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Theory of antiferromagnetic short-range order in the two-dimensional Heisenberg model
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We present a spin-rotation-invariant theory of short-range order in the square-Bitit® Heisenberg
antiferromagnet based on the Green’s-function projection technique for the dynamic spin susceptibility. By a
generalized mean-field approximation and taking appropriate conditions for two vertex parameters, the static
spin susceptibility, the antiferromagnetic correlation length, and the two-spin correlation functions of arbitrary
range are calculated self-consistently over the whole temperature region. A good agreement with Monte Carlo
results is found. The theory generalizes previous isotropic spin-wave approaches and provides an improved
interpolation between the low-temperature and high-temperature behavior of the uniform static susceptibility.
Comparing the theory with neutron-scattering data for the correlation length and magnetic susceptibility ex-
periments on LgCuQ,, a good quantitative agreement in the temperature dependences is obtained. The fit of
the exchange energy yields= 133 meV.[S0163-182807)05433-7

[. INTRODUCTION The isotropic spin-wave theories by Shimahara and
Takada! (based on an equation-of-motion decouplirgd
In high-T. copper oxides there exist strong antiferromag-by Sokolet al!? (employing a linearization procedyriater-
netic (AFM) spin correlations probed, for example, by polate between low and high temperatures. It is, however,
neutron-scattering experimefitsand by the normal-state difficult to extend those approaches by going beyond the
magnetic susceptibilityy(T,x) of La,_,SrCu0,* The mean-field approximation or by including the transfer term
maximum in the temperature dependencg for x<<0.2) as  in thet-J model. For example, the Green’s-function decou-
well as in the doping dependence may be ascribed to AFMling by Shimahara and Takadd®only holds in the param-
short-range ordefSRO which decreases with increasing eter regiont<J, being unrealistic for the cuprates.
temperature and doping. Those experiments are calling for a In developing a spin-rotation-invariant theory of SRO
microscopic theory of SRO to describe the dynamic spinwhich is applicable over the whole temperature region, the
susceptibilityy (g, »;T,x) over the whole range of variables projection technique for Green’s functidfid®has the advan-
on the basis of two-dimension&RD) correlation models. tage to provide a more systematic description of spin corre-
Frequently, the-J model is used, where the undoped com-lations and to allow straightforward extensiofgsg., to de-
pounds(e.g., LaCuQ,) are well described by th&=1/2  scribe damping effectsas compared with the approaches of

AFM Heisenberg model on the square lattice, Refs. 11-13.
In this paper we present a theory of SRO for the 2D
J Heisenberg antiferromagnet based on a Green’s-function
H= P > SS- @ projection method to calculate the dynamic spin susceptibil-

4y ity x(q,w;T) and spin-correlation functions of arbitrary
As indicated by many theories and numerical studi#se  range. The generalized mean-field approximation within our
ground state of the 2D Heisenberg antiferromagnet has AFMpproach yields an improved interpolation between the low-
long-range order whicliaccording to the Mermin-Wagner temperature and high-temperature limits in comparison with
theorem disappears at nonzero temperatures.TAt0 the Refs. 11 and 12. Our main goals are to compare the theory
system is in a paramagnetic phase with AFM SRO. A theorywith available Monte CarlgMC) data and with experiments
for the cuprates that starts from the Heisenberg lifhitof  on LaCuOQ,.
thet-J model is desired to describe SRO at all temperatures. The paper is organized as follows. In Sec. Il, the Green’s-
However, most of the existing analytical approaches tdunction projection method is applied to the calculation of
the Heisenberg model are valid only at sufficiently low tem-the dynamic spin susceptibility in a generalized mean-field
peratures. For example, Chakravaetyal® have mapped the approximation. In Sec. I, the ground state is investigated,
long-wavelength and low-temperature behavior of E). and appropriate conditions for the temperature-dependent
onto the 2D quantum nonlinearmodel in the renormalized vertex parameters in our mean-field decoupling are given. At
classical regior{realized in the case of N¢order atT=0).  T=0, the two-spin correlation functions and the spin-wave
Their result for the AFM correlation length far<2mpg (ps ~ Spectrum are compared with projector MC data. In Sec. IV,
is the spin stiffnegsobtained by a two-loop renormalization- we present our finite-temperature results on the static suscep-
group analysf5 was improved by Hasenfratz and tibility, the AFM correlation length, the spin structure factor,
Niedermayer. Furthermore, the modified spin-wave theoriesand the spin-correlation functions of arbitrary range. The re-
by TakahasHiand Hirschet al® as well as the Schwinger- sults are compared with MC data and with experiments on
boson mean-field theory by Arovas and Auerb8chold La,CuQ, (correlation length, magnetic susceptibilityThe
only for T/J<0.7. summary of our work can be found in Sec. V.
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II. GREEN’'S-FUNCTION PROJECTION METHOD

