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Theory of antiferromagnetic short-range order in the two-dimensional Heisenberg model

S. Winterfeldt* and D. Ihle
Institut für Theoretische Physik, Universita¨t Leipzig, D-04109 Leipzig, Germany

~Received 24 February 1997!

We present a spin-rotation-invariant theory of short-range order in the square-latticeS51/2 Heisenberg
antiferromagnet based on the Green’s-function projection technique for the dynamic spin susceptibility. By a
generalized mean-field approximation and taking appropriate conditions for two vertex parameters, the static
spin susceptibility, the antiferromagnetic correlation length, and the two-spin correlation functions of arbitrary
range are calculated self-consistently over the whole temperature region. A good agreement with Monte Carlo
results is found. The theory generalizes previous isotropic spin-wave approaches and provides an improved
interpolation between the low-temperature and high-temperature behavior of the uniform static susceptibility.
Comparing the theory with neutron-scattering data for the correlation length and magnetic susceptibility ex-
periments on La2CuO4, a good quantitative agreement in the temperature dependences is obtained. The fit of
the exchange energy yieldsJ5133 meV. @S0163-1829~97!05433-7#
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I. INTRODUCTION

In high-Tc copper oxides there exist strong antiferroma
netic ~AFM! spin correlations1 probed, for example, by
neutron-scattering experiments2,3 and by the normal-state
magnetic susceptibilityx(T,x) of La22xSrxCuO4.

4 The
maximum in the temperature dependence ofx ~for x,0.2! as
well as in the doping dependence may be ascribed to A
short-range order~SRO! which decreases with increasin
temperature and doping. Those experiments are calling f
microscopic theory of SRO to describe the dynamic s
susceptibilityx(q,v;T,x) over the whole range of variable
on the basis of two-dimensional~2D! correlation models.
Frequently, thet-J model is used, where the undoped co
pounds ~e.g., La2CuO4! are well described by theS51/2
AFM Heisenberg model on the square lattice,

H5
J

2 (
^ i , j &

SiSj . ~1!

As indicated by many theories and numerical studies,5 the
ground state of the 2D Heisenberg antiferromagnet has A
long-range order which~according to the Mermin-Wagne
theorem! disappears at nonzero temperatures. AtT.0 the
system is in a paramagnetic phase with AFM SRO. A the
for the cuprates that starts from the Heisenberg limit~1! of
the t-J model is desired to describe SRO at all temperatu

However, most of the existing analytical approaches
the Heisenberg model are valid only at sufficiently low te
peratures. For example, Chakravartyet al.6 have mapped the
long-wavelength and low-temperature behavior of Eq.~1!
onto the 2D quantum nonlinears model in the renormalized
classical region~realized in the case of Ne´el order atT50!.
Their result for the AFM correlation length forT!2prs ~rs
is the spin stiffness! obtained by a two-loop renormalization
group analysis6 was improved by Hasenfratz an
Niedermayer.7 Furthermore, the modified spin-wave theori
by Takahashi8 and Hirschet al.9 as well as the Schwinger
boson mean-field theory by Arovas and Auerbach10 hold
only for T/J&0.7.
560163-1829/97/56~9!/5535~7!/$10.00
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The isotropic spin-wave theories by Shimahara a
Takada11 ~based on an equation-of-motion decoupling! and
by Sokolet al.12 ~employing a linearization procedure! inter-
polate between low and high temperatures. It is, howev
difficult to extend those approaches by going beyond
mean-field approximation or by including the transfer te
in the t-J model. For example, the Green’s-function deco
pling by Shimahara and Takada11,13only holds in the param-
eter regiont!J, being unrealistic for the cuprates.

In developing a spin-rotation-invariant theory of SR
which is applicable over the whole temperature region,
projection technique for Green’s functions14,15has the advan-
tage to provide a more systematic description of spin co
lations and to allow straightforward extensions~e.g., to de-
scribe damping effects! as compared with the approaches
Refs. 11–13.

