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Neutron-scattering profile of Q#0 phonons in BCS superconductors
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Phonons in a metal interact with conduction electrons. In the normal state, this gives rise to a lingyidth
which is small compared with the frequeney, . In the superconducting state, the line shape can be altered if
fiwg=(1+2r)2A whereA is the superconducting gap, andis the ratioyg/wq, which scales with the
strength of the electron-phonon couplikgAs long aswo<Qug wherev is the Fermi velocity, BCS theory
predicts a line shape which is a universal function of the dimensionless parametgf®2A, w/2A, andT/T,
whereT, is the superconducting transition temperature. Formulas and curves are given for the full range of
these parameters. The BCS predictions correspond well to key features seen in recent experiments on
YNi ,B,C and LuNi,B,C. [S0163-182697)05033-9

[. INTRODUCTION neutron-scattering profil&(Q,») of a phonon is approxi-
mately the imaginary part of the phonon Green'’s function
The recently discovered superconducting compounds

LnNi,B,C (whereLn is Y, Lu, etc) are the first materials to 1
show a dramatic alteration of phonon line shape when tem- S(Qw)=—Im) ——— ; - )
peratureT is reduced below the transition temperatdie (0"~ wg)2wq— 611(Q,w)

This has been seen by Kawasbal! and by Stassist al?
using neutron scattering. Shapiet al2 did early neutron
studies of changes in the phonon line shapes in the conve
tional superconducting metal Nb. Several gréujrseasured
an effect in hight. compounds by neutron scattering.
There are many measurements for infrared and Raman-

As explained in Appendix ASTI(Q,w) contains the imagi-
nary part of the phonon self-energy in thestate, plugin
the S-statg the shift in the phonon self-energy caused by
superconductivity. An elementary theory for the imaginary

active phonons in high~. superconductors:® Observed 300 T e
phonon peaks broaden or narrow, and shift up or down in Z 250 - Kawans ctal. 1
frequency depending on the phonon position relative to the E 500k s
superconducting gapX. Theories for optical phonons were g g Q=(0.55, 0, 8)
proposed by Klein and Dierk¥ within BCS theory and g 150 ¢ ]
Zeyher and Zwicknadt within Eliashberg theory. The latter 2 100 } 5
theory gives remarkable agreement with experimental data. § sof S ]
Unlike infrared and Raman, neutron experiments access = 3 ‘ ‘ ‘ ’ g
Q=+ 0 phonons. Even though the theory is simplified by the 0 5 4 6 8. 10 12
fact that that impurity scattering plays no role fQ'>1 200 e Bnctgy (mev) .
(where/ is the electron mean free patmevertheless theo- - (b) LuNi B C 1
retical discussions are fewer. Representative experimental re- 2 150 b Stassis etal. 1
sults for LnNi,B,C are shown in Fig. 1. Because the line > N 15K |
shapes are unusual looking, various interesting interpreta- ’g 100k Q=(-0475, 0, 8){
tions have been proposéd!? Several papers have calcu- = i 1
lated line shapes fo@+0 phonons:>!*but the simple pre- 2 0 ]
dictions of orthodox BCS theory still need clarification and ﬁ -
testing. The present paper gives the predictions and suggests 0 b ‘ , L ‘ 4
the appropriate tests f@+ 0 phonons. 2 4 Ene6rgy (n18eV) 10 12
Il. THEORY FIG. 1. Schematic representation of phonon line shapes in the

superconductingsolid line) and normal(dashed ling states ob-
Assuming that the sample is well ordered and reasonablyerved by inelastic neutron-scattering experiments ()

harmonic so that well-defined phonon peaks exist, therNi,B,C (Ref. 1) and(b) LuNi,B,C (Ref. 2, respectively.
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part of the self-energy is given in Appendixes B and C. In
the N-state, the result is EGA4). —Im[II5(Q,w)]~rqw 1+§

3 2+...

