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Optical homogeneous linewidths in glasses in the framework of the soft-potential model
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The temperature dependence of the optical linewidth of an impurity embedded in a glass matrix is investi-
gated. A model Hamiltonian that couples the impurity to the soft modes characteristic of glasses in the phonon
field of the matrix is introduced. We find an excellent agreement between our model predictions and experi-
mental data. We are also able to reproduce supralinear behaviors in the low-temperature regime without any
adjustable parameter for the density of states. Finally, the quadratic behavior extending to very low tempera-
tures is explained in terms of the Bose peak equivalent temperature.@S0163-1829~97!04326-9#
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I. INTRODUCTION

It has been known for some time that amorphous so
exhibit anomalous behavior when compared with their cr
talline counterparts.1,2 These anomalies include low
temperature specific heat, thermal conductivity, ultraso
propagation, dielectric losses, and optical dephasing, am
others. Their most surprising characteristic is universal
i.e., the order of magnitude depends very weakly on
chemical composition of the solid.

An important progress towards the understanding of th
anomalies was the introduction by Anderson, Halperin, a
Varma,3 and independently by Phillips,4 of the so-called tun-
neling states model~TS model!. According to this model, in
amorphous solids, together with very long-waveleng
acoustic phonons, there is a distribution of low-energy ex
tations with a two-level system~TLS! structure, which are
characterized by quantum-mechanical tunneling throug
potential barrier. The TS model provides an explanation
the main characteristics of ultra-low-temperature proper
of amorphous solids. Nevertheless, above 1 K, the beha
of these properties deviates from the TS model predictio
Thermal conductivity shows aplateauaround 10 K, which
cannot be explained on the basis of the TS model.5 Further-
more, in Raman scattering, there appears a peak, know
the Bose peak,6 which seems to indicate the existence
another kind of low-frequency mode. Neutron spectrosco
measurements have shown these modes to be soft harm
oscillators with a crossover to anharmonicity at the end
the low-frequency region.7

Among the various models proposed to explain th
anomalous behaviors above 1 K, it is worth pointing out
soft-potential model~SPM!,8 which gives a unified descrip
tion of TLS and harmonic modes in terms of soft anharmo
potentials, the so-called soft potentials. This model rep
duces the results of the TS model at ultralow temperat
and has allowed one to explain other phenomena at hig
temperatures, as is theplateau in thermal conductivity9 and
the Raman and neutron data for various materials.10,11

The main purpose of our work is to study one of the
anomalies of amorphous solids, which, in spite of hav
been studied in various works, is far from being well e
plained. We refer to the homogeneous broadening of an
560163-1829/97/56~2!/579~14!/$10.00
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purity transition line embedded in a glass matrix as a fu
tion of temperature.12 The homogeneous linewidth~HLW! of
an impurity in these solids shows quantitative and qualitat
differences in magnitude and behavior if compared w
crystalline solids. In the latter, the HLW follows aT7 power
law for temperatures below the Debye temperature of
glass and aT2 law above.13 This behavior can be explaine
in terms of a two-phonon Raman process in which the
purity levels are coupled to the acoustic phonons of the c
tal. However, in amorphous solids, the magnitude of
broadening is some orders of magnitude larger at the s
temperature, and follows aTa power law with a ranging
from 1 to 2.6, depending on the material.

Several theoretical models have been proposed to exp
such anomalous behaviors.12 All of them take into account
the role of TLS proposed in the TS model. To connect
temperature dependence of the HLW with the TLS a vari
of mechanisms has been proposed. They include spectra
fusion of TLS,14 coupling of the impurity to a TLS that is
coupled to the phonon bath,15–18 coupling to librational
modes,19,20 and use of fractons instead of phonons,21 to cite
some examples. These models predict a variety of behav
with temperature, depending on the physical mechanism
posed for the dephasing and on the parameters introduce
the model. Nevertheless, none of them can describe the
merous experimental data in a general way.

In this work we calculate the HLW in the framework o
the SPM, taking into account the contributions of both kin
of excitations described by this model, namely, TLS a
quasiharmonic oscillators~HO!, both with a common origin:
the soft-potential modes. In Sec. II we introduce the m
features of the SPM. In Sec. III we carefully evaluate t
density of states predicted by this model, leaving aside so
approximations usually accepted in the literature, and
show that numerical evaluation of the density of states
some nontrivial features that reflect on every physical qu
tity, as the nonlinear exponents ranging between 0.0 and
usually found experimentally. In Sec. IV we introduce t
Hamiltonian model that will be used throughout this work.
Sec. V we present the results obtained for the calculation
the response function of the system in two well-studied
gions: the TLS and HO regions, making use of the Zwanz
Fano theory of irreversibility, which is briefly described
579 © 1997 The American Physical Society
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580 56A. J. GARCÍA AND J. FERNÁNDEZ
Appendix B. A detailed survey of this calculation is pr
sented in Appendix C. In Sec. VI we evaluate the HLW
the amorphous solid taking the weighed average of the H
for a specific soft mode, which is the usual approach in
literature, and we find some analytical expressions for
HLW in the TLS and HO regions in some limiting cases.
Sec. VII, numerical evaluations of the exact expressions
tained in Sec. VI are presented. Also, the main features
tained are discussed. In Sec. VIII, some striking points
this model are discussed.

II. THE SOFT-POTENTIAL MODEL

Let us remember the main concepts of SPM.8 This model
proposes the existence of soft localized modes in amorph
solids. The anharmonic potential of one of these modes
be written as

V~x!5E0@h~x/a!21j~x/a!31~x/a!4#, ~1!

whereE0 is an energy of atomic scale,x is the configura-
tional coordinate of the mode, anda is a distance of the orde
of the interatomic spacing. The values of the dimensionl
parametersh and j are random due to fluctuations of th
structural parameters of the amorphous solid. The soft po
tials correspond touhu,uju!1. The distribution function of
these parameters is given by22,10

P~h,j!5uhuP0~h,j!, ~2!

where P0(h,j) is even in j and slowly varying on both
parameters, so it can be taken as a constant in some c
This point will be discussed in the next section in more d
tail.

With the aim of introducing the scales of the problem, t
following parameter combinations are defined:

hL5~\2/2Ma2E0!1/3, ~3!

with M the effective mass of the mode, which allows us
introduce the length scale of the system throughahL

1/2, and

W5E0hL
2, ~4!

which is the characteristic energy of the quartic oscillat
i.e., h5j50. Also, the abbreviationsh̃5h/hL and j̃
5j/hL

1/2 will be used throughout the text.
The interaction of the soft potential~1! with the phonon

strain field is given by the bilineal coupling9

VHO-PH~x!5(
s

Lsxes , ~5!

wherees is the phonon strain field in branchs andLs the
corresponding coupling constant in that branch. The rela
between these coupling constants and the deformation po
tials, gs , of the TS model is given by23

gs5LsAuh̃u/2. ~6!

In the regionh, 9
32j

2 the potential~1! has a double-well
structure. Ifu j̃uuh̃u,1 and, at the same time,h is negative
and within the limitsuhu.3hL , the two lowest levels of the
potential ~1! form a TLS. The eigenstates,u1&,u2&, of this
TLS have eigenenergies1E/2 and2E/2, respectively, with
f
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E5AD21D0
2 ~7!

being the energy splitting.24 D0 is the so-called tunnel split
ting parameter, andD the asymmetry, which can be ex
pressed in terms of the SPM parameters through

D0'W expF2
&

3
uh̃u3/2G , ~8!

