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Optical homogeneous linewidths in glasses in the framework of the soft-potential model
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The temperature dependence of the optical linewidth of an impurity embedded in a glass matrix is investi-
gated. A model Hamiltonian that couples the impurity to the soft modes characteristic of glasses in the phonon
field of the matrix is introduced. We find an excellent agreement between our model predictions and experi-
mental data. We are also able to reproduce supralinear behaviors in the low-temperature regime without any
adjustable parameter for the density of states. Finally, the quadratic behavior extending to very low tempera-
tures is explained in terms of the Bose peak equivalent temperf80&63-18207)04326-9

[. INTRODUCTION purity transition line embedded in a glass matrix as a func-
tion of temperaturé? The homogeneous linewidtkLW) of

It has been known for some time that amorphous solidsn impurity in these solids shows quantitative and qualitative
exhibit anomalous behavior when compared with their crysdifferences in magnitude and behavior if compared with
talline counterpart? These anomalies include low- crystalline solids. In the latter, the HLW followsT power
temperature specific heat, thermal conductivity, ultrasoundaw for temperatures below the Debye temperature of the
propagation, dielectric losses, and optical dephasing, amorgjass and &2 law above'® This behavior can be explained
others. Their most surprising characteristic is universalityjn terms of a two-phonon Raman process in which the im-
i.e., the order of magnitude depends very weakly on theurity levels are coupled to the acoustic phonons of the crys-
chemical composition of the solid. tal. However, in amorphous solids, the magnitude of the

An important progress towards the understanding of thesbroadening is some orders of magnitude larger at the same
anomalies was the introduction by Anderson, Halperin, andemperature, and follows &“ power law with @ ranging
Varma® and independently by Philligsof the so-called tun-  from 1 to 2.6, depending on the material.
neling states mod€ll’'S mode). According to this model, in Several theoretical models have been proposed to explain
amorphous solids, together with very long-wavelengthsuch anomalous behavidsAll of them take into account
acoustic phonons, there is a distribution of low-energy excithe role of TLS proposed in the TS model. To connect the
tations with a two-level systeriTLS) structure, which are temperature dependence of the HLW with the TLS a variety
characterized by quantum-mechanical tunneling through af mechanisms has been proposed. They include spectral dif-
potential barrier. The TS model provides an explanation fofusion of TLS* coupling of the impurity to a TLS that is
the main characteristics of ultra-low-temperature propertiesoupled to the phonon batf;*® coupling to librational
of amorphous solids. Nevertheless, above 1 K, the behavianodest®?° and use of fractons instead of phonéhso cite
of these properties deviates from the TS model predictionssome examples. These models predict a variety of behaviors
Thermal conductivity shows plateauaround 10 K, which  with temperature, depending on the physical mechanism pro-
cannot be explained on the basis of the TS mddalrther-  posed for the dephasing and on the parameters introduced in
more, in Raman scattering, there appears a peak, known #% model. Nevertheless, none of them can describe the nu-
the Bose peak,which seems to indicate the existence of merous experimental data in a general way.
another kind of low-frequency mode. Neutron spectroscopy In this work we calculate the HLW in the framework of
measurements have shown these modes to be soft harmotiee SPM, taking into account the contributions of both kinds
oscillators with a crossover to anharmonicity at the end ofof excitations described by this model, namely, TLS and
the low-frequency regioh. guasiharmonic oscillatord10), both with a common origin:

Among the various models proposed to explain thesehe soft-potential modes. In Sec. Il we introduce the main
anomalous behaviors above 1 K, it is worth pointing out thefeatures of the SPM. In Sec. Ill we carefully evaluate the
soft-potential mode(SPM),2 which gives a unified descrip- density of states predicted by this model, leaving aside some
tion of TLS and harmonic modes in terms of soft anharmonicapproximations usually accepted in the literature, and we
potentials, the so-called soft potentials. This model reproshow that numerical evaluation of the density of states has
duces the results of the TS model at ultralow temperaturesome nontrivial features that reflect on every physical quan-
and has allowed one to explain other phenomena at highdity, as the nonlinear exponents ranging between 0.0 and 0.3
temperatures, as is th@ateauin thermal conductivity and  usually found experimentally. In Sec. IV we introduce the
the Raman and neutron data for various matetfats. Hamiltonian model that will be used throughout this work. In

The main purpose of our work is to study one of theseSec. V we present the results obtained for the calculation of
anomalies of amorphous solids, which, in spite of havingthe response function of the system in two well-studied re-
been studied in various works, is far from being well ex-gions: the TLS and HO regions, making use of the Zwanzig-
plained. We refer to the homogeneous broadening of an imFano theory of irreversibility, which is briefly described in
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Appendix B. A detailed survey of this calculation is pre- E= A2+A§ @)
sented in Appendix C. In Sec. VI we evaluate the HLW of

the amorphous solid taking the weighed average of the HLWbeing the energy splittingf: A, is the so-called tunnel split-
for a specific soft mode, which is the usual approach in thding parameter, and\ the asymmetry, which can be ex-
literature, and we find some analytical expressions for thigressed in terms of the SPM parameters through

HLW in the TLS and HO regions in some limiting cases. In

Sec. VII, numerical evaluations of the exact expressions ob- AneW ext — Q |~|3,2 %)
tained in Sec. VI are presented. Also, the main features ob- 0 3 M
tained are discussed. In Sec. VIII, some striking points of
this model are discussed. W -
A=— [&][7]*> ©)

Il. THE SOFT-POTENTIAL MODEL V2

Let us remember the main concepts of SPWhis model ' the regionz> ¢” the potentiall) has a one-well struc-

proposes the existence of soft localized modes in amorphod¥re: In the limit 7>, the excitations in the well are
solids. The anharmonic potential of one of these modes caff€@rly harmonic, with a level spacing given by

be written as =
E=2W\[7], (10)
— 2 3 4
= + + - . . :
VOO =&l n(x/a)"+&(x/a)™+ (x/a)T], @ and their eigenfunctions are those of a harmonic oscillator.
where &, is an energy of atomic scale, is the configura-
tional coordinate of the mode, aads a distance of the order . THE DENSITY OF STATES OF TLS AND HO

of the interatomic spacing. The values of the dimensionless

parametersy and ¢ are random due to fluctuations of the It is important to make some considerations about the
structural parameters of the amorphous solid. The soft poterdlistribution function(2) and the density of states of TLS and
tials correspond tdz|,|£|<1. The distribution function of HO derived from it. One of the main hypothesis of SPM

these parameters is givenBy (Ref. 10 consists in taking the functio®y(7,&) as a con-
stant,Py(7,€)="Py(0,0)=P,. Some of the anomalies above
P(7,8)=|7Po(7,é), (2 1 K in amorphous solids could been explained with this dis-

where Po(7,£) is even iné and slowly varying on both tribution function, as is thelatead in thermal conductivity

parameters, so it can be taken as a constant in some Casgg_tf:eTn:jmlm;Jm Itn the fu?ctléoorif?p/T Cp ldenlt)ltes stﬁelcmc
This point will be discussed in the next section in more de- cal, 1 denotes tempera Ure” for examp €. evertheless,
tail. some other nontrivial features found experimentally have no