(Zw 1
n

®

A. Imaginary part of phonon self-energy

From Eq.(C4) the BCS result for the imaginary part of We did not find a simple derivation, nor an answer when

wl2A greater than=25) that we believe the first correction
term is at most (&/w)* times a logarithm.
ee' —A(T)? The strength of the electron-phonon coupling enters the
e theory through the dimensionless ratig/wg . One of us’
has shown that the average value of this rédieeraged over

—IM[T«(Q,w)]= %jSﬂdsf:de’[ ( 1+

X[f(E)—f(E")]8(E'—E—w) the whole phonon spectryrhas the value
1 ee' —A(T)?
+-|1-——|[1-f(E) -
2 EE’ _ _
<r>—(‘}//w)a\,e—gN(0)ﬁ<w>)\, (6)
~HEDISE+E- w)] ' @ whereN(0) is the electron density of statgser spin and per

atom), A is the mass enhancement parameter which approxi-

whereE is e+ A(T)?, A(T) is theT-dependent BCS gap, mately determines,, and (w) is an average vibrational
andf(E) is the Fermi-Dirac function [éxpE/kgT)+1]. We  frequency. To get a reasonably large value for the parameter
have used the approximate Cletformula for the BCS gap, rq. it is therefore helpful to have a material with large val-
rather than solving the BCS gap equation. Equatigh  ues ofN(0) and(w). Metallic Nb has reasonably large val-
agrees with formulas found in the literature, for example,ues for both, which givgr)~0.01. This is also approxi-
Ref. 16. The imaginary part of the phonon correlation func-mately the size seen in the neutron measurement of Shapiro
tion depends only upon the dimensionless parameif24, et al® Band theory gives values dfi(0) for LuNi,B,C
wgl2A, TIT,, andro=yq/wq, Where yq is the normal-  comparable to Nb on a per atom bakidt is not likely to
state half-width at half maximum of the phonon line, givenfind values of(r) too much larger than this in any stable
by Eq. (B4). This last is just a multiplicative scale factor.

To evaluate Eq(2) numerically, it is convenient to make
some variable transformations. We have split it into two

parts,— Im[I15(Q, w) [/ yo= (w/ wgq)(r1+r5),

@2 d@ 1+ vsind—sirfo

2-0_“"I""l""l‘"'l“"l“’I

r,= 1.0 |
! fo sir?0 \(1+ vsing)2— sir?6 \\I—I 1
AT AT 3 ]
R L I |
s S %:) i 1
= o0}
Lo S
— + J— —_ |
i (1—a) 2a cos 6 [ Bo . = oos b
ro= do 1 [1_f 7(1+asm0) 5] i
0
_ 52 [
\/(1 a)+za cosd Y
Bw . [
—f T(I—asme) 0(w—2A(T)), (4) 15 [
wherev is w/A(T), B is kgT, anda is 1-2A(T)/w. The 20 S AL A S
function 6(a) is the usual unit step. In Fig. 2, we have evalu- 0.0 0.5 1.0 1.5 2.0 2.5 3.0
ated Eq.(2) for several values of /T, and plotted it versus 0/2A

w/2A. Notice that there is a discontinuity at the frequency /. 5 Boid curves areys/yy (ratio of superconducting to

w=2A(T) where pairs can first be broken. The size of the, 4| values of the imaginary part of the phonon self-energy
step is fixed by the value ofr, at a=0, namely  shown at four temperatureS €0, 0.8T,, 0.95T,, and 0.99 ).
(w/2)tani(A(T)/2T), which shrinks to zero size and moves | jght curves aresTl, / yy (difference between superconducting and
to zero frequency a$—T,. normal values of the real part of the phonon self-energy divided by

Another important feature of E2) is the high-frequency the normal-state imaginary pahown at the same four tempera-
limit. At T=0, we found the result tures.
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metal, but individual branches of the spectrum are permitted S stte 1=0.2
to have much larger values of. cooNsae =03

T T
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B. Real part of phonon self-energy

