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Link between the microscopic and mesoscopic length-scale description
of the collective behavior of dislocations

I. Groma
Department of General Physics, Eo¨tvös University Budapest, Budapest Mu´zeum krt. 6-8, P.O. Box 323, H-1445 Budapest, Hungary

~Received 10 February 1997!

For describing the dislocation pattern formation, two different approaches are applied. In one of them the
collective behavior of many individual dislocations is investigated by analytical or numerical methods, in the
other one the dislocation system is described by continuous functions of the space coordinates. A method is
proposed for establishing the link between the two length scales. Starting from the exact evaluation equation of
the N-dislocation distribution function, a hierarchy of equations is derived for the one-, two-, three-, etc.,
particle distribution functions. Although the dislocations form a nonconservative system, the applied method is
similar to the derivation of the so called BBGKY hierarchy which is frequently used in plasma physics. By
assuming that the three-particle correlation function is negligible a closed set of equations can be obtained for
the dislocation density and the two-particle correlation functions. The possible origin of appearance of dislo-
cation patterns is also investigated.@S0163-1829~97!04134-9#
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INTRODUCTION

Currently one of the biggest challenges in dislocat
theory is the understanding of the dislocation pattern form
tion. Although a huge amount of experimental results h
been collected since the first dislocation was observed in
electron microscope more than 40 years ago, and there
several promising theoretical models of this typically se
organizatory phenomena~for a broad overview of the field
see Refs. 1 and 2!, we are still far from its complete under
standing. It is still not clear what the necessary input
which has to be introduced into a model for observing
occurrence of inhomogeneous dislocation distribution. T
models developed so far can be sorted into two groups,
individual dislocation, and the continuum descriptions. In
first one the properties of individual dislocations are cons
ered and the collective behavior of this assembly is inve
gated. Beside the analytical ones, this group includes
two-dimensional~2D! ~Refs. 3–14! and 3D ~Refs. 15–17!
computer simulations.

Due to the long-range interaction of dislocations only
few thousand dislocations12 can be modeled in 2D compute
simulations, in 3D Cellular Automata models a few tens
thousand of short~about 100 nm! ~Refs. 15 and 16! disloca-
tion segments can be allowed, so the macroscopic prope
can be investigated in a very limited way. In spite of th
limitation the simulations are able to reproduce several
portant features of crystal plasticity.

Another possible approach is when the system is
scribed by a few continuous variables, like the dislocat
density, internal stress, etc. These models are often refe
to as continuum models. Their common feature is that
dynamics of the system is determined by coupled bala
equations of the introduced variables.

The existing continuum models can be summarized
follows: the so-called low-energy dislocation structure18–20

~LEDS! approach proposed by Kulhman-Wilsdorf appli
thermodynamical analogy by searching for dislocation c
560163-1829/97/56~10!/5807~7!/$10.00
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figuration of minimal elastic energy under given constrain
According to this concept dislocation pattern formation, li
the development of cellular structure in unidirectional def
mation or persistent slip band forming under periodical loa
ing is driven by the reduction of the system energy. T
essentially static description was improved by Holt21 by in-
troducing dynamics into the model. He adopted the meth
applied for the equilibrium thermodynamical description
nonuniform systems by setting up the following conservat
law for the dislocation density,r:

]r

]t
2divBDdEint~r!50, ~1!

wheredEint(dr) is the elastic energy change due to the d
location density fluctuationdr, andB the dislocation mobil-
ity. In a similar way as is done in the theory of spinod
decomposition, he approximated thedEint(dr) functional by
a second-order Taylor expansion. Because of the appear
of the space derivative in this approximation a length para
eter is automatically introduced which in Holt’s model
taken proportional to the average dislocation distan
l 51/Ar. This leads to the appearance of dislocation den
modulation with a wavelength which is also proportional
l .