With the aim o inrodueing the scales of the problem, theC 25! S AT 10 ST e e e end of
following parameter combinations are defined: i ; ;
gp the plateauand the maximum i€,/ T3.%>?°Ramos, Gil, and
= (h212Ma%&,) 3, ©) Buchenausee Ref. 2bhave shown that a small modification

] ) ) of the parameter distributiof?) is able to describe these last
with M the effective mass of the mode, which allows us toy5 phenomena, explaining in this way the main thermal

introduce the length scale of the system throagft”, and  anomalies in amorphous solids in the whole low-temperature
We &2 @ rgnge(see A_ppendix A This will be the_dis.,trib.ution func-
07 tion from which we shall start. So, the distribution of param-
which is the characteristic energy of the quartic oscillator eters of the potentiall) is given by
i.e., n=£&=0. Also, the abbreviationsp=7n/n_ and ¢

= ¢/ 712 will be used throughout the text A [nE &\2
L . 9 oxt. P(7,6)=|n|Po(n,€)=Polnlexg — — | 5— %] |
The interaction of the soft potentiél) with the phonon L\2 8
strain field is given by the bilineal couplifig (13)
where A=0.169W/kgT4)*? with kg the Boltzmann con-
VHOPHX) = A xe,, (5)  stant andT the transition temperature of the glass.

In the following, let us consider the densities of states

wheree,, is the phonon strain field in branehand A, the  derived from this distribution function.
corresponding coupling constant in that branch. The relation
between these coupling constants and the deformation poten- A. Density of states of TLS

tials, y,, of the TS model is given By As explained above, in the soft-modes regipml,| | <1,

v, =AN7I2. 6) SO the dominant 'Ferm in the expo.nent of E_Iql)3/izs the first
one. Moreover, in the TLS region,y||£<#%)“, so Py
In the region 7<3:¢> the potential(1) has a double-well =p(,¢)>P, exp(—A). For example, in the case of amor-
structure. If|£[|7|<1 and, at the same time; is negative  phous SiQ, A=2.21x 10" ° (see Table)l So, in this region,
and within the limits| 7| >3, , the two lowest levels of the the distribution functior(11) goes back to that of the SPM:
potential (1) form a TLS. The eigenstategt),|—), of this

TLS have eigenenergies E/2 and— E/2, respectively, with P(#5,&)=Py|7|. (12
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TABLE I. SPM and fitting parameters.

Substance
Sio, Silicate GeQ PMMA
Sound wave parameterse
p (kg/m?)2 2200 2400 3600 1200
121 (m/s)b 5800 5300 3900 3150
v (m/9)° 3800 3200 2340 1570
SPM parameters
P (10% states/m)¢ 0.99 3.91 1.17 1.27
Wikg (K)¢ 3.8 7.20 3.8 2.5
A (V)P 0.65 0.37 0.56 0.15
A, (V)P 0.41 0.25 0.35 0.11
Fit parameters
b (eV A% 6.3x10°? 2.3x10°1 4.8x10°1 3.6
V¢ (A%) 543 1143 555 4354
Tenin 7.03 14.11 20.90 17.23
Glass temperatures
Ey /kg (K) 49.9 67.3 43.2 26.0
Ty (K)° 1473 717 830 374
0p (K)? 494 436 307 256
N (molecule$ 1% 31 115 36
%Reference 27.
bReference 28.
‘Calculated according to Ref. 28.
dReference 25.
‘Reference 10.
The energy density of states is given by 279(E)  _ 22 —
t = %min EX[{ T3 77min}' 17
expt

s ey [° e e
@)= [ dn| deP(roaE-E (1.0,

(13) For example, in the case of amorphous Si@ssuming
W/E=10 and te,=10° s, we obtain 7,=9.6x10 °s,

Going to the variablesH, ») we have Nmin=8.78.
A commonly used approximation consists in neglecting
ﬁPonE E the termAS in the square root in expressigh5), provided
P(E, )= (14

W aVEZ-_ Al p) Tnin> 1/, 1222 With this simplification we arrive at an ex-
0 pression that does not depend on the energy sp&cemy is
and integrating with the aid of the Dirac delta function, we slightly dependent ol

get
~ ,/’7‘; P
S(E)= Y2 p, [ = as n'e=2vz = s
W 0 \/’; \/EZ—Ag

In this expressionPs=2Po7>?, 70=7(Ao=E) [see ex- Nevertheless, a numerical evaluation of expresélsnleads
pression(8)] if E<W, and7,=0 if E>W,; 7, is intro-  to densities of states the same as those shown in Fig. 1 for
duced so that the density of states remains finite, and it igmorphous Sig for different values of,y, which are only
fixed by the duration of the experimeng,. In fact, follow-  constant fof£>W. In this figure, we also compare the exact
ing Ref. 10, the only TLS that make a contribution are thosedensity of state¢15) with the approximated onél8) for a

that have undergone a transition duringy,. On the other fixed value ofte,y. The temporal dependence of the density
side, for small values dE/kg T, we can estimate the charac- of states is also shown. The deviations from the constant
teristic decay time of those TLS with a small asymmetry by value predicted by Eq18) reflects on the behavior of physi-

cal quantities.
— - | 77| AO 2
T 1= To 1(E) _2 _W y (16)

B. Density of states of HO

where 7, Y(E)=(W?E/2mph*) = ,A2/v2. Making use of Following Ref. 25, the density of states of a HO is given
Egs.(16) and(8) we arrive at the condition that fixég,,: by
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1025 Mwmmmmmw (—-—-): calculated from Eq(20). Also the value of the Bose peak

106 105 104 10° 102 10" 10° 10" 102 energy is shown.
E/W

Ep=2.2W/AYS, (21)

in good agreement with the value obtained directly from Eq.
(19 (see Ref. 2b So, our simplified density of states is able
to describe the maximum observed in specific heat data and
also in the Raman and neutron scattering data, usually re-
ferred to as the Bose peak. Following Ref. 25, we shall take
Ey as the upper limit of what we call soft modes.