In the normal state, the real part is defined to be absorbec
into the “unperturbed” Green’s function D!
=(w2—w2Q)/2wQ by use of experimental rather than bare
phonon frequencies. Thus, in ti-state, SI1(Q, w) is set
equal to the imaginary part-irow. However, in the
S-state, the differencH s— 1T has a real part, and this must
be used for the real part dfl1(Q,w). We compute this by
Kramers-Kronig analysis of the imaginary part of
Hs— Iy,
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At large ', the integrand of Eq(7) goes like logf')/w'?
[using Eqg.(5)], so the integration converges rather slowly.
To be safe, we integrated up &d/2A = 1000. Results for the
real part are also shown in Fig. 2. Notice that the disconti- o
nuity in the imaginary part abb=2A(T) generates a loga-
rithmic singularity in the real part at the same value«nf
These singularities persist up T=T., but get smaller and
move to lowerw.
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FIG. 3. Calculated line shapes at= (a) 0.8, (b) 1.2, and(c)
1.6 (units of 2A) at T/T,=t=0.2. Panelqdd)—(f) are convoluted

with an instrumental broadenirig= 0.13 (units of 2A).

IIl. NUMERICAL RESULTS
i . ._N state, when the phonon energy is varied from below to
Phonon profiles have been computed numerically using,,ve 2 (T), without and with additional broadening from
Egs.(1),(2),(3),(4).(7) above. To be explicit, the formula is instrumental resolution. The unconvolut&dstate spectra
show a sharp peak belowAZT) and a broad peak above
S(Q,) 2A(T), whereas thé\-state spectra just have a single broad
peak. Whenwq<2A(T), [Fig. 3@] the sharp peak below
4wrQwéYS/7N w=2A(T) contains most of the weight and represents a pho-
= 3 3 2 2 non with enhanced lifetime because electronic decay chan-
[0"— 0g—20gr QRE(SID/ yn]"+[20r quq¥s/ YN] nels are frozen out by the superconducting gap. The compo-
®) nent of theN-state phonon line which lies aboveé\2T) in
whereygis —Imdlls(Q,w) andyy is yq. In addition to the  the S-state is less affected by superconductivity, but has its
dimensionless parameters of the theasy, [measured from  spectral weight somewhat altered tojust above A(T) for
now on in units of 2=2A(0)], t=T/T, andr=yq/wq, reasons which are a complicated mixture of superconducting
we use also a parametEr(also measured in units ofA) to  density-of-states effects, coherence effects, and renormaliza-
represent experimental resolution broadening. As a test dfon effects(from the real part of6Ils.) The total spectral
this formula we fitted the data of Shapiep al® for Nb. The  weight is conserved. When théN-state phonon has
parameters 2,=3.1 meV,r,=0.01, andl'=0.03 gave a wqo>2A(T) [Figs. 3b) and 3¢)], the sharp feature pinned at
completely satisfactory fit to the data of Fig. 3 of Ref. 3. Thew just below 2A(T) has a less intuitive explanation. The
parameterm o=0.01 agrees with earlier qualitative conclu- logarithmic singularity of RESIIg} guarantees that the de-
sions made without curve fitting,and also agrees with first- nominator ofS(Q,w), Eq. (1), always has a vanishing real
principles calculations of electron-phonon coupling in b, part for some frequency<2A(T), and at lowT, the imagi-
and neutron measurements of the dispersionygfin the  nary partis also small, so a resonance occurs. Under the right
normal staté® We examine the results for the full range of conditions g within r of 1 andt low) this resonance cap-
t<1l andwgq. The other two variables are assigned valuegures a lot of the spectral weight. For higheg , the spectral
appropriate to recent measurements. The valuei®thosen weight returns mostly to the original phonon resonance. The
to be 0.30 because the experimental spectr{shown in  resonance below £(T) can be regarded as a mixed
Fig. 1(a)] has a half-width=2.5 meV and a peak frequency vibrational/superelectronic collective excitation, and was no-
~7 meV in theN-state. Two values of have been used, ticed by Schustel®
I'=0 andI"=0.13, which corresponds to 0.5 meV instru- Figure 4 shows the temperature dependence of the line
mental half-width if the value of & is 4 meV. shapes atvo=0.8 att=0.4, 0.7, and 0.995. As temperature
Figure 3 illustrates how the phonon profile varies at a lowincreases, the resonance below(Z) broadengbecause of
T (t=0.2) in the Sstate and in the T-independent damping by thermally excited electronic quasiparticlasd
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FIG. 6. Dependences of the sharp resonance frequendg)on
t and(b) wq . Arrows indicate the gap energyAZT) at each tem-
perature.

