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Optical properties of an effective one-band Hubbard model for the cuprates

M. E. Simm, A. A. Aligia, and E. R. Gagliano
Centro Afanico Bariloche and Instituto Balseiro, ComisidNacional de Energi Atamica, 8400 S.C. de Bariloche, Argentina
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We study the Cu and O spectral density of states and the optical conductivity of @la@es using an
effective generalized one-band Hubbard model derived from the extended three-band Hubbard model. We
solve exactly a square cluster of 10 unit cells and average the results over all possible boundary conditions,
which leads to smooth functions of frequency. Upon doping, the Fermi energy jumps to Zhang-Rice states
which are connected to the rest of the valence b@mdontrast to an isolated band in the middle of the)gap
The transfer of spectral weight depends on the parameters of the original three-band model not only through
the one-band effective parameters but also through the relevant matrix elements. We discuss the evolution of
the gap upon doping. The optical conductivity of the doped system shows a mid-infrared peak due to intraband
transitions, a pseudogap, and a high-frequency part related to interband transitions. Its shape and integrated
weight up to a given frequencgincluding the Drude weightagree qualitatively with experiments in the
cuprates for low to moderate doping levels, but significant deviations exist for doping.3.
[S0163-182607)03233-5

I. INTRODUCTION included in the theoretical treatments, and it seems necessary
to generalize the Hubbard model to explain the electronic
In recent years, there has been much interest in the spestructure of some nonstoichiometric oxidég?
tral and related electronic proPerties of superconducting cu- To discuss the validity of the translationally invariant
prates, and similar materials " In spite of the considerable three-band Hubbard mod@lor effective models derived
rese_z?_;lrch effort, there are sever_al _issues W_hich remain to k}?om it19.20.34-36i the description of the cuprates, it is nec-
clarified. For example, photoemission experiments at optim ssary to know precisely the spectral properties of these

doping show that electrons have a large Fermi surface o .
arepa (g_’lL—x) wherex is the amount of hoi% doping, while at models. One of the most used and effective ways to study

small doping it is expected that the Fermi surface consists df'€S€ Properties in two dimensions at Zero temperature is the
four small hole pockets centered at ¢r/2,% m/2) of total ~ €xact diagonalization of small clustef's:®~*22*2*Among
areax. The evolution of the Fermi surface remains a toughthe_different effective models, those similar to theJ
problem3! There is a recent theoretical study on thison€>**?*343%have the smallest number of states per unit
subject®? cell. However, like the spin-fermiofor Kondo-Heisenbeng
Another related issue is the appearance and evolution fanodel!*?°their Hilbert space is too small to allow a descrip-
x#0 of states at energies which lie in the gap #or0.  tion of both valence and conduction bands. In contrast, the
There are at least two physical pictures. On the basis ofumber of states per unit cell of the three-band model is so

several measurements, and particularly the change of sign ¢f;ge that the largest exactly solved cluster contains only four
the Hall constant withx in La,_,Sr,CuQ,, Sreedhar and unit-cells' 1823 Thus, the most appropriate effective model

Ganguly proposgd that _the gap in the spectral _densny gradufo study the evolution of the gap seems to be the extended
ally closes with increasing, and after the closing, the sys-

tem has completed its evolution from a Méer better said Hubbard on€® Numerical studies of the Hubbard model
“charge-transfer’) insulator to a band metal. As soon as show a change of sign of the Hall constant as a function of

doping begins the Fermi level jumps to the valence bangdoping, but it has not been related with a reconstruction of
This jump is consistent with the measured x-ray-absorptioihe spectral density."*°The spectral properties of the Hub-
spectrum(XAS).%" Instead, from the optical conductivity bard model have been calculated in periodic square clusters
and high-energy spectroscopfashas been suggested that a of 8, 10, and 16 site$:"3Without artificial broadening, the
band of midgap states is formed, taking spectral weight frontesult of these calculations is given by a setdiinctions at
both conduction and valence bands, and the Fermi level rddifferent frequenciegsee, for example, Fig. 11 of Ref p2
mains in the midgap band. A minimal shift of the Fermi level from which it is not possible to distinguish if in the thermo-
with doping has been observed by photoemission irdynamic limit there is one, two, or more gaps in the spectral
La,_,Sr,CuO, (Ref. 8 and in the electron doped density of states. Also the Drude weight shows important
Nd,_,Ce,Cu0,.® but not in BaSr,Ca; Y ,CuO,Cg.X It  finite-size effects, being negative near half-filling.