In this paper we present a theory of SRO for the 2
Heisenberg antiferromagnet based on a Green’s-func
projection method to calculate the dynamic spin suscepti
ity x(q,v;T) and spin-correlation functions of arbitrar
range. The generalized mean-field approximation within
approach yields an improved interpolation between the lo
temperature and high-temperature limits in comparison w
Refs. 11 and 12. Our main goals are to compare the the
with available Monte Carlo~MC! data and with experiment
on La2CuO4.

The paper is organized as follows. In Sec. II, the Green
function projection method is applied to the calculation
the dynamic spin susceptibility in a generalized mean-fi
approximation. In Sec. III, the ground state is investigat
and appropriate conditions for the temperature-depend
vertex parameters in our mean-field decoupling are given
T50, the two-spin correlation functions and the spin-wa
spectrum are compared with projector MC data. In Sec.
we present our finite-temperature results on the static sus
tibility, the AFM correlation length, the spin structure facto
and the spin-correlation functions of arbitrary range. The
sults are compared with MC data and with experiments
La2CuO4 ~correlation length, magnetic susceptibility!. The
summary of our work can be found in Sec. V.
5535 © 1997 The American Physical Society



io
-o
ni

en

c-

ig
r
c-

u

n.

in

an-

.

f-
n
by

o-

-
n
uple
a-

ct

ion

m-

5536 56S. WINTERFELDT AND D. IHLE
II. GREEN’S-FUNCTION PROJECTION METHOD

Let us first outline the general scheme of the project
technique for Green’s functions based on the equation
motion method along the lines indicated by Tserkov
kov.14 We consider two sets of basis operators,A
5(A(1),...,A(n))T andB5(B(1),...,B(n))T, and the two-time
retarded matrix Green’s functionG(v)5^^A;B1&&v . Sepa-
rating from i Ȧ the irreducible partI , defined by^@ I ,B1#h&
50 (h56), i.e.,

i Ȧ5VA1I , ~2!

we get the frequency matrix

V5M 8M21 ~3!

with the spectral moments

M5^@A,B1#h&, M 85^@ i Ȧ,B1#h&. ~4!

Defining the self-energy matrix by

S~v!5^^I ;B1&&vG21~v!, ~5!

the equation of motion yields

G~v!5@v2V2S~v!#21M . ~6!

To express the self-energy in terms of a higher-order Gre
function, the equation of motion forG8(v)5^^ i Ȧ;B1&&v is
used, whereG8(v) is differentiated with respect to the se
ond time. In this way, we obtain the exact representation

S~v!5^^ i Ȧ;2 i Ḃ1&&v
irrM21 ~7!

with the irreducible Green’s function

^^ i Ȧ;2 i Ḃ1&&v
irr5^^ i Ȧ;2 i Ḃ1&&v2G8~v!G21~v!G8~v!.

~8!

This projection method is equivalent to the Mori-Zwanz
projection technique14,15 and to the composite-operato
approach,16 and it is closely related to the method of irredu
ible Green’s functions17 and to the Roth method.18

Next, we employ the projection technique to calc
late the dynamic spin susceptibility x12(q,v)
52^^Sq

1 ;S2q
2 &&v @h52,Sq5(1/AN)( iSie

2 iqRi# of the 2D
Heisenberg model~1! over the whole temperature regio
Hereafter, we putJ51 and the lattice spacinga51. To take
into account the AFM SRO and to preserve the sp
rotational symmetry, we choose the basis sets

A5B5~Sq
1 ,iṠq

1!T. ~9!

Then, the Green’s-function matrixG(v) has the elements

Gq
~11!5^^Sq

1 ;S2q
2 &&v , Gq

~22!5^^ iṠq
1 ;2 iṠ2q

2 &&v ,
~10!

Gq
~12!5Gq

~21!5^^ iṠq
1 ;S2q

2 &&v . ~11!

The moment matrices~4! are given by

M5S 0 Mq
~1!

Mq
~1! 0

D , M 85S Mq
~1! 0

0 Mq
~3!D , ~12!
n
f-
-

’s

-

-

where

Mq
~1!5^@ iṠq

1 ,S2q
2 #2&, ~13!

Mq
~3!5^@2S̈q

1 ,2 iṠ2q
2 #2&. ~14!

