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For describing the dislocation pattern formation, two different approaches are applied. In one of them the
collective behavior of many individual dislocations is investigated by analytical or numerical methods, in the
other one the dislocation system is described by continuous functions of the space coordinates. A method is
proposed for establishing the link between the two length scales. Starting from the exact evaluation equation of
the N-dislocation distribution function, a hierarchy of equations is derived for the one-, two-, three-, etc.,
particle distribution functions. Although the dislocations form a nonconservative system, the applied method is
similar to the derivation of the so called BBGKY hierarchy which is frequently used in plasma physics. By
assuming that the three-particle correlation function is negligible a closed set of equations can be obtained for
the dislocation density and the two-particle correlation functions. The possible origin of appearance of dislo-
cation patterns is also investigat¢®80163-18207)04134-9

INTRODUCTION figuration of minimal elastic energy under given constraints.

According to this concept dislocation pattern formation, like

Currently one of the biggest challenges in dislocationthe development of cellular structure in unidirectional defor-
theory is the understanding of the dislocation pattern formamation or persistent slip band forming under periodical load-
tion. Although a huge amount of experimental results hadng is driven by the reduction of the system energy. This

been collected since the first dislocation was observed in aissentially static description was improved by Folty in-

electron microscope more than 40 years ago, and there af@ducing dynamics into the model. He adopted the method
several promising theoretical models of this typically self-aPplied for the equilibrium thermodynamical description of
organizatory phenomertdor a broad overview of the field nonuniform systems by setting up the following conservation

see Refs. 1 and)2we are still far from its complete under- '2W for the dislocation density:
standing. It is still not clear what the necessary input is
which has to be introduced into a model for observing the
occurrence of inhomogeneous dislocation distribution. The
models developed so far can be sorted into two groups, the

individual dislocation, and the continuum descriptions. In the\NhereﬁEim(ﬁp) is the elastic energy change due to the dis-
first one the properties of individual dislocations are considipcation density fluctuatiodp, andB the dislocation mobil-
ered and the collective behavior of this assembly is investiity. In a similar way as is done in the theory of spinodal
gated. Beside the analytical ones, this group includes thgecomposition, he approximated thE;(5p) functional by
two-dimensional(2D) (Refs. 3—14 and 3D (Refs. 15-1Y  a second-order Taylor expansion. Because of the appearance
computer simulations. of the space derivative in this approximation a length param-
Due to the long-range interaction of dislocations only aeter is automatically introduced which in Holt's model is
few thousand dislocatiofscan be modeled in 2D computer taken proportional to the average dislocation distance,
simulations, in 3D Cellular Automata models a few tens ofl = 1/\/p. This leads to the appearance of dislocation density
thousand of shortabout 100 nm(Refs. 15 and 1p6disloca-  modulation with a wavelength which is also proportional to
tion segments can be allowed, so the macroscopic propertiés
can be investigated in a very limited way. In spite of this The continuum model developed by Walgreaf and
limitation the simulations are able to reproduce several im-Aifantis??~2 adopts the concept of the theory of oscillatory
portant features of crystal plasticity. chemical reactions which is a strongly nonequilibrium ap-
Another possible approach is when the system is deproach. It describes the system with two variables, the mo-
scribed by a few continuous variables, like the dislocationbile and the immobile dislocation density. The dynamics of
density, internal stress, etc. These models are often referréde system is determined by diffusion terms and reaction
to as continuum models. Their common feature is that théerms. The latter include mobile dislocation generation from
dynamics of the system is determined by coupled balancenmobile ones, mobile dislocation trapping, immobile dislo-
equations of the introduced variables. cation formation from sources, annihilation, and in some
The existing continuum models can be summarized asases local interaction with other fields like solute atom con-
follows: the so-called low-energy dislocation structré® centration. The actual form of these terms depends on the
(LEDS) approach proposed by Kulhman-Wilsdorf appliesdeformation mode and geometry. In a certain range of the
thermodynamical analogy by searching for dislocation coninput parameters the model predicts the appearance of pat-

aip
—f ~dIVBASEy(p) =0, (1)
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tern formation. Numerical investigation of the properties ofsides the friction force, the equation of motion of a disloca-

this model have been carried out by Schik¢ml?® and Gla-  tion is only a first-order differential equation.