might be possible that the states in the middle of the gap are In this work we solve exactly the effective one-band ex-
created by deep donor levels originated by the substitution dended Hubbard Hamiltonian in a square cluster of 10 unit
La®* by Sr* ions. The resulting “impurity-state model” is cells and average over all possible boundary conditfons.
consistent with the experimental evidence in the oxideThis technique has been also used by Poilblanc to study the
(Nd,S)nCo0;.1% The effect of this substitution has been dis- optical conductivity of thet-J modef* and by Xiang and
cussed in Ref. 7. However, inhomogeneities are usually ndtVheately? to calculate the dispersion relation of one hole in
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a generalized-J model, obtaining good agreement with re-  The transformation of the low-energy part ld§;, to the
sults of the self-consistent Born approximation and experieffective model H;, can be summarized in four
ments in SECUO,Cl,. To our knowledge, this approach has steps?**>%%°(i) change of basis of the O orbitats,p} to
not been applied to the spectral properties of Hubbard obrthogonal Wannier functions; ,y; centered at each Cu site
extended Hubbard clusters. It allows us to obtain continuous, with symmetriesh;4 (the same as the,z_,2 orbital) and
spectral densities and optical conductivities and according ta,,, respectively(ii) exact solution of the cell Hamiltonian
our studies in small ringgsee Sec. Il the convergence to H; (the terms oiH g, which contain only operators acting on
the thermodynamic limit is faster. cell i); (i) mapping the low-energy statés) of Hg, into

It must also be pointed out that the spectral properties og di s of the Hilbert fth _band
the Hubbard model derived from the numerical methods orrespon |ngﬂ1e|$n) of the HIbert space ot the one-ban

mentioned above, as well as analytical studies of the chand@OdeI (m)=[m); (v) "a_”SErm the operatorsi; and

in the spectral weights with dopifgdo notdirectly corre-  Hap— ZiH; to the new basigm). A transformed operator
spond to the cuprates as described by the original three-bar@d can be expressed in terms of the matrix elements of the
Hubbard model. To calculate any property of this model us-original operatoiO as

ing an effective Hamiltonian, one should transform the cor-

responding operators from the three-band to the effective ~ /T

Hamiltonian. This has been done for the spin-fernfion, O_% (n[O[m)[n)(m]. @
Hubbard** andt-t’-t"-J (Ref. 36 as effective models for the _. .

cuprates. In particular, Feiner explained the electron-holé:'naHY’ the effect_ of states dly, V.Vh'Ch do not have corre-
asymmetry in the spectral weight in the cupratehich is SPO”d”_‘g osnes 'nH“.’ can be M as perturbative
absent in the “isolated” Hubbard modé¥ Here we use and corrections’® but we will not do it here. In Fourier space, the

discuss the transformed operators for spectral density anRy Orbitals are related with the O Wannier functions by
optical conductivity.

. . kya k,a
In Sec. Il, we briefly review the extended one-band Hub- Pko= Bk CO{L aka—CO{L Yko |
bard model as an effective model for cuprate superconduct- 2 2
ors, and construct the relevant operators. In Sec. Ill, we dis- K K
cuss the numerical techniques and the method of integrating pl =Bl co “a aw .+ co 5a (3)
. .. ko k 2 ko 2 Yko |
over arbitrary boundary conditions. In Sec. IV, we present

the results for the spectral density, while Sec. V contains the . B 1 1 _1p2 :
results for the optical conductivity, Drude weight, and re—W'th Bx=[1+3c0ska@)+;coska)] == The eigenstates of

lated quantities. The conclusions are presented in Sec. VI, Hi rétained in the mapping procedure &ire addition to the
vacuum at sité) the lowest one-hole doubl¢ito) and the
lowest two-hole doubleli2). They can be expressed as

Il. THE EFFECTIVE EXTENDED ONE-BAND HUBBARD

MODEL AND TRANSFORMED OPERATORS A + ot Fot + ot + ot
_ _ _ —=(dj ) —dj @) — Asaj; o — Azdi,dy
Experimental evidence about the symmetry of holes in \/E

high-T, superconductors?>“® as well as constrained- _ ; ;

density-functional calculatiorf€;*® support the appropriate- lio) =[B1d;,— Baa;,]|0). 4

ness of the three-band Hubbard modébr the description  Tege states are mapped into those of the one-band model by

of these systems. The Hamiltonian is the correspondendéa)«<cf,|0), [i2)«cf.cf||0). This as-
signment and Eq(2) applied toH,, lead to the effective
one-band generalized Hubbard Hamiltonian, with

li2)= |0),

_ T T
H3b_AJ.EU pjopjo+tpd% (P 5odigtH.C) occupation-dependent nearest-neighbor hopping and repul-
sion (interactions and hoppings at larger distances are ne-
d glected for simplicity:
_tppj; Pﬁwp;ﬁUpd_&E NN 500
T idoa’
ey Hlb:Eliz(r Nigt+ UEi niTniL"_(%” ¢l Cioltan(1—1 )
+Ud2i n”niﬁup; n’nf, (1)