In Eq. ~12!, the spectral momentsMq
(n) with n50,2 vanish

due to the rotational symmetry (^Si
z&50). Neglecting in Eq.

~6! the self-energy part, which defines a generalized me
field approximation, by Eqs.~3! and ~12!–~14! we obtain

G~v!5
1

v22vq
2 S Mq

~1! Mq
~1!v

Mq
~1!v Mq

~3! D , ~15!

with the spin-excitation spectrum

vq
25Mq

~3!/Mq
~1! . ~16!

From Eq.~15! we get the dynamic spin susceptibility

x12~q,v!52
Mq

~1!

2vq
S 1

v2vq
2

1

v1vq
D , ~17!

the static spin susceptibility

x12~q!5
Mq

~1!

vq
2 , ~18!

and the equal-time two-spin correlation function

Cq5^Sq
1S2q

2 &5
Mq

~1!

2vq
@112n~vq!#, ~19!

wheren(vq)5(evq /T21)21 is the Bose function. From Eq
~19! the spin-correlation functions

CR5^S0
1SR

2&5
1

N (
q

Cq cosqR ~20!

of arbitrary rangeR5nex1mey can be determined. Herea
ter, we denoteCR[Cn,m . The nearest-neighbor correlatio
function is directly related to the internal energy per site
u53C1,0.

Now we calculate the spectral moments in terms of tw
spin correlation functions. ForMq

(1) we get

Mq
~1!528C1,0~12gq!, ~21!

wheregq5 1
2 (cosqx1cosqy).

To calculateMq
(3)5Mq

(1)vq
2 we take the site representa

tion of Eq. ~14!, whereS̈i
1 contains products of three spi

operators along nearest-neighbor sequences. We deco
S̈i

1 in the spirit of the Green’s-function approach by Shim
hara and Takada.11 Considering, for example, the produ
Si

1Sj
1Sl

2 , we introduce the vertex parametersa i ( i
51,2,3) as follows:

Si
1Sj

1Sl
25an^Sj

1Sl
2&Si

11a3^Si
1Sl

2&Sj
1 . ~22!

Here,an(n51,2) is attached to nearest-neighbor correlat
functions, wherea1(a2) is taken if ^ i , j ,l & forms a nearest-
neighbor sequence along a line~triangle!, anda3 is associ-
ated with the further-distant correlation functions. As co
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pared to Ref. 11~a2 of Ref. 11 is equal toa3!, our
decoupling~22! is extended by the introduction of the add
tional parametera2Þa1 .

Finally, we obtain

vq
25l0~12gq!1l1~gq2gq8!1l2~gq2g2q! ~23!

with

l05214a3~C2,012C1,1!, ~24!

l1528a2C1,0, l2524a1C1,0, ~25!

andgq85cosqx cosqy .
We have checked that our scheme preserves the s

rotation invariance. That is, the calculation of the longitu
nal susceptibility using the basis setsA5B5(Sq

z ,iṠq
z)T

yields xzz(q,v)[x(q,v)5 1
2 x12(q,v).

By Eqs.~18!, ~21!, and~23! we get the uniform static spin
susceptibilityx(T)5 limq→0x(q),

x~T!522C1,0@112a3~C2,012C1,1!

22C1,0~3a112a2!#21. ~26!

From the expansion ofx(q) around the AFM wave vecto
Q5(p,p) we obtain the AFM correlation lengthj(T),

j25
l01l22D

4D
, ~27!

where

D5l02l12l25
1

2
vQ

2 . ~28!

The theory has six temperature-dependent parame
(C1,0,C1,1,C2,0;a1 ,a2 ,a3) and four self-consistency equa
tions ~20! which include the sum ruleC0,051/2. The two
remaining conditions are detailed in Sec. III.

