)2L,m . Thus from Eq.~A4! we see that this quan
t

s

n
e
g-

r-

tity is of O(u2). The steps made so far are formally the sa
as those realized in Ref. 7 for the problem of averaging
survival probability to obtain the MFPT to leave the doma
@2L,L#. In that paper a diagrammatic analysis of the pert
bation series was introduced. We remark that by the in
duction of the random operatorCn(L,u), we have summed
up all the terms containing the diagonal pa
Jn,n(L,u)[Jn,n . This is equivalent to one-loop perturba
tion in field theory. Nevertheless note that in the pres
paper Eq.~B6! is only an approximation, so this is differen
when compared with original FEMA theory.7 Terwiel’s dia-
grams allow us to realize that the best election forL ~the still
undefined mean field! is that given by the solution
^Cn(L,u)&50. This is the best choice in the sense tha
allows the vanishing of an infinite number of diagrams.
the present physical problem it is impossible to ha
^Cn(L,u)&50 for all the values ofn because the BC im-
plicit in the construction ofGRA(L,u)n,n1

destroys the trans
lational invariance~see Appendix A!. Nevertheless, we can
tentatively defineL by ^Cn(L,u)&50 at some particular
site n, and after this explore the consequences of such
election.

In the following,L will be taken as the solution of

^C0~L,u!&50. ~B9!

It will turn out that this election is a very convenient on
because, although it does not produce a drastic simplifica
to the diagrams appearing in Eq.~B6!, it makes an approach
related to EMA useful.5 The analogous approximation in th
present problem would consist of reducing Eq.~B6! to

u^P~u!&2P~ t50!5LHD^P„u…&,

with L defined by Eq.~B9! or, more explicitly, using Eqs.
~B7!, ~B8!, andh05v02L:

K v02L

12~v02L!J00~L,u!L
P~v!

50, ~B10!

which is Eq.~2.16! after we identifyL[m(u), v0[v, and
J00(L,u)5(E11E222)GRA(L,u)0,0[H0GRA(u)0,0.

APPENDIX C: ANALYSIS OF CORRECTIONS
TO THE FEMA WITH REFLECTING-ABSORBING BC

In this appendix we study Eq.~B6! in order to establish
whether the FEMA~for reflecting-absorbing BC! gives the
exact result for the small-u behavior of^P(u)n,m0

&. To this
end we need to use some properties14 of Terwiel’s cumulant:

^CnCn1
•••Cnp

&T

[PCnP~12P!Cn1
~12P!•••~12P!Cnp

, ~C1!

appearing in Eq.~B6!. Using the definition of the random
operatorCn , it is possible to see that there exists a clus
structure in terms of Terwiel’s cumulant and moments.7

For the moments ofCn @see Eqs.~B7! and~B8!# we show
some explicit examples,

^C1&5^M1&2^M1&N1^M1&, ~C2!
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^C1C2&5^M1M2&2^M1&N1^M1M2&

2^M1M2&N2^M2&

1^M1&N1^M1M2&N2^M2&, ~C3!

^C1C2C3&5^M1M2M3&2^M1&N1^M1M2M3&

2^M1M2&N2^M2M3&

2^M1M2M3&N3^M3&

1^M1&N1^M1M2&N2^M2M3&

1^M1M2&N2^M2M3&N3^M3&

1^M1&N1^M1M2M3&N3^M3&

2^M1&N1^M1M2&N2^M2M3&N3^M3&,

~C4!

etc., where we have defined

Nk[
Jk,k~L,u!

11^Mk&Jk,k~L,u!
. ~C5!

In order to know the Terwiel cumulant^C1C2C3&T we
have to use Eqs.~C2!–~C4! in the cluster~C1! itself. Due to
the fact that the Green’s function breaks the translatio
invariance there is not a drastic simplification~in Terwiel’s
diagrams! by demanding the FEMA condition, i.e.,^Cn&T
Þ0 if nÞ0. For example,

^C1C2C3&T5^C1C2C3&2^C1&^C2C3&2^C1C2&^C3&

1^C1&^C2&^C3&.