zovetal?® Let us denote the positions of dislocations in xyeplane
The model proposed by Kratochvil and his py {r, j=1.N}. With the above approximations the velocity

0-36 T ;

co-wc_)rker_§ : has a number (.’f S|m|lar|t_|es W'th the of theith dislocation,u; can be given as

reaction-diffusion model. It considers the interaction be-

tween gliding dislocation and dislocation dipoles. The inter-

action is created through the inhomogeneous stress field of - N

vi=B(; F(ri—rj)+Fex

; @

the curved gliding dislocations, the curvature is due to the
blocking of the gliding dislocations at dipole branches. Be-

sides this, terms accounting for dislocation creation and anyhereF is the elastic interaction force between two disloca-
nihilation are added. These also lead to inhomogeneous d'ﬁ'ons, E.. is the external force, an@l is the dislocation mo-

Ioc|at|on dls_tnbut;on. ¢ SV introduced th bility. This is the system of equations which is solved nu-
) nha ts_,erlde_slo rt('acend papers it tak n rto uce teth merically in most of the 2D computer simulatiofr$;8211-14
stochastic dislocation dynamics. 1t takes nto account e ¢ s \well known, in statistical mechanics instead of

stress field created by the dislocations as a random badéfescribing the system with the coordinates of Ehparticles

gr;)l:.nd. T.h'ﬁ 'St C%‘:pled to kthe flu?tuatl?r? sf’ltra|tn r?te \('jv.'thin the phase space, one can obtain precisely the same infor-
relation simriar to the ones known trom the fuctuation ais-, 450 from theN particle distribution functionfy. Al-

sipation theory .Of statistical mechanics. From the gnalysis o{hough the dislocations form a nonconservative system, the
the qorrespondmg Fokker-P]gnck equatlpn he arnves at thﬁ]ethod applied in statistical mechanics can be generalized
possibility of structural transition in the dislocation system.

Although each model outlined above has its merit, theirfor straight parallel dislocations. Since E®) is a first-order

. ) . ion an h roblem is tw imensional, th
major common disadvantage is that the actual forms of thequato and the proble s two dimensional, the

terms in the equations are based on se hocassumo- ?\I-particle distribution function,fy, is a 2N-dimensional
) : quatic . P~ function of the space coordinates. According to the usual
tions which are difficult to prove from the properties of in-

dividual dislocations. On the other hand, none of them reallydeflnltlon of fy the probability of finding theé\ dislocations

takes into account the long-range natures and the spatial afft th€dra,drz, ..., dry vicinity of the pointsry,rp- - -1y at
gular dependence of the interaction force between dislocghe moment is fy(t,ry,rp---ry)dridr,---dry. Due to the
tions. The aim of this paper is to investigate the conseassumed conservation of the dislocation numlbgrhas to
quences of the precise form of dislocation interactionfulfill the relation

Starting from the equations of motion of individual disloca-
tions a continuum description is constructed. On the basis o]I
this in the simplest so-called self-consistent field approxima-
.tio_n the _stability of the homogeneous dislocation distribution =fN(t+At,F1+51At,F2+52At~ . .;NJFU*NM)
is investigated.