X(1=n; ) +tagln (1—n; ) +n; (1—n; 5]

whered], (p,) creates a hole in thé,z_,2 (p,) orbital at B

sitei (j) with spina, andi+ & (j + ) label the four O atom Flegni 0Ny o} H'C'+<ij%0, Va(l=ni o)
nearest neighbors to GO) sitei (j). The phases of half the

d and p orbitals have been modified by a factor {) in X(1=nj 57) + Vo 5Ny o + VL (1=n; )N &

order to have,4>0 andt,,>0 independently of the direc- -
tion. While other Cu and O orbitals should be included to (L0 G I oMo ®)
explain Raman experiment$>°these additional states affect Several particular cases of this model have been widely
neither low-energy spectral propertiéselow the bottom of  studied®?=°8 For tya+tgg=2tag and Vi;=0, the model is
the p,, band® nor the validity of the one-band effective shown to lead to superconductivity for smalland adequate
modelH,.>° doping>® particularly in one dimensior™>® For V;
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TABLE |. Different sets of parameters of the three-band Hub- D,=(i0|d;,lic)=B4,

bard modeHg, [Eq. (1)] in units of t,g.

— AB
Set A Ug Upg tpp Up D,=(io|d;,|i2)= 1—Z-I—A;,;B :

V2

1 2.0 7 1 0.5 4
2 2.5 9 1 0.5 4 Pl=<i0|ai(r|i0'>=—82, (8)
3 4.0 7 1 0.5 4

— . A1B,
P2=<I0'|aig|l2>= - f*‘Asz

=t,g=0, the model has been exactly solved in one
dimensiort® For tag=0, V,=V»=Vy;, and half-filling,  Transforming Fourier and using E(B), the operators enter-
the exact ground state has been found in a wide range dfig Eq. (6) are defined. As will be discussed in Sec. IV, the
parameters for arbitrary lattices in arbitrary dimension, anchsymmetry of Eq(7) and also the Hamiltonian E¢5) under
the phase diagram separating metallic, Mott insulating, angélectron-hole transformation lead to a different behavior of
charge-density-wave regions has been established. the spectral densities under electron or hole doping. This
The spectral properties in two dimensions have been studiifference is apparent in the cuprates and in the three-band
ied numerically in the charge-density-wavgarge V) Hubbard model results, but it is absent in the ordinary one-
regime® and forV;;=0 and smalltxg at half-filling.>® The  band Hubbard modéf:**
model has been also used recently to study the regions of The optical conductivity can be written’4s”
phase separation and valence instabilities of the original
three-band modéf. Typical values of the parameters ld;, o(w)=27D 6(w) + orey(w), 9
andH,, are given in Tables | and Il, respectively.
At zero temperature, the Cu and O spectral densities are
defined by

here

Treo @)= 7 2. [(0li0)o(Ey—Eg=w). (10

1 — V is the volume of the systenj, the x component of the
polw)= E% (n[OWlg)|?8(w+Eg—En), ®  current operator. The Drude weight can be calculated in
' two ways: either using the mean value of the kinetic energy
in a given direction(T,):
where|n), E, are the eigenstates and energieHaf,, |g)
labels the ground state for a given number of partitleand
L is the number of unit cells in the system. For electron
spectral densities of Cu or one of both O atoms in the unit

cell (measured by inverse photoemiss)Lcﬂ? is the operator or from the seco_nd (_jerivative of the energy with rgspect o
in th ion df.. of d Xy K tively. E the vector potentiah in a system with periodi€or arbitrary

In the representation dilyp, of dy Or i, respectively. For o yegerined in the next sectjdsoundary conditions

hole spectral densitiegorresponding to photoemissiothe

corresponding Hermitian conjugate operators should be c? d2E(A)

taken. In real space using E) one obtains D=—
2V ga2

E‘ 2<_Tx> EE |<n|jx|g>|2
ﬁ 2V Vn;&g En_Eg

(11

(12

A=0

The current operator can be derived in a standard way, from
dH/dA, when each hopping terru:fgcjg is multiplied by a
phase factor exXpeA(x;—Xx;)/(cf)]."**" In the case of the
_ effective Hamiltonian Eq(5), the current can be divided into
@;=P1Ci,(1—ni;) + PaCi iy, (7)  three terms proportional to the three different types of hop-
ping terms:

d;=D1Cio(1—Ni5)+DaCipniy,

where ix=iaatiastiss (13

. with
TABLE Il. Effective one-band parameters for the three sets of

parameters ofl 5, listed in Table I. The last column gives the ratio iae

of the effective on-site repulsidd to the average effective hopping jaa(r)= —tAAE (CIGCHXU—CLXUCW)
t= (taa+ 2tag+tes) /4. h S