Let us first outline the general scheme of the projection
technique for Green'’s functions based on the equation-of-

motion method along the lines indicated by Tserkovni-
kovl* We consider two sets of basis operators,
=(AD, ... AMT andB=(BM,....BMT, and the two-time
retarded matrix Green’s functicB(w) =((A;B")),,. Sepa-
rating fromiA the irreducible part, defined by([I,B"],)
=0 (p=12), i.e,

iA=QA+1, 2
we get the frequency matrix
Q=M'M"1 ©)
with the spectral moments
M=([A,B*],), M'=([iA,B"],). @)
Defining the self-energy matrix by
S(w)={{;B*)),G Y w), (5)
the equation of motion yields
Gw)=[o—0—3(w)] M. (6)

To express the self-energy in terms of a higher-order Green’

function, the equation of motion fc!B’(w)z((iA;B*))w is
used, wherés’ (w) is differentiated with respect to the sec-
ond time. In this way, we obtain the exact representation

S(0)=((iA;—iB*))IM 2 ©
with the irreducible Green'’s function

((iIA;=iBT))y =((iA;=iB")),~G'(0)G Hw)G'(w).

()
This projection method is equivalent to the Mori-Zwanzig
projection techniqué’® and to the composite-operator
approacht® and it is closely related to the method of irreduc-
ible Green’s function€ and to the Roth metho.

Next, we employ the projection technique to calcu-
late the dynamic spin  susceptibility x (g, ®)
—((Sy 1SZNw [7=—.S4=(1N)Z;Se %] of the 2D
Heisenberg mode(1l) over the whole temperature region.
Hereafter, we pu=1 and the lattice spacir@=1. To take
into account the AFM SRO and to preserve the spin-
rotational symmetry, we choose the basis sets

A=B=(S{ ,iS))T. 9)

Then, the Green’s-function matri@(w) has the elements

G =((S] 1S g)ur  GEP=((iS; =18 g,

G2 =GV =((iS; ;S ))u- (12
The moment matrice&t) are given by
0o My M{? 0
M:(Mgp o) M7lo wmp) @@
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where

M =([iS; ,S"]-), (13)

MP=([ -8} ,—iS"4l-). (14)

In Eq. (12), the spectral moments! g“) with n=0,2 vanish
due to the rotational symmetry$%’)=0). Neglecting in Eq.

(6) the self-energy part, which defines a generalized mean-
field approximation, by Eq¥3) and(12)—(14) we obtain

1 MY M{Po
Glw)=——=1,,a 3 | (15
0~ Mg ) Mg )
with the spin-excitation spectrum
wi=MP M (16)

From Eq.(15) we get the dynamic spin susceptibility

(1)
x+_(q.w)=—Mq ( N . (17
20 \0—wg 0t og
the static spin susceptibility
oy Mg
X (@)=—, (18)
s @q
and the equal-time two-spin correlation function
M(l)
Co=(Sy ,q>— [1+2n(a)q)] (19

wheren(wg) = (e“a’T— 1)1 is the Bose function. From Eq.
(19) the spin-correlation functions

> Cy cogR (20)

L1
Cr=(S Sr)= N

of arbitrary rangeR=ne,+me, can be determined. Hereaf-
ter, we denoteCr=C, ,,. The nearest-neighbor correlation
function is directly related to the internal energy per site by
U:3C110.

Now we calculate the spectral moments in terms of two-
spin correlation functions. Favl{" we get

M{Y=—8C1o(1- ), (21)

where y,= 2(cosqx+cosq

To calculateM = {1)w we take the site representa-
tion of Eq. (14), whereS+ contams products of three spin
operators along nearest-neighbor sequences. We decouple
S' in the spirit of the Green’s-function approach by Shima-
hara and TakadH. Considering, for example, the product
S'S’S ., we introduce the vertex parameters; (i
=1,2,3) as follows:

S'S'S =S S)S tax(S'S)S . (22

Here,a,(v=1,2) is attached to nearest-neighbor correlation
functions, wherex,(«,) is taken if{i,j,l) forms a nearest-

neighbor sequence along a lieiangle, and a5 is associ-
ated with the further-distant correlation functions. As com-
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pared to Ref. 11(a, of Ref. 11 is equal toas), our Ill. GROUND-STATE PROPERTIES
decoupling(22) is extended by the introduction of the addi-

tional parameter,+# a4 .
Finally, we obtain

The critical behavior of the 2D Heisenberg modg) is
reflected in our theorycf. Eq. (18)] by the closure of the
spectrum gap aR as T—0, so that lim_ox 1(Q)=0.

