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Neutron-scattering profile of QÞ0 phonons in BCS superconductors
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Phonons in a metal interact with conduction electrons. In the normal state, this gives rise to a linewidthgQ

which is small compared with the frequencyvQ . In the superconducting state, the line shape can be altered if
\vQ&(112r )2D where D is the superconducting gap, andr is the ratiogQ /vQ , which scales with the
strength of the electron-phonon couplingl. As long asvQ!QvF wherevF is the Fermi velocity, BCS theory
predicts a line shape which is a universal function of the dimensionless parametersr , vQ /2D, v/2D, andT/Tc

whereTc is the superconducting transition temperature. Formulas and curves are given for the full range of
these parameters. The BCS predictions correspond well to key features seen in recent experiments on
YNi 2B2C and LuNi2B2C. @S0163-1829~97!05033-9#
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I. INTRODUCTION

The recently discovered superconducting compou
LnNi2B2C ~whereLn is Y, Lu, etc.! are the first materials to
show a dramatic alteration of phonon line shape when t
peratureT is reduced below the transition temperatureTc .
This has been seen by Kawanoet al.1 and by Stassiset al.2

using neutron scattering. Shapiroet al.3 did early neutron
studies of changes in the phonon line shapes in the con
tional superconducting metal Nb. Several groups4,5 measured
an effect in high-Tc compounds by neutron scattering.

There are many measurements for infrared and Ram
active phonons in high-Tc superconductors.6–9 Observed
phonon peaks broaden or narrow, and shift up or down
frequency depending on the phonon position relative to
superconducting gap 2D. Theories for optical phonons wer
proposed by Klein and Dierker10 within BCS theory and
Zeyher and Zwicknagl11 within Eliashberg theory. The latte
theory gives remarkable agreement with experimental da7

Unlike infrared and Raman, neutron experiments acc
QÞ0 phonons. Even though the theory is simplified by t
fact that that impurity scattering plays no role forQl @1
~wherel is the electron mean free path!, nevertheless theo
retical discussions are fewer. Representative experimenta
sults for LnNi2B2C are shown in Fig. 1. Because the lin
shapes are unusual looking, various interesting interpr
tions have been proposed.1,2,12 Several papers have calcu
lated line shapes forQÞ0 phonons,13,14 but the simple pre-
dictions of orthodox BCS theory still need clarification a
testing. The present paper gives the predictions and sugg
the appropriate tests forQÞ0 phonons.

II. THEORY

Assuming that the sample is well ordered and reasona
harmonic so that well-defined phonon peaks exist,
560163-1829/97/56~9!/5552~7!/$10.00
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neutron-scattering profileS(Q,v) of a phonon is approxi-
mately the imaginary part of the phonon Green’s function

S~Q,v!52ImH 1

~v22vQ
2 !/2vQ2dP~Q,v!

J . ~1!

As explained in Appendix A,dP(Q,v) contains the imagi-
nary part of the phonon self-energy in theN-state, plus~in
the S-state! the shift in the phonon self-energy caused
superconductivity. An elementary theory for the imagina

FIG. 1. Schematic representation of phonon line shapes in
superconducting~solid line! and normal~dashed line! states ob-
served by inelastic neutron-scattering experiments on~a!
YNi 2B2C ~Ref. 1! and ~b! LuNi 2B2C ~Ref. 2!, respectively.
5552 © 1997 The American Physical Society
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56 5553NEUTRON-SCATTERING PROFILE OFQÞ0 PHONONS IN . . .
part of the self-energy is given in Appendixes B and C.
the N-state, the result is Eq.~A4!.

A. Imaginary part of phonon self-energy

From Eq.~C4! the BCS result for the imaginary part o
the phonon self-energy can be written

2Im@PS~Q,v!#5
r Q

2 E
2`

`

deE
2`

`

de8H S 11
ee82D~T!2

EE8
D

3@ f ~E!2 f ~E8!#d~E82E2v!

1
1

2S 12
ee82D~T!2

EE8
D @12 f ~E!