In Fig. 2, the exact density of stat€s9) and the approxi-
mated on€20) are presented. It can be seen that our approxi-
(¢) mated density of states describes the main features of the HO

1028 Mmmmmmmmw density of states.

10® 104 102 10° 102 104 108
foxp( ) IV. THE HAMILTONIAN MODEL

FIG. 1. TLS density of statega) Density of states for various With the previous considerations, we can introduce our
experiment durations(—): tep=10"2S; (- - -): tep=10"1s Ham.|lton|an model to study the HLW of an impurity embed-
(= ) tepel S (=) top=l® S (= =) tog=1d; (=) ded in an amorphous solid. 6 _
texp=1 month. (b) Comparison between the density of stat&s) Following the usual hypothesis;'® the resonant optical
and the one given by18) for te,,=1 month.(c) Temporal depen- transition takes place between two levels of the impurity
dence of the density of state&/W=0.1 (—), E/W=10 (-----). (=0 with energyey, and =1 with energye;), with an

energy differencéi wg= €, — €9, which we shall suppose to
be much greater than the Debye energy of the matrix and the

Ps [E\*[1
nHO(E)= — (V_V) f dz exy — A(E/2W)%z%(1—27%)?].  soft-mode maximum energy.
0

6vV2W The Hamiltonian of the impurity interacting with a soft
(19 mode in the phonon field is given by

Instead of considering this density of states directly, we shall 1 1

use two limiting cases that reflect the main features of Eq. = 2 €, al 'a +HSM(X)+E h N+ E g.ala.x

(19) and are easier to manage: a=o 3 a9 S T

P, [E\* E\®
6‘f25W E or A(_) <1 +§ A X, (22)
HOEY —
" (E) 6 20 In this expression, the fermionic operatcax%, a, describe

PS T 1/2 E E

W (ﬁ) (V_V) for Aly) =1 the electronic levels of the impurity4SM(x) is the Hamil-
tonian of the soft modésee Sec. )| the third term is the

In the first of them we see that the density of states reducedamiltonian of the phonon field whemg=(q,0), whereas

to the one commonly used in the SPM framewd#or this  the two last terms describe the interaction of the soft mode

simplified density of states, the energy of the maximum inwith the electronic levels of the impurity and the interaction

nHO(E)/E? is given by of the soft mode with the phonons, respectivagy. are the
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soft-mode—impurity coupling constants. The soft-mode— We can also make the following identifications:
impurity interaction has been assumed to be diagonal, which

is nothing but the mathematical expression of the hypothesis 1 E 1

made in the previous paragraph. HO= e.ala,+ = o,+(Ac,+Ay0y)/E Y, G.ala,,
Once the Hamiltonian has been stated, we can study the a=0 2 @=0

response of the system to an external electromagnetic pertur- (27)

bation, which will be accomplished in the following sections.

(B)_
V. LINE-SHAPE CALCULATION H % hwgng, (28)
FOR THE IMPURITY —SM-PHONONS SYSTEM

Let us consider the system described in Sec. IV and let us VO =(Ao,+Ayay)/E, (29
study the response function of this system under the action of
an external electromagnetic field in the framework of the
Zwanzig-Fano relaxation theorvhich is briefly described VO =i hog2pv2A [7]/2(bg—Dbl). (30
in Appendix B. Let us introduce some new notation that will q

be used throughout the rest of this section: R . . L
We can rewrite Hamiltoniaf22) as The OAS Hamiltonian can be diagonalized, and its eigenval-

ues are given by

H=HO+H®+H,,, (23

where H® refers to the optically active subsystefthe E
impurity+soft mode subsysterH ®) refers to the bath sub-
system(the phonon fieltd andH;,; refers to the interaction . L
between both subsystems. The interaction between the opﬁ‘f'th n==1, and its eigenstates
cally active subsystenOAS) and the thermal bath can be

«a n 2 =~ \2 n
n=ea+§ VAGH(A—29,)=€,t 5 €4, (31

2

factorized as |, —1)=(sin ¢o| =) —CcOS P,| +))| ),
—\/(S\/(B
Hine= VOV, (24 |a,+1)=(cos ¢,|—)+sin ¢ |+))|a), (32
whereV(® depends on the OAS variables a¥t®) on the o _ _
bath variables, respectively. where the first indexg, refers to the impurity state, and the

As the potential1) cannot be analytically solved, we shall Second one to the TLS state and
study the response of the system in the two limiting regions
introduced in Sec. Il, the TLS and HO regions. sin ¢,=(1V2)\1—(E—29,A/E)/e,, (33

A. Response function in the TLS region cos ¢ =(1/\/§)\/l+(E—2§ A/E)le,. (34)

In the TLS region, the Hamiltoniaf22) can be expressed . .
in the TLS basis in terms of the energy splitting, the asym-From this new basis we have
metry, and the tunnel splitting parameter. The expression

obtained in that basis is 11
HO=> E%a,n){a,n|, (35)
1 E 1 a=0n=-1
H= >, e,ala,+ 5 o7t (Aot Ao )/ED, Ghala,
a=0 a=0 1
V= (=A,0i+B,od), (36)
+§ fiwgng+i(Aa,+Agoy)/E a=0

with

X > Vhwgl2pv2 A [ 7l12(bg—Db}), (25)
a o_(02><2 02><2) 1_( Oj 02><2)
where o; is the ith Pauli matrix andg,=g,\|7//2. The T 0002 a7 |7 T 0gxz2 Oaxz
bosonic operatob, (b;) stands for the annihilatioicre-
ation) of a phonon in the; mode.p is the mass density of the (Ref. 30 and

amorphous solid and,, is the sound velocity in branch.

This Hamiltonian is the one by Lyb;'®as we can easily see A,=(A/E)cos 2p,+(Ay/E)sin 2¢,,, (37)
by identifying
VZi=—2G.AIE B,=(A/E)sin 2¢,—(Ay/E)cos 2p,,. (38
a a ’ (26)
Vi=—G.A,/E Using expression$30), (35), and (36) we arrive at an ex-

_ pression for the response function of the system in the TLS
whereV!, are the coupling constants defined by Lyo. region given by(see Appendix B
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FT'(w,E) state and in its excited state, i.eSity)?=[(1,n/0,m)%

1 1 They are given by
1
~ ion|2
o |M10 nzz—l m:z—l
coS(p1— ), N=m

TLS\2 (S) TLS (SMESy2=1 .
(Sn,m) pOm,Omrln,Om m Slnz( </>1_¢o), n#m.

ho—hwo—Ne1/2+Meg/2— 81 om) 2+ (L inom)?

(41)

X
(
(39)  The functionss}5,(E) andl'{;%,(E) are worthy of special

attention. As can be seen from expressig8), 5i-5 (E) is

ion 1n,0m

In this expression; is the impurity dipole MOMeNt NON- o shift of the transition that begins at level{p(the im-
diagonal element, that allows the electronic transition

S ) oo , ‘purity is excited and the TLS reaches lewve] and ends at
Pom,om iS the OAS density matrix diagonal element with the o6 (1m). This shift is due to the interaction with the ther-
impurity in its ground state. It is given by mal phonon fieldI'1;3,(E) stands for the half-width of that

S —axn—mBer/2)/2 oS 12). 40 transition, and is given by the sum of the levels involved in
Pom.om A= mBeo/2) Bz20/2) (40 the transition; i.e., due to the interaction with the thermal
The elementSI,Lrﬁ are the overlap integrals of the OAS wave bath, the OAS levels take a finite lifetime. The expressions

functions between the states with the impurity in its groundfor these two magnitudes afsee Appendix €

Sinom(E M) =85"3(E)[2ne;1B(KsT)2E 1(T) — 2meoBi(KaT)?E o(T) + B(KgT)3Q1,4(T) — B3 (kg T)*Qom(T)
+(A3—A2)(kg®p)%/3]. (42)

I Inom(E Ag) =T §-3(Ag){Blei[ng(eq) + (1+n)/2]+ Bied[ nNa(e0) + (1+m)/2]}. (43

In both of these expressionsg stands for the Bose-Einstein FIII;,SOm(E!AO) and its intensity is weighed by a thermal fac-

distribution function andd, is the Debye temperature. The tor, the OAS density matrix elements, and an overlap one,

following definitions also have been introduced: the SIS elements.