The continuum model developed by Walgreaf a
Aifantis22–27 adopts the concept of the theory of oscillato
chemical reactions which is a strongly nonequilibrium a
proach. It describes the system with two variables, the m
bile and the immobile dislocation density. The dynamics
the system is determined by diffusion terms and react
terms. The latter include mobile dislocation generation fro
immobile ones, mobile dislocation trapping, immobile disl
cation formation from sources, annihilation, and in som
cases local interaction with other fields like solute atom c
centration. The actual form of these terms depends on
deformation mode and geometry. In a certain range of
input parameters the model predicts the appearance of
5807 © 1997 The American Physical Society
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5808 56I. GROMA
tern formation. Numerical investigation of the properties
this model have been carried out by Schilleret al.28 and Gla-
zov et al.29

The model proposed by Kratochvil and h
co-workers30–36 has a number of similarities with th
reaction-diffusion model. It considers the interaction b
tween gliding dislocation and dislocation dipoles. The int
action is created through the inhomogeneous stress fiel
the curved gliding dislocations, the curvature is due to
blocking of the gliding dislocations at dipole branches. B
sides this, terms accounting for dislocation creation and
nihilation are added. These also lead to inhomogeneous
location distribution.

In a series of recent papers Ha¨hner37–39 introduced the
stochastic dislocation dynamics. It takes into account
stress field created by the dislocations as a random b
ground. This is coupled to the fluctuating strain rate w
relation similar to the ones known from the fluctuation d
sipation theory of statistical mechanics. From the analysi
the corresponding Fokker-Planck equation he arrives at
possibility of structural transition in the dislocation system

Although each model outlined above has its merit, th
major common disadvantage is that the actual forms of
terms in the equations are based on severalad hocassump-
tions which are difficult to prove from the properties of i
dividual dislocations. On the other hand, none of them re
takes into account the long-range natures and the spatia
gular dependence of the interaction force between dislo
tions. The aim of this paper is to investigate the con
quences of the precise form of dislocation interactio
Starting from the equations of motion of individual disloc
tions a continuum description is constructed. On the basi
this in the simplest so-called self-consistent field approxim
tion the stability of the homogeneous dislocation distribut
is investigated.

CONSTRUCTION OF THE HIERARCHY OF EQUATIONS
OF DIFFERENT ORDER DISTRIBUTION FUNCTIONS

Let us consider a system ofN parallel straight edge dis
locations. This is obviously a strong simplification of the re
3D dislocation networks which develop during the plas
deformation of the crystals, but in single slip configurati
and in the regime of small strain it is a reasonable appro
mation. It reduces the 3D problem to 2D, which is certain
much easier to deal with. For obtaining the general struc
of the equations which describe the behavior of the syst
in the first part of the paper we suppose that each disloca
has the same Burgers vectorbW . This is just for reducing the
complexity of the expressions, later on we will allow fo
dislocations having opposite Burgers vectors in the syst
Also for the sake of simplicity, in the first part dislocatio
creation and annihilation are excluded, i.e., the numbe
dislocations is conserved.

Because of the dissipative nature of dislocation moti
for setting up the equations of motion of dislocations, b
sides the force acting on a dislocation due to the elastic fi
a friction force has to be taken into account. A frequen
applied approximation is that the friction force is propo
tional to the velocity of a dislocation.11 Since, in the case o
a low deformation rate the inertia term can be neglected
f
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sides the friction force, the equation of motion of a disloc
tion is only a first-order differential equation.

Let us denote the positions of dislocations in thexy plane
by $rW i ,i 51•N%. With the above approximations the veloci
of the i th dislocation,vW i can be given as

vW i5BS (
j Þ i

N

FW ~rW i2rW j !1FextD , ~2!

whereFW is the elastic interaction force between two disloc
tions,FW ext is the external force, andB is the dislocation mo-
bility. This is the system of equations which is solved n
merically in most of the 2D computer simulations.3–6,8,9,11–14

As it is well known, in statistical mechanics instead
describing the system with the coordinates of theN particles
in the phase space, one can obtain precisely the same i
mation from theN particle distribution functionf N . Al-
though the dislocations form a nonconservative system,
method applied in statistical mechanics can be general
for straight parallel dislocations. Since Eq.~2! is a first-order
equation and the problem is two dimensional, t
N-particle distribution function,f N, is a 2N-dimensional
function of the space coordinates. According to the us
definition of f N the probability of finding theN dislocations
in thedrW1 ,drW2 , . . . ,drWN vicinity of the pointsrW1 ,rW2•••rWN at
the momentt is f N(t,rW1 ,rW2•••rWN)drW1drW2•••drWN . Due to the
assumed conservation of the dislocation number,f N has to
fulfill the relation

f N~ t,rW1 ,rW2•••rWN!drW1drW2•••drWN

5 f N~ t1Dt,rW11vW 1Dt,rW21vW 2Dt•••rWN1vW NDt !

