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Optical properties of an effective one-band Hubbard model for the cuprates

M. E. Simón, A. A. Aligia, and E. R. Gagliano
Centro Atómico Bariloche and Instituto Balseiro, Comisio´n Nacional de Energı´a Atómica, 8400 S.C. de Bariloche, Argentina

~Received 3 February 1997!

We study the Cu and O spectral density of states and the optical conductivity of CuO2 planes using an
effective generalized one-band Hubbard model derived from the extended three-band Hubbard model. We
solve exactly a square cluster of 10 unit cells and average the results over all possible boundary conditions,
which leads to smooth functions of frequency. Upon doping, the Fermi energy jumps to Zhang-Rice states
which are connected to the rest of the valence band~in contrast to an isolated band in the middle of the gap!.
The transfer of spectral weight depends on the parameters of the original three-band model not only through
the one-band effective parameters but also through the relevant matrix elements. We discuss the evolution of
the gap upon doping. The optical conductivity of the doped system shows a mid-infrared peak due to intraband
transitions, a pseudogap, and a high-frequency part related to interband transitions. Its shape and integrated
weight up to a given frequency~including the Drude weight! agree qualitatively with experiments in the
cuprates for low to moderate doping levels, but significant deviations exist for dopingx.0.3.
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I. INTRODUCTION

In recent years, there has been much interest in the s
tral and related electronic properties of superconducting
prates, and similar materials .1–31 In spite of the considerable
research effort, there are several issues which remain t
clarified. For example, photoemission experiments at opti
doping1 show that electrons have a large Fermi surface
area (12x) wherex is the amount of hole doping, while a
small doping it is expected that the Fermi surface consist
four small hole pockets centered at (6p/2,6p/2) of total
areax. The evolution of the Fermi surface remains a tou
problem.31 There is a recent theoretical study on th
subject.32

Another related issue is the appearance and evolution
xÞ0 of states at energies which lie in the gap forx50.
There are at least two physical pictures. On the basis
several measurements, and particularly the change of sig
the Hall constant withx in La22xSrxCuO4, Sreedhar and
Ganguly2 proposed that the gap in the spectral density gra
ally closes with increasingx, and after the closing, the sys
tem has completed its evolution from a Mott~or better said
‘‘charge-transfer’’! insulator to a band metal. As soon a
doping begins the Fermi level jumps to the valence ba
This jump is consistent with the measured x-ray-absorp
spectrum~XAS!.6,7 Instead, from the optical conductivity3

and high-energy spectroscopies,5 it has been suggested that
band of midgap states is formed, taking spectral weight fr
both conduction and valence bands, and the Fermi leve
mains in the midgap band. A minimal shift of the Fermi lev
with doping has been observed by photoemission
La22xSrxCuO4 ~Ref. 8! and in the electron dope
Nd22xCexCuO4,9 but not in Ba2Sr2Ca12xY xCuO2C8.10 It
might be possible that the states in the middle of the gap
created by deep donor levels originated by the substitutio
La31 by Sr21 ions. The resulting ‘‘impurity-state model’’ is
consistent with the experimental evidence in the ox
~Nd,Sr!CoO3.13 The effect of this substitution has been d
cussed in Ref. 7. However, inhomogeneities are usually
560163-1829/97/56~9!/5637~11!/$10.00
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included in the theoretical treatments, and it seems neces
to generalize the Hubbard model to explain the electro
structure of some nonstoichiometric oxides.13,14

To discuss the validity of the translationally invaria
three-band Hubbard model33 or effective models derived
from it19,20,34–36in the description of the cuprates, it is ne
essary to know precisely the spectral properties of th
models. One of the most used and effective ways to st
these properties in two dimensions at zero temperature is
exact diagonalization of small clusters.17,19–22,24,29Among
the different effective models, those similar to thet-J
one22,24,29,34,36have the smallest number of states per u
cell. However, like the spin-fermion~or Kondo-Heisenberg!
model,19,20their Hilbert space is too small to allow a descri
tion of both valence and conduction bands. In contrast,
number of states per unit cell of the three-band model is
large that the largest exactly solved cluster contains only f
unit-cells.17,18,23Thus, the most appropriate effective mod
to study the evolution of the gap seems to be the exten
Hubbard one.35 Numerical studies of the Hubbard mod
show a change of sign of the Hall constant as a function
doping, but it has not been related with a reconstruction
the spectral density.37–40The spectral properties of the Hub
bard model have been calculated in periodic square clus
of 8, 10, and 16 sites.21–23 Without artificial broadening, the
result of these calculations is given by a set ofd functions at
different frequencies~see, for example, Fig. 11 of Ref 22!,
from which it is not possible to distinguish if in the thermo
dynamic limit there is one, two, or more gaps in the spec
density of states. Also the Drude weight shows import
finite-size effects, being negative near half-filling.