It is obvious that extracting any information from expres-
8o-5(Ag) =2 A2|7|/8m2ph%vS, (44 sion(39) is a difficult task. There is, however, a limiting case
o where the expression for the line shape is simple. So, in the
limit Ag<<A, the following simplifications can be made:

T'g-S(Ag)=m65"%(A0), (45)
Op /T (SILHS{)ZZ 1 n:m 49)
Ea(T)=f ”dx XCng(X)/[(Be)?>—x%],  (46) ’ 0 otherwise,
i B,=0,
Qun(T)= JOD/de Xl(NBe,—X). (47) A,=-1, (49
: S1hom(E)=0, (50)

Let us briefly mention the approximations that led to expres
sion (39).
_ Antiresonant terms ik + f.wg have been neglected as, o ! pononl 1hon
in the vicinity of the resonance, they are very small when F () |10 2 — — 22 TS \2°
. n=-1 (h(l) hwo nV /2) +(F1n,0n)

compared to the resonant one in E8Q). The memory func- (51)
tion has been evaluated to second order in the phonon strain
field; i.e., this calculation is only valid for small values of the with V?=V;—V§=2g,—29; .
strain field. We have made use of the Markovian So, in this limit, the response function is formed by two
approximatior?! which consists in assuming that the thermal Lorentzian lines shifted by a quantity V?/2 from the impu-
bath memory is infinitely short. rity transition energy. Expressids1) coincides with that by

Under these approximations, the response function of theyo'®'in the limit of diagonal-impurity—TLS coupling and
system described by Hamiltoniaf®5) is given by four slow modulation, i.e.,V?>4T155 , being XI55 /A
Lorentzian lines, corresponding to the four possible optical= 7~ the inverse of the TLS lifetimfcompare with expres-
transitions between levels (@) and (1n), each of these sion (16)]. However, our response functiq@9) only con-
lines being centered at an energyne /2—mey/2  tains the slow modulation part, contrarily to the one by Lyo
+ 5{#%,“(E,Ao) relative to the impurity transition energy. for diagonal modulation, which is valid for the fast modula-
Each of these Lorentzian lines has a half-width given bytion limit also. This is due to the fact that we have considered

‘and the response function can be written as
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the impurity+ TLS system as a coherent state, which is ! ;
meaningful only if the coupling is strong enough to form H= ZO €,,8, 1 ECTC+E fiogng
such a state\(*>4I'[;3_.), as has been already explained “ a
by Lyo.1 1
In addition, if we take the weak coupling limit in expres- +VW/E(cT+c) X g,ala,+iVW/E(cT+c)
sion (51), i.e., E>V*4I'[13 ., we shall have «=0
2 t
IS, =T -SAZE[ 2ng(E) +1+n], (52 X% Vhg2py A ,(bg—by), (56
. T . . .
Ponon=€XP( — NBE/2)/2 costi BE/2). (53 where the bosonic operator(c') stands for the annihilation

(creation of a HO. The HO spacing is given by expression

L _ . ... (10. We can make the following identifications:
As we shall later see, it is enough to consider this limit in

1 1
order to explain the experimental data. (S)_ " + Y= 1
All the previous expressions in this section have been H _Z‘O €82t ECTCH VW/E(C +C)Zfo YaBala

calculated for a specific TLS of spaciiy However, in an (57)
amorphous solid, there is a set of these TkB6ft modes in
general, the parameter; of which are distributed according H(B):Z fiwgng, (58)
to Eqg. (12). So, to obtain the whole response of the amor- q
phous solid, it is necessary to average the response function (S et
for a specific excitation with the adequate distribution func- VP =VWIE(c+0), (59)
tion.

As pointed out by some authot3!® we can expect the V(B):'g Vhwg/2pv5A (bg—b}). (60)

impurity-TLS coupling to vary with the distance in between, o _ o
so an additional average over these couplings has to be pefhe OAS Hamiltonian can be diagonalized in an exact way.
formed. So, the total response function of the amorphoud he eigenvalues of this subsystem are given by

solid will be given by Ef=¢,+ En—giW/Ez, (61)
. and the eigenstates by
fTLS(w):ZWf dE dy P(Eﬂl)fo dr F'(w,E, 7). Vo= |a,n)=x"Ox+2,)|e), a=01; n=0,...c,
(54) (62

with Z,=2g,W/E2. These eigenstates trivially verify the
The cutoff in the spatial integration is introduced in order torelation
guarantee we are in the slow modulation limit, where expres-
sion (39) is valid. As a microscopic description of the soft 2 |a,n){a,n|=1. (63
modes is lacking, it is difficult to give the exact dependence an
of the coupling with distance. So, we shall follow the usualThe « index refers to the impurity state and theindex to
hypothesis accepted in the literature and assume a dipol¢he HO state or, in terms of excitations, to the number of
dipole interaction between the impurity and TESThe cut-  optical and HO excitations, respectively. The functions

off radius is then given by xO(x) are those of a harmonic oscillator. In this basis we
have
VZ=b/r3=4T5% . 1w
Y HS= Ef|a,n)(a,n|, 64
= 2} “SASE[exp BE) + 11/[exp( BE) 1. (55) 2, &, Elanan (64

1
(€S + _
B. Response function in the HO region v WIE(c™ +c) ; ;::o Zo|am)(ainl. (65)

In the HO region, the Hamiltoniaf22) can be expressed Making use of Eqs(60), (64), and (65), and following the
in the HO basis as same approximations as in the TLS region, we arrive at

1 - (SHO 2pH01—~HO
Fw.E)= — [uigl%p50 2 2 n.p) Pnnl 1pon 6
p=-n

=0 [ho—hwo—Ep+(gi—g5) WE?— 815 m]*+ (Tipen)?”
In this expressiorpi%‘z{lJr exp[—ﬁﬁwo+B(gi—gS)W/EZ]}*lzl is the impurity density matrix diagonal element in its ground
state. p;,o=[1—exp(~BE)lexp(~nBE) is the HO density matrix diagonal element in state The elementsS}) are the
overlap integrals of the HO wave functions between statgith the impurity in its ground state and state-p with the
impurity in its excited state. Sqy stands for the number of HO excitations createddestroyed ifp<<0) in the transition.