2 f ~E8!#d~E81E2v!J , ~2!

whereE is Ae21D(T)2, D(T) is theT-dependent BCS gap
and f (E) is the Fermi-Dirac function 1/@exp(E/kBT)11#. We
have used the approximate Clem15 formula for the BCS gap,
rather than solving the BCS gap equation. Equation~2!
agrees with formulas found in the literature, for examp
Ref. 16. The imaginary part of the phonon correlation fun
tion depends only upon the dimensionless parametersv/2D,
vQ/2D, T/Tc , and r Q[gQ /vQ , wheregQ is the normal-
state half-width at half maximum of the phonon line, giv
by Eq. ~B4!. This last is just a multiplicative scale factor.

To evaluate Eq.~2! numerically, it is convenient to mak
some variable transformations. We have split it into tw
parts,2Im@PS(Q,v)#/gQ5(v/vQ)(r 11r 2),

r 15E
0

p/2 du

sin2u

11nsinu2sin2u

A~11nsinu!22sin2u

3F f S bD~T!

sinu D2 f S bv1
bD~T!

sinu D G , ~3!

r 25E
0

p/2

du

~12a!1
1

2
a2cos2u

A~12a!1
1

4
a2cos2u

F12 f S bv

2
~11asinu! D

2 f S bv

2
~12asinu! D Gu„v22D~T!…, ~4!

wheren is v/D(T), b is kBT, anda is 122D(T)/v. The
functionu(a) is the usual unit step. In Fig. 2, we have eva
ated Eq.~2! for several values ofT/Tc and plotted it versus
v/2D. Notice that there is a discontinuity at the frequen
v52D(T) where pairs can first be broken. The size of t
step is fixed by the value ofr 2 at a50, namely
(p/2)tanh„D(T)/2T…, which shrinks to zero size and move
to zero frequency asT→Tc .

Another important feature of Eq.~2! is the high-frequency
limit. At T50, we found the result
,
-

-

2Im@PS~Q,v!#'r QvH 11
1

2S 2D

v D 2F lnS 2v

D D2
1

2G1•••J .

~5!

We did not find a simple derivation, nor an answer wh
T.0. This gives such an accurate fit to numerical results~at
v/2D greater than'25) that we believe the first correctio
term is at most (2D/v)4 times a logarithm.

The strength of the electron-phonon coupling enters
theory through the dimensionless ratiogQ /vQ . One of us17

has shown that the average value of this ratio~averaged over
the whole phonon spectrum! has the value

^r &5~g/v!ave5
p

6
N~0!\^v&l, ~6!

whereN(0) is the electron density of states~per spin and per
atom!, l is the mass enhancement parameter which appr
mately determinesTc , and ^v& is an average vibrationa
frequency. To get a reasonably large value for the param
r Q , it is therefore helpful to have a material with large va
ues ofN(0) and^v&. Metallic Nb has reasonably large va
ues for both, which givê r &'0.01. This is also approxi-
mately the size seen in the neutron measurement of Sha
et al.3 Band theory gives values ofN(0) for LuNi 2B 2C
comparable to Nb on a per atom basis.18 It is not likely to
find values of^r & too much larger than this in any stab

FIG. 2. Bold curves aregS /gN ~ratio of superconducting to
normal values of the imaginary part of the phonon self-ener!
shown at four temperatures (T50, 0.8Tc , 0.95Tc , and 0.98Tc).
Light curves aredP1 /gN ~difference between superconducting a
normal values of the real part of the phonon self-energy divided
the normal-state imaginary part! shown at the same four tempera
tures.
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5554 56ALLEN, KOSTUR, TAKESUE, AND SHIRANE
metal, but individual branches of the spectrum are permi
to have much larger values ofr Q .

B. Real part of phonon self-energy

In the normal state, the real part is defined to be absor
into the ‘‘unperturbed’’ Green’s function D21

5(v22vQ
2 )/2vQ by use of experimental rather than ba

phonon frequencies. Thus, in theN-state,dP(Q,v) is set
equal to the imaginary part,2 ir Qv. However, in the
S-state, the differencePS2PN has a real part, and this mu
be used for the real part ofdP(Q,v). We compute this by
Kramers-Kronig analysis of the imaginary part
PS2PN ,

Re$dP~q,v!%5
P

pE0

`

dv8
2v8@ Im$PS~Q,v8!%1r Qv8#

v822v2
.

~7!