3d~rW11vW 1Dt !d~rW21vW 2Dt !•••d~rWN1vW NDt !. ~3!

It is interesting to note that in contrast with conservati
systems

f N~ t,rW1 ,rW2•••rWN!

Þ f N~ t1Dt,rW11vW 1Dt,rW21vW 2Dt•••rWN1vW NDt !

~4!

because the volumedrW1drW2•••drWN is not conserved during
the motion of dislocations. From Eq.~3! one gets that

] f N

]t
1(

i 51

N
]

]rW i

$ f N~rW1 ,rW2 , . . . ,rWN!vW i%50. ~5!

ReplacingvW i by expression~2! in Eq. ~5! we obtain that

] f N

]t
1(

iÞ j

N
]

]rW i

$ f NFW ~rW i2rW j !%50. ~6!

B is eliminated from the above equation by at→Bt variable
substitution, and for the sake of simplicity the external for
FW ext is taken to be zero.
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Since Eqs.~2! and ~6! are equivalent descriptions of th
dislocation system, finding the solution of Eq.~6! is equally
difficult as getting the solution of Eq.~2!. However, in most
cases in order to obtain the average properties of the d
cation assembly we do not need such a detailed picture a
its evolution. A less detailed description of the system m
be given by introducing thek order distribution function

f k~rW1 ,rW2 , . . . ,rWk!5E E •••E f N~ t,rW1 ,rW2•••rWN!

3drWk11drWk12•••drWN . ~7!
o-
ut

y

By integrating Eq.~6! over therWk11 ,rWk12 , . . . ,rWN subspace
and using definition~7! of f k , one finds that

] f k

]t
52(

i 51

N

(
j 51,j Þ i

N E ]

]rW i

$ f NFW ~rW i2rW j !%

3drWk11drWk12•••drWN . ~8!

The double sum on the right-hand side of Eq.~8! can be split
into three sums:
ives zero
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(
i 51

N

(
j 51,j Þ i

N E ]

]rW i

$ f NFW ~rW i2rW j !%drWk11drWk12•••drWN5(
i 51

k

(
j 51,j Þ i

k
]

]rW i

$ f kFW ~rW i2rW j !%

1(
i 51

k

(
j 5k11

N E ]

]rW i

$ f NFW ~rW i2rW j !%drWk11drWk12•••drWN

1 (
i 5k11

N

(
j 51,j Þ i

N E ]

]rW i

$ f NFW ~rW i2rW j !%drWk11drWk12•••drWN . ~9!

The last term is an integral of a divergence, so it can be substituted by an integral over the system surface, which g
because the distribution functions are supposed to go to zero fast enough at infinity. Taking into account thatf N has to be
invariant for swapping two dislocation coordinates we get that thekth-order distribution function fulfills the relation

] f k

]t
1(

i 51

k

(
j 51,j Þ i

k
]

]rW i

$ f kFW ~rW i2rW j !%1~N2k!E ]

]rW i

$ f k11FW ~rW i2rWk11!%drWk1150. ~10!

As it can be seen from Eq.~10!, the equation of thekth-order distribution function contains an integral of the one or
higher distribution function. So, the applied reduction gives a hierarchy for the reduced distribution functions, whe
function is coupled to the one above it in the series. This is a similar construction to what is called BBGKY hierar
hydrodynamics and plasma physics.40

Since most measurable quantities can be expressed in terms of functionsf 1 and f 2 let us write down the equations for th
first two distribution functions:

]r1~rW1 ,t !

]t
1E ]

]rW1

$r2~rW1 ,rW2 ,t !FW ~rW12rW2!%drW250 ~11!

and

]r2~rW1 ,rW2 ,t !

]t
1S ]

]rW1

2
]

]rW2
D r2~rW1 ,rW2 ,t !FW ~rW12rW2!1

]

]rW1
E r3~rW1 ,rW2 ,rW3 ,t !FW ~rW12rW3!drW311↔250, ~12!

where for obtaining formulas independent from the system size ther15N f1 ,r25N(N21) f 2 ,r35N(N21)(N22) f 3 one-,
two-, and three-particle density distribution functions were introduced. The symbol 1↔2 indicates a similar term as th
previous one with swapped indexes.