In this work we solve exactly the effective one-band e
tended Hubbard Hamiltonian in a square cluster of 10 u
cells and average over all possible boundary condition41

This technique has been also used by Poilblanc to study
optical conductivity of thet-J model24 and by Xiang and
Wheately42 to calculate the dispersion relation of one hole
5637 © 1997 The American Physical Society
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a generalizedt-J model, obtaining good agreement with r
sults of the self-consistent Born approximation and exp
ments in Sr2CuO2Cl 2. To our knowledge, this approach ha
not been applied to the spectral properties of Hubbard
extended Hubbard clusters. It allows us to obtain continu
spectral densities and optical conductivities and accordin
our studies in small rings~see Sec. III!, the convergence to
the thermodynamic limit is faster.

It must also be pointed out that the spectral properties
the Hubbard model derived from the numerical metho
mentioned above, as well as analytical studies of the cha
in the spectral weights with doping30 do notdirectly corre-
spond to the cuprates as described by the original three-b
Hubbard model. To calculate any property of this model
ing an effective Hamiltonian, one should transform the c
responding operators from the three-band to the effec
Hamiltonian. This has been done for the spin-fermion19

Hubbard,44 andt-t8-t9-J ~Ref. 36! as effective models for the
cuprates. In particular, Feiner explained the electron-h
asymmetry in the spectral weight in the cuprates~which is
absent in the ‘‘isolated’’ Hubbard model!.44 Here we use and
discuss the transformed operators for spectral density
optical conductivity.

In Sec. II, we briefly review the extended one-band Hu
bard model as an effective model for cuprate supercond
ors, and construct the relevant operators. In Sec. III, we
cuss the numerical techniques and the method of integra
over arbitrary boundary conditions. In Sec. IV, we pres
the results for the spectral density, while Sec. V contains
results for the optical conductivity, Drude weight, and r
lated quantities. The conclusions are presented in Sec. V

II. THE EFFECTIVE EXTENDED ONE-BAND HUBBARD
MODEL AND TRANSFORMED OPERATORS

Experimental evidence about the symmetry of holes
high-Tc superconductors,5,45,46 as well as constrained
density-functional calculations,47,48 support the appropriate
ness of the three-band Hubbard model33 for the description
of these systems. The Hamiltonian is

H3b5D(
j s

pj s
† pj s1tpd(

ids
~pi 1ds

† dis1H.c.!

2tpp(
j gs

pj 1gs
† pj s1Upd (

idss8
nis

d ni 1ds8
p

1Ud(
i

ni↑
d ni↓

d 1Up(
j

nj↑
p nj↓

p , ~1!

wheredis
† (pj s

† ) creates a hole in thedx22y2 (ps) orbital at
site i ( j ) with spins, andi 1d ( j 1g) label the four O atom
nearest neighbors to Cu~O! site i ( j ). The phases of half the
d and p orbitals have been modified by a factor (21) in
order to havetpd.0 andtpp.0 independently of the direc
tion. While other Cu and O orbitals should be included
explain Raman experiments,49,50these additional states affe
neither low-energy spectral properties~below the bottom of
the pp band50! nor the validity of the one-band effectiv
modelH1b .50
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The transformation of the low-energy part ofH3b to the
effective model H1b can be summarized in fou
steps:34,35,50,51~i! change of basis of the O orbitalspj

x ,pj
y to

orthogonal Wannier functionsa i ,g i centered at each Cu sit
i , with symmetriesb1g ~the same as thedx22y2 orbital! and
a1g , respectively;~ii ! exact solution of the cell Hamiltonian
Hi ~the terms ofH3b which contain only operators acting o
cell i ); ~iii ! mapping the low-energy statesum& of H3b into
corresponding onesum̄& of the Hilbert space of the one-ban
model (um&↔um̄&); ~iv! transform the operatorsHi and
H3b2( iHi to the new basisum̄&. A transformed operator
Ō can be expressed in terms of the matrix elements of
original operatorO as

Ō5(
n,m

^nuOum&u n̄ &^m̄u. ~2!

Finally, the effect of states ofH3b which do not have corre-
sponding ones inH1b can be included as perturbativ
corrections,35 but we will not do it here. In Fourier space, th
ps orbitals are related with the O Wannier functions by

pks
x 5bkFcosS kxa

2 Daks2cosS kya

2 DgksG ,
pks

y 5bkFcosS kya

2 Daks1cosS kxa

2 DgksG , ~3!

with bk5@11 1
2 cos(kxa)11

2cos(kya)#21/2. The eigenstates o
Hi retained in the mapping procedure are~in addition to the
vacuum at sitei ) the lowest one-hole doubletu is& and the
lowest two-hole doubletu i2&. They can be expressed as

u i2&5F A1

A2
~di↑

† a i↓
† 2di↓

† a i↑
† !2A2a i↑

† a i↓
† 2A3di↑

† di↓
† G u0&,

u is&5@B1dis
† 2B2a is

† #u0&. ~4!