Set U tan tas tsg Vi Vo Vyp Ulty XA DN,

1 215 -0.382 —-0.385 —0.337 0.123 0.170 0.178 5.78 . _iae 2 N N

2 3.01 —0.377 —0.324 —0.338 0.119 0.162 0.181 8.85 jas(N=7"1ag - (CroCrsxo ™ CrixoCro)

3 3.37 —0.268 —0.327 —0.337 0.066 0.125 0.156 10.71

X[(l_ nr,aﬁnr+x,ai+nr,ﬁl_nr+x,?]a (14)
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X X Ne,+2n,m=K-V,,
whereny,n, are integers. Solving foK, ,K, one obtains
X X
N 27T(n2_3n1)
Kx:E(3¢1_ $2)— — 10
X X (16)
X X K = N 3 2m(3n,+ny)
=g ¢1+ 362t — 15—
X X X When (¢4, ¢,)=(0,0), varying the integens, ,n,, Eqs.(16)

give the ten inequivalent wave vectors allowed by periodic

FIG. 1. Scheme of the supercélustei containing 10 unit cells Poundary conditions. Wheryy;, ¢,) is allowed to vary con-

used in our calculations. The vectdrs andV, generate the whole tinuously the whole reciprocal space can be swept. This al-
lattice by successive translations of the superce“l lows us to obtain more information from the finite-size clus-

ter calculations. Also, while the spectral densities and optical
iae qonductivities being calculated are given by a sur@ fdinc-
jee(r)= TtBBE (€l yCrxo™ CrtxaCro) e oMy .o tions for each ¢1,4,) [Egs. (6) and (9], integrating the
o result over g,,¢,) leads to continuous functions. In prac-
tice we have replaced the integral by an average over a
An alternative derivation of the current operator for the square mesh of up to>88 points(up to 34 nonequivajent by
effective one-band model is to obtain first the current operasymmetry for the optical conductivityn ¢, ,¢, space until
tor of the multiband mode¥, then project the result into the 4 fairly smooth function was obtained.
low-energy subspace and map it onto the one-band represen- However, the procedure described above has some short-
tation. B_Ot.h derivations lead to identical re_sultst"gfp=0. Comings when app“ed to the 0ptica| Conductivity_ For gen-
For realistic values of,,, there are small differences be- era| boundary conditions there isspontaneous currerin
tween the resulting coefficients entering the currenthe ground state, invalidating the derivation of E@.to Eq.
jaa, ias, andjgg. For example, while for the set 2 of (12)1617(Such a current cannot exist in the thermodynamic
parameters ofi 3, (see Table)lwe obtaintapa=tag=—0.38,  I|imit, even if it were allowed by symmet’?®) In finite
tgg= —0.33, in the second derivation these values should beystems, this current is zero for periodic boundary conditions
replaced by-0.32,—0.35, and—-0.36 in the respective cur- at “closed-shell” fillings (including half-filling in our clus-
rents. This difference is probably due to the different way inter), and for half-filling and any boundary conditions in the
which excited(mainly local triple} states are taken into ac- U—c limit (as in thet-J model?¥ since in this limit the
count in lowest order in both procedures witgp0.°%°%%  charge dynamics is suppressed. Our point of view is that the

In this work we use Eq(14). average of Eqs(10) and(11) over boundary conditions in a
finite system, is an approximation to the correct expression
IIl. NUMERICAL METHODS AND AVERAGE in the thermodynamic limit, which converges faster with sys-
OVER BOUNDARY CONDITIONS tem size than the result of Eq4.0) and(11) or (12) for fixed

boundary conditions. Since we have not done finite-size scal-
We have evaluated Eg&), (10), and(11) using the now ing in two dimensions, we cannot prove this statement. How-

standard continued-fraction expansion of these equationsver, it is supported by our one-dimensional check summa-
with the Lanczos methot, in a square cluster of 10 unit rized below. Furthermore, as we shall see in Sec. V, the
cells, integrating the result over the different boundaryresults using the averaging procedure look reasonable, while
conditions™** Particular boundary conditions are specifiedthe Drude weight obtained in larger systems using periodic
by two phases ¢;,¢,), 0<¢; <27 in the following way:  boundary conditions show unphysical negative values at
an infinite square lattice is divided into square 10-site C|US-ha|‘|’-fi||ing_22'27 Previous calculations of the optical conduc-
ters, and the sites which are at distanods+mV, with  tivity of the t-J model using twisted boundary conditions
n,m integers andV;=(3,1),V,=(—1,3) are considered also support our procedufé.
equivalent(see Fig. 1 After choosing a particular 10-sitt We have checked the method of averaging over boundary
cluster, each “time” the hopping term makes a particularconditions applying it to the optical conductivity(w) of
jump out of the cluster, it is mapped back into the clusterone-dimensional Hubbard rings, for which finite-size scaling
through a translation in one of the vecterd/,,V,,—V,, or  can be done, and some exact results, like the charge gap, are
V, and the wave function is multiplied b/1,e'%1,e'%2, or  available®® The results forU/t=4, 6, and 8 and several
e”'%2, respectively. Whend;, ¢,) =(0,0) this is equivalent system size are represented in Figs. 2—4, respectively. A
to the usual periodic boundary conditions. It is easy to segunny feature of these curves is the presence of oscillations
that when we impose the wave function fparticles to be  in o(w). A comparison of the result for rings of different
an irreducible representation of the group of translations o&izes shows that this is a finite-size effect. Calculations using
the infinite square lattice, the allowed total wave vectrs spin-wave theory in the strong-coupling limit give a smooth
should satisfy o(w).?% Fortunately no signs of these oscillations are present