These elements are given by



586 A. J. GARCIA AND J. FERNANDEZ 56

(Sh2= [(XRSp(X+ Z0) X0 Zo)) | 2= [t (n+ )1 1P ulPh exp(—u) £P(w), (67)
with u=(g;—go)°W/E® and L)} (x) the associated Laguerre polynomials. As pointed out in the previous sedf@m(E) is

the shift of the transition that begins at le¥@] n), in which the impurity is excited anpg HO excitations are created, reaching
the level(1, n+p). F?‘Sm(E) is the half-width of that transition. The expressions for both magnitudes are

8 W*(gi—gj) 1-E/kgOp
HO _ qHO 3 2 3
51p,0n(E)_50 (E) —§T—2W 2/3+2(E/kB®D) +(E/kB®D) Inm Pl (68)
|
where where the average over the couplings also has been included.
The meaning of the cutoff volumé, will be discussed in the
SHO(E)=[(E/kg®p)38m2phWPE] Y, A%/v5, next section.
7 It is evident that numerical evaluation of the response
I'Om(E) =T §°(E)[coth( BE/2)(2n+p) + 2ng(E) ], function of the whole amorphous solid in the TLS region

(69  [expressior(54)], or in the HO regiorfexpressior(71)], is a
very difficult task. We are not presenting it here, as it is

HO_ (\n/ 2 3 2, 5
wherel'o™= (WEY/Amph”) 2, ALl v, planned to be the subject of a future paper.

Expression(66) allows us to interpret the line shape of the
system under a resonant monochromatic excitation in a
simple way: it is formed by an infinite number of Lorentzian

lines corresponding to the infinite possible transitions be- As stated by some authot$the total HLW of the amor-
tween manifoldg0, n) and(1, n+p), each of them centered phous solid should be extracted from the averaged response
at an energy given b p—W(g3—g5)/E2+ 8;55,(E) from  function. However, in most casésee, for example, Refs. 15,
the impurity resonant transition energy. Each of thesel9, 17, and 2} the total HLW is obtained by averaging over
Lorentzian lines has a half-width given W%‘?On(E) and its  the proper HLW for a specific TLS. In Ref. 17 it is argued
intensity is weighed by a thermal factor, the density matrixthat this procedure is valid as a series expansion of the total
elements, and an overlap factor, ﬁ'écp’ elements. HLW extracted from the total line shape. At this stage, and
As the impurity-HO coupling is purely nondiagonal, the due to the complexity of the calculations, it is difficult to say
expression for the response function is valid in the wholewhether both procedurdaveraging over the response func-
range of coupling constant values where Hamiltor(®®) is  tion and averaging over the HL)vould yield similar re-
valid, and we need not distinguish between slow and fassults. And though we are not trying to answer this question,
modulation, so the cutoff of the spatial integration will not in this work we shall at least present the results obtained
depend on the HO spacirig This will have important con-  from our model following this approximated method. With
sequences, as will be shown below. this aim, the total HLW averaged over the HLW for a spe-
In general, it is a difficult task to extract any information cific soft mode will be calculated in this section.
from expression(66), and one has to resort to numerical As stated in the previous section, the half-width of a tran-
evaluations. However, in the weak coupling limit, an analyti-sition for a specific soft mode of spacirg(TLS or HO) is
cal expression foF"°(w) can be given, and as will be given by the sum of the half-widths of the levels involved in
shown below, this limit is enough to explain the experimen-the transition, weighed by a thermal factor and an overlap
tal data. So, taking the limig,<E, the only processes that factor. So, the HLW of an impurity coupled to a specific soft
contribute to the HLW are those without creati@n destruc- mode would be given by
tion) of HO excitations, i.e.p=0, and expressiof66) re-
duces to P P AFH(E.T)=% ; Pomonl (LN+ P[0T 150, (72)

HO-HO
Prnl 10,0n

VI. ANALYTICAL APPROXIMATIONS TO THE HLW

) where the particular form of each of the factors in EZR),
fho—thawy)?+(THS, )2 : \ .

0 10,0 in terms of the SPM parameters, depends on which region
we are dealing with: TLS or HO. The total HLW of the

The sum in this last expression can be evaluated in terms Gfmorphous solid will be given by the average of expression
hypergeometric functions. However, the resulting expressiof’2) With the adequate density of states. Let us calculate the
has not been quoted, as it gives little physical insight into oufXPlicit form of the total HLW in the TLS and HO regions.
problem.

As stated above, to obtain the total response of the amor- A. TLS region
phous solid, we have to average expressif), or expres- Let us consider expressidi72) in the TLS region. We
sion (70) in the weak coupling limit, with the density of 5 e
stateq20) and extract the HLW. So, the total response func-
tion will be given by 1 1

ATES(EA0 D=2 3 3 pbmon(Sim) T Inom:
(73

1. o
FHO ,E =~ _ ion| 2
(0,E) 7_r|:“10| ngo (

f“o(w)szde nHO(E)f d®r FHO(w,E), (72
0 Ve
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where the particular form of each term has been calculated in 105 .
Sec. VA. ; ' !
At this point, we shall take the weak coupling limit, which, C
as we shall see below, allows one to explain the experimental 104 L
data. Under this approximation, the factors in EfR) are E
given by expression&48), (52), and (53), respectively. So, I
expression(72) can be put as 103 = -
AT[M(E,Ag, T)=8I""SAZE exp BE)/[exp BE)+1] -
X[ exp(BE)—1]. (74 g 102 —
The total HLW will be given by the average of the previous b
expression. Also, the slow modulation limit has to be im- T 101 -
posed. So, for a dipole-dipole interaction we have
; ,
AI‘LLS(T)=4Trf dE dnf °dr r?P(E, 7)ATTIS(E, 5,T), 100 ¢ .
0
(75
whereP(E, ») is given by Eq.(14) and the spatial integra- 10 .
tion cutoff by Eq.(55). The integration in the radial coordi-
nate is trivial, leading to ) | 1 |
1 = i L1 i1 L Y] i1 11181
LS 3227 Py (Emax 0.1 1.0 10.0 100.0 1000.0
AN =—5— P . dE Temperature (K)
i A7 E exp( BE) FIG. 3. HLW in the TLS region for somé;, values.(—):
ﬁmm —— 5. ’;fmin:2-87; (- - ) 77min23-43; (== ’;fmin:4-57; (== ;}min
» 7 JEZ-AZ [exp(BE) +1] =7.25: (=) Fn=17.5.