Figure 6 shows the behavior of the position of the sharp
peak below A(T) for all frequencieswg and all tempera-
ture, using unbroadened line shapes. The following seem to
be the key indicators of canonical BCS behavior:

(1) At t>0.5, phonons withwy>0.8 have a significant

5 for a phonon withwo=1.2. The sharp component shifts temperature shift of the sharp resonance.

downward asT increases and\(T) decreases, but by the

(2) There is almost nd dependence of the peak position

time A(T) has diminished a lot, the damping has almostfor t<0.5 orwy<0.8. _ _
restored aN-state line shape and the sharp peak disappears. (3) For ©<0.8, the dispersion of the sharp peak with
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FIG. 5. Calculated line shapes &t (a) 0.4, (b) 0.7, and(c)
0.995 forwg=1.2. Panel4d)—(f) are broadened b/ =0.13.

Q is close to the normal-state dispersion.
(4) For wg>1.2, the sharp peak is pinned just below
2A(T) and shows no more dispersion with

IV. COMPARISON WITH EXPERIMENT

The overall appearance of the instrumentally broadened
BCS line shapes shown in Figs. 3—5 resemble nicely the
experimental profiles as shown in Fig. 1. Therefore it might
not be necessary to invoke “new excitations” as suggested
by Kawanoet al! to explain the data. Our results lend some
support to the “decoupled TA mode” interpretation of Stas-
siset al?

The results of the previous neutron studieshow no
temperature dependence of the sharp peak frequency, but
exhibit dispersion a€Q is varied. This suggests that the
N-state frequency might lie in the rang&,<<0.8 shown in
Fig. 6(b). If the measurement is performed at a differént
with wo>1.2 (the range where dispersion is predicted to
disappear, then our calculations show that orthodox BCS
theory predicts that the sharp peak should be pinned and
diminish in frequency a3 increases and2(T) decreases.

The calculation by Kee and Varrifadiffers from ours
because they have assumed that the phonon under consider-
ation is “extremal” on the Fermi surface, in a well-defined
sense, which enhances both tiestate and th&-state self-
energy effects. Our work indicates that it may not be neces-
sary to invoke this special feature. The experimental signa-
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ture of the Kee-Varma scenario should be a rapiddependent. It is then appropriate to incorporate the real part
disappearance of the anomalous line shapes as the wave vet1 into the Green’s function, now calldd,, and equal to
tor is varied, whereas the canonical BCS behavior is pI‘GZle(wz—wé), leaving as the residual self-energ§ll,
dicted to vary more smoothly. just the small imaginary part:
Further experiment should test the BCS picture in some
detail. In order to do this il.nNi,B,C, it will be necessary
to measure & more accurately. Gap energies determined so
far’%-23 distribute from 4 to 7 meV. However, the tempera- D Y(Q,w)=(w*~ wd)2wq—STI(Q,0).  (A3)
ture dependence df(T) was established to be BCS-like in a
recent experimerft which strengthens our view that canoni-

cal BCS behavior explains the observations. In the normal (\) state, the low-energy formula fafll is
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APPENDIX A: FRO HLICH HAMILTONIAN In the superconducting state, the self-endrbyis altered