ﬁ7—39

(L1 T T)drydr,- - -dry

Xd(ry+0,ADd(ry+0,At) - - -d(ry+opgAt). ()

CONSTRUCTION OF THE HIERARCHY OF EQUATIONS It is interesting to note that in contrast with conservative
OF DIFFERENT ORDER DISTRIBUTION FUNCTIONS systems

Let us consider a system &f parallel straight edge dis-
locations. This is obviously a strong simplification of the real (g o Ty
3D dislocation networks which develop during the plastic
deformation of the crystals, but in single slip configuration # (AL +0,AL T+ 0oAL- - T+ O AL)
and in the regime of small strain it is a reasonable approxi-
mation. It reduces the 3D problem to 2D, which is certainly (4)
much easier to deal with. For obtaining the general structurgscouse the vqumdFld FZ' ) 'dFN is not conserved during

of the equations which describe the behavior of the systemyo motion of dislocations. From E(B) one gets that
in the first part of the paper we suppose that each dislocation

has the same Burgers vector This is just for reducing the N
complexity of the expressions, later on we will allow for ‘”_NJrE i{f (FLT F)o:1=0 5)
dislocations having opposite Burgers vectors in the system. gt S gr N INEE

Also for the sake of simplicity, in the first part dislocation
creation and annihilation are excluded, i.e., the number oReplacingy; by expressior(2) in Eq. (5) we obtain that
dislocations is conserved.

Because of the dissipative nature of dislocation motion,

N
for setting up the equations of motion of dislocations, be- ‘”_N+E i{f ,z(;__;_)}zo_ (6)
sides the force acting on a dislocation due to the elastic field, at 7 o, NPT

a friction force has to be taken into account. A frequently ) _
applied approximation is that the friction force is propor- B is eliminated from the above equation by-a Bt variable
tional to the velocity of a dislocatioft. Since, in the case of Substitution, and for the sake of simplicity the external force

a low deformation rate the inertia term can be neglected beF .y is taken to be zero.
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Since Egs(2) and (6) are equivalent descriptions of the By integrating Eq.(6) over thery . 1,l s 2, . . .,y Subspace

dislocation system, finding the solution of H6) is equally  and using definition(7) of f,, one finds that
difficult as getting the solution of Eq2). However, in most

cases in order to obtain the average properties of the dislo-

cation assembly we do not need such a detailed picture about afy Nod d - . -
its evolution. A less detailed description of the system may ot _izl 12121_# J E{fNF(ri_rJ)}
be given by introducing th& order distribution function ’ :
o R o X drye 1Al - -dry. 8
fr(re,ro, ... ,rk)zf f f fn(t,re,ro---ry)
R R R The double sum on the right-hand side of E&).can be split
Xdr, 1drg o - -dry. (7) into three sums:

N N 5 K P
> _ E _ JT{fNF(ri—rj)}drk+1drk+2"'drN:E _ E —=A{fF(ri—rp}
i=1j=1j#i J 0r; i=1j=Tj=#i Jr,
K N P
+> > —{fNF(ri—rptdredrg,---dry
i=1j=k+1 &ri
N N P
+,E , 2 | ={fNF(ri—rpidrdrg - - -dry. (9)
i=k+1 j=1,j#i arj

The last term is an integral of a divergence, so it can be substituted by an integral over the system surface, which gives zero
because the distribution functions are supposed to go to zero fast enough at infinity. Taking into accoynhésato be
invariant for swapping two dislocation coordinates we get thatktheorder distribution function fulfills the relation

k k
afy J s s s J N -
> > _T{ko<ri—rj)}+<N—k>fT{fk+1F<ri—rk+1>}drk+1=o. (10)
at i=1j=1j#i 5ri &ri

As it can be seen from Eq10), the equation of théth-order distribution function contains an integral of the one order
higher distribution function. So, the applied reduction gives a hierarchy for the reduced distribution functions, where each
function is coupled to the one above it in the series. This is a similar construction to what is called BBGKY hierarchy in
hydrodynamics and plasma physf€s.