These states are mapped into those of the one-band mod
the correspondenceu is&↔cis

† u0&, u i2&↔ci↑
† ci↓

† u0&. This as-
signment and Eq.~2! applied toH3b lead to the effective
one-band generalized Hubbard Hamiltonian,35 with
occupation-dependent nearest-neighbor hopping and re
sion ~interactions and hoppings at larger distances are
glected for simplicity!:

H1b5E1(
is

nis1U(
i

ni↑ni↓1 (
^ i j &s

cj s
† cis$tAA~12ni ,s̄ !

3~12nj ,s̄ !1tAB@ni ,s̄~12nj ,s̄ !1nj ,s̄~12ni ,s̄ !#

1tBBni ,s̄nj ,s̄%1H.c.1 (
^ i j &ss8

$V11~12ni ,s̄ !

3~12nj ,s̄8!1V22ni ,s̄nj ,s̄81V12@~12ni ,s̄ !nj ,s̄8

1ni ,s̄~12nj ,s̄8!#%ni ,snj ,s8. ~5!

Several particular cases of this model have been wid
studied.52–58 For tAA1tBB52tAB and Vi j 50, the model is
shown to lead to superconductivity for smallU and adequate
doping,52 particularly in one dimension.53–55 For Vi j
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5tAB50, the model has been exactly solved in o
dimension.56 For tAB50, V225V215V11, and half-filling,
the exact ground state has been found in a wide rang
parameters for arbitrary lattices in arbitrary dimension, a
the phase diagram separating metallic, Mott insulating,
charge-density-wave regions has been established.57

The spectral properties in two dimensions have been s
ied numerically in the charge-density-wave~large Vi j )
regime,58 and forVi j 50 and smalltAB at half-filling.59 The
model has been also used recently to study the region
phase separation and valence instabilities of the orig
three-band model.35 Typical values of the parameters ofH3b
andH1b are given in Tables I and II, respectively.

At zero temperature, the Cu and O spectral densities
defined by

rO~v!5
1

L(
k,n

u^nuŌkug&u2d~v1Eg2En!, ~6!

where un&, En are the eigenstates and energies ofH1b , ug&
labels the ground state for a given number of particlesN, and
L is the number of unit cells in the system. For electr
spectral densities of Cu or one of both O atoms in the u
cell ~measured by inverse photoemission!, Ōk is the operator
in the representation ofH1b of dk or pk

x,y , respectively. For
hole spectral densities~corresponding to photoemission! the
corresponding Hermitian conjugate operators should
taken. In real space using Eq.~2! one obtains

d̄ i5D1cis~12ni s̄ !1D2cisni s̄ ,

a ī5P1cis~12ni s̄ !1P2cisni s̄ , ~7!

where

TABLE I. Different sets of parameters of the three-band Hu
bard modelH3b @Eq. ~1!# in units of tpd .

Set D Ud Upd tpp Up

1 2.0 7 1 0.5 4
2 2.5 9 1 0.5 4
3 4.0 7 1 0.5 4

TABLE II. Effective one-band parameters for the three sets
parameters ofH3b listed in Table I. The last column gives the rat
of the effective on-site repulsionU to the average effective hoppin
tm5(tAA12tAB1tBB)/4.

Set U tAA tAB tBB V11 V12 V22 U/tm

1 2.15 20.382 20.385 20.337 0.123 0.170 0.178 5.78
2 3.01 20.377 20.324 20.338 0.119 0.162 0.181 8.85
3 3.37 20.268 20.327 20.337 0.066 0.125 0.156 10.7
of
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D15^ i0udisu is&5B1,

D25^ i s̄ udisu i2&5S A1B2

A2
1A3B1D ,

P15^ i0ua isu is&52B2 , ~8!

P25^ i s̄ ua isu i2&52S A1B1

A2
1A2B2D .

Transforming Fourier and using Eq.~3!, the operators enter
ing Eq. ~6! are defined. As will be discussed in Sec. IV, th
asymmetry of Eq.~7! and also the Hamiltonian Eq.~5! under
electron-hole transformation lead to a different behavior
the spectral densities under electron or hole doping. T
difference is apparent in the cuprates and in the three-b
Hubbard model results, but it is absent in the ordinary o
band Hubbard model.18,44

The optical conductivity can be written as16,17

s~v!52pDd~v!1s reg~v!, ~9!

where

s reg~v!5
p

Vv (
nÞg

u^nu j xug&u2d~En2Eg2v!. ~10!

V is the volume of the system,j x the x component of the
current operator. The Drude weightD can be calculated in
two ways: either using the mean value of the kinetic ene
in a given direction̂ Tx&:

D5S ea

\ D 2 ^2Tx&
2V

2
1

V(
nÞg

u^nu j xug&u2

En2Eg
~11!

or from the second derivative of the energy with respect
the vector potentialA in a system with periodic~or arbitrary
as described in the next section! boundary conditions

D5
c2

2V

d2E~A!

dA2 U
A50

. ~12!