- I N . for energiesw=2(1+2r)A where 2A~3.5%gT, is the gap
The Frdilich Hamiltonian simplifies the problem by omit- ¢ gcg theory. The alteration replacasin Eq. (A2) by
ting Coulomb interactions between electrons. Although not 8+ 5ys. The result is designateld + STTs. Then it is easy
full theory, this is sufficient to contain the change of phononj, verify that

properties caused by superconductivity, as explained below.
The Hamiltonian is

SMs=[g/(1+vx)]*6xs=M?bxs, (A5)

H=2 ecick+ X woabag+t > M i ChCl@g+ a'g),
“ © kK’ where the screened matrix elemevii ., appearing in Eq.
(A1) '

(A5) is the same as the one appearing in E&fl). If one
wheree, is the energy of the electron state labeled by quandoes perturbation theory using the Rlioh Hamiltonian Eq.
tum numbers, o is the energy of the phonon state labeled(Al), then the result agrees with Eq#3) and (A5), which
by quantum number®, and M, is the screened matrix provide the needed justification. The neutron-scattering pro-
element coupling electrons to phonons. The wave vector dile in the superconducting state is then found by using Eq.

the electronsK, k') and of the phonon@) must obey the (AS) in Eq. (A3).

usual k-conservationmodulo a reciprocal-lattice vector. A
full theory would use, instead df1, ,,, a bare matrix ele-
mentgy «+, and would have in addition a Coulomb interac- APPENDIX B: PHONON DECAY
tion term between electrons. This theory would then be used IN THE NORMAL STATE

to calculate the phonon Green’s functiBnand self-energy Diagrammatic perturbation theory to second ordeMn

I1, related by the Dyson equatidh '=D,*~1II to the bare  gives the desired formulas fdi, and the imaginary part of
Green’s functionD, calculated without coupling to elec- II gives the theory for phonon decay. An equally rigorous
trons. Impurity scattering is also omitted. This is valid asderivation can be made of the imaginary part by an elemen-
long asQ/>1 whereQ is the wave vector of the experi- tary method, and then the real part can be constructed by
ment and/ is the electron mean free path at the Fermi en-Kramers-Kronig analysis. Since this corresponds to the com-

ergy. putational route that we prefer, we now give the elementary
By a standard analysis of perturbation theory, the selfderivation.
energy is Imagine that the phonon occupation functibNigQ,r) is
somehow out of equilibrium, but spatially homogenous so
T=g2x/(1+vy), (A2) thatthereis no dependence. Then the time rate of evolution

of Ng=N(Q,r) is determined by resonant phonon absorp-
wherev is the matrix element of the Coulomb interaction, tion scattering electrons from below to above the Fermi sur-
andy is the irreducible polarizability. The neutron-scattering face (diminishingNg) and by resonant phonon emission by
profile is proportional to the imaginary part &, and is thermally excited electrons which scatter into empty states of
needed only near the resonanceuat wg. In this low-w lower energy(enhancingNg). To better compare with the
region, in the normal state, the real partlbfis large andw superconducting analog, we separately treat thé)(and
independent, while the imaginary part Hf is small andw the (—k,|) electron processes. Then the evolution rate is
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dNQ 27T 2
ar 72( IMi kol TF(1—fii @) No— frio( 1= f) (Ng+ 1)]16( e — €1 o+ @g)

27
- 7; IM g, —l?Tf k(1= f_)Ng—f (1= F__)(Ng+1)]8(€e_y_q— e_k+ wq). (B1)

Heref, is the equilibrium electron occupanéyermi-Dirac distribution It is easy to verify that when the phonon distribution
is replaced on the right-hand side of Eg1) by the equilibrium(Bose-Einsteindistributionng, the decay ratelNg/dt is
zero. WhenNg, is written asng+ 6Nq, then the decay rate is 2yo6Ng which defines the decay ratey@=1/7q. This in
turn is —2 times the imaginary part of the phonon self-energy. Therefore we have

a
IM[TT\(Q,w)]=— %; IMc ks ol L (Fk— i) O €k o= = )+ (f ko= f_1) (e~ €__g— w)]