(76)  the TLS region can be obtained. In this case, we can average
In order to evaluate expressigii6) numerically, we shall Py making use of the density of statékb), and in this way
make the usual approximation of neglecting the variations ofbtain an expression for the total HLW beldi#,a,/ks :
Tmin With E. This assumption greatly simplifies the fit to 8
experimental data, as for long time scale experiments this AT ()= 3 n"ShkgT, (77
“effective” cutoff can be estimated by using the approach
described in Ref. 25 of taking the maximum barrier height ofwith n'=> given by Eq.(18), which coincides with the one
the TLS as one-half of the glass transition enekgyf,, or ~ calculated by Ly& in the same limit, but starting from the
else it can be taken as a fit parameter in the opposite casiinneling states model.
The results obtained from this numerical evaluation are pre-
sented in Fig. 3. There, we can see the strong dependence of B. HO Region
the HLW on this cutoff in the TLS region: it ranges from a | et us consider expressioff2) for a specific HO. We
linear law for large values of,, (long experimental time pave
scale to a non-power-law for small values 0, (short
experimental time scaleAlso, the magnitude is slightly de-
pendent on this cutoff. As quoted in Fig. 3, for some values
of 7min, a T3 dependence is obtained beldW/kg, which
seems to indicate there is no need to introduce any param- X |XEO(X+Zo)>|2FT,9,0n- (78)
eters for the density of states of TLS as was suggested by js convenient to separate transitions with HO creatipn (

some authors? Above E . /ks the HLW behaves closely as -0y from transitions with HO annihilationp<0). So, we
a constant. These results are only slightly modified if weygke

leave aside the above approximation. HO . 1HO p=0 HO p<0
Nevertheless, in the limit of diagonal modulation intro- APG(E T =AM (E TP+ ATGA(E TP, (79)

duced above, an analytical expression for the total HLW inwhere

TLS

[ ©

ATIMET)= 2 2 phopnal(Xpon(x+2)

ATHOE, T)P=0=THO exp(—u) >, > " t"uPLP(U)Y (1+1)(2n+p) + 2t], (80)
p=0 n=0 (N+p)!
ATHO(E, T)P<0=THO exp(—u) >, tPD, n t"uPLP(U)Y (1+t)(2n+p) + 2t], (81)

p=0 n=o0 (n+p)!
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with t=exp(—BE). Taking into account the relations

” ! u~Pt—P2 2ut 2ut2
2, <n+p)' LR =— eXp<_1—t>|p< 1—t)' (62
* * I
2 (n+p). (Nt DLRW?= D s at” " 1LB(w)2, (83
J 1
2 6(@=5 [ 12+ 1pa(2)] (84)

wherel ,(2) is the Bessel function of the first kind with an imaginary argument, we arrive at

ATJO(E, T)=T5Y cscH(BE/2)+u coth BE/2)]. (85)
The total HLW will be given by the average of this expression with the density of st2@s

Ep/kgT x8eX
ATEAT)=(ATEAE))e, = Ve, 5<kBT fo X ey (86)

32w W4ﬁ3 =

in the weak-impurity—HO coupling limit. The volume in For temperatures much lower thig we can evaluate Eq.
which the HO is localized® V.., appears when we properly (86) to give

normalize the distribution function to the total number of soft

modes in the solid. In fact, the integration over the spatial Ho 167°Pg

coordinater extends along the whole volume of the amor- H=—_———— =V CE (kBT (87)
phous solid,V. As the total number of soft modes is finite 63v2pW'h

and equal toN, we must divide by this normalization con- and for temperatures abo#, we have

stant, thus obtaining a fact&/Nyo=V., which is nothing

but the volume where the soft mode is localized. This mac- PSEE i
roscopic parameter can be related to another parameter, AFEOE—HVCE — (kgT)2. (89
which can be estimated from neutron scattering data: the 15V2mpW'h o Vg

number of atoms and/or molecules participating in the mod ;
N IO through. the  relation V.o NpM P /Pg \whero %0, this mechanism has the same behavior as Raman pro

S h | mc%legﬁla t 4ot cesses in crystalline materials, but the high- and low-
M molecuiar IS the mole mass in grams of the atoms and/ofemnerature limits are defined in termstf, which is char-

mOIIEeXCurlssSSicz)onnE‘gg)mlir;g \t/f;(laidm?gre a general form of the acteristic of the amorphous solids and is usually one order of
P 9 magnitude lower than the Debye temperature.

impurity-HO interaction, as long a8T'{°(E,T) contains a
(g1—9gg)-independent term and the coupled impurity-HO
system can be treated as a coherent state, i.e., when the cou-
pling is sufficiently strong. This can be expressed in an ana-
lytical way by the conditiorb/r*>T" for a multipolar cou- Expressiong76) and (86) have been evaluated numeri-
pling, wherel" is the characteristic broadening of the HO andcally for some materials and the results are presented in Fig.
is given byI'~T'H°. In other words, our treatment is valid 4. These materials have been chosen in an attempt to give a
only for those HO with a characteristic decay rate in thecomplete picture throughout a broad temperature range. The
continuum of phonons that is slow enough to form a cohervarious parameters of the SPM have been quoted in Table |
ent impurity-HO state, i.exr<<(b/T")®. Obviously, the case for each material. They have been calculated from TS model
in which the approximation works worst is fe&==E,. If we  parameter measurements in the low-temperature regime, fol-
now definer .one @s the smallest value ofwhere the previ- lowing the procedure in Ref. 25. Unfortunately, the coupling
ous inequality holds, and consider a dipole-dipole interactiorb and the volumé/,, (or, equivalently, the participating num-
(s=3), with b values given by those calculated in the TLS ber N¢) are not known in general, and only estimations for
region, we obtairr =8 A for the SiQ andr =26 A vitreous silica and a few other materials were availdb®o,

for the PMMA (polymethyl methacrylaje while r,  we have taken them as fitting parameters. The deduced val-
=(3V/47)is 5 A and 10 A for the Si@and PMMA  ues also have been quoted in Table I. An exception is the
cases, respectively, so the coherence limit is fulfiliede  system Nd":SiO,, where all the SPM parameters are well
Table | and the Sec. VII for details about the calculation ofknown, and a reliable estimation & exists:® Unfortu-

the various parametersin the case of a dipole-quadrupole nately, there are no experimental data for this system in the
interaction it is difficult to establish a comparison betweenmedium to high temperature range.