D5
W

&
u j̃uuh̃u3/2. ~9!

In the regionh. 9
32j

2 the potential~1! has a one-well struc-
ture. In the limit 1@h@hL the excitations in the well are
nearly harmonic, with a level spacing given by

E52WAuh̃u, ~10!

and their eigenfunctions are those of a harmonic oscillat

III. THE DENSITY OF STATES OF TLS AND HO

It is important to make some considerations about
distribution function~2! and the density of states of TLS an
HO derived from it. One of the main hypothesis of SP
~Ref. 10! consists in taking the functionP0(h,j) as a con-
stant,P0(h,j)>P0(0,0)[P0 . Some of the anomalies abov
1 K in amorphous solids could been explained with this d
tribution function, as is theplateau9 in thermal conductivity
or the minimum in the functionCp /T

3 ~Cp denotes specific
heat,T denotes temperature!,10 for example. Nevertheless
some other nontrivial features found experimentally have
easy explanation in the framework of the SPM. This is t
case of the second rise of thermal conductivity at the end
theplateauand the maximum inCp /T

3.25,26Ramos, Gil, and
Buchenau~see Ref. 25! have shown that a small modificatio
of the parameter distribution~2! is able to describe these la
two phenomena, explaining in this way the main therm
anomalies in amorphous solids in the whole low-temperat
range~see Appendix A!. This will be the distribution func-
tion from which we shall start. So, the distribution of param
eters of the potential~1! is given by

P~h,j!5uhuP0~h,j!5P0uhuexpF2
A

hL
3 S hj

2
2

j3

8 D 2G ,
~11!

whereA50.169(W/kBTg)
3/2, with kB the Boltzmann con-

stant andTg the transition temperature of the glass.
In the following, let us consider the densities of stat

derived from this distribution function.

A. Density of states of TLS

As explained above, in the soft-modes region,uhuuju!1,
so the dominant term in the exponent of Eq.~11! is the first
one. Moreover, in the TLS region,uhuuju,hL

3/2, so P0

>P(h,j).P0 exp(2A). For example, in the case of amo
phous SiO2, A52.2131025 ~see Table I!. So, in this region,
the distribution function~11! goes back to that of the SPM

P~h,j!5P0uhu. ~12!
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TABLE I. SPM and fitting parameters.

Substance
SiO2 Silicate GeO2 PMMA

Sound wave parameterse
r (kg/m3)a 2200 2400 3600 1200
n1 ~m/s!b 5800 5300c 3900c 3150
n t ~m/s!b 3800 3200c 2340c 1570

SPM parameters
Ps (10

23 states/m3)d 0.99 3.91 1.17 1.27
W/kB ~K!d 3.8 7.20 3.8 2.52a

L1 ~eV!b 0.65 0.37 0.56 0.15
L t ~eV!b 0.41 0.25 0.35 0.11

Fit parameters
b (eV Å3) 6.331022 2.331021 4.831021 3.6
Vc (Å

3) 543 1143 555 4354
h̃min 7.03 14.11 20.90 17.23

Glass temperatures
Eb /kB ~K! 49.9 67.3 43.2 26.0
Tg ~K!b 1473 717 830 374
QD ~K!a 494 436 307 256
Ns ~molecules! 12e 31 11.5 36

aReference 27.
bReference 28.
cCalculated according to Ref. 28.
dReference 25.
eReference 10.
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The energy density of states is given by

nTLS~E!5E
2`

0

dhE
2`

1`

dj P~h,j!d„E2E8~h,j!….

~13!

Going to the variables (E,h) we have

P~E,h!5
&P0hL

2

W

E

AuhuAE22D0
2~h!

, ~14!

and integrating with the aid of the Dirac delta function, w
get

nTLS~E!5
&

W
PsE

h̃0

h̃min dh̃

Ah̃

E

AE22D0
2
. ~15!

In this expressionPs52P0hL
5/2, h̃05h̃(D05E) @see ex-

pression~8!# if E,W, and h̃050 if E.W; h̃min is intro-
duced so that the density of states remains finite, and
fixed by the duration of the experiment,texpt. In fact, follow-
ing Ref. 10, the only TLS that make a contribution are tho
that have undergone a transition duringtexpt. On the other
side, for small values ofE/kBT, we can estimate the chara
teristic decay time of those TLS with a small asymmetry b9

t215t0
21~E!

uh̃u
2 S D0

W D 2, ~16!

where t0
21(E)5(W2E/2pr\4)(sLs

2/ns
5. Making use of

Eqs.~16! and ~8! we arrive at the condition that fixesh̃min :
is

e

2t0~E!

texpt
5h̃min expF2

2&

3
h̃ min

3/2 G . ~17!

For example, in the case of amorphous SiO2, assuming
W/E510 and texpt5102 s, we obtain t0>9.631029 s,
h̃min>8.78.

A commonly used approximation consists in neglecti
the termD0

2 in the square root in expression~15!, provided
h̃min.1/hL .

10,22With this simplification we arrive at an ex
pression that does not depend on the energy spacingE and is
slightly dependent ontexpt

nTLS52&
Ah̃minPs

W
. ~18!

Nevertheless, a numerical evaluation of expression~15! leads
to densities of states the same as those shown in Fig. 1
amorphous SiO2, for different values oftexpt, which are only
constant forE@W. In this figure, we also compare the exa
density of states~15! with the approximated one~18! for a
fixed value oftexpt. The temporal dependence of the dens
of states is also shown. The deviations from the cons
value predicted by Eq.~18! reflects on the behavior of phys
cal quantities.

B. Density of states of HO

Following Ref. 25, the density of states of a HO is giv
by
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nHO~E!5
Ps

6&W
S EWD 4E

0

1

dz exp@2A~E/2W!6z2~12z2!2#.

~19!

Instead of considering this density of states directly, we s
use two limiting cases that reflect the main features of
~19! and are easier to manage:29

nHO~E!5H Ps

6&W
S EWD 4

Ps

W S p

2AD 1/2S EWD
for AS EWD 6!1

for AS EWD 6@1.
~20!

In the first of them we see that the density of states redu
to the one commonly used in the SPM framework.9 For this
simplified density of states, the energy of the maximum
nHO(E)/E2 is given by

FIG. 1. TLS density of states.~a! Density of states for various
experiment durations:~—!: texpt51022 s; ~- - -!: texpt51021 s;
~– -!: texpt51 s; ~–•–•!: texpt5102 s; ~–••–!: texpt51 d; ~–•••–!:
texpt51 month. ~b! Comparison between the density of states~15!
and the one given by~18! for texpt51 month. ~c! Temporal depen-
dence of the density of states:E/W50.1 ~—!, E/W510 ~–•••–!.
ll
.

es

n

Eb52.2W/A1/6, ~21!

in good agreement with the value obtained directly from E
~19! ~see Ref. 25!. So, our simplified density of states is ab
to describe the maximum observed in specific heat data
also in the Raman and neutron scattering data, usually
ferred to as the Bose peak. Following Ref. 25, we shall ta
Eb as the upper limit of what we call soft modes.