At large v8, the integrand of Eq.~7! goes like log(v8)/v82

@using Eq.~5!#, so the integration converges rather slow
To be safe, we integrated up tov8/2D51000. Results for the
real part are also shown in Fig. 2. Notice that the disco
nuity in the imaginary part atv52D(T) generates a loga
rithmic singularity in the real part at the same value ofv.
These singularities persist up toT5Tc , but get smaller and
move to lowerv.

III. NUMERICAL RESULTS

Phonon profiles have been computed numerically us
Eqs.~1!,~2!,~3!,~4!,~7! above. To be explicit, the formula is

S~Q,v!

5
4vr QvQ

2 gS /gN

@v22vQ
2 22vQ

2 r QRe~dP!/gN#21@2vr QvQgS /gN#2
,

~8!

wheregS is 2ImdPS(Q,v) andgN is gQ . In addition to the
dimensionless parameters of the theory,vQ @measured from
now on in units of 2D52D(0)#, t5T/Tc , andr[gQ /vQ ,
we use also a parameterG ~also measured in units of 2D) to
represent experimental resolution broadening. As a tes
this formula we fitted the data of Shapiroet al.3 for Nb. The
parameters 2D053.1 meV, r Q50.01, andG50.03 gave a
completely satisfactory fit to the data of Fig. 3 of Ref. 3. T
parameterr Q50.01 agrees with earlier qualitative concl
sions made without curve fitting,17 and also agrees with first
principles calculations of electron-phonon coupling in Nb19

and neutron measurements of the dispersion ofgQ in the
normal state.19 We examine the results for the full range
t,1 andvQ . The other two variables are assigned valu
appropriate to recent measurements. The value ofr is chosen
to be 0.30 because the experimental spectrum1 @shown in
Fig. 1~a!# has a half-width'2.5 meV and a peak frequenc
'7 meV in theN-state. Two values ofG have been used
G50 and G50.13, which corresponds to 0.5 meV instr
mental half-width if the value of 2D is 4 meV.

Figure 3 illustrates how the phonon profile varies at a l
T (t50.2) in the S-state and in the (T-independent!
d

ed

.

i-

g
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s

N state, when the phonon energyvQ is varied from below to
above 2D(T), without and with additional broadening from
instrumental resolution. The unconvolutedS-state spectra
show a sharp peak below 2D(T) and a broad peak abov
2D(T), whereas theN-state spectra just have a single bro
peak. WhenvQ,2D(T), @Fig. 3~a!# the sharp peak below
v52D(T) contains most of the weight and represents a p
non with enhanced lifetime because electronic decay ch
nels are frozen out by the superconducting gap. The com
nent of theN-state phonon line which lies above 2D(T) in
the S-state is less affected by superconductivity, but has
spectral weight somewhat altered forv just above 2D(T) for
reasons which are a complicated mixture of superconduc
density-of-states effects, coherence effects, and renorma
tion effects~from the real part ofdPS .) The total spectral
weight is conserved. When theN-state phonon has
vQ.2D(T) @Figs. 3~b! and 3~c!#, the sharp feature pinned a
v just below 2D(T) has a less intuitive explanation. Th
logarithmic singularity of Re$dPS% guarantees that the de
nominator ofS(Q,v), Eq. ~1!, always has a vanishing rea
part for some frequencyv,2D(T), and at lowT, the imagi-
nary part is also small, so a resonance occurs. Under the
conditions (vQ within r of 1 andt low! this resonance cap
tures a lot of the spectral weight. For highervQ , the spectral
weight returns mostly to the original phonon resonance. T
resonance below 2D(T) can be regarded as a mixe
vibrational/superelectronic collective excitation, and was n
ticed by Schuster.13

Figure 4 shows the temperature dependence of the
shapes atvQ50.8 att50.4, 0.7, and 0.995. As temperatu
increases, the resonance below 2D(T) broadens~because of
damping by thermally excited electronic quasiparticles! and

FIG. 3. Calculated line shapes atvQ5 ~a! 0.8, ~b! 1.2, and~c!
1.6 ~units of 2D) at T/Tc5t50.2. Panels~d!–~f! are convoluted
with an instrumental broadeningG50.13 ~units of 2D).
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loses spectral weight to broad component above 2D(T) @be-
causeD(T) is diminished#. Similar effects are shown in Fig
5 for a phonon withvQ51.2. The sharp component shif
downward asT increases andD(T) decreases, but by th
time D(T) has diminished a lot, the damping has almo
restored aN-state line shape and the sharp peak disappe

FIG. 4. Calculated line shapes att5 ~a! 0.4, ~b! 0.7, and~c!
0.995 forvQ50.8. Panels~d!–~f! are broadened byG50.13.