Our Green’s-function projection approach is closely
lated to previous isotropic spin-wave theories.11,12,19This can
be seen by the simplified version of the decoupling~22! in
which the dependence on the relative site position of
vertex parametersan is neglected; i.e.,a25a1 . From Eq.
~23! we get

vq
25~l01l2!~12gq!S 11

4l2

l01l2
gqD , ~29!

since 2gq81g2q54gq
221. Thus, theq dependence of al

quantities is governed bygq only. By the choicea25a1 , the
results of the Green’s-function decoupling scheme by Shi
hara and Takada11 may be obtained. The final expressions
the isotropic linear spin-wave theory by Sokolet al.12 agree
with our analytical results, if the parametersC1 and C2 of
Ref. 12 are formally identified asC15 1

8 @112a3(C2,0
12C1,1)22a1C1,0# and C25a1C1,0, respectively. Note
that in the composite-operator approach of Ref. 19 the m
mentMq

(3) was not calculated, but parametrized by an ans
compatible with the shape of Eq.~29!.
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-
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III. GROUND-STATE PROPERTIES

The critical behavior of the 2D Heisenberg model~1! is
reflected in our theory@cf. Eq. ~18!# by the closure of the
spectrum gap atQ as T→0, so that limT→0x21(Q)50.
FromvQ50, i.e., by Eq.~28! D50, we obtain the condition

112a3~C2,012C1,1!522C1,0~a112a2!, ~30!

and the spin-wave excitation spectrum

vq
2524C1,0@a1~12g2q!12a2~12gq8!#. ~31!

For q[uqu!1 we have

vq52A2C1,0~a11a2!q, ~32!

with the spin-wave velocity (cs) renormalization factorZc

5cs /&5A22C1,0(a11a2). By Eqs.~26! and~30! we get

x5
1

4~a11a2!
. ~33!

To calculate the correlation functions~20! with Eq. ~19! at
T50, we separate the condensation partC, arising from
vQ50, as follows:

CR5
1

N (
q

Mq
~1!

2vq
cosqR1C cosQR. ~34!

From the sum rule and Eqs.~21! and ~31! we have

C5
1

2
22A2C1,0

1

N (
q

I q ~35!

with

I q5~12gq!@a1~12g2q!12a2~12gq8!#21/2. ~36!

By Eqs.~34! and ~35! we get

CR5
1

2
cosQR12A2C1,0KR , ~37!

where

KR5
1

N (
q

I q~cosqR2cosQR!. ~38!

From Eq. ~37! the nearest-neighbor correlation function
obtained as

C1,052SAK1,0
2 1

1

2
2K1,0D 2

. ~39!

The staggered magnetizationm is calculated from Eq.~34!
according to

m25 lim
uRu→`

^S0SR&cosQR5
3

2
C ~40!

with C given by Eq.~35!. We see that, atT50, all quantities
may be expressed as functions of the vertex parametera1
anda2 .

In the casea25a1 ~cf. Sec. II!, Eq. ~31! yields the spec-
trum
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TABLE I. Ground-state properties~see text! compared with Monte Carlo data and other approaches

MC Case 1 Case 2 Ref. 11 Ref. 12

u 20.6693 ~Ref. 20! 20.7032 20.6693 20.7016 20.6701
m 0.3074 ~Ref. 20! 0.3134 0.2641 0.3000 0.2519
x 0.0446 ~Ref. 21! 0.0495 0.0569 0.0534 0.0604
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vq
25216a1C1,0~12gq

2! ~41!

which has the same shape as in traditional spin-wave theo5

To determinea1 anda2 at zero temperature, we take th
MC data for the ground-state energy per site,u53C1,0,20 the
staggered magnetizationm,20 and the rotationally average
uniform static susceptibilityx at T50 @obtained from
the susceptibility renormalization factorZx512x50.535
~Ref. 21!# which are listed in Table I. Inserting those qua
tities into Eqs.~39!, ~40!, and ~33! we get the relations be
tweena1(0) anda2(0) depicted in Fig. 1. The choicea2

5a1 discussed in Sec. II~where eitherm11 or u12 are used as
input quantities! and the unphysical regionC2,0.C1,1 below
the dashed line are also indicated. As can be seen, there
parameter choice which likewise fitsu, m, andx. However,
the shaded area marks the region of appropriatea~0! values.
To formulate conditions also at finite temperatures, where
vertex parameters are temperature dependent, we expres
two unknown parameters~by analogy with Ref. 11! in terms
of the ratiosr a i