As in statistical mechanics these density functions can be expressed by a form known as the Mayer cluster expa40

r1~rW1!5r1~rW1!, ~13!

r2~rW1 ,rW2!5r1~rW1!r1~rW2!1D~rW1 ,rW2!, ~14!

r3~rW1 ,rW2 ,rW3!5r1~rW1!r1~rW1!r1~rW1!1r1~rW1!D~rW2 ,rW3!1r1~rW2!D~rW3 ,rW1!1r1~rW3!D~rW2 ,rW1!1T~rW1,rW2 ,rW3!. ~15!

Clearly, the functionsD(rW1 ,rW2) and T(rW1 ,rW2 ,rW3) describe two- and three-particle correlations, respectively. With th
notations Eqs.~11! and ~12! have the forms
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]r1~rW1 ,t !

]t
1

]

]rW1

r1~rW1 ,t !E r1~rW2 ,t !FW ~rW12rW2!drW21E ]

]rW1

D~rW1 ,rW2 ,t !FW ~rW12rW2!drW250 ~16!

and

]D~rW1 ,rW2 ,t !

]t
1S ]

]rW1

2
]

]rW2
D r1~rW1 ,t !r1~rW2 ,t !FW ~rW12rW2!1S ]

]rW1

2
]

]rW2
D D~rW1 ,rW2 ,t !FW ~rW12rW2!

1
]

]rW1
E r1~rW2 ,t !D~rW3 ,rW1 ,t !FW ~rW12rW3!drW311↔21

]

]rW1
E r1~rW3 ,t !D~rW2 ,rW1 ,t !FW ~rW12rW3!drW311↔2

1
]r1~rW1!

]rW1
E @r1~rW2!r1~rW3!1D~rW2 ,rW3 ,t !#FW ~rW12rW3!drW311↔21

]

]rW1
E T~rW1 ,rW2 ,rW3 ,t !FW ~rW12rW3!drW311↔250.

~17!
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In order to get expression~17!, Eq. ~16! was used to elimi-
nate some terms.

If the system is not far from the homogeneous one, i
the system is ‘‘dilute,’’ one may expect thatD and T are
considerably smaller than the other terms in the correspo
ing expressions~14! and ~15!. This cannot be proved di
rectly, but as a first step one can close the equation c
~10! by neglectingD than as a second step by neglecti
only T, and so on. In this way the influence of the differe
order correlations can be investigated. Since the equat
are complicated integrodifferential equations this can
done only numerically. In this paper only the simplest cas
discussed in detail, namely whenD is already neglected. As
it will be shown, this leads to a mean-field description of t
problem.

In the assembly discussed so far each dislocation has
same Burgers vector. However, in a real system the net B
gers vector is approximately zero, so the above-develo
formalism has to be extended for the case where dislocat
both with positive and negative Burgers vectors are allow
in the system. It is easy to see that the equations for fi
order density functions are

]r1~rW1 ,t !

]t
51E ]

]rW1

$r12~rW1 ,rW2 ,t !2r11~rW1 ,rW2 ,t !%

3FW ~rW12rW2!drW2 ~18!

and

]r2~rW1 ,t !

]t
51E ]

]rW1

$r21~rW1 ,rW2 ,t !2r22~rW1 ,rW2 ,t !%

3FW ~rW12rW2!drW2 , ~19!

wherer1 ,r2 are the one-particle andr11 ,r12 ,r22 are
the two-particle density functions with the correspondi
signs, andFW (rW12rW2) stands for the interaction force betwee
dislocations of equal signs.@The negative signs in front o
r11 and r22 in Eqs. ~18! and ~19! come from the simple
.,
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fact that the interaction force between dislocations of eq
signs has the opposite direction as it has between those
different signs.#

SELF-CONSISTENT FIELD APPROXIMATION

Equations~18! and ~19! contain the second-order densi
functions, so they do not form a closed system of equatio
As was explained earlier, in a first approximation the cor
lation functionD can be neglected, so the two-particle de
sity functions can be given as

r i , j~rW1 ,rW2!5r i~rW1!r j~rW2!, i , j 51,2. ~20!

With this assumption from Eqs.~18! and ~19! one gets

]r1~rW1 ,t !