FIG. 5. Calculated line shapes att5 ~a! 0.4, ~b! 0.7, and~c!
0.995 forvQ51.2. Panels~d!–~f! are broadened byG50.13.
t
rs.

Figure 6 shows the behavior of the position of the sh
peak below 2D(T) for all frequenciesvQ and all tempera-
ture, using unbroadened line shapes. The following seem
be the key indicators of canonical BCS behavior:

~1! At t.0.5, phonons withvQ.0.8 have a significant
temperature shift of the sharp resonance.

~2! There is almost not dependence of the peak positio
for t,0.5 orvQ,0.8.

~3! For vQ,0.8, the dispersion of the sharp peak wi
Q is close to the normal-state dispersion.

~4! For vQ.1.2, the sharp peak is pinned just belo
2D(T) and shows no more dispersion withQ.

IV. COMPARISON WITH EXPERIMENT

The overall appearance of the instrumentally broade
BCS line shapes shown in Figs. 3–5 resemble nicely
experimental profiles as shown in Fig. 1. Therefore it mig
not be necessary to invoke ‘‘new excitations’’ as sugges
by Kawanoet al.1 to explain the data. Our results lend som
support to the ‘‘decoupled TA mode’’ interpretation of Sta
sis et al.2

The results of the previous neutron studies1,2 show no
temperature dependence of the sharp peak frequency,
exhibit dispersion asQ is varied. This suggests that th
N-state frequency might lie in the rangevQ,0.8 shown in
Fig. 6~b!. If the measurement is performed at a differentQ
with vQ.1.2 ~the range where dispersion is predicted
disappear!, then our calculations show that orthodox BC
theory predicts that the sharp peak should be pinned
diminish in frequency asT increases and 2D(T) decreases.

The calculation by Kee and Varma12 differs from ours
because they have assumed that the phonon under cons
ation is ‘‘extremal’’ on the Fermi surface, in a well-define
sense, which enhances both theN-state and theS-state self-
energy effects. Our work indicates that it may not be nec
sary to invoke this special feature. The experimental sig

FIG. 6. Dependences of the sharp resonance frequency o~a!
t and~b! vQ . Arrows indicate the gap energy 2D(T) at each tem-
perature.
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5556 56ALLEN, KOSTUR, TAKESUE, AND SHIRANE
ture of the Kee-Varma scenario should be a ra
disappearance of the anomalous line shapes as the wave
tor is varied, whereas the canonical BCS behavior is p
dicted to vary more smoothly.

Further experiment should test the BCS picture in so
detail. In order to do this inLnNi2B2C, it will be necessary
to measure 2D more accurately. Gap energies determined
far20–23 distribute from 4 to 7 meV. However, the temper
ture dependence ofD(T) was established to be BCS-like in
recent experiment,23 which strengthens our view that canon
cal BCS behavior explains the observations.
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APPENDIX A: FRÖ HLICH HAMILTONIAN

The Fröhlich Hamiltonian simplifies the problem by omi
ting Coulomb interactions between electrons. Although no
full theory, this is sufficient to contain the change of phon
properties caused by superconductivity, as explained be
The Hamiltonian is

H5(
k

ekck
†ck1(

Q
vQaQ

† aQ1(
k,k8

Mk,k8ck8
† ck~aQ1a2Q

† !,

~A1!

whereek is the energy of the electron state labeled by qu
tum numbersk, vQ is the energy of the phonon state label
by quantum numbersQ, and Mk,k8 is the screened matrix
element coupling electrons to phonons. The wave vecto
the electrons (kW , kW8) and of the phonon (QW ) must obey the
usual kW -conservationmodulo a reciprocal-lattice vector. A
full theory would use, instead ofMk,k8, a bare matrix ele-
ment gk,k8, and would have in addition a Coulomb intera
tion term between electrons. This theory would then be u
to calculate the phonon Green’s functionD and self-energy
P, related by the Dyson equationD215D0

212P to the bare
Green’s functionD0 calculated without coupling to elec
trons. Impurity scattering is also omitted. This is valid
long asQl @1 whereQ is the wave vector of the exper
ment andl is the electron mean free path at the Fermi e
ergy.