For more details see Ref. 7.
Following past experience we introduce a convenient

pression forMn in Eq. ~B8!:

Mn5@L1Rn#
vn2L

vn1Rn
, ~C6!

where we have usedhn5vn2L and the definition

Rn52L2
1

Jnn
.~L112n!u1O~u2![gnu1•••.

~C7!

Note that in the asymptotic behavior we have assum
limu→0(u/L)→0. This fact is true for all types of disorde
considered in this paper. In order to estimate the contribu
coming from thediagrammaticterms of Eq.~B6! we have to
evaluate

^CnCn1
•••Cnp

&TJn,n1
Jn1 ,n2

•••Jnp21 ,np
if pÞ0,

^Cn& if p50. ~C8!

If these contributions are smaller thanL[m(u), FEMA
would not need any correction from diagrams withp>0.

Even when the indicesnl run from 2L to L there exists
an infinite number of those diagrams with different values
p. Among these diagrams, all of them with different vertic
will vanish due to the Terwiel property~for example, if
al

-

d,

n

f

p51, we get^CnCn1
&T50 because of the statistical inde

pendence fornÞn1). Therefore we will only be interested in
Terwiel’s cumulant of the type

for p50, ^Cn&TÞ0 if nÞ0,

for p52, ^CnC1Cn&TÞ0,

for p53, ^CnC1CnC1&TÞ0, ^CnC1C2Cn&TÞ0, etc.
~C9!

Note from Eq.~B6! that indexn is fixed, so in Eq.~C9!,
repeated natural indices mean that they must be sum
with the correspondingJn1 ,n2

~nice drawings of these dia
grams can also be designed, for example, in a similar c
text; see Ref. 5!.

Due to the fact that the present demonstration is simila
the one given in Ref. 7, we shall only give here a swift pro
for models A, B, and C of disorder.

Weak disorder.In this case and from Eq.~B10!,

L[m~u→0!.~b1!21F11~L11!S b22~b1!2

b1
DuG1O~u2!.

~C10!

Remember thatbk[^1/vk& is finite for all k.
From the definitions~B7!, ~B8!, and~C8! it is possible to

see that the first important diagram is

^Cn&T;2
b22~b1!2

b1
nu1O~u2!, ~C11!

so the correction p50 is beyond FEMA because
L[m(u50);O(u0). Note that Eq.~C11! is in agreement
with the self-consistent condition̂C0(L,u)&T50.

The general analysis of correction comes from the follo
ing considerations. For this casem(u);O(u0), thus from
Eq. ~A3! Jn1 ,n2

;O(u1) for n1Þn2, andNn;O(u0). From

Eqs.~C6! and ~C7! it follows that ^Mn
N&;O(u0) for all N,

therefore Terwiel’s cumulants, such as~C9!, are ofO(u0)
@see Eqs.~C2!–~C4!#. With all this information we can see
from Eq. ~C8! that any corrections frompÞ0 are ofO(up).
Then FEMA is the dominant contribution for weak disorde
Due to the fact that the diagram forp51 vanishes, we see
that the first correction (p50) beyond FEMA—and consis
tent with the analysis of reflecting-absorbing BC—is giv
by Eq.~C11!. The contributionp52 cannot be considered i
this case because the error introduced in Eq.~B6! was
O(u2), as we noted in Eq.~A4!. Therefore, for weak disorde
FEMA gives the exact leading order. On the other hand,
present approach allows us to go beyond FEMA. For mo
A and up toO(u) the long-time evolution equation is cha
acterized by

u^P~u!n,m0
&2P~ t50!n,m0

5Fb1
212

b22~b1!2

b1
nuG

3HD^P~u!n,m0
&. ~C12!