Since most measurable quantities can be expressed in terms of furfgtiandf, let us write down the equations for the
first two distribution functions:

dpy(ri) (0 o L
+J_e{Pz(rlyrzi)F(rl_rz)}drzzo (11
(9t é)rl
and
IpaTft) (0 a0\ - . L. . 3§ C e L
—————— | == = |p2(ry., 12, OF(ri—ra)+ — | pa(ry,ra,r3,t)F(ri—rz)drz+1-2=0, (12
ot ary  ar, ar,

where for obtaining formulas independent from the system sizeikeNf;,p,=N(N—21)f,,p3=N(N—1)(N—2)f; one-,
two-, and three-particle density distribution functions were introduced. The symbd indicates a similar term as the
previous one with swapped indexes.

As in statistical mechanics these density functions can be expressed by a form known as the Mayer cluster &Xpansion:

p1(r)=p(ry), (13)
p2(r1,F2)=p1(r1)pa(ra) +D(ry,ro), (14
p3(r1,T2,13)=p1(r1)p1(r1)pa(r1) +pa(r1)D(r2,r5) +p1(ra)D(rg,r1)+py(ra)D(ra,rq) +T(F1,r,r3). (15

Clearly, the functionsD(r;,r,) and T(ry,r,,rs) describe two- and three-particle correlations, respectively. With these
notations Egs(11) and(12) have the forms
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J s - I . J S S N N
at +_»Pl(r1at)f pl(r27t)F(rl_r2)dr2+f_»D(rleryt)F(rl_r2)dr2:O (16)
ar, or

1
and

aD(F]JFZat)
ot

D(FlaFZyt)lf(Fl_FZ)

1% d - - - s 14 d
Tl === ]pa(r1,p1(r2, HFE(ri—r) +| = - —
ary Iy Iy Iy

J - - - e J - N s s s
+&Tf pl(rz,t)D(r3,r1,t)F(rl_r3)dr3+1<—>2+ (?__,f pl(r3,t)D(r2,I’1,t)F(r1—r3)dr3+l<—>2
r Fi

P1( 1)

f[pl(rz)pl(r3)+D(r2 rs, t)]F(r r3)dr3+1H2+—f T(rl,rz r3 t)F(rl—rg)dr3+1H2 0.

17

In order to get expressiofi7), Eq. (16) was used to elimi- fact that the interaction force between dislocations of equal

nate some terms. signs has the opposite direction as it has between those with
If the system is not far from the homogeneous one, i.e.different signs}

the system is “dilute,” one may expect th&t and T are

considerably smaller than the other terms in the correspond- gl F-CONSISTENT FIELD APPROXIMATION

ing expressiong14) and (15). This cannot be proved di-

rectly, but as a first step one can close the equation chain Equations(18) and(19) contain the second-order density

(10) by neglectingD than as a second step by neglectingfunctions, so they do not form a closed system of equations.

only T, and so on. In this way the influence of the different As was explained earlier, in a first approximation the corre-

order correlations can be investigated. Since the equationgtion functionD can be neglected, so the two-particle den-

are complicated integrodifferential equations this can beity functions can be given as

done only numerically. In this paper only the simplest case is

discussed in detail, namely whénis already neglected. As pi’j(Fl,Fz):pi(Fl)pj(Fz), ihj=+,—. (20
it will be shown, this leads to a mean-field description of the
problem. With this assumption from Eq$18) and(19) one gets

In the assembly discussed so far each dislocation has the
same Burgers vector. However, in a real system the net Bur- r7p+(l’1,t) - - -
gers vector is approximately zero, so the above-developed — 5~ - [P+(r17t)j [p-(r2,)=pi(ra,t)]
formalism has to be extended for the case where dislocations 1
both with positive and negative Burgers vectors are allowed e .
in the system. It is easy to see that the equations for first- XF(Fl—fz)dle (21
order density functions are

and

ap(ry,t)