In Fig. 2, the exact density of states~19! and the approxi-
mated one~20! are presented. It can be seen that our appro
mated density of states describes the main features of the
density of states.

IV. THE HAMILTONIAN MODEL

With the previous considerations, we can introduce o
Hamiltonian model to study the HLW of an impurity embe
ded in an amorphous solid.

Following the usual hypothesis,15,16 the resonant optica
transition takes place between two levels of the impur
(a50 with energye0 and a51 with energye1!, with an
energy difference\v05e12e0 , which we shall suppose to
be much greater than the Debye energy of the matrix and
soft-mode maximum energy.

The Hamiltonian of the impurity interacting with a so
mode in the phonon field is given by

H5 (
a50

1

eaaa
†aa1HSM~x!1(

q
\vqnq1 (

a50

1

gaaa
†aax

1(
s

Lsxes . ~22!

In this expression, the fermionic operatorsaa
† , aa describe

the electronic levels of the impurity,HSM(x) is the Hamil-
tonian of the soft mode~see Sec. II!, the third term is the
Hamiltonian of the phonon field whereq5(q,s), whereas
the two last terms describe the interaction of the soft mo
with the electronic levels of the impurity and the interacti
of the soft mode with the phonons, respectively.ga are the

FIG. 2. HO density of states.~—!: calculated from Eq.~19!;
~–•–•!: calculated from Eq.~20!. Also the value of the Bose pea
energy is shown.
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56 583OPTICAL HOMOGENEOUS LINEWIDTHS IN GLASSES . . .
soft-mode–impurity coupling constants. The soft-mod
impurity interaction has been assumed to be diagonal, wh
is nothing but the mathematical expression of the hypoth
made in the previous paragraph.

Once the Hamiltonian has been stated, we can study
response of the system to an external electromagnetic pe
bation, which will be accomplished in the following section

V. LINE-SHAPE CALCULATION
FOR THE IMPURITY –SM-PHONONS SYSTEM

Let us consider the system described in Sec. IV and le
study the response function of this system under the actio
an external electromagnetic field in the framework of t
Zwanzig-Fano relaxation theory~which is briefly described
in Appendix B!. Let us introduce some new notation that w
be used throughout the rest of this section:

We can rewrite Hamiltonian~22! as

H5H ~S!1H ~B!1H int , ~23!

where H (S) refers to the optically active subsystem~the
impurity1soft mode subsystem!, H (B) refers to the bath sub
system~the phonon field!, andH int refers to the interaction
between both subsystems. The interaction between the
cally active subsystem~OAS! and the thermal bath can b
factorized as

H int5V~S!V~B!, ~24!

whereV(S) depends on the OAS variables andV(B) on the
bath variables, respectively.
As the potential~1! cannot be analytically solved, we sha
study the response of the system in the two limiting regio
introduced in Sec. II, the TLS and HO regions.

A. Response function in the TLS region

In the TLS region, the Hamiltonian~22! can be expresse
in the TLS basis in terms of the energy splitting, the asy
metry, and the tunnel splitting parameter. The express
obtained in that basis is

H5 (
a50

1

eaaa
†aa1

E

2
sz1~Dsz1D0sx!/E(

a50

1

g̃aaa
†aa

1(
q

\vqnq1 i ~Dsz1D0sx!/E

3(
q

A\vq/2rns
2LsAuh̃u/2~bq2bq

†!, ~25!

where s i is the i th Pauli matrix andg̃a5gaAuh̃u/2. The
bosonic operatorbq (bq

†) stands for the annihilation~cre-
ation! of a phonon in theq mode.r is the mass density of th
amorphous solid andns is the sound velocity in branchs.
This Hamiltonian is the one by Lyo,15,16as we can easily se
by identifying

Va
z522g̃aD/E,

~26!

Va
652g̃aD0 /E,

whereVa
i are the coupling constants defined by Lyo.
–
h
is

he
ur-
.

s
of

ti-

s

-
n

We can also make the following identifications:

H ~S!5 (
a50

1

eaaa
†aa1

E

2
sz1~Dsz1D0sx!/E(

a50

1

g̃aaa
†aa ,

~27!

H ~B!5(
q

\vqnq , ~28!

V~S!5~Dsz1D0sx!/E, ~29!

V~B!5 i(
q

A\vq/2rns
2LsAuh̃u/2~bq2bq

†!. ~30!

The OAS Hamiltonian can be diagonalized, and its eigenv
ues are given by

En
a5ea1

n

2
AD0

21~D22g̃a!25ea1
n

2
«a , ~31!

with n561, and its eigenstates

ua,21&5~sin fau2&2cosfau1&)ua&,

ua,11&5~cosfau2&1sin fau1&)ua&, ~32!

where the first index,a, refers to the impurity state, and th
second one to the TLS state and

sin fa5~1/& !A12~E22g̃aD/E!/«a, ~33!

cosfa5~1/& !A11~E22g̃aD/E!/«a. ~34!

From this new basis we have

H ~S!5 (
a50

1

(
n521

1

En
aua,n&^a,nu, ~35!

V~S!5 (
a50

1

~2Aasz
a1Basx

a!, ~36!

with

s i
05S 0232

0232

0232

s i
D , s i

15S s i

0232

0232

0232
D

~Ref. 30! and

Aa5~D/E!cos 2fa1~D0 /E!sin 2fa , ~37!

Ba5~D/E!sin 2fa2~D0 /E!cos 2fa . ~38!

Using expressions~30!, ~35!, and ~36! we arrive at an ex-
pression for the response function of the system in the T
region given by~see Appendix B!
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FTLS~v,E!

>
1

p
um10

ionu2 (
n521

1

(
m521

1

3
~Sn,m

TLS!2r0m,0m
~S! G1n,0m

TLS

~\v2\v02n«1/21m«0/22d1n,0m
TLS !21~G1n,0m

TLS !2
.

~39!

In this expression,m10
ion is the impurity dipole moment non

diagonal element, that allows the electronic transiti
r0m,0m
(S) is the OAS density matrix diagonal element with t
impurity in its ground state. It is given by

r0m,0m
~S! 5exp~2mb«0/2!/2 cosh~b«0/2!. ~40!

The elementsSn,m
TLS are the overlap integrals of the OAS wav

functions between the states with the impurity in its grou
n
e

es

s,
e

tr
e
an
a

th

ca

.
b

.

d

state and in its excited state, i.e., (Sn,m
TLS)25u^1,nu0,m&u2.

They are given by

~Sn,m
TLS!25 H cos2~f12f0!,

sin2~f12f0!,
n5m
nÞm. ~41!

The functionsd1n,0m
TLS (E) andG1n,0m

TLS (E) are worthy of special
attention. As can be seen from expression~39!, d1n,0m

TLS (E) is
the shift of the transition that begins at level (0,n) ~the im-
purity is excited and the TLS reaches levelm! and ends at
level (1,m). This shift is due to the interaction with the the
mal phonon field.G1n,0m

TLS (E) stands for the half-width of tha
transition, and is given by the sum of the levels involved
the transition; i.e., due to the interaction with the therm
bath, the OAS levels take a finite lifetime. The expressio
for these two magnitudes are~see Appendix C!
d1n,0m
TLS ~E,D0!5d0

TLS~E!@2n«1B1
2~kBT!2J1~T!22m«0B0

2~kBT!2J0~T!1B1
2~kBT!3V1n~T!2B0

2~kBT!3V0m~T!