The current operator can be derived in a standard way, f
dH/dA, when each hopping termcis

† cj s is multiplied by a
phase factor exp@ ieA(xi2xj )/(c\)#.16,17 In the case of the
effective Hamiltonian Eq.~5!, the current can be divided into
three terms proportional to the three different types of h
ping terms:

j x5 j AA1 j AB1 j BB ~13!

with

j AA~r !5
iae

\
tAA(

s
~crs

† cr 1xs2cr 1xs
† crs!

3~12nr ,s̄ !~12nr 1x,s̄ !,

j AB~r !5
iae

\
tAB(

s
~crs

† cr 1xs2cr 1xs
† crs!

3@~12nr ,s̄ !nr 1x,s̄1nr ,s̄~12nr 1x,s̄ !#, ~14!

-

f
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j BB~r !5
iae

\
tBB(

s
~crs

† cr 1xs2cr 1xs
† crs!nr ,s̄nr 1x,s̄ .

An alternative derivation of the current operator for t
effective one-band model is to obtain first the current ope
tor of the multiband model,17 then project the result into th
low-energy subspace and map it onto the one-band repre
tation. Both derivations lead to identical results iftpp50.
For realistic values oftpp , there are small differences be
tween the resulting coefficients entering the curr
j AA , j AB , and j BB . For example, while for the set 2 o
parameters ofH3b ~see Table I! we obtaintAA5tAB520.38,
tBB520.33, in the second derivation these values should
replaced by20.32,20.35, and20.36 in the respective cur
rents. This difference is probably due to the different way
which excited~mainly local triplet! states are taken into ac
count in lowest order in both procedures whentppÞ0.60,61,36

In this work we use Eq.~14!.

III. NUMERICAL METHODS AND AVERAGE
OVER BOUNDARY CONDITIONS

We have evaluated Eqs.~6!, ~10!, and~11! using the now
standard continued-fraction expansion of these equat
with the Lanczos method,62 in a square cluster of 10 un
cells, integrating the result over the different bounda
conditions.41,24 Particular boundary conditions are specifi
by two phases (f1 ,f2), 0<f i,2p in the following way:
an infinite square lattice is divided into square 10-site cl
ters, and the sites which are at distancesnV11mV2 with
n,m integers andV15(3,1),V25(21,3) are considered
equivalent~see Fig. 1!. After choosing a particular 10-sit
cluster, each ‘‘time’’ the hopping term makes a particu
jump out of the cluster, it is mapped back into the clus
through a translation in one of the vectors2V1 ,V1 ,2V2 , or
V2 and the wave function is multiplied byeif1,e2 if1,eif2, or
e2 if2, respectively. When (f1 ,f2)5(0,0) this is equivalent
to the usual periodic boundary conditions. It is easy to
that when we impose the wave function forN particles to be
an irreducible representation of the group of translations
the infinite square lattice, the allowed total wave vectorsK
should satisfy

Nf112n1p5K•V1 ,

FIG. 1. Scheme of the supercell~cluster! containing 10 unit cells
used in our calculations. The vectorsV1 andV2 generate the whole
lattice by successive translations of the supercell.
~15!
-

en-

t

e
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e

f

Nf212n2p5K•V2 ,

wheren1 ,n2 are integers. Solving forKx ,Ky one obtains

Kx5
N

10
~3f12f2!2

2p~n223n1!

10
,

~16!

Ky5
N

10
~f113f2!1

2p~3n21n1!

10
.

When (f1 ,f2)5(0,0), varying the integersn1 ,n2, Eqs.~16!
give the ten inequivalent wave vectors allowed by perio
boundary conditions. When (f1 ,f2) is allowed to vary con-
tinuously the whole reciprocal space can be swept. This
lows us to obtain more information from the finite-size clu
ter calculations. Also, while the spectral densities and opt
conductivities being calculated are given by a sum ofd func-
tions for each (f1 ,f2) @Eqs. ~6! and ~9!#, integrating the
result over (f1 ,f2) leads to continuous functions. In prac
tice we have replaced the integral by an average ove
square mesh of up to 838 points~up to 34 nonequivalent by
symmetry for the optical conductivity! in f1 ,f2 space until
a fairly smooth function was obtained.