5@a i(T)21#/@a1(T)21# ( i 52,3), since all

vertex parameters are suggested to approach unity at
temperatures. We treat two cases for the choice ofr a2

and

r a3
. In case 1, we choose the center of the shaded are

Fig. 1, i.e., a1(0)53.055 anda2(0)51.998, yielding by
Eqs.~30! and~37!, a3(0)52.634. Moreover, we assumer a2

and r a3
as temperature independent. In case 2, we keepr a2

from case 1 and take the MC data onu(T) ~Refs. 20 and 22!
to determiner a3

(T) @at T50, we geta1(0)52.610,a2(0)

51.782,a3(0)52.237; cf. Fig. 1#.
To sum up, in the evaluation of our theory over the who

temperature region we adopt the following conditions.

FIG. 1. Relations between the vertex parametersa1 and a2 at
T50 for given Monte Carlo data onu, m, andx ~cf. Table I!. The
choices in case 1~d!, case 2~s!, Ref. 11~j!, and Ref. 12~m! are
indicated. The dotted and dashed lines refer toa25a1 and C2,0

5C1,1, respectively.
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~i! Case 1:

r a25
a2~T!21

a1~T!21
50.4856,

r a35
a3~T!21

a1~T!21
50.7951. ~42!

~ii ! Case 2:

r a2
50.4856,

r a3
~T! from uMC~T!. ~43!

In Table I our ground-state results foru, m, and x are
given and compared with the MC data and the results
Refs. 11 and 12. Let us point out that in contrast to
approach by Sokolet al.,12 our values for the staggered ma
netization and the zero-temperature susceptibility in cas
are much closer to the MC data.

Considering spin correlations of arbitrary range, we ha
evaluated the correlation function~37! and compared the re
sults for C̃R5^S0SR&5 3

2 CR with the projector MC~PMC!
data by Liang.23 As shown in Table II, our theory reproduce
the PMC results within an average deviation of about 2
~13%! in case 2~case 1!.

Finally, let us consider the spin-wave spectrum~31! with
the shapevq /Zc shown in Fig. 2. Contrary to the conven
tional shapevq;(12gq

2)1/2 @cf. Eq. ~41!#, our theory with
a2Þa1 yields a slight minimum invq at q5(p,0). On the
other hand, Chenet al.24 have suggested from their PMC
data that the exact spectrum has the conventional form~41!.
This was also found by Kru¨ger and Schuck25 using a non-
spin-rotation-invariant projection method, whereZc51.188
agrees with the MC value of Ref. 20. In case 1~case 2! we
get Zc51.539 (1.400), as compared toZc51.480 andZc
51.360 obtained by Shimahara and Takada11 and Sokol
et al.,12 respectively. Those results indicate that our sp
rotation-invariant theory of SRO is less appropriate to d

TABLE II. Spin-correlation functionsC̃R5^S0SR& at T50
compared with projector Monte Carlo data~Ref. 23!.

PMC Case 1 Case 2

C̃1,0 20.3348 20.3516 20.3347

C̃1,1 0.2028 0.2247 0.2028

C̃2,0 0.1772 0.2069 0.1830

C̃2,1 20.1671 20.1906 20.1665

C̃2,2 0.1475 0.1683 0.1431

C̃3,0 20.1491 20.1706 20.1454

C̃3,1 0.1430 0.1626 0.1371
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scribe the excitation spectrum, but, as shown in Sec. IV,
more suitable for the description of thermodynamic prop
ties and correlation functions of arbitrary range over
whole temperature region~note that the approach of Ref. 2
yields uuu50.264 atT50 and does not allow the calculatio
of further-distant correlation functions!.

IV. FINITE-TEMPERATURE RESULTS

At nonzero temperatures (m50) we have solved the self
consistency equations~20! supplemented by conditions~42!
or ~43! to obtain the static spin susceptibilityx~q! for arbi-
trary q, the AFM correlation lengthj(T), the spin structure
factor Cq , and the two-spin correlation functionsCR of ar-
bitrary range. The vertex parameters are found to decre
with increasing temperature approaching unity at high te
peratures~cf. Sec. III!.