1~A0
22A1

2!~kBQD!3/3#. ~42!

G1n,0m
TLS ~E,D0!5G0

TLS~D0!$B1
2«1

3@nB~«1!1~11n!/2#1B0
2«0

3@nB~«0!1~11m!/2#%. ~43!
c-
ne,

s-
e
the

o

yo
a-
red
In both of these expressions,nB stands for the Bose-Einstei
distribution function andQD is the Debye temperature. Th
following definitions also have been introduced:

d0
TLS~D0!5(

s
Ls
2 uh̃u/8p2r\3ns

5, ~44!

G0
TLS~D0!5pd0

TLS~D0!, ~45!

Ja~T!5E
0

QD /T

dx x3nB~x!/@~b«a!22x2#, ~46!

Van~T!5E
0

QD /T

dx x3/~nb«a2x!. ~47!

Let us briefly mention the approximations that led to expr
sion ~39!.

Antiresonant terms in\v1\v0 have been neglected a
in the vicinity of the resonance, they are very small wh
compared to the resonant one in Eq.~39!. The memory func-
tion has been evaluated to second order in the phonon s
field; i.e., this calculation is only valid for small values of th
strain field. We have made use of the Markovi
approximation,31 which consists in assuming that the therm
bath memory is infinitely short.

Under these approximations, the response function of
system described by Hamiltonian~25! is given by four
Lorentzian lines, corresponding to the four possible opti
transitions between levels (0,m) and (1,n), each of these
lines being centered at an energyn«1/22m«0/2
1d1n,0m

TLS (E,D0) relative to the impurity transition energy
Each of these Lorentzian lines has a half-width given
-

n

ain

l

e

l

y

G1n,0m
TLS (E,D0) and its intensity is weighed by a thermal fa

tor, the OAS density matrix elements, and an overlap o
theSn,m

TLS elements.
It is obvious that extracting any information from expre

sion~39! is a difficult task. There is, however, a limiting cas
where the expression for the line shape is simple. So, in
limit D0!D, the following simplifications can be made:

~Sn,m
TLS!25 H10 n5m

otherwise, ~48!

Ba50,

Aa521, ~49!

d1n,0m
TLS ~E!50, ~50!

and the response function can be written as

FTLS~v!5um10
ionu2 (

n521

1 r0n,0nG1n,0n
TLS

~\v2\v02nVz/2!21~G1n,0n
TLS !2

,

~51!

with Vz5V1
z2V0

z>2g̃022g̃1 .
So, in this limit, the response function is formed by tw

Lorentzian lines shifted by a quantity6Vz/2 from the impu-
rity transition energy. Expression~51! coincides with that by
Lyo15,16 in the limit of diagonal-impurity–TLS coupling and
slow modulation, i.e.,Vz@4G1n,02n

TLS , being 2G1n,02n
TLS /\

5t21 the inverse of the TLS lifetime@compare with expres-
sion ~16!#. However, our response function~39! only con-
tains the slow modulation part, contrarily to the one by L
for diagonal modulation, which is valid for the fast modul
tion limit also. This is due to the fact that we have conside
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the impurity1TLS system as a coherent state, which
meaningful only if the coupling is strong enough to for
such a state (Vz@4G1n,02n

TLS ), as has been already explaine
by Lyo.16

In addition, if we take the weak coupling limit in expre
sion ~51!, i.e.,E@Vz@4G1n,02n

TLS , we shall have

G1n,0n
TLS 5G0

TLSD0
2E@2nB~E!111n#, ~52!

r0n,0n5exp~2nbE/2!/2 cosh~bE/2!. ~53!

As we shall later see, it is enough to consider this limit
order to explain the experimental data.

All the previous expressions in this section have be
calculated for a specific TLS of spacingE. However, in an
amorphous solid, there is a set of these TLS~soft modes in
general!, the parameters of which are distributed accord
to Eq. ~12!. So, to obtain the whole response of the am
phous solid, it is necessary to average the response fun
for a specific excitation with the adequate distribution fun
tion.

As pointed out by some authors,15,18 we can expect the
impurity-TLS coupling to vary with the distance in betwee
so an additional average over these couplings has to be
formed. So, the total response function of the amorph
solid will be given by

FTLS~v!52pE dE dh P~E,h!E
0

r c
dr FTLS~v,E,h!.

~54!

The cutoff in the spatial integration is introduced in order
guarantee we are in the slow modulation limit, where expr
sion ~39! is valid. As a microscopic description of the so
modes is lacking, it is difficult to give the exact dependen
of the coupling with distance. So, we shall follow the usu
hypothesis accepted in the literature and assume a dip
dipole interaction between the impurity and TLS.15 The cut-
off radius is then given by

Vz5b/r c
354G1n,02n

TLS

52G0
TLSD0

2E@exp~bE!11#/@exp~bE!21#. ~55!

B. Response function in the HO region

In the HO region, the Hamiltonian~22! can be expresse
in the HO basis as
n

g
-
ion
-

,
er-
s

s-

e
l
le-

H5 (
a50

1

eaaa
†aa1Ec†c1(

q
\vqnq

1AW/E~c†1c! (
a50

1

gaaa
†aa1 iAW/E~c†1c!

3(
q

A\vq/2rns
2Ls~bq2bq

†!, ~56!

where the bosonic operatorc (c†) stands for the annihilation
~creation! of a HO. The HO spacingE is given by expression
~10!. We can make the following identifications:

H ~S!5 (
a50

1

eaaa
†aa1Ec†c1AW/E~c†1c! (

a50

1

gaaa
†aa ,

~57!

H ~B!5(
q

\vqnq , ~58!

V~S!5AW/E~c†1c!, ~59!

V~B!5 i(
q

A\vq/2rns
2Ls~bq2bq

†!. ~60!

The OAS Hamiltonian can be diagonalized in an exact w
The eigenvalues of this subsystem are given by

En
a5ea1En2ga

2W/E2, ~61!

and the eigenstates by

Cn
a5ua,n&5xn

HO~x1Za!ua&, a50,1; n50,... ,̀ ,
~62!

with Za52gaW/E2. These eigenstates trivially verify th
relation

(
a,n

ua,n&^a,nu51. ~63!

The a index refers to the impurity state and then index to
the HO state or, in terms of excitations, to the number
optical and HO excitations, respectively. The functio
xn
HO(x) are those of a harmonic oscillator. In this basis w

have

H ~S!5 (
a50

1

(
n50

`

En
aua,n&^a,nu, ~64!

V~S!5AW/E~c11c!2(
n

(
a50

1

Zaua,n&^a,nu. ~65!

Making use of Eqs.~60!, ~64!, and ~65!, and following the
same approximations as in the TLS region, we arrive at
nd
FHO~v,E!>
1

p
um10

ionu2r00
ion (

p52n

`

(
n50

`
~Sn,p

HO!2rn,n
HOG1p,0n

HO

@\v2\v02Ep1~g1
22g0

2!W/E22d1p,0n
HO #21~G1p,0n

HO !2
. ~66!