/ Fromws=0, i.e., by Eq.(28) A=0, we obtain the condition
0= No(1= ¥ M1 (Vg ) F Mo ¥q— Y29 (23 ©Q y Eq(28)

1+ 2a3(C2Y0+2C1'1):—chyo(al+2a2), (30)

with
and the spin-wave excitation spectrum
)\0=2+4a3(C2'0+ 2C1’1), (24) 2 ,
wqg=—4C1d a1(1—yyq) +2ax(1—yg)]. (39
)\1=—8a2C1'0, )\2:_4a1C1,0; (25) FquE|q|<l we have
and = CoSl, oK, 0q=2=Cyda1+ay)a, (32

We have checked that our scheme preserves the spin- . ) o
rotation invariance. That is, the calculation of the longitudi-With the spin-wave velocity d;) renormalization factoZ
nal susceptibility using the basis sefs=B=(S;,iS;)" =Cs/V2=\—-2C (a1 + ;). By Egs.(26) and(30) we get
yields x*(q,0)=x(q,0)=3x " (q,). 1

By Egs.(18), (21), and(23) we get the uniform static spin X=
susceptibility x(T) =limq_ox(q),

4a;tay)’ 33

To calculate the correlation functiof20) with Eq.(19) at

X(T)==2C, d1+2a35(Cp012Cy ») T=0, we separate the condensation part arising from

—2C;(3ay+2ay)] 7t (26) @qo=0, as follows:
(1)
From the expansion of(q) around the AFM wave vector CR=£ D Mg cogR+C coOR. 34
Q= (m,7) we obtain the AFM correlation lengtf(T), N4 2o

From the sum rule and Eq&1) and (31) we have

D
== 4A2 ' @7 1 1
C=§—2\/—Cl,oN2 I (35)
where q
with
1
_ _ _ __ 2 Paq—
A=No= A= Ap=5 why (28) lg= (1= yg)lar(1— ya) +2a(1—y))1 Y2 (36)

) By Egs.(34) and(35) we get
The theory has six temperature-dependent parameters

(C10,C11,Cy0;a1,a5,a3) and four self-consistency equa- 1
tions (20) which include the sum rul€,,=1/2. The two Cr=5 CONR+2V—-Cy Kr, (37
remaining conditions are detailed in Sec. III.
Our Green's-function projection approach is closely re-where
lated to previous isotropic spin-wave theorté$?1°This can L
be seen by the simplified version of the decoupli@g) in _ =+ B
which the dependence on the relative site position of the KF‘_N zq: | 4(COSIR— COQR). (38)
vertex parameters, is neglected; i.e.@,= ;. From Eq.

(23) we get From Eg.(37) the nearest-neighbor correlation function is

obtained as

1+ & ) (29) / 1 2
)\o‘l‘ )\2 7q ! C1,0: - ( Kio‘i‘ E_ Kl,O) . (39)

since 2yq+ y5q=475—1. Thus, theq dependence of all The staggered magnetization is calculated from Eq(34)
quantities is governed by, only. By the choicex,=ay, the  according to

results of the Green’s-function decoupling scheme by Shima-

hara and Takaddmay be obtained. The final expressions of . 3

the isotropic linear spin-wave theory by Solailall? agree m°= lim (SSg)CcONR= 5C (40)
with our analytical results, if the parametets and C, of IRl

Ref. 12 are formally identified aC;=3[1+2a3(C,o  with C given by Eq.(35). We see that, af =0, all quantities
+2C;9)—2a,Cy0] and C,=a;,C;4, respectively. Note may be expressed as functions of the vertex parameters
that in the composite-operator approach of Ref. 19 the moand a,.

mentMEf‘) was not calculated, but parametrized by an ansatz In the casex,= a (cf. Sec. 1), Eq. (31) yields the spec-
compatible with the shape of EqQ9). trum

®5=(NgTN2) (1= yg)
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TABLE I. Ground-state propertiesee text compared with Monte Carlo data and other approaches.

