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Anomalous behavior at a superconducting quantum critical point
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Motivated by pressure experiments on YBand TLBa,CaCyOg, we discuss low-temperature effects of the
pairing interaction at a superconducting quantum critical point aheansystem. We point out that measure-
ments at this quantum critical point can provide a diagnostic tool to mark out non-BCS mechanisms of
superconductivity[S0163-182@07)03133-0

Current experimental studies keep multiplying the variety Indeed, at first sight “odd” pairing appears to be a quite
of examples of non-Fermi-liquidNFL) behavior in solid exotic and unlikely possibility. However, as pointed out in
state physics. Many heavy fermion compoundad high- Refs. 9 and 10, disappearance of the gap at the Fermi surface
temperature superconductofall into yet do not exhaust this affords superconductivity in a system wistrong Coulomb
growing class of materials. In many cases the origins of NFLrepulsion, where conventional types of pairing are rendered
behavior remain controversial. However, the growing bodyimpossible.
of experimental evidendeconfirms that in some itinerant Experimentally, our restriction of the problem to the
magnets such as MnSi and ZiZrthe unusual low- *“clean” case is supported by the observation of the large
temperature behavior appears due to closeness to the quaregative pressure coefficiedfT./dP in clean UBg; (Ref.
tum critical point. Indeed, the existing the6Rpredicts sin-  11) and, more recently, in clean ;Ha,CaCuyOg (Ref. 12 at
gular behavior in this case, and strong phenomenologicdtigh pressures. Were it possible to actually suppfiesso
arguments have been advanced for similar explanation afero, observation of nontrivial low-temperature behavior at
NFL behavior of certain heavy fermion systems such as.=0 would point at a very peculiar nature of superconduc-
Uo.2Y0sPds and UCy sPd, 5.° tivity in these compounds.

The problem arises whether NFL behavior can appear We will write down the effective interaction in the “odd”
near a zero-temperature superconducting transition. It hashannel and will calculate the leading low-temperature cor-
been studied extensively in cases when the transition tenrections to the specific heat and the conductivity at 0. To
peratureT . is suppressed to zero by perturbations which vio-make the presentation self-contained, we will briefly repeat
late the time reversal symmetry—such as magnetic field othe main steps of the derivation of the “odd” pairing state.
magnetic impuritie$.However, given both the time reversal For illustrative purposes, we will restrict ourselves to a toy
and the translational invariance, the question finds simplenodel in which the pairing is driven by separable attractive
answer: in the framework of the BCS thebnyairing inter-  interactionLq(&;,£,) of quasiparticles with energieg and
action cannot give rise to any anomalous behavior close tg,, which are both lower than certain cut-a#f, :°
the normal-to-superconducting transitionTat=0. The rea-
son is that the finite-temperature BCS instability occurs for s(é1lwe)s(éxlwe),  |&),|é| <o,
an arbitrarily weak effective attraction between electrons.  Lo(é1.62)=\ 0 £ 6] > o
The transition temperatufg, of a BCS superconductor turns ’ thsalm Fer
into zero only at the zero value of the coupling constant wheres(x) is an odd function, linear for<1. Such an at-
when pairing interaction vanishes together with all its mani-traction may aris€ as an antisymmetric part of a typical
festations. It is important to note that this also holds forboson-mediated interaction:

“unconventional” superconductors with nonzero orbital mo-
mentum of Cooper pairs. V(gl,gz)oc[wﬁ—(51—52)2]*1,