in the two-dimensional case. By comparison, the strong-

N¢+2n7=K- -V, (15 coupling limit of the Hubbard model and thel model with
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FIG. 2. Average optical conductivity as a function of frequency

) ) 8 10 12 14 16
for Hubbard rings of different length arld/t=4.

o/t

o
V)
N
o

one hole in systems as large as 19 sites with periodic bound- FIG. 4. Same as Fig. 2, faJ/t=8.
ary conditions shows a few functions?®

The presence of a peak at zero frequency is & COnsequenggas after averaging over boundary conditions and at fixed
of the already discussed spontaneous current in the groungsineriodic boundary condition. Clearly, the averaging pro-

state for general boundary conditions. Clearly, this is also a¢q,re speeds up the convergence toward_thes limit
finite-size effect and the height of the peak decreases with '

system size and also with increasikt. Thus, we have
suppressed this peak in the two-dimensional results of Sec. IV. THE SPECTRAL DENSITIES
V.

We have also noticed that the gap dér{w) converges
much faster to the thermodynamic lintdy than the corre-
sponding result using fixed boundary conditions. In Tabl
lll, we compare the exact gap, given by the intedfal;

In Fig. 5, we show the Cu and O spectral densities
p(w) in the hole representatiofphotoemission and inverse
photoemission correspond te>er and w<egp, respec-

etively, whereeg is the Fermi energyfor several doping lev-

els and the set of parametergske Tables | and )l These
spectral densities have been calculated as described in Sec.
(17) 11, using Eq.(6) with Oy replaced byﬂ, p<" for Cu and O
photoemission, and by,, pi for inverse photoemission.
The result for O has been multiplied by a factor 2 to repre-
sent the total contribution of bothp? orbitals of the unit

cell. Also shown in Fig. 5 are the extended Hubbard spectral
densities corresponding to the operatcor&(w> eg) and

Ey 16t (= y°—1 g
T U Jy sinn2atyio) @Y

against its valugitaken as the position of the lowest fre-
qguency peak in the spectra of Figs. 2-fdr a ring of eight

ot ] c(w<eg). Note that in constrast to the usual Hubbard
r model, the extended Hubbard spectral densities are not sym-
8 i metric under holeX>0) or electron x<0) doping. This is
4l due mainly to the fact thaj ,#tgg. However, the asymme-
. try of the Cu and O spectral densities is much stronger. In
0 agreement with experiment, for hole doping, the inverse pho-
12 i 6 | toemission spectrum neag shows a larger contribution of
sl J O states than Cul states, while for electron doping, the
B
© 4r 7 TABLE lIl. Exact gapE4 compared with the gaﬁg“ obtained
0 I . . . . L] after averaging over boundary conditions aE{gfor fixed (antipe-
L] riodic) boundary condition for a ring of eight sites and different
L 4 values ofU/t.
st .
Wl 1 U/t Eq E3’(8) E4(8)
N . . L 4 1.2868 1.98 3.68
0 2 4 6 8 10 12 14 16 6 2.8928 3.50 4.90
wft
8 4.6796 5.21 6.47

FIG. 3. Same as Fig. 2, fdd/t=6.
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FIG. 6. Total photoemissionN*) and inverse photoemission
06 (N7) spectral weight for CuNy) and O (N,) as a function of hole
' doping. Parameters ar&ly=9, A=3, Uy4=1, t,,=0.5, and
U,=4.
0.4¢
These sum rules are the same as those corresponding to the
0.2 usual Hubbard model. However, using E¢) and (7) the
following sum rules for the Cu orbital,2_,2 and “antibond-
0.0; 6 ing” O Wannier functiona are obtained:
® Ng =(ng;+ng;)=(1+x)D2+2d(D5—D?),

FIG. 5. Inverse photoemissionw&er) and photoemission
(w>€g) hole spectral densities for Qdashed ling O (full line),
and Hubbard operatddotted-dash ling for different hole dopings