In this expression,r00
ion5$11exp@2b\v01b(g1

22g0
2)W/E2#%21>1 is the impurity density matrix diagonal element in its grou

state.rn,n
HO5@12exp(2bE)#exp(2nbE) is the HO density matrix diagonal element in staten. The elementsSn,p

HO are the
overlap integrals of the HO wave functions between staten with the impurity in its ground state and staten1p with the
impurity in its excited state. So,p stands for the number of HO excitations created~or destroyed ifp,0! in the transition.
These elements are given by
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~Sn,p
HO!25u^xn1p

HO ~x1Z1!uxn
HO~x1Z0!&u25@n!/ ~n1p!! #sgn~p!uupu exp~2u!Lnupu~u!, ~67!

with u[(g12g0)
2W/E3 andLmn (x) the associated Laguerre polynomials. As pointed out in the previous section,d1p,0n

HO (E) is
the shift of the transition that begins at level~0, n!, in which the impurity is excited andp HO excitations are created, reachin
the level~1, n1p!. G1p,0n

HO (E) is the half-width of that transition. The expressions for both magnitudes are

d1p,0n
HO ~E!5d0

HO~E!H 2
8

3

W4~g1
22g0

2!

E3 22W3F S 2/312~E/kBQD!21~E/kBQD!3 lnU12E/kBQD

11E/kBQD
U D pG J , ~68!
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where

d0
HO~E!5@~E/kBQD!3/8p2r\3W2E#(

s
Ls
2/ns

5 ,

G1p,0n
HO ~E!5G0

HO~E!@coth~bE/2!~2n1p!12nB~E!#,
~69!

whereG0
HO5(WE2/4pr\3)(sLs

2/ns
5.

Expression~66! allows us to interpret the line shape of th
system under a resonant monochromatic excitation i
simple way: it is formed by an infinite number of Lorentzia
lines corresponding to the infinite possible transitions
tween manifolds~0, n! and~1, n1p!, each of them centere
at an energy given byEp2W(g1

22g0
2)/E21d1p,0n

HO (E) from
the impurity resonant transition energy. Each of the
Lorentzian lines has a half-width given byG1p,0n

HO (E) and its
intensity is weighed by a thermal factor, the density mat
elements, and an overlap factor, theSn,p

HO elements.
As the impurity-HO coupling is purely nondiagonal, th

expression for the response function is valid in the wh
range of coupling constant values where Hamiltonian~56! is
valid, and we need not distinguish between slow and
modulation, so the cutoff of the spatial integration will n
depend on the HO spacingE. This will have important con-
sequences, as will be shown below.

In general, it is a difficult task to extract any informatio
from expression~66!, and one has to resort to numeric
evaluations. However, in the weak coupling limit, an analy
cal expression forFHO(v) can be given, and as will be
shown below, this limit is enough to explain the experime
tal data. So, taking the limitga!E, the only processes tha
contribute to the HLW are those without creation~or destruc-
tion! of HO excitations, i.e.,p50, and expression~66! re-
duces to

FHO~v,E!>
1

p
um10

ionu2(
n50

` rn,n
HOG10,0n

HO

~\v2\v0!
21~G10,0n

HO !2
.

~70!

The sum in this last expression can be evaluated in term
hypergeometric functions. However, the resulting express
has not been quoted, as it gives little physical insight into
problem.

As stated above, to obtain the total response of the am
phous solid, we have to average expression~66!, or expres-
sion ~70! in the weak coupling limit, with the density o
states~20! and extract the HLW. So, the total response fun
tion will be given by

FHO~v!5E
0

Eb
dE nHO~E!E

Vc

d3r FHO~v,E!, ~71!
a

-

e

x

e

st

-

-

of
n
r

r-

-

where the average over the couplings also has been inclu
The meaning of the cutoff volumeVc will be discussed in the
next section.

It is evident that numerical evaluation of the respon
function of the whole amorphous solid in the TLS regio
@expression~54!#, or in the HO region@expression~71!#, is a
very difficult task. We are not presenting it here, as it
planned to be the subject of a future paper.

VI. ANALYTICAL APPROXIMATIONS TO THE HLW

As stated by some authors,18 the total HLW of the amor-
phous solid should be extracted from the averaged resp
function. However, in most cases~see, for example, Refs. 15
19, 17, and 20!, the total HLW is obtained by averaging ove
the proper HLW for a specific TLS. In Ref. 17 it is argue
that this procedure is valid as a series expansion of the t
HLW extracted from the total line shape. At this stage, a
due to the complexity of the calculations, it is difficult to sa
whether both procedures~averaging over the response fun
tion and averaging over the HLW! would yield similar re-
sults. And though we are not trying to answer this questi
in this work we shall at least present the results obtain
from our model following this approximated method. Wi
this aim, the total HLW averaged over the HLW for a sp
cific soft mode will be calculated in this section.

As stated in the previous section, the half-width of a tra
sition for a specific soft mode of spacingE ~TLS or HO! is
given by the sum of the half-widths of the levels involved
the transition, weighed by a thermal factor and an over
factor. So, the HLW of an impurity coupled to a specific so
mode would be given by

DGH~E,T!5(
p

(
n

r0n,0n
~S! u^1,n1pu0,n&u2G1p,0n , ~72!

where the particular form of each of the factors in Eq.~72!,
in terms of the SPM parameters, depends on which reg
we are dealing with: TLS or HO. The total HLW of th
amorphous solid will be given by the average of express
~72! with the adequate density of states. Let us calculate
explicit form of the total HLW in the TLS and HO regions

A. TLS region

Let us consider expression~72! in the TLS region. We
have

DGH
TLS~E,D0 ,T!52 (

n521

1

(
m521

1

r0m,0m
~S! ~Sn,m

TLS!2G1n,0m
TLS ,

~73!
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where the particular form of each term has been calculate
Sec. V A.
At this point, we shall take the weak coupling limit, whic
as we shall see below, allows one to explain the experime
data. Under this approximation, the factors in Eq.~72! are
given by expressions~48!, ~52!, and ~53!, respectively. So,
expression~72! can be put as

DGH
TLS~E,D0 ,T!>8G0

TLSD0
2E exp~bE!/@exp~bE!11#

3@exp~bE!21#. ~74!

The total HLW will be given by the average of the previo
expression. Also, the slow modulation limit has to be i
posed. So, for a dipole-dipole interaction we have

DGH
TLS~T!54pE dE dhE

0

r0
dr r 2P~E,h!DGH

TLS~E,h,T!,

~75!

whereP(E,h) is given by Eq.~14! and the spatial integra
tion cutoff by Eq.~55!. The integration in the radial coordi
nate is trivial, leading to

DGH
TLS~T!5

32&p

3

Ps

W
bE

0

Emax
dE

3E
h̃0

h̃min dh̃

Ah̃

E

AE22D0
2

exp~bE!

@exp~bE!11#2
.

~76!

In order to evaluate expression~76! numerically, we shall
make the usual approximation of neglecting the variations
h̃min with E. This assumption greatly simplifies the fit t
experimental data, as for long time scale experiments
‘‘effective’’ cutoff can be estimated by using the approa
described in Ref. 25 of taking the maximum barrier height
the TLS as one-half of the glass transition energykBTg , or
else it can be taken as a fit parameter in the opposite c
The results obtained from this numerical evaluation are p
sented in Fig. 3. There, we can see the strong dependen
the HLW on this cutoff in the TLS region: it ranges from
linear law for large values ofh̃min ~long experimental time
scale! to a non-power-law for small values ofh̃min ~short
experimental time scale!. Also, the magnitude is slightly de
pendent on this cutoff. As quoted in Fig. 3, for some valu
of h̃min , a T

1.3 dependence is obtained belowW/kB , which
seems to indicate there is no need to introduce any par
eters for the density of states of TLS as was suggested
some authors.32 AboveEmax/kB the HLW behaves closely a
a constant. These results are only slightly modified if
leave aside the above approximation.