Our results for the uniform static susceptibility~26! are
shown in Fig. 3. In view of the susceptibility behavior ov
the whole temperature region in comparison with the M
data,22 cases 1 and 2 yield an improved description of
low-temperature susceptibility as compared with Refs.
and 12, respectively. The increase ofx with temperature, the

FIG. 2. Spin-wave spectrum atT50 in case 1~dashed!, case 2
~solid!, and in conventional spin-wave theory~dotted!. In each case
the results are scaled asvq /Zc .

FIG. 3. Uniform spin susceptibility in the cases 1~dashed! and 2
~solid! compared with MC data~d, Ref. 22! and the approaches o
Ref. 11~chain-dashed! and Ref. 12~dotted!.
is
-
e

se
-

e
1

maximum near the exchange energy, and the crossover t
high-temperature Curie-Weiss behavior are due to the
crease of AFM SRO with increasing temperature~see be-
low!.

In Fig. 4 the AFM correlation lengthj(T) given by Eq.
~27! is depicted, where in case 2 a very good agreement wit
the MC results26 at intermediate temperatures is found. T
obtain the low-temperature expansion ofj(T) up to the lead-
ing order, we expand the Bose contribution toCq in Eq. ~19!
around the AFM wave vectorQ. As T→0, this contribution
yields the condensation part ofCR @Eq. ~34!# and determines
the leading order ofD and of the correlation length. We
obtain

j52A@a1~0!1a2~0!#uC1,0~0!u
1

T

3expFp3 @a1~0!1a2~0!#
m2

T G . ~44!

Compared with the full temperature dependence ofj calcu-
lated by Eq.~27!, the expansion~44! holds up toT50.2
within a deviation of 9%. Note that the preexponential fac
T21 is an artifact of the mean-field approach. On the basis
the nonlinears model, Chakravartyet al.6 have shown that
the preexponential becomes a temperature-independent
factor, if a two-loop renormalization-group correction
taken into account.

The AFM structure factorC̃Q5^SQS2Q&5 3
2 CQ is plotted

in Fig. 5 as a function ofT2j2, since the renormalization

FIG. 4. Antiferromagnetic correlation length in the cases
~dashed! and 2~solid! compared with the MC data~d! of Ref. 26.

FIG. 5. Antiferromagnetic structure factorC̃Q5
3
2 CQ vs T2j2 in

cases 1~dashed! and 2~solid! compared with MC data~d, Ref. 26!.
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group analysis of the classical nonlinears model predicts the
scaling formC̃Q}T2j2.6 Our results in both cases 1 and
reproduce reasonably well the scaling behavior, where
case 2 the agreement with the MC data26 is satisfying. Con-
cerning the relation betweenC̃Q and the staggered suscep
bility x~Q!, at high (bvq!1) and low temperatures~bvq

!1 due to the exponentially small spectrum gapvQ5A2D!,
the expansion of Eq.~19! compared with Eq.~18! yields
C̃Q53Tx(Q).

To see in more detail the characteristics of AFM SRO
a function of spatial range and temperature, in Fig. 6
magnitude ofC̃R5^S0SR& with R5(n,0) is depicted in case
2. As can be seen, the decrease of SRO with increasing
perature is described in excellent agreement with the
data of Ref. 26.

Finally, let us compare our theory with experiments
La2CuO4. Taking the recent neutron-scattering data for
correlation length by Birgeneauet al.3 in the range 340,T
<820 K, we have determined the free parameterJ by a
least-squares fit shown in Fig. 7. We obtain (a53.79 Å)

J5 H108 meV,
133 meV,

case 1,
case 2. ~45!

Thereby, we have calculatedj(T) by Eq. ~27! instead of
using the low-temperature expansion~44! which is only
valid, according to Eq.~45!, below about 300 K. Our value
for the exchange energy agree very well with those obtai
from the comparison of numerical approaches with exp
ments @J5133 meV ~Ref. 20! from \cs51.68Ja
5850 meV Å andJ5125 meV ~Ref. 26! from the fit of
jMC(T)#. On the contrary, in previous analytical approach
the deduced values ofJ are found to be too low@J
578 meV ~Ref. 8! andJ586 meV ~Ref. 11!#.