From Eq.~C12! we see that atO(u), the variance of the
quenched disorder turns out to be important. The correc
to go beyond FEMA, Eq.~C12!, introduces explicitn depen-
dence in the coefficient of the finite master equation; nev
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theless, standard methods17 can be used to tackle Eq.~C12!.
A similar situation appeared in the study of the FPTD
presence of bias.9

Disorder model B. For this case using Eq.~B10! we get

L[m~u;0!.
1

u lnuuS 11
lng0
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with g0 defined in Eq.~C7!. From Eq.~A3! we get
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Thus, from Eq.~C5! in the small-u limit we obtain
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In general for model B, using Eqs.~C6! and ~C7! it is
possible to see that
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Note that̂ Mn& is in agreement with the self-consistent co
dition ^C0(L,u)&T5^M0&2N0^M0&

250. Using Eqs.
~C13!–~C16!, it is possible to see that the leading contrib
tion ~for small u) in the type of diagrams appearing in E
~C9! are characterized@see Eqs.~C2!–~C4!# for the mean
values
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mI&;uI~L2/u!p11, ~C17!

in which only I of the indices$n0 ,n1 ,•••,np% are different
(( j

Imj5p11). Thus, using Eqs.~C14! and~C17! we prove
that the order of correction in Eq.~C8! is

;uI~L2/u!p11~u/L2!p5O@uI~L2/u!# if p>2,
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This means that FEMA gives the exact leading contrib
tion for smallu. Note that forp>2 the corrections are inde
pendent ofp, thus in order to obtain higher systematic co
rections to FEMA, an infinite number of diagrams wi
different values ofp>2 must be summed up. Beyond FEM
and up toO(L2)—for model B—we should consider th
long-time evolution equation
-

-
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Strong disorder model C. For this case, using Eq.~B10!
and taking the average in Eq.~C6! with care, it is possible to
see that
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with R0 defined in Eq.~C7! and whereB(x,y) is the b
function ~note that the difference in the effective rate wi
Ref. 7 is a factor 2a). As before we know thatJ(u)n,m is
given by Eq.~C14! with L characterized by Eq.~C20!, and
from Eq. ~C5! Nn;O(21/L). Using Eqs.~C6! and ~C7! it
is possible to see that

^Mn&.@12~L11!a/~L112n!a#L,

^Mn
N&.O@2~L2/u!Nu12a#. ~C21!

Note that̂ Mn& is in agreement with the self-consistent co
dition ^M0&50. From Eqs.~C20! and~C21! we can see tha
the leading contribution~for small u) in the moments of
Mn are characterized for the mean value:
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~C22!

in which only I of the indices$n0 ,n1 , . . . ,np% are different
(( j

Imj5p11).
We remark that now there is a difference with model

here all the partitions appearing in the moments such
^Cn0

Cn1
•••Cnp

& are of the same order. See, for examp
Eqs.~C2!–~C4!. Thus a specific coefficient must be consi
ered in front of a term such as^Mn0

Mn1
•••Mnp

&.
Using Eqs.~C14! @with L given by Eqs.~C20!# and~C22!

we prove that the corrections in Eq.~C8! are of the order

;uI ~12a!~L2/u!p11~u/L2!p5O@~L2/u!uI ~12a!#

if p>2,

O~L! if p50. ~C23!

This means that FEMA gives the correct power low f
small u but, as we have remarked before, its coefficie
needs a correction from the diagram corresponding
p50. Forp>2 the corrections are independent ofp, thus in
order to obtain higher systematic corrections inu an infinite
number of diagrams with different values ofp must be
summed up.

In order to estimate the importance of the correction in
coefficient of FEMA—for strong disorder model C—w
should solve the equation which contains the whole do
nantO(ua) dependence:
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u^P~u!n,m0
&2P~ t50!n,m0

5LH 11F12S L11

L112nD aG
1F12S L11

L112nD aG2J HD^P~u!n,m0
&. ~C24!

This last expression has been obtained by considering
Terwiel cumulant̂ Cn&T5^Mn&2^Mn&Nn^Mn& in the dia-
grammatic representation~C8!.
he

Previous experience has also shown similar conclusio7

For the present problem and in the case (a'0.8) theerror
introduced in the coefficient was about 19% for a lattice
L51. This fact can be seen in our figures where the agr
ment with the power law is excellent, but there is a litt
constant shift when compared with the Monte Carlo simu
tions.

Thus we have finished the proof that for reflectin
absorbing BC problems, FEMA gives the correct leadi
small-u behavior of^P(u)n,m0

& ~for all the types of disorder
considered in this paper!.
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