Nevertheless, in the limit of diagonal modulation intr
duced above, an analytical expression for the total HLW
in

tal

-

f

is

f

se.
-
of

s

m-
by

e

n

the TLS region can be obtained. In this case, we can ave
by making use of the density of states~15!, and in this way
obtain an expression for the total HLW belowEmax/kB :

DGH
TLS~T!5

8p

3
nTLSbkBT, ~77!

with nTLS given by Eq.~18!, which coincides with the one
calculated by Lyo15 in the same limit, but starting from the
tunneling states model.

B. HO Region

Let us consider expression~72! for a specific HO. We
have

DGH
HO~E,T!5 (

p52n

`

(
n50

`

r00
ionrn,n

HOu^xp1n
HO ~x1Z1!

3uxn
HO~x1Z0!&u2G1p,0n

HO . ~78!

It is convenient to separate transitions with HO creationp
.0) from transitions with HO annihilation (p,0). So, we
make

DGH
HO~E,T!5DGH

HO~E,T!p>01DGH
HO~E,T!p,0, ~79!

where

FIG. 3. HLW in the TLS region for someh̃min values.~—!:
h̃min52.87; ~- - -!: h̃min53.43; ~–•–•!: h̃min54.57; ~–••–!: h̃min

57.25; ~–•••–!: h̃min517.5.
DGH
HO~E,T!p>05G0

HO exp~2u! (
p50

`

(
n50

`
n!

~n1p!!
tnupLnp~u!2@~11t !~2n1p!12t#, ~80!

DGH
HO~E,T!p,05G0

HO exp~2u! (
p50

`

tp(
n50

`
n!

~n1p!!
tnupLnp~u!2@~11t !~2n1p!12t#, ~81!
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with t5exp(2bE). Taking into account the relations

(
n50

`
n!

~n1p!!
tnLnp~u!25

u2pt2p/2

12t
expS 2

2ut

12t D I pS 2ut
1/2

12t D , ~82!

(
n50

`
n!

~n1p!!
~n11!tnLnp~u!25 (

n50

`
n!

~n1p!!

]

]tn
tn11Lnp~u!2, ~83!

]

]z
I p~z!5

1

2
@ I p21~z!1I p11~z!#, ~84!

whereI p(z) is the Bessel function of the first kind with an imaginary argument, we arrive at

DGH
HO~E,T!5G0

HO@csch2~bE/2!1u coth~bE/2!#. ~85!

The total HLW will be given by the average of this expression with the density of states~20!:

DGH
HO~T!5^DGH

HO~E,T!&E,r5
Ps

3&prW4\3
Vc(

s

Ls
2

ns
5 ~kBT!7E

0

Eb /kBT

dx
x6ex

~ex21!2
, ~86!
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in the weak-impurity–HO coupling limit. The volume i
which the HO is localized,10 Vc , appears when we properl
normalize the distribution function to the total number of s
modes in the solid. In fact, the integration over the spa
coordinater extends along the whole volume of the amo
phous solid,V. As the total number of soft modes is finit
and equal toN, we must divide by this normalization con
stant, thus obtaining a factorV/NHO5Vc , which is nothing
but the volume where the soft mode is localized. This m
roscopic parameter can be related to another param
which can be estimated from neutron scattering data:
number of atoms and/or molecules participating in the m
Ns ,

10 through the relationVc5NsMmolecular/r, where
Mmolecular is the mole mass in grams of the atoms and
molecules conforming the mode.

Expression ~86! is valid for a general form of the
impurity-HO interaction, as long asDGH

HO(E,T) contains a
(g12g0)-independent term and the coupled impurity-H
system can be treated as a coherent state, i.e., when the
pling is sufficiently strong. This can be expressed in an a
lytical way by the conditionb/r s@G for a multipolar cou-
pling, whereG is the characteristic broadening of the HO a
is given byG;G0

HO. In other words, our treatment is vali
only for those HO with a characteristic decay rate in t
continuum of phonons that is slow enough to form a coh
ent impurity-HO state, i.e.,r!(b/G)s. Obviously, the case
in which the approximation works worst is forE5Eb . If we
now definer cohe as the smallest value ofr where the previ-
ous inequality holds, and consider a dipole-dipole interact
(s53), with b values given by those calculated in the TL
region, we obtainr cohe>8 Å for the SiO2 and r cohe>26 Å
for the PMMA ~polymethyl methacrylate!, while r 0
5(3Vc/4p)1/3 is 5 Å and 10 Å for the SiO2 and PMMA
cases, respectively, so the coherence limit is fulfilled~see
Table I and the Sec. VII for details about the calculation
the various parameters!. In the case of a dipole-quadrupo
interaction it is difficult to establish a comparison betwe
r cohe and r 0 , as we have no reliable estimations of the co
pling b.
t
l
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e
e
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For temperatures much lower thanEb we can evaluate Eq
~86! to give

DGH
HO>

16p5Ps

63&rW4\3
Vc(

s

Ls
2

ns
5 ~kBT!7, ~87!

and for temperatures aboveEb we have

DGH
HO>

PsEb
5

15&prW4\3
Vc(

s

Ls
2

ns
5 ~kBT!2. ~88!

So, this mechanism has the same behavior as Raman
cesses in crystalline materials, but the high- and lo
temperature limits are defined in terms ofEb , which is char-
acteristic of the amorphous solids and is usually one orde
magnitude lower than the Debye temperature.

VII. RESULTS OF THE NUMERICAL EVALUATION
OF THE HLW

Expressions~76! and ~86! have been evaluated numer
cally for some materials and the results are presented in
4. These materials have been chosen in an attempt to gi
complete picture throughout a broad temperature range.
various parameters of the SPM have been quoted in Tab
for each material. They have been calculated from TS mo
parameter measurements in the low-temperature regime,
lowing the procedure in Ref. 25. Unfortunately, the coupli
b and the volumeVc ~or, equivalently, the participating num
berNs! are not known in general, and only estimations f
vitreous silica and a few other materials were available.10 So,
we have taken them as fitting parameters. The deduced
ues also have been quoted in Table I. An exception is
system Nd31:SiO2, where all the SPM parameters are we
known, and a reliable estimation ofNs exists.