I.one @ndry, as we have no reliable estimations of the cou- Let us try to analyze Fig. 4. The first striking feature is the
pling b. excellent agreement between experimental data and numeri-

VII. RESULTS OF THE NUMERICAL EVALUATION
OF THE HLW
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108 one in SiQ. The better fit to experimental data gives a value
of almost 12 molecules participating in the soft mode, in
complete agreement with the estimation made by Buchenau
- et al. in Ref. 10 for SiQ. Although we have no reliable
estimations of the number of participating molecules in sili-
cate and PMMA glasses, the same reference points to par-
- ticipating numbers between 20 and 100 atoms and/or mol-
ecules per soft mode, the same as the ones we have obtained.
The values of parametér are also in good agreement with

- usually accepted valuesee Ref. 3b for an electrostatic
dipole-dipole interaction. Let us now return to a puzzling
question. As mentioned above, NdGeO, experimental
Eud* Silicate m data are one order of magnitude larger thart NEiO, ones,
which leads to a difference of one order of magnitude in the
correspondingd couplings. These two facts have no easy
10’ - explanation if, as we have admitted, both systems have an
almost identical microscopic structure. In fact, this behavior
has been already pointed out by some autfdnsother sys-

T | I
Nd3*: GeO,

10°
Pentacene: PMMA

LanmaRILY |

LR ELLL B R |

LERERLLL

10° 3 . o 7 tems, and it has been related to the different experimental
F « Nd**: SiO, techniques that have characteristic measurement and detec-
o I T T tion times lying in different time scales, which in turn fix the
0.1 1.0 100 100.0 10000 cutoff #min, 0N Which the density of TLS depends. Though it

is out of the scope of our work, we think this question de-
serves a deeper study. Concerning this point, we would like
FIG. 4. Numerical(solid lineg and experimental data of the to add some additional comments about this time depen-
HLW for some systems(A) Pentacene: PMMARef. 33 (%):  dence of the HLW. As can be seen from expressidssand
Nd®*: GeO, (Ref. 32; (@): EW**: Silicate (Ref. 34 (*): Na®*:  (18), we can expect a time dependence of the TLS density of
Si0, (Ref. 35. Numerical data have been evaluated by making uséStates even in the most simple limit, which should reflect on

of expressiong76) and(86) in the TLS and HO regions, respec- EVEry megsu.rable physical quantity such as, fOT_ example, the
tively. HLW. This time dependence has been experimentally ob-

served, but its nature is not yet clearly understood, and is

cal fits in the whole temperature range and for all the mateusually ascribed to some kind of spectral diffusion mecha-
rials studied. The EU’: silicate system is worth mentioning, nism. As can be seen in expressi(#6), this time depen-
as this is one of the few systems in which a crossover from a@ence also appears in our model if the variatiomgf, with
linear to a quadratic law has been clearly observed. We catime is taken into account. More work in this direction
see that the combination of the two mechanisms proposeshould be desirable, and is planned to be the subject of a
here accurately describes this crossover. The pentaceniiture paper.
PMMA data are also well described by our model, and, in
contrast to the usually acceptdd law, we find a better
agreement when considering a combination of both mecha-
nisms; however, it is reasonable to expect such a supralinear We can conclude that our model gives a very accurate
behavior for lower temperatures, as this kind of crossovefiescription of the experimental data in any temperature
appears belowW/kg as shown by Eq.(76). For the range, without introducing any adjustable exponents for the
Nd3+:S~iOz system, and choosing a reasonable value for thgLS density of states. Moreover, a very interesting feature of
cutoff 7y, (this value, and the ones estimated for the othetthis model is to establish relations between optical dephasing
systems using the method described in Sec. VI A, have begsroperties and other kinds of properties, through energy
quoted in Table), we are able to describe tfié=power law  E,, which defines the low- and high-temperature limits of
exhibited by the experimental data. In the measured regiorthe HO contribution. We think more attention should be paid
the HO contribution can be neglected. The®N&iO, and  to the question of relating optical dephasing properties to
Nd*":GeQ, systems are expected to exhibit a very similarthermal and transport ones.
behavior, as the host matrices’ structures are very alike; how- A striking point that is worthy of attention is the indepen-
ever, the experimental data of RidGeO,, if extrapolated to  dence of the HO contribution on the coupling. This means
low temperatures, are one order of magnitude larger thathat for the same host, HLW would be almost independent of
those of Nd":Si0,. This is a surprising fact, which will be impurity in the high-temperature limit. It should be desirable
discussed below. Anyway, the RidGeQ, data are also well to have experimental confirmation of this fact. In any case,
fitted, though it is worth saying we have to combine bothlet us remember we have neglected a coupling-dependent
mechanisms to describe the whole set of data, which seenterm in expressiori85), which is expected to vary with each
to indicate a moderate crossover below 10 K. impurity. This part contains a temperature-independent con-

Let us now discuss the calculated fitting parameteasid  tribution that would dominate the HLW at ultralow tempera-
N,. For reasons suggested above, we can expect the numberes in some coupling ranges, and could be related to those
of participating molecules in GeQo be very similar to the temperature-independent contributions of various GHz ob-

Temperature (K)

VIIl. CONCLUSIONS
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served in some organic systeriis. APPENDIX B:

Finally, we wish to emphasize that the problem of impu- RESPONSE FUNCTION IN THE FRAMEWORK
rity HLW in glasses is far from being completely solved. We = OF THE ZWANZIG-FANO RELAXATION THEORY
think that more experimental work in some simple systems is Let us consider a svstem with known enerav levels and
desirable to contrast different theoretical models. Also, thE’Ehat s able to coupleyto an electromagneticg%/eld Let us
guestion of the HLW dependence with time requires more g . . :
theoretical studies. Moreover, numerical studies in the cross?—.iséumaemtﬁ]tztmtgﬁ osgtsr:zrcvr;sc’)l:amsersat(:ilcrr;)%t:\wg;taisth?\;?nalt) bath.
over region between TLS and HO would be also necessary. y 9 y

H=HO+H® +H,, (B1)
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whereH® refers to the optically active subsystehi(® to
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CICYT (Ref. MAT. 0434/93 tems. For many cases of interest, the interaction between the
optically active subsysterfOAS) and the thermal bath can
APPENDIX A: THE SOFT-MODE PARAMETER be factorized as

DISTRIBUTION FUNCTION S B)

Hip= V- VB, (B2)
In this Appendix we deduce the distribution functicit)

on the basis of the Ramat al2> work. The soft potential WhereV(® refers to the OAS, ant¥® to the bath. We will

can be written in two equivalent forms: assume that the eigenvectors df(®, denoted by
|i},|f),..., form a discrete set, whereas thoseHff), de-
V(X)=W[ 7(x/a)2+ é(x/a)3+ (x/a)*] (A1) noted by|_a),|,8),..., aredense and form a quasicontinuum.
Following the Zwanzig-Fano relaxation thedtythe re-
or sponse of the OAS under an electromagnetic external pertur-

bation can be calculated to any order in the interaction. The
technique essentially consists in eliminating the thermal bath
variables from the physical quantities of interest by the in-
troduction of an adequate projection operator over the OAS
Hilbert subspace. Using this method, we are able to calculate
the line shape of the OAS optical transitions in contact with
D= — nél2+ £8, (A3)  a phonon thermal bath. The expression for this function, to
which we arrive in the framework of this theory, is given by

V(x)=W[ D (x/a)+Dy(x/a)?+(x/a)*]. (A2)

The relation between both sets of parameters is given by

D,=n—3&2/8. (A4)

1
o Flw)==—1m X [}
The probability distributionP(#,£) of the random param- ™ fi

etersn and ¢ as a function ofy is assumed to be centered

nearn~ 1, which corresponds to the standard atomic poten- > 1 (B3)
tials. The soft potentials then occur in the region of the tail of ho—tfhwg—(M(fo+tin )
the distributionP( 7, ¢), within the range of low values af.
It can be shown that in the limjty| <1, P(#,£) is finite and The notation used is as followg:> denotes OAS dipole
takes the forrf? moment operator element between the stdtesdi. p{>
denotes OAS density matrix diagonal elemefitos; = Ej;
P(7,&)=|7|Py(n,£), (A5)  denotes OAS transition energy betweénand i states.