MC Case 1 Case 2 Ref. 11 Ref. 12
u —0.6693 (Ref. 20 —0.7032 —0.6693 —-0.7016 —0.6701
m 0.3074 (Ref. 20 0.3134 0.2641 0.3000 0.2519
X 0.0446 (Ref. 2)) 0.0495 0.0569 0.0534 0.0604
wi=—1601Cy o 1-75) (41) (i) Case 1
az(T) - 1
r,,=———=0.4856,
@ ay(T)—1

which has the same shape as in traditional spin-wave theory.
To determinex; and «, at zero temperature, we take the
MC data for the ground-state energy per site,3C, ,?° the
staggered magnetizatian,?° and the rotationally averaged
uniform static susceptibilityy at T=0 [obtained from
the susceptibility renormalization factaZ =12y=0.535
(Ref. 21] which are listed in Table I. Inserting those quan- ro,=0.4856,
tities into Egs.(39), (40), and (33) we get the relations be-
tween a,(0) and a,(0) depicted in Fig. 1. The choice, () TrOM Unc(T). @3
=a, discussed in Sec. [Where eithem®! or u'? are used as

input quantities and the unphysical regioB, o>Cy,1 below i en ‘ang compared with the MC data and the results of
the dashed line are also indicated. As can be seen, there is fs. 11 and 12. Let us point out that in contrast to the

parameter choice which likewise fits m, and y. However, approach by Sokat al.’2 our values for the staggered mag-
the shaded area marks the region of appropdé® values.  petization and the zero-temperature susceptibility in case 1
To formulate conditions also at finite temperatures, where allre much closer to the MC data.

vertex parameters are temperature dependent, we express theConsidering spin correlations of arbitrary range, we have
two unknown parameter®y analogy with Ref. 1lin terms  evaluated the correlation functid87) and compared the re-

of the ratiosr ,, = [ a;(T) — 11/[ay(T) = 1] (i=2,3), since all  gyjts forERzgsosR)z 2Cg with the projector MC(PMC)
vertex parameters are suggested to approach unity at highata by Liang®* As shown in Table II, our theory reproduces
temperatures. We treat two cases for the choiceatz)fand the PMC results within an average deviation of about 2%

fap IN case 1, we choose the center of the shaded area ﬁlr?’;/‘;)];ﬂ C?;? Zs(cfosrfs%j.er the spin-wave spectr(81) with
\ . _ _ - inally, let u i in-wav (Ba) wi
Fig. 1, i.e., @,(0)=3.055 anda;(0)=1.998, yielding by the shapew,/Z. shown in Fig. 2. Contrary to the conven-
Egs.(30) and(37), a3(0)=2.634. Moreover, we assumeg, tional shapewg—(1—v2)¥2 [cf. Eq. (41)], our theory with
_ q Y4 . Eq. , y Wi
andr, as temperature independent. In case 2, we kegep a,# a; yields a slight minimum invg at g=(,0). On the
from case 1 and take the MC data ofir) (Refs. 20 and 22 other hand, Cheret al** have suggested from their PMC
to determiner,, (T) [at T=0, we gete;(0)=2.610,2,(0)  data that the exact spectrum has the conventional drn

az(T)

-1
I’a3zm =0.7951. (42

(ii) Case 2:

In Table | our ground-state results for m, and y are

=1.782,a5(0)=2.237; cf. Fig. 1. This was also found by Kger and Schuck using a non-
To sum up, in the evaluation of our theory over the wholespin-rotation-invariant projection method, whefge=1.188
temperature region we adopt the following conditions. agrees with the MC value of Ref. 20. In casécase 2 we

get Z.=1.539 (1.400), as compared #&.=1.480 andZ,
=1.360 obtained by Shimahara and Takadand Sokol
et al,'? respectively. Those results indicate that our spin-
rotation-invariant theory of SRO is less appropriate to de-

TABLE 1l. Spin-correlation functionsER=<SOSR> at T=0
compared with projector Monte Carlo dafaef. 23.