10 Unfortu-
nately, there are no experimental data for this system in
medium to high temperature range.

Let us try to analyze Fig. 4. The first striking feature is t
excellent agreement between experimental data and num
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cal fits in the whole temperature range and for all the ma
rials studied. The Eu31: silicate system is worth mentioning
as this is one of the few systems in which a crossover fro
linear to a quadratic law has been clearly observed. We
see that the combination of the two mechanisms propo
here accurately describes this crossover. The pentac
PMMA data are also well described by our model, and,
contrast to the usually acceptedT1.3 law, we find a better
agreement when considering a combination of both mec
nisms; however, it is reasonable to expect such a suprali
behavior for lower temperatures, as this kind of crosso
appears belowW/kB as shown by Eq.~76!. For the
Nd31:SiO2 system, and choosing a reasonable value for
cutoff h̃min ~this value, and the ones estimated for the ot
systems using the method described in Sec. VI A, have b
quoted in Table I!, we are able to describe theT1.3 power law
exhibited by the experimental data. In the measured reg
the HO contribution can be neglected. The Nd31:SiO2 and
Nd31:GeO2 systems are expected to exhibit a very simi
behavior, as the host matrices’ structures are very alike; h
ever, the experimental data of Nd31:GeO2, if extrapolated to
low temperatures, are one order of magnitude larger t
those of Nd31:SiO2. This is a surprising fact, which will be
discussed below. Anyway, the Nd31:GeO2 data are also wel
fitted, though it is worth saying we have to combine bo
mechanisms to describe the whole set of data, which se
to indicate a moderate crossover below 10 K.

Let us now discuss the calculated fitting parametersb and
Ns . For reasons suggested above, we can expect the nu
of participating molecules in GeO2 to be very similar to the

FIG. 4. Numerical~solid lines! and experimental data of th
HLW for some systems:~m! Pentacene: PMMA~Ref. 33! ~.!:
Nd31: GeO2 ~Ref. 32!; ~d!: Eu31: Silicate ~Ref. 34! ~* !: Nd31:
SiO2 ~Ref. 35!. Numerical data have been evaluated by making
of expressions~76! and ~86! in the TLS and HO regions, respec
tively.
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ed
ne:
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ar
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e
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one in SiO2. The better fit to experimental data gives a val
of almost 12 molecules participating in the soft mode,
complete agreement with the estimation made by Buche
et al. in Ref. 10 for SiO2. Although we have no reliable
estimations of the number of participating molecules in s
cate and PMMA glasses, the same reference points to
ticipating numbers between 20 and 100 atoms and/or m
ecules per soft mode, the same as the ones we have obta
The values of parameterb are also in good agreement wit
usually accepted values~see Ref. 35! for an electrostatic
dipole-dipole interaction. Let us now return to a puzzlin
question. As mentioned above, Nd31:GeO2 experimental
data are one order of magnitude larger than Nd31:SiO2 ones,
which leads to a difference of one order of magnitude in
correspondingb couplings. These two facts have no ea
explanation if, as we have admitted, both systems have
almost identical microscopic structure. In fact, this behav
has been already pointed out by some authors32 in other sys-
tems, and it has been related to the different experime
techniques that have characteristic measurement and d
tion times lying in different time scales, which in turn fix th
cutoff h̃min , on which the density of TLS depends. Though
is out of the scope of our work, we think this question d
serves a deeper study. Concerning this point, we would
to add some additional comments about this time dep
dence of the HLW. As can be seen from expressions~15! and
~18!, we can expect a time dependence of the TLS densit
states even in the most simple limit, which should reflect
every measurable physical quantity such as, for example
HLW. This time dependence has been experimentally
served, but its nature is not yet clearly understood, and
usually ascribed to some kind of spectral diffusion mec
nism. As can be seen in expression~76!, this time depen-
dence also appears in our model if the variation ofh̃min with
time is taken into account. More work in this directio
should be desirable, and is planned to be the subject
future paper.

VIII. CONCLUSIONS

We can conclude that our model gives a very accur
description of the experimental data in any temperat
range, without introducing any adjustable exponents for
TLS density of states. Moreover, a very interesting feature
this model is to establish relations between optical depha
properties and other kinds of properties, through ene
Eb , which defines the low- and high-temperature limits
the HO contribution. We think more attention should be pa
to the question of relating optical dephasing properties
thermal and transport ones.

A striking point that is worthy of attention is the indepe
dence of the HO contribution on the coupling. This mea
that for the same host, HLW would be almost independen
impurity in the high-temperature limit. It should be desirab
to have experimental confirmation of this fact. In any ca
let us remember we have neglected a coupling-depen
term in expression~85!, which is expected to vary with eac
impurity. This part contains a temperature-independent c
tribution that would dominate the HLW at ultralow temper
tures in some coupling ranges, and could be related to th
temperature-independent contributions of various GHz
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served in some organic systems.32

Finally, we wish to emphasize that the problem of imp
rity HLW in glasses is far from being completely solved. W
think that more experimental work in some simple system
desirable to contrast different theoretical models. Also,
question of the HLW dependence with time requires m
theoretical studies. Moreover, numerical studies in the cro
over region between TLS and HO would be also necess
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APPENDIX A: THE SOFT-MODE PARAMETER
DISTRIBUTION FUNCTION

In this Appendix we deduce the distribution function~11!
on the basis of the Ramoset al.25 work. The soft potential
can be written in two equivalent forms:

V~x!5W@h~x/a!21j~x/a!31~x/a!4# ~A1!

or

V~x!5W@D1~x/a!1D2~x/a!21~x/a!4#. ~A2!

The relation between both sets of parameters is given b

D152hj/21j3/8, ~A3!

D25h23j2/8. ~A4!

The probability distributionP(h,j) of the random param
etersh and j as a function ofh is assumed to be centere
nearh;1, which corresponds to the standard atomic pot
tials. The soft potentials then occur in the region of the tai
the distributionP(h,j), within the range of low values ofh.
It can be shown that in the limituhu!1, P(h,j) is finite and
takes the form22

P~h,j!5uhuP0~h,j!, ~A5!

whereP0(h,j) is a smooth function.P0(h,j) as a function
of j is assumed to be even, due to the absence of a prefe
direction in a glass. Referring to variables (D1 ,D2), it can
be seen that the easiest way to characterize the distributio
the random parametersh and j ~with the exception of the
constant function!, with the previous conditions being ful
filled, is by means of the function25

P~D1 ,D2!5Ps exp~2AD1
2!, ~A6!

where the scale for the coefficient ofD1
2, A, is estimated by

assuming that the asymmetryD1 is due to thermal strains
which freeze in at the glass transition temperatureTg so this
scale is given byA50.169(W/kBTg)

3/2. By making use of
Eqs. ~A3!, ~A4!, and ~A6! we arrive at expression~11! for
the distribution function in the~h,j! variables.
-
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APPENDIX B:
RESPONSE FUNCTION IN THE FRAMEWORK

OF THE ZWANZIG-FANO RELAXATION THEORY

Let us consider a system with known energy levels a
that is able to couple to an electromagnetic field. Let
assume that the system is interacting with a thermal b
The Hamiltonian of the whole system1bath set is given by

H5H ~S!1H ~B!1H int , ~B1!

whereH (S) refers to the optically active subsystem,H (B) to
the bath, andH int refers to the interaction between both sy
tems. For many cases of interest, the interaction between
optically active subsystem~OAS! and the thermal bath ca
be factorized as

H int5V~S!
•V~B!, ~B2!

whereV(S) refers to the OAS, andV(B) to the bath. We will
assume that the eigenvectors ofH (S), denoted by
u i &,u f &,..., form a discrete set, whereas those ofH (B), de-
noted byua&,ub&,..., aredense and form a quasicontinuum

Following the Zwanzig-Fano relaxation theory,31 the re-
sponse of the OAS under an electromagnetic external pe
bation can be calculated to any order in the interaction. T
technique essentially consists in eliminating the thermal b
variables from the physical quantities of interest by the
troduction of an adequate projection operator over the O
Hilbert subspace. Using this method, we are able to calcu
the line shape of the OAS optical transitions in contact w
a phonon thermal bath. The expression for this function
which we arrive in the framework of this theory, is given b

F~v!52
1

p
Im (

f ,i
um f i

~S!u2r i i
~S!