By a standard analysis of perturbation theory, the s
energy is

P5g2x/~11vx!, ~A2!

wherev is the matrix element of the Coulomb interactio
andx is the irreducible polarizability. The neutron-scatteri
profile is proportional to the imaginary part ofD, and is
needed only near the resonance atv'vQ . In this low-v
region, in the normal state, the real part ofP is large andv
independent, while the imaginary part ofP is small andv
d
ec-
-

e

o

.

.
ch
-

a

w.

-

of

d

-

f-

dependent. It is then appropriate to incorporate the real
of P into the Green’s function, now calledD1, and equal to
2vQ /(v22vQ

2 ), leaving as the residual self-energy,dP,
just the small imaginary part:

D21~Q,v!5~v22vQ
2 !/2vQ2dP~Q,v!. ~A3!

In the normal (N) state, the low-energy formula fordP is

2Im$dPN%5~gQ /vQ!v. ~A4!

A specific form forgQ51/2tQ (gQ is the half-width at half
maximum of the phonon resonance, and 1/tQ is the rate of
relaxation of the phonon population back to equilibrium! is
given in the next Appendix.

In the superconducting state, the self-energyPS is altered
for energiesv&2(112r)D where 2D'3.52kBTc is the gap
of BCS theory. The alteration replacesx in Eq. ~A2! by
x1dxS . The result is designatedP1dPS . Then it is easy
to verify that

dPS5@g/~11vx!#2dxS5M2dxS , ~A5!

where the screened matrix elementMk,k8 appearing in Eq.
~A5! is the same as the one appearing in Eq.~A1!. If one
does perturbation theory using the Fro¨hlich Hamiltonian Eq.
~A1!, then the result agrees with Eqs.~A3! and ~A5!, which
provide the needed justification. The neutron-scattering p
file in the superconducting state is then found by using
~A5! in Eq. ~A3!.

APPENDIX B: PHONON DECAY
IN THE NORMAL STATE

Diagrammatic perturbation theory to second order inM
gives the desired formulas forP, and the imaginary part o
P gives the theory for phonon decay. An equally rigoro
derivation can be made of the imaginary part by an elem
tary method, and then the real part can be constructed
Kramers-Kronig analysis. Since this corresponds to the co
putational route that we prefer, we now give the element
derivation.

Imagine that the phonon occupation functionN(Q,r ) is
somehow out of equilibrium, but spatially homogenous
that there is nor dependence. Then the time rate of evoluti
of NQ5N(Q,r ) is determined by resonant phonon abso
tion scattering electrons from below to above the Fermi s
face ~diminishingNQ) and by resonant phonon emission b
thermally excited electrons which scatter into empty state
lower energy~enhancingNQ). To better compare with the
superconducting analog, we separately treat the (k,↑) and
the (2k,↓) electron processes. Then the evolution rate is
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dNQ

dt
52

2p

\ (
k

uMk,k1Qu2@ f k~12 f k1Q!NQ2 f k1Q~12 f k!~NQ11!#d~ek2ek1Q1vQ!

2
2p

\ (
k

uM 2k2Q,2ku2@ f 2k2Q~12 f 2k!NQ2 f 2k~12 f 2k2Q!~NQ11!#d~e2k2Q2e2k1vQ!. ~B1!

Here f k is the equilibrium electron occupancy~Fermi-Dirac distribution!. It is easy to verify that when the phonon distributio
is replaced on the right-hand side of Eq.~B1! by the equilibrium~Bose-Einstein! distributionnQ , the decay ratedNQ /dt is
zero. WhenNQ is written asnQ1dNQ , then the decay rate is22gQdNQ which defines the decay rate 2gQ51/tQ . This in
turn is 22 times the imaginary part of the phonon self-energy. Therefore we have

Im@PN~Q,v!#52
p

\(
k

uMk,k1Qu2@~ f k2 f k1Q!d~ek1Q2ek2v!1~ f 2k2Q2 f 2k!d~e2k2e2k2Q2v!#

52
p

\ E2`

`

deE
2`

`

de8(
k

uMk,k1Qu2d~ek2e!d~ek1Q2e8!