]t
51

]

]rW1
H r1~rW1 ,t !E @r2~rW2 ,t !2r1~rW2 ,t !#

3FW ~rW12rW2!drW2J ~21!

and

]r2~rW1 ,t !

]t
51

]

]rW1
H r2~rW1 ,t !E @r1~rW2 ,t !2r2~rW2 ,t !#

3FW ~rW12rW2!drW2J . ~22!

By adding and subtracting Eqs.~21! and~22! one obtains

]r~rW1 ,t !

]t
1

]

]rW1
H k~rW1 ,t !E k~rW2 ,t !FW ~rW12rW2!drW2J 50

~23!

and

]k~rW1 ,t !

]t
1

]

]rW1
H r~rW1 ,t !E k~rW2 ,t !FW ~rW12rW2!drW2J 50,

~24!
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56 5811LINK BETWEEN THE MICROSCOPIC AND MESOSCOPIC . . .
in which the total dislocation densityr(rW)5r1(rW)1r2(rW)
and the sign dislocation densityk(rW)5r1(rW)2r2(rW) were
introduced.

The interaction force between two dislocations
FW (rW)5bW tsing(rW) ~see Ref. 41! where tsing(rW) is the shear
stress field of one of the dislocations andbW is the Burgers
vector. As a consequence of this

E k~rW1 ,t !FW ~rW2rW1!drW15bW t int~rW !. ~25!

Heret int(rW) is the shear stress at the pointrW caused by all the
dislocations, i.e., this is a self-consistent field created by
dislocation system. After substituting Eq.~25! into Eqs.~23!
and ~24! one arrives at

]r~rW,t !

]t
1

]

]rW
$bW k~rW,t !t int~rW,t !%50, ~26!

]k~rW,t !

]t
1

]

]rW
$bW r~rW,t !t int~rW,t !%50. ~27!

Instead of applying the integral formula~25! for the de-
termination oft int(rW) one can use the field equations42

D2x~rW !5
mb

12n

]

]y
k~rW !, ~28!

t int~rW !5
]x~rW !

]x]y
, ~29!

wherex is the stress function,m is the shear modulus, an
n is the Poison ratio. For simplicity, in the above express
and in the followingbW is taken parallel to thex axis.

In most cases the dislocation system is quasineutral,
the number of dislocations with positive and negative sig
are equal in an area large enough. So, in a similar way
with charge density in electrodynamics, the sign dislocat
densityk(rW) can be given as a divergence of a polarizat
density fieldPW (rW) ~see Ref. 43!

k~rW !52
]

]rW
PW ~rW !. ~30!

PW is a vector but in the following it is assumed that only
component parallel to the Burgers vector differs from ze
In the above consideration the external stress,t0, was not
introduced. Clearly, it has to be taken into account by add
it to the internal stress in Eqs.~26! and ~27!.

Summarizing the results, on the basis of Eqs.~23!–~30! in
a self-consistent field approximation the behavior of a pa
lel edge dislocation system can be described by the follow
equations:

]r~rW,t !

]t
2

]

]xH ]P~rW,t !

]x
b@t01t int~rW,t !#J 50, ~31!
e

n

.,
s
as
n

.

g

l-
g

]

]xH ]P~rW,t !

]t
2r~rW,t !b@t01t int~rW,t !#J 50, ~32!

and

D2t int~rW !52
mb

12n

]4

]x2]y2
P~rW,t !. ~33!

STABILITY ANALYSIS
OF THE HOMOGENEOUS SOLUTION

It is easy to see that if the external stresst0 is constant the
homogeneous stationer solutionr(rW,t)5r0 ,P(rW,t)50 satis-
fies Eqs. ~31!–~33!. It has to be investigated howeve
whether this trivial solution is a stable one. For this, the us
technique of linear stability analysis is applied.

Let us seek the solution of Eqs.~31!–~33! in the form
r(rW,t)5r01dr(rW,t), P(rW,t)5dP(rW,t), wheredr(rW,t) and
dP(rW,t) are small perturbations, so their higher-order ter
can be neglected in Eqs.~31!–~33!. After the Fourier trans-
formation of the linearized equations one finds that

]dr*

]t
1qx

2bt0dP* 50, ~34!

]dP*

]t
2bt0dr* 2r0bt int* 50, ~35!