However, the procedure described above has some s
comings when applied to the optical conductivity. For ge
eral boundary conditions there is aspontaneous currentin
the ground state, invalidating the derivation of Eqs.~9! to Eq.
~12!.16,17 ~Such a current cannot exist in the thermodynam
limit, even if it were allowed by symmetry.63,64! In finite
systems, this current is zero for periodic boundary conditio
at ‘‘closed-shell’’ fillings ~including half-filling in our clus-
ter!, and for half-filling and any boundary conditions in th
U→` limit ~as in thet-J model,24! since in this limit the
charge dynamics is suppressed. Our point of view is that
average of Eqs.~10! and~11! over boundary conditions in a
finite system, is an approximation to the correct express
in the thermodynamic limit, which converges faster with sy
tem size than the result of Eqs.~10! and~11! or ~12! for fixed
boundary conditions. Since we have not done finite-size s
ing in two dimensions, we cannot prove this statement. Ho
ever, it is supported by our one-dimensional check summ
rized below. Furthermore, as we shall see in Sec. V,
results using the averaging procedure look reasonable, w
the Drude weight obtained in larger systems using perio
boundary conditions show unphysical negative values
half-filling.22,27 Previous calculations of the optical condu
tivity of the t-J model using twisted boundary condition
also support our procedure.24

We have checked the method of averaging over bound
conditions applying it to the optical conductivitys(v) of
one-dimensional Hubbard rings, for which finite-size scali
can be done, and some exact results, like the charge gap
available.43 The results forU/t54, 6, and 8 and severa
system sizesL are represented in Figs. 2–4, respectively.
funny feature of these curves is the presence of oscillati
in s(v). A comparison of the result for rings of differen
sizes shows that this is a finite-size effect. Calculations us
spin-wave theory in the strong-coupling limit give a smoo
s(v).26 Fortunately no signs of these oscillations are pres
in the two-dimensional case. By comparison, the stro
coupling limit of the Hubbard model and thet-J model with
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56 5641OPTICAL PROPERTIES OF AN EFFECTIVE ONE-BAND . . .
one hole in systems as large as 19 sites with periodic bou
ary conditions shows a fewd functions.26

The presence of a peak at zero frequency is a consequ
of the already discussed spontaneous current in the gro
state for general boundary conditions. Clearly, this is als
finite-size effect and the height of the peak decreases
system size and also with increasingU/t. Thus, we have
suppressed this peak in the two-dimensional results of S
V.

We have also noticed that the gap ins(v) converges
much faster to the thermodynamic limitEg than the corre-
sponding result using fixed boundary conditions. In Ta
III, we compare the exact gap, given by the integral;43

Eg

t
5

16t

U E
1

` Ay221

sinh~2pty/U !
dy ~17!

against its value~taken as the position of the lowest fre
quency peak in the spectra of Figs. 2–4! for a ring of eight

FIG. 2. Average optical conductivity as a function of frequen
for Hubbard rings of different length andU/t54.

FIG. 3. Same as Fig. 2, forU/t56.
d-

nce
nd
a
th

c.

e

sites after averaging over boundary conditions and at fi
antiperiodic boundary condition. Clearly, the averaging p
cedure speeds up the convergence toward theL→` limit.

IV. THE SPECTRAL DENSITIES

In Fig. 5, we show the Cu and O spectral densit
r(v) in the hole representation~photoemission and invers
photoemission correspond tov.eF and v,eF , respec-
tively, whereeF is the Fermi energy! for several doping lev-
els and the set of parameters 1~see Tables I and II!. These
spectral densities have been calculated as described in
III, using Eq.~6! with Ōk replaced byd̄ k

† , p̄ k
x† for Cu and O

photoemission, and bydk , pk
x for inverse photoemission

The result for O has been multiplied by a factor 2 to rep
sent the total contribution of both 2ps orbitals of the unit
cell. Also shown in Fig. 5 are the extended Hubbard spec
densities corresponding to the operatorsck

†(v.eF) and
ck(v,eF). Note that in constrast to the usual Hubba
model, the extended Hubbard spectral densities are not s
metric under hole (x.0) or electron (x,0) doping. This is
due mainly to the fact thattAAÞtBB . However, the asymme
try of the Cu and O spectral densities is much stronger
agreement with experiment, for hole doping, the inverse p
toemission spectrum neareF shows a larger contribution o
O states than Cud states, while for electron doping, th

FIG. 4. Same as Fig. 2, forU/t58.

TABLE III. Exact gapEg compared with the gapEg
av obtained

after averaging over boundary conditions andEg
f for fixed ~antipe-

riodic! boundary condition for a ring of eight sites and differe
values ofU/t.

U/t Eg Eg
av(8) Eg

f (8)

4 1.2868 1.98 3.68

6 2.8928 3.50 4.90

8 4.6796 5.21 6.47
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5642 56M. E. SIMÓN, A. A. ALIGIA, AND E. R. GAGLIANO
photoemission spectrum near the Fermi level is domina
by Cu states.

A pseudogap in the spectral densities persists with dop
and allows to separate the electronic states into two band
lower and higher energies than this pseudogap. The lo
band corresponds to states with low double occupancy
therefore, the spectral densities are dominated by the co
bution proportional tocis(12ni s̄) in Eq. ~7!; thus the Cu
and O spectral densities in the lower band are, as a
approximation proportional to the respective coefficie
@B1 andB2, see Eq.~8!# in the one-particle ground state o
the cell. However, the states of the lower band contain so
admixture of double occupied states, and this introduces
energy dependence of the relative weight of Cu and O sta
The states of lower energy (v;21) have a larger Cu con
tent than those of the rest of the lower band. Similarly,
discussed previously by Feiner,44 the Cu and O contents o
the upper band are mainly determined byD2 andP2, respec-
tively @see Eq.~8!#, which depend on the structure of th
Zhang-Rice singletu i2& and the ground state of the cell with
one holeu is& @see Eq.~4!#.