Ng=2(d—x)D3+ (1+x—2d)D3,

x. The vertical line indicates the position of the Fermi le¥gl. No =(n,;+n,)=(1+x)P{+2d(P5—P}), (19
Parameters are given by set 1 of Table I. The average over bound-
ary conditions have been replaced by a discrete sum owet 4 N;=2(d—X)Pi+(l+x—2d)P2,

, oints (six independent points . .
(#1.62) P ( P poin} whered=(n;;n; ). Adding the four functions, the total spec-

photoemission spectrum near the Fermi level is dominateff@! weight becomes
by Cu states. B 2 2

A pseudogap in the spectral densities persists with doping Ne=(1+x)(1+D3+P3)—2x. (20
and allows to separate the electronic states into two bands &fnce D2+ P2<1, then N,<2. The rest of the spectral

lower and higher energies than this pseudogap. The lowggeight has been projected out of the low-energy effective
band corresponds to states with low double occupancy angytended Hubbard model and it is contained at higher ener-
therefore, the spectral densities are dominated by the Conties. The spectral weights given by E¢k9) as a function of

bution proportional toci,(1-ni;) in Eq. (7); thus the Cu  goping are represented in Fig. 6 for a typical set of param-

and O spectral densities in the lower band are, as a firgliers of the three-band model. In Fig. 7, we show the coef-
approximation proportional to the respective coefficients

[B; andB,, see Eq(8)] in the one-particle ground state of
the cell. However, the states of the lower band contain some
admixture of double occupied states, and this introduces an
energy dependence of the relative weight of Cu and O states.
The states of lower energyw(~—1) have a larger Cu con-
tent than those of the rest of the lower band. Similarly, as
discussed previously by Fein&the Cu and O contents of
the upper band are mainly determinedby andP,, respec-
tively [see Eq.(8)], which depend on the structure of the
Zhang-Rice singlefi2) andthe ground state of the cell with
one holelio) [see Eq(4)].

From Eg. (6) applied to the Hubbard operatocg and
cl, it is easy to obtain the total inverse photoemissibn -0.2 : : s .
and photoemissioh™ spectral weight: 1 2 3 4 5

1.0 T T T ;

0.8

0.6

0.4

0.2

0.0

N"= f_mp‘:(w)dw_<n”>+<nii>_1+X’ FIG. 7. Parameters which define the effective low-energy Cu

and O operators according to E8) as a function ofA. Also shown
© is 1-D5— P2, which is related with the high-energy spectral
f per(w)dw=2— <niT> — <nii> =1-x. (18 weight projected out of the low-energy effective Hamilton[aee
€F Eq. (20)]. Other parameters are as in Fig. 6.
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FIG. 8. Extended Hubbard inverse photoemissie(e) and
photoemission ¢>e€g) hole spectral densities for different hole
dopingsx. The vertical line indicates the position of the Fermi level
er . Parameters are given by set 1 of Table II.

FIG. 9. Same as Fig. 8 for set 3 of Table II.

distributed evenly inside the gap and there is not an impurity
band at a defined energy. Also, the pseudogap persists for all
dopings, and both bands evolve smoothly with doping, with

. a noticeable transfer of spectral weight from the lower to the
tion of the three-band madel parameferWe also show the upper band. In Fig. 9, we show the same results for the set of

function [1— (D3+P3)], related by Eq(20) to the amount parameters 3 of Tables | and II, for which the ratio of the
of spectral weight projected out of the effective low-energy,n gjte Coulomb repulsion to ho,pping parameters is larger.
Hamiltonian. From the slopes &fy andN,, as a function of |, thjs case, the weight of the states which appear in the gap
doping (Fig. 6) one realizes that when doping the stoichio- 4fter doping is much smaller, and also the amount of spectral
metric compound with electrons, the latter occupy mainly CUyeignt transfer between the bands is smaller. Note also and
states, while for hole doping, holes occupy mainly O statesyy contrast to the usual Hubbard model the strong asymme-
and for the parameters of.Fig. 6, part of the Cu holes A€y of p(w) atx=0 due totsa#tag.
transferred to O hoe!gs. This is a well-known effect of the ~ The transfer of spectral weight in the Hubbard model has
Cu-O repulsion ,q.™ o _ been discussed previousR? and is important in the analysis
From the above discussion, it is clear that the maln_feabf x-ray-absorption spectra in the cupra®édn the strong-
tures(peaks and valleysof the Cu and O spectral densities coupling limit (large U), or in the Hubbard Il approxima-
are present in the corresponding extended Hubbard resylh 5 static spectral weight ofx3s easily obtained (% x
(obtained with thec, and ci operators and as a first ap-  states lie in the upper Hubbard bantiowever, as the hop-
proximation, the former can be obtained from the latterping increases, a positive dynamical contribution to the spec-
modifying the spectral weights of the lower and upper Hub-tra| weight becomes important. In Fig. 10 we show this dy-
bard bands with the coefficients given by E¢®). and rep-  namical contribution for the extended Hubbard model and
resented in Fig. 7. Thus in the following we discuss thethe three sets of parameters of Table Il. It is apparent that for
general properties of the extended Hubbard spectral densipgalistic parameters for the cuprates, the dynamical contribu-
(independently of the mapping proceduend the spectral  tjon is very important, and as could be seen comparing Figs.
weight of both extended Hubbard bands. 8 and 9, it is more important for smaller ratibs't,,, where