PMC Case 1 Case 2

Cio —0.3348 -0.3516 —0.3347
Cus 0.2028 0.2247 0.2028
o -1 Capo 0.1772 0.2069 0.1830

. C —0.1671 —0.1906 —0.1665

FIG. 1. Relations between the vertex parametersand «, at Caa

T=0 for given Monte Carlo data om, m, andy (cf. Table ). The 92,2 0.1475 0.1683 0.1431
choices in case (@), case 20), Ref. 11(M), and Ref. 12A) are  Csp —0.1491 —0.1706 —0.1454
indicated. The dotted and dashed lines refefute=a; and C, Csa 0.1430 0.1626 0.1371

=Cy 1, respectively.
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FIG. 2. Spin-wave spectrum at=0 in case l(dashed case 2 FIG. 4. Antiferromagnetic correlation length in the cases 1

(solid), and in conventional spin-wave thedigotted. In each case (dashedland 2(solid) compared with the MC date®) of Ref. 26.
the results are scaled ag,/Z.

maximum near the exchange energy, and the crossover to the
scribe the excitation spectrum, but, as shown in Sec. IV, it imigh-temperature Curie-Weiss behavior are due to the de-
more suitable for the description of thermodynamic propercrease of AFM SRO with increasing temperatisee be-
ties and correlation functions of arbitrary range over thejow).
whole temperature regiomote that the approach of Ref. 25 |n Fig. 4 the AFM correlation lengtl§(T) given by Eq.
yields|u|=0.264 atT=0 and does not allow the calculation (27) is depicted, where in cas2 a very good agreement with

of further-distant correlation functions the MC resulté® at intermediate temperatures is found. To
obtain the low-temperature expansion&gT) up to the lead-
IV. FINITE-TEMPERATURE RESULTS ing order, we expand the Bose contributionGgin Eq. (19)

around the AFM wave vectd. As T—0, this contribution
yields the condensation part 6§ [Eq. (34)] and determines
the leading order ofA and of the correlation length. We

At nonzero temperaturesn=0) we have solved the self-
consistency equation20) supplemented by conditiong?2)
or (43) to obtain the static spin susceptibiligfq) for arbi-

trary g, the AFM correlation lengtlg(T), the spin structure obtain
factor Cy, and the two-spin correlation functioi@®z of ar- 1
bitrary range. The vertex parameters are found to decrease £=2\[1(0) + a5(0)]|Cy /0)] T

with increasing temperature approaching unity at high tem- )
peraturegcf. Sec. ll)). ™ m

Our results for the uniform static susceptibilitg6) are XeXF{§ [@1(0)+ a2(0)] T (44)
shown in Fig. 3. In view of the susceptibility behavior over
the whole temperature region in comparison with the MCCompared with the full temperature dependencé oélcu-
data?? cases 1 and 2 yield an improved description of thelated by Eq.(27), the expansion44) holds up toT=0.2
low-temperature susceptibility as compared with Refs. 1lwithin a deviation of 9%. Note that the preexponential factor
and 12, respectively. The increasexofvith temperature, the T~ ! is an artifact of the mean-field approach. On the basis of

the nonlinears model, Chakravartet al® have shown that
0.1 . . T the preexponential becomes a temperature-independent pre-

factor, if a two-loop renormalization-group correction is
taken into account.

0.09 -
The AFM structure facto€qo=(SoS_ )= 5Cq is plotted
in Fig. 5 as a function off?¢%, since the renormalization-
0.08
= 0.07 200
100
50
0.06
. o 20
SRR © 10
0.05 o2~ . 5
2 [
0.04 L L L I ! I ! !
0 0.5 ! 15 2 Y 2 5 10 20 50
T T2§2

FIG. 3. Uniform spin susceptibility in the case¢dashedand 2 _
(solid) compared with MC dat&®, Ref. 22 and the approaches of FIG. 5. Antiferromagnetic structure fact@y= %CQ vs T?£%in
Ref. 11(chain-dashedand Ref. 12dotted. cases Xdashegland 2(solid) compared with MC daté®, Ref. 26.
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n FIG. 7. Inverse antiferromagnetic correlation length in

_ _ o~ _ La,CuQ, obtained by the neutron-scattering experiments of Ref. 3
FIG. 6. Spin-correlation function<,, o in case 2AX) at differ- (O, A, [J,@) and from the fit of the theory in case(dashed and
ent temperatures in comparison with the MC de@e of Ref. 26. case 2(solid).

group analysis of the classical nonlineamodel predicts the the relations betweeng, ps, andJ with J=135 meV are
scaling formCqo=T?£2.° Our results in both cases 1 and 2 ysed. Moreover, the excellent agreement of the neutron-
reproduce reasonably well the scaling behavior, where igcattering data with the theory of Ref. 7 extends down to 340
case 2 the agreement with the MC déta satisfying. Con- K. The deviation of our results from the Birgeneatial?
cerning the relation betweed, and the staggered suscepti- data below 500 Kcf. Fig. 7) is due to the appearance of the
bility x(Q), at high (Bwy<1) and low temperature§Sw, preexponential factof ~* in Eq. (44).