J N I >
:+f_*{p+—(rlvr2|t)_p++(r11r21t)} ap_(rl’t)
ot ar —

1 ot
XE(r1—r,)dr, (18

—+i[ (r t)f[ (ra,)—p_(ry,0)]
aFl p-T1, p+{2, p-{T2,

ATl 22
and

By adding and subtracting Eq&1) and(22) one obtains
ap*(rlvt) d > > > > N
T:"‘fT{P_+(r1,r2,t)—p__(fl,l’z,t)} ap(ry,t)y @ . e . L

ary —_—t — k(rl,t)J k(rz,t)F(rl—rz)dr2}=O

L R R at é)rl
XF(ry—ry)dry, (19 (23
wherep, ,p_ are the one-particle ang, . ,p,._,p__ are and
the two-particle density functions with the corresponding .
signs, andE(Fl—Fz) stands for the interaction force between M+ i»[P(Fl,t)f k(Fz,t)lf(Fl—Fz)dFZ] =
dislocations of equal signgThe negative signs in front of ot arq
p+. andp__ in Egs.(18) and(19) come from the simple (29
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in which the total dislocation density(r)=p. (r)+p_(r) o [aP(r 1) ) )
and the sign dislocation density(r)=p, (r)—p_(r) were = o PnbblTot Tin(r,)] =0, (32
introduced.

The interaction force between two dislocations isa@nd
F(r)=brgn{r) (see Ref. 41 where Tsing(f) is the shear ) ub o
stress field of one of the disloc_ations ahds the Burgers A% 7 (r)=— E?P(F,t). (33
vector. As a consequence of this 294Y%

f k(13 OF(F=r1)dr;=b7in(r). (29 OF THEsggagg\él\?gc%;sslgLUHON

Here7,,(F) is the shear stress at the pointaused by all the ~ '11S @asy to see thatif the exteral stregss constant the
dislocations, i.e., this is a self-consistent field created by th@omogeneous stationer solutip(r,t) = po,P(r,t)=0 satis-

dislocation system. After substituting E@5) into Egs.(23)  fies Egs. (3D—(33). It has to be investigated however,
and (24) one arrives at whether this trivial solution is a stable one. For this, the usual

technique of linear stability analysis is applied.

> Let us seek the solution of Eq§31)—(33) in the form
ap(r,t) a9 . - » . - - 2 -
. a—F{bk(r,t)Tim(f,t)}IO, (26)  p(r,t)=po+ dp(r,t), P(r,t)=5P(r,t), wheredp(r,t) and
SP(r,t) are small perturbations, so their higher-order terms
k(* ) can be neglected in Eq81)—(33). After the Fourier trans-
ok(r,t) ~d . . - formation of the linearized equations one finds that
o+ = {Bp (1) (1D} =0, (27 q
ar
aop*
] ) +qb7eéP* =0, (39
Instead of applying the integral formul25) for the de- at
termination ofr,,(r) one can use the field equatiéfs 25P*
. b7odp* —pob7}=0, (35
. ub 9 .
A%y (r)=7— —K(r), (28)
1—v (9y Mb
) (Qx+ ay) 7= — 75, Ay OP* (36)
- ax(r) ) - .
Tim(T) = Xy’ (290 where the symbols marked with * indicate the Fourier trans-

forms of the corresponding variables, angi (q,) is the

wherey is the stress function is the shear modulus, and Wave number vector. Seeking the solution of EG#)—(36)

v is the Poison ratio. For simplicity, in the above expressiori the form

and in the followingb is_ taken_ parallel to 'gha axi;. _ Sp* = Spoexp(\t), SP* = 6PgexpAt), (37)
In most cases the dislocation system is quasineutral, i.e., _ _

the number of dislocations with positive and negative signdeads to the following requirement for:

are equal in an area large enough. So, in a similar way as

with charge density in electrodynamics, the sign dislocation A axbo -0 (39)
densityk(F) can be given as a divergence of a polarization —b7rg AtpobT(d) '
density fieldP(r) (see Ref. 48 where
- - - b aial
k(r)=——P(r). (30 T(¢)= 1“ gx—qy“ (39
ar ~V(oxt+ay)