In this paper, we would like to point out th&-odd su- . )
perconducting pairintin a cleansystem is a model example Where w is the boson energy. The symmetric part of the
for which T, turns into zero at a finite value of. Hence Interaction must be repulsive and_ strong enough to suppress
singular contributions of the pairing interaction to the ther-‘€ven” pairing, as argued by Mila and AbraharsThis
modynamic and transport propertiesTat=0 do appear, as repulswe part may be du_e to |nter_act|ons other then th_ose
opposed to clean BCS or even “unconventional” Supercon_vvhlch generate the attraction. In this case the gap equation
ductors. ByC-odd we refer to the parity of the gap function

under the charge conjugatiéh Asymptotically close to the A =—N | dyLy(e,m) A(n)
Fermi surface this symmetry operation turns a particle into a - T=0Re ) S A2
: . Lo : N7 (m)
hole and is realized as reflection in the Fermi surface:
Skn«— — skn. Here sk denotes the deviation of the momen- V72 +A%(p)
tum from the Fermi surface along the local normaFor the xtanh 2T
sake of convenience, hereafter we will refer to theodd
pairing as to “odd.” admits only a nontrivial solution
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A(&p)=a(T)s(&p), wc.<ep, Where ec is the Fermi energy. In a simpler lan-
guage, this can be described as a crossover of the effective

which is odd in quasiparticle energg,. Here N is the  4irng interaction from quasidiffusive propagation at lowest
guasiparticle density of states at the Fermi surface. The 98Pequencies to “almost’(up to the logarithm soundlike

is isotropic, independent of frequency, and vanishes linearlyyonagation at higher frequencies. Such a crossover is by no
at the Fermi surface. Thus the ground state is gapless, gfeans unusuaf However, the logarithmic factor i) is
though it still manifests long-range order and is translatlon-quite peculiar; as we will show below, it modifies observable

ally invariant. ; e
i i physical properties in the temperature reglbh<T< w,.
The dependence di; on\ can be obtained by taking the ™ The yea) part offl(q,Q) at real frequencies follows di-

limit &(T)—0 in the gap equation, which results in rectly from (1) after the substitutiof(2|—i€Q and does not

we dé ¢ require any additional calculation:
1=)\NJ — s?(¢)tanh——.
o € © 2T, T\2 1(vg\? [Q)\? o
) ) ) ) 1-\ RdI(q,Q)=a|l —| +=z|—] —|—] In—.
Introducing the dimensionless coupling consiget\ N, one Wc 6\ wc O A

finds thatT. becomes equal to zero whem= g, such that . . . .
¢ a &Y. Calculating corrections to the specific heat and conductiv-

oo dE ity requires knowledge of the imaginary part of
1=9cf z S (&). L™ Y(q,Q+i0). At Q<T* this imaginary part comes in a
straightforward way from the termp QON’/N in (1), while at
Expanding the gap equation in the vicinity =0 and >T* it can be found by evaluating the imaginary part of
g=d., one finds the transition temperature dependence ohl(q,{1+i0):
g in the limit (g—9g.)/g.<1:

ImII(q,Q2+i0)
Tcocwc\/(g_gc)/gc- ( 0\2z 1 v 2
The separability ofL,(£,£¢') allows one to easily find the (w_c> t3 (w_c) ; T<Q,vq<Q,
effective pairing interaction by summing up the ladder series 3, 2
in the Cooper channel. This summation modifieg¢,£") l(wcvq), T<Q<vaq,
by introducing the denominator-INI1(q,Q), describing «{ Q[[Q\? 1/[vqg)\?
the pair propagation. In accordance with, Tilo T3 w—) . Qug<T,
Cc Cc
5 Q[T)?
11(9,0)=T> s%(£)G(»,p)G(Q—v,p—q). —|—, Q<T<vq.
v,p \ Vd \ o

HereG(»,p) is a single-electron Green’s function aéiglis ~ Hereafter Re and Im denote the real and the imaginary parts,

the electron spectrum in the absence of pairing. The sums arespectively. In two spatial dimensions, I{g,(2) differs

taken over the Matsubara frequeneyand momentunp, from the above expressions only by numerical values of the

while g and Q) denote the total momentum and Matsubaracoefficients.