From Eq. ~6! applied to the Hubbard operatorsck and
ck

† , it is easy to obtain the total inverse photoemissionN2

and photoemissionN1 spectral weight:

N25E
2`

eF
rc~v!dv5^ni↑&1^ni↓&511x,

N15E
eF

`

rc1~v!dv522^ni↑&2^ni↓&512x. ~18!

FIG. 5. Inverse photoemission (v,eF) and photoemission
(v.eF) hole spectral densities for Cu~dashed line!, O ~full line!,
and Hubbard operator~dotted-dash line!, for different hole dopings
x. The vertical line indicates the position of the Fermi leveleF .
Parameters are given by set 1 of Table I. The average over bo
ary conditions have been replaced by a discrete sum over 434
(f1 ,f2) points ~six independent points!.
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These sum rules are the same as those corresponding t
usual Hubbard model. However, using Eqs.~6! and ~7! the
following sum rules for the Cu orbitaldx22y2 and ‘‘antibond-
ing’’ O Wannier functiona are obtained:

Nd
25^nd↑1nd↓&5~11x!D1

212d~D2
22D1

2!,

Nd
152~d2x!D1

21~11x22d!D2
2 ,

Np
25^na↑1na↓&5~11x!P1

212d~P2
22P1

2!, ~19!

Np
152~d2x!P1

21~11x22d!P2
2,

whered5^ni↑ni↓&. Adding the four functions, the total spec
tral weight becomes

Nt5~11x!~11D2
21P2

2!22x. ~20!

Since D2
21P2

2,1, then Nt,2. The rest of the spectra
weight has been projected out of the low-energy effect
extended Hubbard model and it is contained at higher e
gies. The spectral weights given by Eqs.~19! as a function of
doping are represented in Fig. 6 for a typical set of para
eters of the three-band model. In Fig. 7, we show the co

d-

FIG. 6. Total photoemission (N1) and inverse photoemissio
(N2) spectral weight for Cu (Nd) and O (Np) as a function of hole
doping. Parameters areUd59, D53, Upd51, tpp50.5, and
Up54.

FIG. 7. Parameters which define the effective low-energy
and O operators according to Eq.~8! as a function ofD. Also shown
is 12D2

22P2
2, which is related with the high-energy spectr

weight projected out of the low-energy effective Hamiltonian@see
Eq. ~20!#. Other parameters are as in Fig. 6.
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ficientsPi ,Di of the effective operators@Eq. ~8!# as a func-
tion of the three-band model parameterD. We also show the
function @12(D2

21P2
2)#, related by Eq.~20! to the amount

of spectral weight projected out of the effective low-ener
Hamiltonian. From the slopes ofNd

2 andNp
2 as a function of

doping ~Fig. 6! one realizes that when doping the stoich
metric compound with electrons, the latter occupy mainly
states, while for hole doping, holes occupy mainly O sta
and for the parameters of Fig. 6, part of the Cu holes
transferred to O holes. This is a well-known effect of t
Cu-O repulsionUpd .35

From the above discussion, it is clear that the main f
tures~peaks and valleys! of the Cu and O spectral densitie
are present in the corresponding extended Hubbard re
~obtained with theck and ck

† operators!, and as a first ap-
proximation, the former can be obtained from the lat
modifying the spectral weights of the lower and upper Hu
bard bands with the coefficients given by Eqs.~8! and rep-
resented in Fig. 7. Thus in the following we discuss t
general properties of the extended Hubbard spectral den
~independently of the mapping procedure! and the spectra
weight of both extended Hubbard bands.

In Fig. 8 we show the evolution with hole doping of th
spectral density of states of the extended Hubbard model
discussed previously in the case of the ordinary Hubb
model,22 after doping, states appear in the gap of the s
ichiometric compound and the Fermi level jumps to the u
per Hubbard band. According to our results, these states

FIG. 8. Extended Hubbard inverse photoemission (v,eF) and
photoemission (v.eF) hole spectral densities for different ho
dopingsx. The vertical line indicates the position of the Fermi lev
eF . Parameters are given by set 1 of Table II.
u
s,
re

-

ult

r
-

ity

s
rd
-
-
re

distributed evenly inside the gap and there is not an impu
band at a defined energy. Also, the pseudogap persists fo
dopings, and both bands evolve smoothly with doping, w
a noticeable transfer of spectral weight from the lower to
upper band. In Fig. 9, we show the same results for the se
parameters 3 of Tables I and II, for which the ratio of t
on-site Coulomb repulsion to hopping parameters is larg
In this case, the weight of the states which appear in the
after doping is much smaller, and also the amount of spec
weight transfer between the bands is smaller. Note also
by contrast to the usual Hubbard model the strong asym
try of r(v) at x50 due totAAÞtBB .