(M (hw+in*)) s denotes element of the so-called
wherePy(7,£) is a smooth functionPy(7,£) as a function memory function of the system between the stafe$ and
of ¢£is assumed to be even, due to the absence of a preferrééii), properly averaged over the bath variables. This is a
direction in a glass. Referring to variableB (,D,), it can linear operator over the linear operators space of the OAS
be seen that the easiest way to characterize the distribution bfilbert space, so it has four indexes. This function allows for
the random parameters and & (with the exception of the an iterative equation:
constant function with the previous conditions being ful-
filled, is by means of the functiéh

M (z)=L1+L, (1-P)M(2), (B4)

z—L,
_ AR
P(D1,D2)=Ps exa—ADY), (A8)  Where L, is the Liouville operator of the free part of the

- . . Hamiltonian, operationally defined as
where the scale for the coefficient Bf;, A, is estimated by P Y

assuming that the asymmetB, is due to thermal strains, Lo=[HS+H®), ], (B5)
which freeze in at the glass transition temperaflijeso this

scale is given b)A:0.169(\N/kBTg)3’2. By making use of L, is the Liouville operator of the interaction, given by
Egs. (A3), (A4), and (A6) we arrive at expressiofill) for

the distribution function in théz,&) variables. Li=[H, 1, (B6)
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where[ , ] is the conmutator. FinallyP=|p®))((1®| is a  tive expression of the memory function operator to a second
projector over the OAS Hilbert subspace, witf¥) the ther-  order in the interactiof®
mal bath density matrix andl® the identity operator over
the bath Hilbert subspace. The double ket indicates that these (Mc(2))1i fi=AV+K(2), (B7)
operators are vectors of the linear operators space over the
Hilbert space. The memory function contains all the dynami-Where
cal effects of the OAS-bath interaction. (S K\ /\A(E)
Using Eq.(B4), it is straightforward to obtain a perturba- AV=(Viy = Vi (V) (B8)

IVERI? Vie'|®
z-Ei—Eup Z-En—Ega

K(2)=2 W,e(|<a|v<B>|/3>|2—<V(E”>25aﬁ)[Ek (

1 1
(S\/(S)
VitVi| 7= Efi_E,Ba+ z— Efi+EBa> ' (B9)
|
The following notation has been used in expressitBg) 1. TLS region
and (B9): Expanding the elementsy|V(®)|8), we arrive at an ex-
ression fokM¢(2) )+ i :
V(k|S)=<k|V(S)||>, (BlO) p < c( )>f|,f|
= 2 n.
V(B):% WB<,3|V(B)|E>1 (B11) (Mc(2))ri i % |Dq| [NgF-(Eq)+(ng+1F (Ey],

(CY
where wg=exp(—E,/kgT)/Z, exp(—E, /kgT) are the den- _ ) )

sity matrix operator diagonal elements of the thermal bathWhereng are the mean phonon occupation numbers in mode
provided this is a canonical distribution over the bath vari-ds [Dql*=(E4/20v7) 75 and

ables and, so, diagonal in the eigenstatesi&¥.

The memory function will be a complex number in the V|2 VD)2 I
general case, So we can separate the imaginary and real parts:F «(Eq)= >, Z-EgTEq 7 Ep*E, ~VitVii
Si=Re(Mc(hwq+in))sl, (B12) % . ! C2
Cii=—Im[{(M(foq+in" )1l (B13)

Taking into account that, for our systenk)=|p¥ n),

where i =E;—E;. Substituting in expressiotB3) we 0 o p¥=0,1 stands for the impurity state ama)=+1

rriv 4 .
arrive at stands for the TLS level, and expanding the sums in expres-
1 r sion (B3), we arrive at the conclusion that we only need to
Flw)=— 2 | w$9]2p(® — _'5 77 evaluate the elem_emM_c(Elannle 7)) 1nfoni nfoni (in the
N (ho—thwg— o) fi Markovian approximation Doing so, and once we expand

(B14  the V(> elements, we obtain

so &;; represents the shift of the OA$) to |i) transition and
I'y; the half-width of this transition. A? Al B2
A more detailed presentation of the technique used and a F=(Eq)= TE tin' + +E. +in’ + nfe,xE,+in"
. . . . . q™ 17 —EqT17 1 R/
discussion about the approximations that lead to expression

(B3) can be found in Ref. 31 or in the original works by BS
Zwanzig and Fand®®’ + MeotEqtin tAA| TE T Etin
APPENDIX C: EVALUATION OF THE MEMORY n 1 _ +). (C3)
FUNCTION IN THE TLS AND HO REGIONS FEqtin

Let us consider expressidB7) of the memory function. Making use of the well-known relation
As the OAS-bath interaction cannot connect states with the
same phonon occupation number, the term is null, so the
memory function is equal t&(z). Let us calculate the ele- 1 _
ments of the interaction Hamiltonian: X+iy

P

1)
;) —im7d(X), (C9
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with P the principal value, we can separate the imaginary an@C6), and obtain in this way expressio#2) and(43) of the
real parts of the memory function element, and obtain theext.
shift and the half-width of the transition. In doing so, we

arrive at 2. HO region

b — . We just have to follow the same steps of the previous
51nf0ni=§q: IDgl*{nqg REF (Eg)]+(ng+1)REF (Eg)]},  region, which lead to

(CH

R E ()1 W[ nf nf+1 n' n'+1
y— dF-(E)I=P g E+Eq+—E+Eq_ E+Eq+E—Eq
T 1non == 25 [Dgl*{ng IM[F_(E)] L
q W2 (91—9p)
— +4—g——"t, (C9
+(nq+1)lm[F+(Eq)]}, (Co) E Eq
where W (nf+ni+2
A% AS Bi Bg |m[F+(Eq)]:_7T[E( nf+ni )5(E_Eq)},
ReF.(Eg]= IEq+iEq+nf811Eq+n'sotE ' (C10

?C7) where the uppeflower) term inside the parentheses refers to
_ 2§ — 2 i the+ (—) sign, respectively. In order to recover the notation
IM[F=(Eq)]=—n[B1é(n'e1+Eq) +Byd(—n'e1 2 Eq)]. used throughout the paper, we must change from the pair of
(€8 guantum numbersni,n’) to (n=n',p=nf—ni). In doing
In the last expression, only the terms that have a nonzerso, and once we evaluate the sums over phonon modes in the
sum have been included. Using the Debye density of statedeebye model, we obtain expressiof&8) and (69) of the
and dispersion relation, we can evaluate the sunf€mand  text.
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