~qx
21qy

2!2t int* 52
mb

12n
qx

2qy
2dP* , ~36!

where the symbols marked with * indicate the Fourier tra
forms of the corresponding variables, and (qx ,qy) is the
wave number vector. Seeking the solution of Eqs.~34!–~36!
in the form

dr* 5dr0exp~lt !, dP* 5dP0exp~lt !, ~37!

leads to the following requirement forl:

U l qx
2bt0

2bt0 l1r0bT~f!
U50, ~38!

where

T~f!5
mb

12n

qx
2qy

2

~qx
21qy

2!2
~39!

and f is the angle between the wave number vec
(qx ,qy) and thex axis. From this

2l1,252r0bT~f!6Ar0
2b2T2~f!24b2t0

2qx
2. ~40!

Due to the fact that the functionT(f) is always positive, the
real part ofl1 andl2 cannot be positive. As a consequen
of this, perturbation cannot grow in this system, i.e., the h
mogeneous dislocation distribution is a stable solution. Ho
ever, it is important to notice, if the wave number vect
(qx ,qy) is parallel either to thex or to they axis the real
parts ofl1 andl2 are zero, which means that these pert
bations neither grow nor die out, they are stable.
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THE INFLUENCE OF DISLOCATION SOURCES

In the system which was investigated so far the numbe
dislocations was conserved. Clearly, for allowing dislocat
creation or annihilation the balance equation~31! has to be
modified by adding a source termg to the right-hand side o
the equation:

]r~rW,t !

]t
2

]

]xH ]P~rW,t !

]x
b@t01t int~rW,t !#J 5g~r, . . . !.

~41!

Equation~32! however has to remain unchanged becaus
expresses the conservation of the Burgers vector. In gen
besides the dislocation densityr,g may depend on the po
larization, the external stress and also on their function
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but for simplicity in the following only itsr dependence is
considered.

Although the homogeneous solution of Eqs.~32! and~41!
is not necessarily time independent, for investigating its s
bility one still can seek the solution of the correspondi
linearized equation in the exponential form~37! in a time
interval shorter than the characteristic time of dislocat
density changes. Applying the same method as above
gets the

Ul2
dg

dr
qx

2bt0

2bt0 l1r0bT~f!
U50 ~42!

requirement forl. From this
2l1,25
dg

dr
2r0bT~f!6A@dg/dr2r0bT~f!#224@b2t0

2qx
22~dg/dr!r0bT~f!#. ~43!
he
is

on
a-
ot
e-
in-
rba-
to

tion

a
ise
into
ound
a-

es-
p-
-
.

SinceT(f) is zero along thex andy axes ifdg/dr is posi-
tive there are growing perturbations in the system.

CONCLUSIONS

The collective behavior of a system of parallel edge d
locations was investigated. Starting from the equations
motion of individual dislocations interacting with each oth
through their elastic fields, a hierarchy of the evaluat
equations of different order density functions was deriv
Since these are coupled to each other, to obtain a close
of equations it has to be assumed that the density funct
having higher order than a certain one can be built up fr
the lower order ones according to the Mayer cluster exp
sion ~14! and ~15!.

It was shown that in the simplest case, when the tw
particle correlation is already neglected, one obtains a s
consistent field~also often referred to as a mean-field! de-
scription. Although the self-consistent field equations co
be set up in a speculative way, the advantage of the me
outlined here is that it clearly points out the necessary
sumptions. It should be emphasized however that at
stage of the work it is not possible to see the precise limits
the mean-field approximation. On the other hand, the
tained hierarchy of equations makes the investigation of
-
f

n
.
set
ns

n-

-
lf-

d
od
s-
is
f
-
e

influence of different order correlation possible. Due to t
complexity of the equations for the correlation function, th
can only be done numerically.

By analyzing the stability of the homogeneous soluti
within the framework of the self-consistent field approxim
tion it was found that the elastic interaction alone is n
enough to introduce growing instability, which is in agre
ment with experimental evidences. However, the elastic
teraction already leads to the appearance of stable pertu
tions. Introduction of dislocation sources can lead
increasing perturbation even in the case of small produc
rates.

As a consequence of this, it is important to note that in
general theory of dislocation pattern formation the prec
long-range stress field of the dislocations has to be taken
account, because the elastic interaction creates a backgr
which alone is already ‘‘almost enough’’ to produce disloc
tion pattern formation.
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