The transfer of spectral weight in the Hubbard model h
been discussed previously7,30 and is important in the analysi
of x-ray-absorption spectra in the cuprates.6,7 In the strong-
coupling limit ~large U), or in the Hubbard III approxima-
tion, a static spectral weight of 2x is easily obtained (12x
states lie in the upper Hubbard band!. However, as the hop
ping increases, a positive dynamical contribution to the sp
tral weight becomes important. In Fig. 10 we show this d
namical contribution for the extended Hubbard model a
the three sets of parameters of Table II. It is apparent tha
realistic parameters for the cuprates, the dynamical contr
tion is very important, and as could be seen comparing F
8 and 9, it is more important for smaller ratiosU/tm , where
tm5(tAA12tAB1tBB)/4 is the average effective hopping.

V. THE OPTICAL CONDUCTIVITY

For the evaluation of Eqs.~10! and ~11!, we have taken
the distance between planesd'56.64 Å, corresponding to

FIG. 9. Same as Fig. 8 for set 3 of Table II.



f
-

tio
o

th
ve
su

re
ar

e
eral

om
stic
In
ue

-
imi-
re-

c-

ent
4,

a
ies.

in
n-
id-
has
yet.
the

an

ec
by

et

the
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La2CuO4. Thus, the Drude weightD and the regular part o
the optical conductivitys reg(v) are proportional to the con
stant 2e2/(\d')53.73103 V21cm21. The resulting Drude
weight and average value of the kinetic energy as a func
of hole doping are represented in Fig. 11 for the choice
parameters 3 of Table II. The corresponding results for
optical conductivity are shown in Fig. 12. The average o
all boundary conditions has been replaced by a discrete
over a square mesh of 838 points (f1 ,f2) ~34 nonequiva-
lent by symmetry!. For more than 16 points the results a
practically independent of the number of different bound
conditions taken.

For the semiconducting system (x50), there is a spurious
peak atv;0.4. This is a finite-size effect related with th

FIG. 10. Total amount of occupied hole states in the upper b
W minus two times the hole dopingx, as a function ofx for the
three sets of parameters of Table I and II. ForU→`, W22x50.

FIG. 11. Drude weight and average kinetic energy of the eff
tive model Eq.~5! as a function of doping. Parameters are given
set 3 of Table II.
n
f
e
r
m

y

fact discussed in Sec. III, that the ground state for gen
boundary conditions carries a current for finiteU. The peak
corresponds to transitions to excited states which differ fr
the ground state mainly in the spin arrangement. For reali
and largeU the magnitude of the spurious peak is small.
Fig. 13, we show the optical conductivity for a smaller val
of the effectiveU after averaging over 32 (f1 ,f2) points
~18 nonequivalent by symmetry!. The magnitude of the spu
rious peak increases, but all the other features are very s
lar between them, and qualitatively similar to previous
sults obtained in periodic 434 clusters.21 However, our
procedure of averaging@Eq. ~11!# over boundary conditions
leads to more reasonable~small and positive! values of the
Drude weight for the insulating system: 531025 and
331023 V21cm21 for the set 3 and 2 of parameters, respe
tively.

For x<0.2, the results are in semiqualitative agreem
with experiments.3,4 Excluding the spurious peak near 0.
the optical conductivity of the insulating compound shows
gap of;2 eV and a characteristic shape at larger energ
Moreover, if the scale of energies is modified by;3/4, the
main features of Fig. 13 forx50 coincide with the observed
spectral dependence of the persistent photoconductivity
YBa2Cu3O6.38.12 As the system is doped the spectral inte
sity above;2 eV decreases and at the same time, a m
infrared peak appears. Although this low-frequency peak
been discussed before, its nature has not been clarified
Recently, an explanation based on the string picture of

d

-

FIG. 12. Optical conductivity for different doping levels and s
3 of parameters of Table II. Thed function contribution atv50
has been replaced by a Lorentzian of width 0.01 to facilitate
comparison with experiment.



v-
n
n
o
,

th
b

rig
o

id
i

in
ee

in

iv

.
m

3

sity.
ent

of
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t-J model has been proposed.29 In order to shed light on the
origin of the different contributions to the optical conducti
ity, we have separated the contributions of the three curre
j AA , j BB , andj AB , and compared them with the spectral de
sity, as shown in Fig. 14. For hole-doped systems, the c
tribution of j AA is negligible. From the analysis of Fig. 14
we conclude that the optical conductivity at energies of
order of the gap and above corresponds to transitions
tween the lower and upper extended Hubbard bands, o
nated bytAB ~which corresponds to a hopping between tw
nearest-neighbor singly occupied sites!. Instead, the mid-
infrared peak corresponds to one-particle excitations ins
the upper Hubbard band~from below to above the Ferm
level!, originated bytBB or in other words~in agreement with
Ref. 29! to movements of the added holes without chang
the amount of doubly occupied sites. The difference betw
the total optical conductivity and the contributions ofj AB and
j BB represented in Fig. 14 is mainly due to cross terms
volving both currents.