3$@ f ~e!2 f ~e8!#d~e82e2v!1@ f ~e8!2 f ~e!#d~e2e82v!%. ~B2!
o
t

ie

e
of
s

s
e

n
of

th
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r-

ed’’
r-

c-
-

e

Two factors of 15*2`
` ded(ek2e) have been inserted int

this equation for subsequent convenience. Now we use
Migdal arguments24 about the smallness of phonon energ
compared to the scale on which electronic energy bands~or
density of states! have any significant structure. To be sp
cific, we are only interested in knowing the value
Im@PN(Q,v)# for energy transfersv equal to the energie
of phonon resonances. Then the factorsd(e2e86v) tell us
that e ande8 are within6v of each other, while the factor
f (e8)2 f (e) tell us thate ande8 are on opposite sides of th
Fermi energy. This means that bothe ande8 are withinv of
the Fermi energy. Now consider the factor

AQ~e,e8![(
k

uMk,k1Qu2d~ek2e!d~ek1Q2e8!,

~B3!

which appears inside the integrals of Eq.~B2!. The scale of
variation ofAQ with its variablese ande8 is the electronic
energy scale'1 eV, slow compared to the rapid variatio
with e ande8 of the remaining factors inside the integrals
Eq. ~B2!, which vanish whene or e8 is farther thanv from
the Fermi energy. Therefore,AQ(e,e8) can be replaced by
AQ(0,0), its value when both electron energies are held at
Fermi energy. The integrals overe ande8 can now be done
exactly, and Eq.~B2! can be written as Eq.~A4!, with gQ
given by

gQ5
2p

\
vQ(

k
uMk,k1Qu2d~ek!d~ek1Q!. ~B4!

In common with other related Migdal arguments,24 the cor-
rections to this expression are governed by the small par
eterN(0)\v.
he
s

-

e

-

APPENDIX C: PHONON DECAY IN THE
SUPERCONDUCTING STATE

To include superconductivity using Eq.~A1!, it is proper
to use Eliashberg theory.25 Instead, we assume that the inte
actions which cause superconductivity~not necessarily
phonons! can be treated as a separate added BCS ‘‘reduc
interaction. Making the usual Bogoliubov-Valatin transfo
mation (gk5ukck↑2vkc2k↓

† ), the Hamiltonian Eq.~A1!
becomes25

H5(
k

Ek~gk↑
† gk↑1g2k↓

† g2k↓!1(
Q

vQaQ
† aQ

1(
k,Q

Mk,k1Q~aQ1a2Q
† !@nk,k1Q~gk1Q↑

† gk↑

1g2k↓
† g2k2Q↓!1mk,k1Q~gk1Q↑

† g2k↓
† 2gk↑g2k2Q↓!#,

~C1!

where Ek is the BCS quasiparticle energyA(ek
21D2!, and

n andm are BCS ‘‘coherence factors,’’

~nk,k1Q!25
1

2S 11
ekek1Q2D2

EkEk1Q
D , ~C2!

~mk,k1Q!25
1

2S 12
ekek1Q2D2

EkEk1Q
D . ~C3!

Just as in theN state, we now imagine that the phonon o
cupation numbersNQ are driven out of equilibrium, and con
struct the evolution equation, settingdNQ /dt equal to
22gQ

SdNQ . The result gives the imaginary part of th
S-state phonon self-energy
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\(
k

uMk,k1Qu2$nk,k1Q
2 @~ f k2 f k1Q!d~Ek1Q2Ek2v!1~ f 2k2Q2 f 2k!d~E2k2E2k2Q2v!#

1mk,k1Q
2 @~12 f 2k2 f k1Q!d~Ek1Q1E2k2v!2~12 f 2k2Q2 f k!d~Ek1E2k2Q1v!#%. ~C4!

Here the Fermi equilibrium occupation functionf k is for superconducting quasiparticles with energyEk . WhenT exceedsTc ,
this formula correctly reduces to Eq.~B2!. Now we again use the Migdal arguments, which lead to a simplified formula, g
as Eq.~2! of the text, for the casev.0.
ys
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