In Fig. 8 we show the evolution with hole doping of the ¢ — (t,,+ 2tz +tgg)/4 is the average effective hopping.
spectral density of states of the extended Hubbard model. As

discus;zed previou_sly in the case of.the ordinary Hubbard V. THE OPTICAL CONDUCTIVITY

model;“ after doping, states appear in the gap of the sto-

ichiometric compound and the Fermi level jumps to the up- For the evaluation of Eq€10) and (11), we have taken
per Hubbard band. According to our results, these states athe distance between plands=6.64 A, corresponding to

ficients P;,D; of the effective operatorEqg. (8)] as a func-
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FIG. 10. Total amount of occupied hole states in the upper band v :
W minus two times the hole doping, as a function ofx for the 0.6
three sets of parameters of Table | and Il. Ebrso, W—2x=0.
0.47 x=0.4
La,CuO,. Thus, the Drude weighd and the regular part of 0.2¢
the optical conductivityr,4(w) are proportional to the con- ,
stant 2%/(#d,)=3.7x10> Q" lcm L. The resulting Drude 0.6
weight and average value of the kinetic energy as a function 0.4 x=0.6
of hole doping are represented in Fig. 11 for the choice of
parameters 3 of Table Il. The corresponding results for the 0.2
optical conductivity are shown in Fig. 12. The average over 0.00 5
all boundary conditions has been replaced by a discrete sum
over a square mesh o83 points (¢, ¢») (34 nonequiva- ® (eV)

lent by symmetry. For more than 16 points the results are

conditions taken.

For the semiconducting system=0), there is a spurious
peak atw~0.4. This is a finite-size effect related with the

0.3
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0.1

D (103 Q1cm)

0.0

S

0.0
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<T>/V (eV)

-0.31

-0.4

00 02 0

4 06
X

08

1.0

3 of parameters of Table Il. Thé function contribution atw=0
has been replaced by a Lorentzian of width 0.01 to facilitate the
comparison with experiment.

fact discussed in Sec. Ill, that the ground state for general
boundary conditions carries a current for finile The peak
corresponds to transitions to excited states which differ from
the ground state mainly in the spin arrangement. For realistic
and largeU the magnitude of the spurious peak is small. In
Fig. 13, we show the optical conductivity for a smaller value
of the effectiveU after averaging over 324, ¢,) points

(18 nonequivalent by symmeiryThe magnitude of the spu-
rious peak increases, but all the other features are very simi-
lar between them, and qualitatively similar to previous re-
sults obtained in periodic ¥4 clusters’® However, our
procedure of averaging=q. (11)] over boundary conditions
leads to more reasonab{small and positivevalues of the
Drude weight for the insulating system:x30 ° and
3%x10 2 O lcm ! for the set 3 and 2 of parameters, respec-
tively.

For x=<0.2, the results are in semiqualitative agreement
with experiments:* Excluding the spurious peak near 0.4,
the optical conductivity of the insulating compound shows a
gap of ~2 eV and a characteristic shape at larger energies.
Moreover, if the scale of energies is modified y8/4, the
main features of Fig. 13 for=0 coincide with the observed
spectral dependence of the persistent photoconductivity in
YBa,Cuz0g 35.1% As the system is doped the spectral inten-
sity above~2 eV decreases and at the same time, a mid-

FIG. 11. Drude weight and average kinetic energy of the effecinfrared peak appears. Although this low-frequency peak has
tive model Eq.(5) as a function of doping. Parameters are given bybeen discussed before, its nature has not been clarified yet.

set 3 of Table Il.

Recently, an explanation based on the string picture of the
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FIG. 13. Same as Fig. 12 for set 2.

t-J model has been proposé&tin order to shed light on the
origin of the different contributions to the optical conductiv-
ity, we have separated the contributions of the three currents,
iaasigs, andjag, and compared them with the spectral den-
sity, as shown in Fig. 14. For hole-doped systems, the con-
tribution of j 5, is negligible. From the analysis of Fig. 14,
we conclude that the optical conductivity at energies of the
order of the gap and above corresponds to transitions be-
tween the lower and upper extended Hubbard bands, origi-
nated byt,g (which corresponds to a hopping between two
nearest-neighbor singly occupied sjtetnstead, the mid-
infrared peak corresponds to one-particle excitations inside
the upper Hubbard ban@from below to above the Fermi
level), originated bytgzg or in other wordgin agreement with
Ref. 29 to movements of the added holes without changing
the amount of doubly occupied sites. The difference between
the total optical conductivity and the contributionsj@f and
jeg represented in Fig. 14 is mainly due to cross terms in-
volving both currents.