P is a vector but in the following it is assumed that only its and ¢ is the angle between the wave number vector
component parallel to the Burgers vector differs from zero(dx,dy) and thex axis. From this

In the above consideration the external stregs,was not
introduced. Clearly, it has to be taken into account by adding 2\12= —pobT(#) = Vpgh’T?($) —4b’roq%.  (40)

it to the internal stress in Eq{26) and (27). Due to the fact that the functioRi( ¢) is always positive, the

Summar_|zmg the results, on th_e basis of E(Q@—(SO) in real part ofA; and\, cannot be positive. As a consequence
a self-consistent field approximation the behavior of a paral-

; ; : .~ of this, perturbation cannot grow in this system, i.e., the ho-
féfgt?snil.slocatmn system can be described by the fOIIOWInSf’nogeneous dislocation distribution is a stable solution. How-

ever, it is important to notice, if the wave number vector

- - (dx.qy) is parallel either to thex or to they axis the real

dp(r,t) 4] dP(r,b) b S 01t—o (3p Parts ofa; andX, are zero, which means that these pertur-
gt ax| ax Pl Tt OI[=0 By ions neither grow nor die out, they are stable.
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THE INFLUENCE OF DISLOCATION SOURCES but for simplicity in the following only itsp dependence is

In the system which was investigated so far the number otf‘onsidered. :
. X . . i Although the homogeneous solution of E¢32) and(41)
dislocations was conserved. Clearly, for allowing dls;locatloniS not necessarilv time independent. for investiaating its sta-
creation or annihilation the balance equati@i) has to be y P ’ gating

o . : . bility one still can seek the solution of the corresponding
tmhgdégiitti)gn?ddmg a source tergnto the right-hand side of linearized equation in the exponential forf87) in a time

interval shorter than the characteristic time of dislocation

&p(F,t) o [aP(f 1) density changes. Applying the same method as above one

- (7 = ets the
Jt IX X bl 7o+ Tin(r,t) ] alp, ...). g
Equation(32) however has to remain unchanged because it dp X =0 (42)
expresses the conservation of the Burgers vector. In general, —bry A+ pgbT()

besides the dislocation densityg may depend on the po-
larization, the external stress and also on their functionals;equirement foix. From this

dg
2N o= g~ PabT() VIdg/dp—pobT()]°—4[b* 750~ (dg/dp) pob T()]. (43)
|
SinceT(¢) is zero along thex andy axes ifdg/dp is posi-  influence of different order correlation possible. Due to the
tive there are growing perturbations in the system. complexity of the equations for the correlation function, this
can only be done numerically.
CONCLUSIONS By analyzing the stability of the homogeneous solution

. ) _within the framework of the self-consistent field approxima-

The collective behavior of a system of parallel edge distion it was found that the elastic interaction alone is not

locations was investigated. Starting from the equations ognough to introduce growing instability, which is in agree-

motion of individual dislocations interacting with each other ment with experimental evidences. However, the elastic in-
through their elastic fields, a hierarchy of the evaluationeraction already leads to the appearance of stable perturba-

Since these are coupled to each other, to obtain a closed S@kreasing perturbation even in the case of small production

of equations it has to be assumed that the density functionges.

having higher order than a certain one can be built up from  As 3 consequence of this, it is important to note that in a

the lower order ones according to the Mayer cluster expangeneral theory of dislocation pattern formation the precise

sion(14) and(15). . long-range stress field of the dislocations has to be taken into
It was shown that in the simplest case, when the twoyccount, because the elastic interaction creates a background

particle correlation is already neglected, one obtains a seliyhich alone is already “almost enough” to produce disloca-
consistent fieldalso often referred to as a mean-fielte-  tjon pattern formation.

scription. Although the self-consistent field equations could

be set up in a speculative way, the advantage of the method ACKNOWLEDGMENTS
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