3
1

\v2\v f i2^Mc~\v1 ih1!& f i , f i
. ~B3!

The notation used is as follows:m f i
(S) denotes OAS dipole

moment operator element between the statesf and i . r i i
(S)

denotes OAS density matrix diagonal element.\v f i5Ef i
denotes OAS transition energy betweenf and i states.
^Mc(\v1 ih1)& f i , f i denotes element of the so-calle
memory function of the system between the states (f i ) and
( f i ), properly averaged over the bath variables. This is
linear operator over the linear operators space of the O
Hilbert space, so it has four indexes. This function allows
an iterative equation:

Mc~z!5L11L1
1

z2L0
~12P!Mc~z!, ~B4!

where L0 is the Liouville operator of the free part of th
Hamiltonian, operationally defined as

L05@H ~S!1H ~B!, #, ~B5!

L1 is the Liouville operator of the interaction, given by

L15@H int , #, ~B6!
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where@ , # is the conmutator. Finally,P5ur (B)&&^^1(B)u is a
projector over the OAS Hilbert subspace, withr (B) the ther-
mal bath density matrix and1(B) the identity operator ove
the bath Hilbert subspace. The double ket indicates that th
operators are vectors of the linear operators space ove
Hilbert space. The memory function contains all the dyna
cal effects of the OAS-bath interaction.

Using Eq.~B4!, it is straightforward to obtain a perturba
th
ri

e
pa

d
si
y

th

-

se
the
i-

tive expression of the memory function operator to a sec
order in the interaction:31

^Mc~z!& f i , f i5DV1K~z!, ~B7!

where

DV5~Vf f
~S!2Vii

~S!!^V~B!&, ~B8!
K~z!5(
a,b

wb~ u^auV~B!ub&u22^V~B!&2dab!F(
k

S uVfk
~S!u2

z2Eki2Eab
1

uVik
~S!u2

z2Efk2Eba
D

2Vf f
~S!Vii

~S!S 1

z2Ef i2Eba
1

1

z2Ef i1Eba
D G . ~B9!
ode

res-
to

d

The following notation has been used in expressions~B8!
and ~B9!:

Vkl
~S!5^kuV~S!u l &, ~B10!

V~B!5(
b

wb^buV~B!ub&, ~B11!

wherewb5exp(2Ea /kBT)/(a8 exp(2Ea8 /kBT) are the den-
sity matrix operator diagonal elements of the thermal ba
provided this is a canonical distribution over the bath va
ables and, so, diagonal in the eigenstates ofH (B).

The memory function will be a complex number in th
general case, so we can separate the imaginary and real

d f i5Re@^Mc~\v f i1 ih1!& f i , f i #, ~B12!

G f i52Im@^Mc~\v f i1 ih1!& f i , f i #, ~B13!

where \v f i5Ef2Ei . Substituting in expression~B3! we
arrive at

F~v!5
1

p (
f ,i

um f i
~S!u2r i i

~S!
G f i

~\v2\v f i2d f i !
21G f i

2 ,

~B14!

sod f i represents the shift of the OASu f & to u i & transition and
G f i the half-width of this transition.

A more detailed presentation of the technique used an
discussion about the approximations that lead to expres
~B3! can be found in Ref. 31 or in the original works b
Zwanzig and Fano.36,37

APPENDIX C: EVALUATION OF THE MEMORY
FUNCTION IN THE TLS AND HO REGIONS

Let us consider expression~B7! of the memory function.
As the OAS-bath interaction cannot connect states with
same phonon occupation number, theDV term is null, so the
memory function is equal toK(z). Let us calculate the ele
ments of the interaction Hamiltonian:
,
-

rts:

a
on

e

1. TLS region

Expanding the elementŝauV(B)ub&, we arrive at an ex-
pression for̂ Mc(z)& f i , f i :

^Mc~z!& f i , f i5(
q

uDqu2@ n̄qF2~Eq!1~ n̄q11!F1~Eq!#,

~C1!

wheren̄q are the mean phonon occupation numbers in m
q, uDqu25(Eq/2rns

2)gs
2 and

F6~Eq!5( S uVfk
~S!u2

z2Eki7Eq
1

uVik
~S!u2

z2Ejk6Eq
D 2Vf f

~S!Vii
~S!

3S 1

z2Ef i6Eq
1

1

z2Ef i7Eq
D . ~C2!

Taking into account that, for our system,uk&5urk,nk&,
whererk50,1 stands for the impurity state andunk&561
stands for the TLS level, and expanding the sums in exp
sion ~B3!, we arrive at the conclusion that we only need
evaluate the element^Mc(E1nf0ni1 ih1)&1nf0ni ,1nf0ni ~in the
Markovian approximation!. Doing so, and once we expan
theVkl

(S) elements, we obtain

F6~Eq!5
A1
2

7Eq1 ih1 1
A0
2

6Eq1 ih1 1
B1
2

nf«17Eq1 ih1

1
B0
2

ni«06Eq1 ih1 1A0A1S 1

6Eq1 ih1

1
1

7Eq1 ih1D . ~C3!

Making use of the well-known relation

1

x1 iy
5PS 1xD2 ipd~x!, ~C4!



an
th
e

e
at

us

to
on
ir of

n the

592 56A. J. GARCÍA AND J. FERNÁNDEZ
with P the principal value, we can separate the imaginary
real parts of the memory function element, and obtain
shift and the half-width of the transition. In doing so, w
arrive at

d1nf0ni5(
q

uDqu2$n̄q Re@F2~Eq!#1~ n̄q11!Re@F1~Eq!#%,

~C5!

G1nf0ni52(
q

uDqu2$n̄q Im@F2~Eq!#

1~ n̄q11!Im@F1~Eq!#%, ~C6!

where

Re@F6~Eq!#5PF A1
2

7Eq
1

A0
2

6Eq
1

B1
2

nf«17Eq
1

B0
2

ni«06Eq
G ,

~C7!

Im@F7~Eq!#52p@B1
2d~nf«17Eq!1B0

2d~2ni«16Eq!#.
~C8!

In the last expression, only the terms that have a nonz
sum have been included. Using the Debye density of st
and dispersion relation, we can evaluate the sums in~C5! and
g

p-

r.

l

-

s

d
e

ro
es

~C6!, and obtain in this way expressions~42! and~43! of the
text.

2. HO region

We just have to follow the same steps of the previo
region, which lead to

Re@F6~Eq!#5PHWE F nf

E1Eq
1

nf11

2E1Eq
2

ni

E1Eq
1

ni11

E2Eq
G

14
W2

E4

~g1
22g0

2!

Eq
J , ~C9!

Im@F6~Eq!#52pFWE S nf1ni12
nf1ni D d~E2Eq!G ,

~C10!

where the upper~lower! term inside the parentheses refers
the1 (2) sign, respectively. In order to recover the notati
used throughout the paper, we must change from the pa
quantum numbers (ni ,nf) to (n5ni ,p5nf2ni). In doing
so, and once we evaluate the sums over phonon modes i
Debye model, we obtain expressions~68! and ~69! of the
text.
.
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