In Fig. 15 we show the frequency-dependent effective
number of carriers defined by

Zmov w , ,
Nef(w)= 5 f o(w')dw’, (21
me“NJo

for the two sets of parameter used before in this section. In
order to compare with experiment, we took the lattice param-
eter of the CuQ planesa=3.78 A, which corresponds to

ef

0.1

x=0

U/t =8.85
m

0.0

o (eV)

FIG. 15. Effective number of carriers defined by Egl) as a

La,CuO,. As well as the results shown in Figs. 12 and 13,function of frequency for different doping levels and the sets of

the agreement with experiment is good $o=0.2. Experi- parameters 3 and 2 of Table Il.
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mentally, forx~0.3 there seems to be an abrupt change oband Hubbard model and the effective models derived from
regime to an uncorrelated metal, with the Drude peak as thi.

only significant feature of the optical conductivity. Instead, We do not obtain a deep reconstruction of the electronic
our results do not show such a transition, but only a smootlstructure around hole doping for~0.3 as conductivity,
evolution. Possible reasons of this discrepancy are discusseéthll, and other experimerftsuggest. A closing of the Mott-

in the next section. Hubbard gap was expected for similar dopiAgshis closing
in fact can occur in the three-band Hubbard model and the
VI. SUMMARY AND DISCUSSION effective extended one-band model tog;~3—4. For these

) i large values ol 4 the effectiveU of the one band model

Using an effective extended Hubbard model for the cugecreases with doping and a large transfer of holes from Cu
prates, we have calculated the Cu and O spectral density aRg o takes placd® However, these values df .4 are t0o
optical conductivity in a square cluster of 10 unit cells, aV-large compared to the most accepted ones. Igor realistic pa-
eraging over all possible boundary conditions. To our knowlyameters of the three-band model, the effective model param-
edge, this is the largest cluster for which Cu and O spectigiters are independent of dopiffgThis does not exclude the
densities are calculated using the Lanczos method. The ayssibility that the three-band parameters change near
eraging procedure allows us to obtain continuous spectre;jwo_sy as a consequence of screening caused by the added
densities and optical conductivity, and leads to more reasorygles, for example. Nevertheless, the fact that there are al-
able values of the Drude weight near stoichiometry. ways two bands as a function of doping is in agreement with

We obtain that the states which appear in the gap afteﬁ—ray—absorption experiments in La,Sr,Cu0,.57
doping are distributed evenly inside it, without building a e to the small size of the cluster, we have looked nei-
new band of midgap or impuritylike states. We also obtainer for the presence of a Kondo-like peak near the Fermi
that a marked pseudogap persists for all dopings, separating,erqy15 nor the effects of excitons in the optical conductiv-
two bands. When the insulator is doped, the Fermi levely, \hich are present in the effective model for realistic and

jumps into the band which corresponds according to the Sigihrge Vi, 5% A signal of the presence of these excitons is a

of the doping. As doping proceeds, spectral weight is transgmajier gap in the optical conductivity than in the spectral

ferred to the band Which contain_s the Fermi level from thedensity. For example, for zero hoppings, it is easy to see that
other one. An analysis of the different components of thg;,o gap in the spectral density is given by

current operator allows us to conclude that the mid-infrared

peak in the optical conductivity observed in doped systems is Egap=U+8(Vi,— V7). (22
related to intraband transitions across the Fermi level. Th . . .

shape of the Cu and O spectral densities is consistent wit owever, if the hole and doubly occupied sites are near each

the fact that for hole doping, holes enter mainlypQ states, oth\i/ré t?(?nii([f(ljtst!((l?]gtefg?r?geIS\n’l%zs—t \|/nltle fen-;z:ier' doping levels
while Cu states are occupied on electron doping. g doping

In general, these results are in agreement with experimen?.nd the most accepted values of the parameters of the _three-
and model, the general features of the spectral properties of

There is, however, a disagreement with some optica his model and of the cuprates can be described well using an
experiment$® which indicated almost no shift of the Fermi : P 9
effective extended one-band Hubbard model.

level with doping, as mentioned in Sec. I. We should men-
tion that, as discussed by Hybertsaral.” the substitution of
La®" by Sr?* creates a potential which might localize the
doped holes by small doping, creating an impurity band of We acknowledge useful conversations with J. Lorenzana.
acceptor levels like in ordinary semiconductors. To includeM.E.S. and E.R.G. were supported by CONICET, Argentina.
these effects it would be necessary to generalize the threé.A.A. was partially supported by CONICET, Argentina.
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