As seen in Fig. 7, atT.500 K we obtain a very good
quantitative agreement with experiments. Such an agreem
was also found by Birgeneauet al.3 in the comparison of
their data with the theory by Hasenfratz and Niedermeyer7 if

FIG. 6. Spin-correlation functionsuC̃n,0u in case 2~3! at differ-
ent temperatures in comparison with the MC data~d! of Ref. 26.
in
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e

m-
C

e

d
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,

nt

the relations betweencs , rs , and J with J5135 meV are
used. Moreover, the excellent agreement of the neutr
scattering data with the theory of Ref. 7 extends down to 3
K. The deviation of our results from the Birgeneauet al.3

data below 500 K~cf. Fig. 7! is due to the appearance of th
preexponential factorT21 in Eq. ~44!.

As to the maximum in the uniform static spin susceptib
ity of La2CuO4, we determine the maximum temperatu
Tmax from Fig. 3 using the values ofJ given by Eq.~45!.
Thus, without any further fit, we get

Tmax5 H1545 K,
1535 K,

case 1,
case 2. ~46!

Those values agree rather well with the estimate given
Johnston,4 Tmax51460 K, by means of a scaling analysis
the susceptibility data below 800 K.

Considering both the correlation length and the magn
susceptibility of La2CuO4, our theory reasonably agrees wi
experiments. Whereas the nonlinear-s-model approach6,7

yields a better agreement with thej(T) data below 500 K, as
compared with our results~cf. Fig. 7!, the maximum in the
magnetic susceptibility cannot be described within the the
by Chakravartyet al.,6 since it is only valid atT!2prs
@2prs51.169J ~Ref. 20! .1800 K#.

V. SUMMARY

The basic ingredients of our spin-rotation-invariant theo
of short-range order~SRO! in the 2D Heisenberg antiferro
magnet are the following.

~i! The Green’s-function projection technique is use
where a two-operator basis~spin and its first time derivative!
is chosen and a generalized mean-field approximation is
ployed to calculate the dynamic spin susceptibility over
whole temperature region.

~ii ! The SRO is described in terms of two-spin correlati
functions of arbitrary range. Thereby, the third spectral m
ment is decoupled by use of vertex parameters.

FIG. 7. Inverse antiferromagnetic correlation length
La2CuO4 obtained by the neutron-scattering experiments of Re
~s, n, h,d! and from the fit of the theory in case 1~dashed! and
case 2~solid!.
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~iii ! The system of self-consistency equations is com
pleted by the choice of appropriate vertex-parameter con
tions.

Our approach provides a systematic treatment of spin c
relations. In particular, a more detailed analysis than in R
11 is given. In contrast to the mean-field approaches of Re
11 and 12, our theory allows a straightforward extensio
taking into account self-energy effects.

The theory is numerically evaluated at arbitrary temper
tures and wave vectors. The main results are summarized
follows.

~i! The uniform static spin susceptibility~revealing a
maximum near the exchange energy and a crossover to
Curie-Weiss law! exhibits an improved interpolation be-
tween the low-temperature and high-temperature behav
as compared with previous isotropic spin-wave approache

~ii ! The theory describes the spin correlations~correlation
length, pair-correlation functions! in very good agreement
with Monte Carlo data.
-
i-

r-
f.
s.
n

-
as

he

r,
s.

~iii ! The comparison with neutron-scattering experime
on La2CuO4 shows good quantitative agreement, where t
fit of the exchange energy yieldsJ5133 meV. The tempera-
ture of the maximum in the magnetic susceptibility
La2CuO4 agrees rather well with the experimental estimat

The good quantitative agreement of our theory with e
periments emphasizes the role of a strong SRO in the
prates. We conclude that the extension of the Green
function projection theory to thet-J model may be
promising to describe the doping dependence of SRO and
effects on the unconventional magnetic properties of highTc

compounds.
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