In Fig. 15 we show the frequency-dependent effect
number of carriers defined by

Ne f~v!5
2m0V

pe2N
E

0

v

s~v8!dv8, ~21!

for the two sets of parameter used before in this section
order to compare with experiment, we took the lattice para
eter of the CuO2 planesa53.78 Å, which corresponds to
La2CuO4. As well as the results shown in Figs. 12 and 1
the agreement with experiment is good forx<0.2. Experi-

FIG. 13. Same as Fig. 12 for set 2.
ts,
-
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e
e-
i-

e
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e
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FIG. 14. Bottom: spectral densities of Imag^^ j i u j i&& ~contribu-
tions to the optical conductivity! of the partial currentsj AB , j BB and
the total result@see Eqs.~10! and ~13!# for x50.2 and set 2 of
parameters of Table II. Top: corresponding hole spectral den
The arrows indicate the transitions which give rise to the differ
contributions to the optical conductivity.

FIG. 15. Effective number of carriers defined by Eq.~21! as a
function of frequency for different doping levels and the sets
parameters 3 and 2 of Table II.
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mentally, forx;0.3 there seems to be an abrupt change
regime to an uncorrelated metal, with the Drude peak as
only significant feature of the optical conductivity. Instea
our results do not show such a transition, but only a smo
evolution. Possible reasons of this discrepancy are discu
in the next section.

VI. SUMMARY AND DISCUSSION

Using an effective extended Hubbard model for the
prates, we have calculated the Cu and O spectral density
optical conductivity in a square cluster of 10 unit cells, a
eraging over all possible boundary conditions. To our kno
edge, this is the largest cluster for which Cu and O spec
densities are calculated using the Lanczos method. The
eraging procedure allows us to obtain continuous spec
densities and optical conductivity, and leads to more reas
able values of the Drude weight near stoichiometry.

We obtain that the states which appear in the gap a
doping are distributed evenly inside it, without building
new band of midgap or impuritylike states. We also obt
that a marked pseudogap persists for all dopings, separa
two bands. When the insulator is doped, the Fermi le
jumps into the band which corresponds according to the s
of the doping. As doping proceeds, spectral weight is tra
ferred to the band which contains the Fermi level from
other one. An analysis of the different components of
current operator allows us to conclude that the mid-infra
peak in the optical conductivity observed in doped system
related to intraband transitions across the Fermi level.
shape of the Cu and O spectral densities is consistent
the fact that for hole doping, holes enter mainly Ops states,
while Cu states are occupied on electron doping.

In general, these results are in agreement with experim
There is, however, a disagreement with some opt
experiments8,9 which indicated almost no shift of the Ferm
level with doping, as mentioned in Sec. I. We should me
tion that, as discussed by Hybertsenet al.7 the substitution of
La31 by Sr21 creates a potential which might localize th
doped holes by small doping, creating an impurity band
acceptor levels like in ordinary semiconductors. To inclu
these effects it would be necessary to generalize the th
.
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band Hubbard model and the effective models derived fr
it.

We do not obtain a deep reconstruction of the electro
structure around hole doping forx;0.3 as conductivity,3

Hall, and other experiments2 suggest. A closing of the Mott-
Hubbard gap was expected for similar dopings.2 This closing
in fact can occur in the three-band Hubbard model and
effective extended one-band model forUpd;324. For these
large values ofUpd the effectiveU of the one band mode
decreases with doping and a large transfer of holes from
to O takes place.35 However, these values ofUpd are too
large compared to the most accepted ones. For realistic
rameters of the three-band model, the effective model par
eters are independent of doping.35 This does not exclude the
possibility that the three-band parameters change n
x;0.3, as a consequence of screening caused by the a
holes, for example. Nevertheless, the fact that there are
ways two bands as a function of doping is in agreement w
x-ray-absorption experiments in La22xSrxCuO4.6,7

Due to the small size of the cluster, we have looked n
ther for the presence of a Kondo-like peak near the Fe
energy,15 nor the effects of excitons in the optical conducti
ity, which are present in the effective model for realistic a
large Vi j .50 A signal of the presence of these excitons is
smaller gap in the optical conductivity than in the spect
density. For example, for zero hoppings, it is easy to see
the gap in the spectral density is given by

Egap5U18~V122V11!. ~22!

However, if the hole and doubly occupied sites are near e
other, the excitation energy is 2V122V11 smaller.

We conclude that for the most interesting doping lev
and the most accepted values of the parameters of the th
band model, the general features of the spectral propertie
this model and of the cuprates can be described well usin
effective extended one-band Hubbard model.
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