<1 due to the exponentially small spectrum gag= \24), As to the maximum in the uniform static spin susceptibil-
the expansion of Eq(19) compared with Eq(18) yields ity of La,CuQ, we determine the maximum temperature
Co=3Tx(Q). Tmax from Fig. 3 using the values af given by Eq.(45).

To see in more detail the characteristics of AFM SRO asThus, without any further fit, we get
a function of spatial range and temperature, in Fig. 6 the
magnitude ofCr=(S;Sg) with R=(n,0) is depicted in case = 1545 K, case 1,
2. As can be seen, the decrease of SRO with increasing tem- 1535 K, case 2.
perature is described in excellent agreement with the MGrhose values agree rather well with the estimate given by
data of Ref. 26. Johnstorf, T,,,.,=1460 K, by means of a scaling analysis of
Finally, let us compare our theory with experiments onthe susceptibility data below 800 K.
La,CuQ,. Taking the recent neutron-scattering data for the  Considering both the correlation length and the magnetic
correlation length by Birgeneaet al® in the range 348 T  sysceptibility of LaCuO,, our theory reasonably agrees with
<820 K, we have determined the free parameteby a  experiments. Whereas the nonlineamodel approach’

(46)

least-squares fit shown in Fig. 7. We obtai~3.79 A) yields a better agreement with t§€T) data below 500 K, as
compared with our resultef. Fig. 7), the maximum in the
108 meV, case 1, (45 magnetic susceptibility cannot be described within the theory

~ 1133 meV, case 2. by Chakravartyet al.® since it is only valid atT<2mp,

) [27mps=1.169 (Ref. 20 =1800 K].
Thereby, we have calculateg{T) by Eq. (27) instead of

using the low-temperature expansiga4) which is only

valid, according to Eq(45), below about 300 K. Our values

for the exchange energy agree very well with those obtained The basic ingredients of our spin-rotation-invariant theory

from the comparison of numerical approaches with experiof short-range orde(SRO in the 2D Heisenberg antiferro-

ments [J=133meV (Ref. 20 from #c,=1.68a magnet are the following.

=850 meV A andJ=125 meV (Ref. 26 from the fit of (i) The Green’'s-function projection technique is used,

émc(T) 1. On the contrary, in previous analytical approacheswhere a two-operator basispin and its first time derivatiye

the deduced values o8 are found to be too low{J is chosen and a generalized mean-field approximation is em-

=78 meV (Ref. 8§ andJ=86 meV (Ref. 11]. ployed to calculate the dynamic spin susceptibility over the
As seen in Fig. 7, af>500 K we obtain a very good whole temperature region.

guantitative agreement with experiments. Such an agreement (ii) The SRO is described in terms of two-spin correlation

was also found by Birgeneaet al® in the comparison of functions of arbitrary range. Thereby, the third spectral mo-

their data with the theory by Hasenfratz and Niederméyker, ment is decoupled by use of vertex parameters.

V. SUMMARY
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(i) The system of self-consistency equations is com- (iii) The comparison with neutron-scattering experiments
pleted by the choice of appropriate vertex-parameter condien La,CuQ, shows good quantitative agreement, where the
tions. fit of the exchange energy yields= 133 meV. The tempera-

Our approach provides a systematic treatment of spin coture of the maximum in the magnetic susceptibility of
relations. In particular, a more detailed analysis than in REfLaZCuO4 agrees rather well with the experimental estimate.
11 is given. In contrast to the mean-field approaches of Refs. Tpe good quantitative agreement of our theory with ex-
11 _anc_i 12, our theory allows a straightforward extensiorberimemS emphasizes the role of a strong SRO in the cu-
taking into account self-energy effects. , prates. We conclude that the extension of the Green’s-

The theory is numerically evaluated at arbitrary temperas,n «tion projection theory to thet-J model may be

tures and wave vectors. The main results are summarized %?omising to describe the doping dependence of SRO and its

follows. : . .
(i) The uniform static spin susceptibilityrevealing a effects on the unconventional magnetic properties of figh-
I%gmpounds;.

maximum near the exchange energy and a crossover to t
Curie-Weiss law exhibits an improved interpolation be-
tween the low-temperature and high-temperature behavior,
as compared with previous isotropic spin-wave approaches. ACKNOWLEDGMENTS
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