frequency of the pair. Corrections to the specific heat and the conductivity can
Presence o$2(§p) makesII(0,0) finite; thus, the effective be evaluated separately in the “low-temperature” region,

interactionL(q,Q) has a pole only ii\>\.=1/M1(0,0), in T<T*, and in the “high-temperature region™ <T<w,.

full agreement with the result of the gap equation analysisin the former, one can neglect the ter@/(w.)? In[w./A] in

EvaluatingII(qg,{) on the linex=X\. in the (T,\) plane, (1), while in the latter it is the ternb|Q|N’/N which has to

one finds forT,Q,vQ<w.: be omitted.
The specific heat correction follows in a straightforward
L(q.0) Lo(€1.62) way from the contribution of Gaussian fluctuations of the
’ T\? 1/vq\? N’ 0\ w pairing interaction to the free enerdy.In the “low-
2 o *s (—) +b| Q| W*(w_) In += temperature” regionT<T*, the leading singular correction

(1) to the specific heat coefficient is

Hereafter is the Fermi velocitya andb are dimensionless AC 1 [w\® [T

nonuniversal constants of the order of L= max|Q|,vq, T} T (E—) \E

andN’ is the energy derivative of the density of states at the PR

Fermi surface. In the “high-temperature” regiom* <T<w., one finds a

For a generic band structurdl{+0), at the lowest ener- rather weak albeit nonanalytic correctionAC/T
gies the superconducting quantum critical point in an “odd” o« T?/In(w,/T).
superconductor falls into the=2 universality class, in The leading correction to the conductivity can be esti-
agreement with the hypothesis advanced by Heggarding mated by computing the Aslamazov-Larkin grdfhlescrib-
the nature of a normal-to-superconducting transition aing conduction of “superconducting fluctuations” as of par-
T.=0. However, as the frequency  exceedsticles with the propagatdc(qg,w). The formula, expressing
T* ~w§N’/N<wC, the crossover to “almost’z=1 takes the Aslamazov-Larkin correction throudh(q,w), is identi-
place. Generally, the assumptiegN’/N<1 is equivalentto cal to(7a) of Ref. 17 up to the constant coefficient and reads
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dz 1 imL 1012
m—z[m (p,z+i0)]°.

smhzﬁ

AazEp pZJ

Evaluating this expression @< T*, one finds a/T correc-
tion, which is quite unusual for a clean system:

At T*<T<w., the correction turns out to behave like
T/In*(w,/T). The above “high-temperature” correction is
also singular and has much stronger temperature depende
than the leadingT? term of a Fermi liquid. The Maki-
Thompson correctidfi turns out to be less singular: at
T<T* it behaves a3®?in three dimensions and sln T in
two.

For completeness, we would also like to specify the re

sults for two spatial dimensions. At<T* similar calcula-
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critical behavior clearly distinguishes it from a BCS super-
conductor. In the former the fluctuation corrections give
JT temperature dependences of conductivity and the specific
heat coefficient. This is a much stronger temperature depen-
dence than that of aleanFermi liquid system. To the con-
trary, in a BCS superconductor the fluctuation corrections are
absent altogether since the coupling constant vanishes at the
guantum critical point.

As envisaged by Hertzunder general circumstances the
effective pairing interaction at lowest frequencies falls into
thez=2 universality class. At higher frequencies, the cross-
over toz=1 regime takes place.
it is important to note that the above model of “odd”
pairing exemplifies a system in which anomalous low-
temperature behavior coexists with a perfect Fermi liquid,
since pair fluctuations decouple from the elementary Fermi
excitations due to disappearance of the gap at the Fermi

‘surfacet® This means that unusual low-temperature thermo-

dynamics and transport cannot serve as a proof of the Fermi

tions lead to & InT specific heat correction and to a strongly liquid breakdown, unless quasiparticle lifetime has been

divergent 1T correction to the conductivity. At

T*<T<w., the correction to the specific heat coefficient

behaves a3/In(w./T). However, the conductivity correction
is much more singularA o(T) o 1/In*(w,/T).

probed.
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