/ﬂ o] <]
:_%f, dfjﬁ dflzk My k+ol*8(ex—€) (e o—€')

X{[f(e)—f(€')]6(e' —e—w)+[f(e')—f(e)]5(e— € —w)}. (B2)
|
Two factors of =% . ded(e,— €) have been inserted into APPENDIX C: PHONON DECAY IN THE
this equation for subsequent convenience. Now we use the SUPERCONDUCTING STATE

Migdal argument¥ about the smallness of phonon energies
compared to the scale on which electronic energy bdads
density of statgshave any significant structure. To be spe-
cific, we are only interested in knowing the value of
Im[TI\(Q,w)] for energy transfers equal to the energies
of phonon resonances. Then the factéfe— ¢’ + w) tell us
thate ande’ are within = w of each other, while the factors
f(e')—f(e) tell us thate ande’ are on opposite sides of the
Fermi energy. This means that battande’ are withinw of
the Fermi energy. Now consider the factor

To include superconductivity using EGAL), it is proper

to use Eliashberg theof.Instead, we assume that the inter-
actions which cause superconductiviyiot necessarily
phonon$ can be treated as a separate added BCS “reduced”
interaction. Making the usual Bogoliubov-Valatin transfor-
mation (y=uyCy;—vic’ ), the Hamiltonian Eq.(Al)
become®

H ZEK Ex( YEM’MJF 'yikl')’—kl)'f_% ‘”QagaQ

AQ(E,G')EEKD My ks 0l 20 ex— €) S g~ €'), +% Mick+o(@o+a o) Nk ks o Vit 01 Vi

(B3) + T + i T
kai')’—k—QL) mk,k+Q(‘yk+QT'yka, Yi1Y—k-q1) s

which appears inside the integrals of EB2). The scale of (Cy)
variation of Ag with its variablese and e’ is the electronic

energy scale=1 eV, slow compared to the rapid variation where E, is the BCS quasiparticle energﬁeﬁ+ A?), and
with € ande’ of the remaining factors inside the integrals of n andm are BCS “coherence factors,”

Eq. (B2), which vanish where or €’ is farther thanw from

the Fermi energy. Thereforéo(e,€’) can be replaced by

Ao(0,0), its value when both electron energies are held at the _ A2
Q . . , 1 6k6k+Q A
Fermi energy. The integrals overande’ can now be done (nk'k+Q)2=§ 1 “EE - | (C2
exactly, and Eq(B2) can be written as EqA4), with yq kEk+Q
given by
(Mg )2 1( hes 2 (€3
m = — _
k,k+Q 2 EkEk+Q

2 )
'YQ:?U)QEI(: My ks ol“8(€) 8( €1 q)- (B4) _ o
Just as in theéN state, we now imagine that the phonon oc-
cupation numberbl, are driven out of equilibrium, and con-
In common with other related Migdal argumeftshe cor-  struct the evolution equation, settindNg/dt equal to
rections to this expression are governed by the small param=2y35NQ. The result gives the imaginary part of the
eterN(0)/ w. S-state phonon self-energy
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77 2512
_|m[Hs(Q,w)]:z; |Mk,k+Q| {nk,k+Q[(fk_fk+Q)5(Ek+Q_Ek_w)_"(ffka_ffk)a(Efk_ Efka—w)]

+m§,k+Q[(1_f—k_ fri) O(ExrotE_y— ) —(1—f_y_o— ) S(Ex+E_y_ot+ ®)]}. (C4)

Here the Fermi equilibrium occupation functibpis for superconducting quasiparticles with enekgy WhenT exceedd .,
this formula correctly reduces to E@2). Now we again use the Migdal arguments, which lead to a simplified formula, given
as Eq.(2) of the text, for the case>0.
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