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Relaxation Mössbauer spectra under rf magnetic field excitation
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In the present study the general equations which describe the absorption Mo¨ssbauer spectra under radio-
frequency~rf! magnetic field excitation with arbitrary frequency and field strength have been derived. Within
our model chosen for a ferromagnet as a system of exchange-coupled~interacting! Stoner-Wohlfarth particles,
the evolution of the magnetization and the corresponding Mo¨ssbauer spectra as a function of temperature and
initial magnetization relaxation parameters are traced. It is found that the collapse effect is of a pronounced
threshold character with respect to the rf field strength and does not need strong rf fields for its realization. The
necessary condition for the observation of a collapse effect is only a rf amplitude causing the corresponding
magnetization curves to be symmetrical in time reversal. The theory developed allows us to perform calcula-
tions of Mössbauer spectra under rf magnetic field excitation and the corresponding magnetization curves~also
for multiphase systems such as modern nanostructured magnetic alloys!. The results are also useful in a
situation when the hyperfine field at the nuclei does not follow the rf magnetic field. This circumstance
determines the rather nontrivial transition from the collapsed line~in strong enough rf field! to the well-
resolved hyperfine structure~in weak rf field! and contributes therefore in understanding the selective partial
collapse effect.@S0163-1829~97!02033-X#
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I. INTRODUCTION

More than 20 years ago, Pfeiffer1,2 presented57Fe Möss-
bauer transmission experiments exposing a Permalloy
sorber to radio frequency~rf! magnetic fields, in which the r
collapse effect has been observed. The well-resolved m
netically split spectrum was found to collapse in a stro
enough rf field to a single central line of nearly natural lin
width. Later, this effect was often observed in other s
magnetic materials.3–8 In recent time, the phenomenon h
become of special interest due to the high efficiency
Mössbauer spectroscopy with rf excitation in the study
modern nanocrystalline magnetic alloys9–11 and with the dis-
covery of the partial selective collapse effect.10 Pfeiffer sug-
gested a simple physical explanation of the effect. The m
netization of the sample that exhibits soft enough magn
properties will be switched in the direction following th
external magnetic rf field. Because the hyperfine field vec
at the nuclei is strongly coupled to the magnetic moment
the atoms, it also starts to change its direction in respons
the rf field, so that it is always antialigned~at iron nuclei!
with the applied field. Suppose that~i! the rf-field frequency
is higher than the Larmor frequency of the nuclei in th
hyperfine field and~ii ! the rf-field amplitude is strong enoug
to drive the magnetization into saturation. In this case
magnetic hyperfine field at the nucleus will be averaged
zero and a single line~or a quadrupole doublet! pattern is
expected to appear in the spectrum.

Along with the collapsed spectrum symmetric pairs
560163-1829/97/56~9!/5489~11!/$10.00
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sidebands located at6nv rf ~v rf is the rf-field frequency!
observed in Ref. 1, similar sidebands in the absence of
collapse effect were observed earlier in Mo¨ssbauer
spectra12,13 and treated as acoustically modulated sideba
due to the magnetostriction in the sample. Pfeiffer also as
ciated the appearance of sidebands only with magnetos
tion effects and even considered the fact of their appeara
along with the collapsed line as evidence for the tempera
of the sample under investigation being below the Curie te
perature, which eliminates the appearance of the collap
line due to rf sample heating above the Curie tempera
point. In the following experimental studies of the collap
effect, a broadened collapsed line with no visible sideba
was observed at definite conditions.5,6 The latter made the
hypothesis of the magnetostriction origin of sidebands m
reliable. However, the following theoretical works show
that the reversal of the sample’s magnetization should n
essarily result also in the appearance of sidebands even w
magnetostriction vanishes.14–16 The sideband appearance
due to the formation of energy quasilevels in the nucl
Zeeman subsystem under a fluctuating hyperfine field.17 As a
result, up to now the mechanism of sideband formation in
presence of the collapse effect remains open to some ex

The rf collapse effect is revealed in clear form only in
fields strong enough. In weak or intermediate fields, a v
rich and complex picture of the transformation of Mo¨ssbauer
spectra is observed.4–11 However, up to now there is no
theory that describes the transformation of Mo¨ssbauer spec
tra under excitation by rf fields of arbitrary strength even in
5489 © 1997 The American Physical Society
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simplified manner. The theoretical works mentioned abo
already in their basis, were motivated to describe the abs
tion Mössbauer spectra only in the limiting case of strong
field and were founded completely on the criteria propo
by Pfeiffer for the explanation of the collapse effect. Expe
mental spectra influenced by weak rf fields were not a
lyzed at all and often not cited.

The present work is just dedicated to the developmen
a theory describing absorption Mo¨ssbauer spectra under e
citation of the sample by a rf field of arbitrary strength. T
theory is based on the assumption of a stochastic natur
the time evolution of the hyperfine fieldHhf(t). The mag-
netic dynamics of a system does not strictly prescribe
time dependence ofHhf(t), but defines only stochastic pa
rameters of the time trajectories ofHhf(t). The complete se
of expressions for absorption Mo¨ssbauer spectra can be d
rived for rf fields of arbitrary frequency and strength. For t
case of strong rf fields, the expressions make the ‘‘determ
istic’’ description of Hhf(t) be possible, and the known re
sults for absorption spectra are derived.16 The theory needs
some clearly defined model to describe the magnetic dyn
ics of the system due to both thermal fluctuations and rf-fi
excitation. First of all, we will follow the ideas of Stoner an
Wohlfarth18 and consider a ferromagnet as an ensemble
single-domain particles~or clusters!. Between the particles
we assume an interaction which can be of exchange an
dipole-dipole type. Further, we assume that the excha
interaction within a single particle exceeds the excha
and/or dipole-dipole interactions between the particles. T
magnetic relaxation parameters of the system are evalu
in the framework of the molecular-field approximation. The
results are used to perform a calculation of the samp
magnetization and in the development of the theory desc
ing the Mössbauer spectra under rf magnetic fields. T
model seems to be the most appropriate for the ensembl
superparamagnetic particles19,20 and magnetic alloys consis
ing of nanocrystalline and amorphous phases.9–11 It also
leads to a deeper understanding what the partial selec
collapse effect is. Recently10 it was experimentally found
that in nanostructured ferromagnetic alloys the colla
effect is able to distinguish between the different phas
It appears only partially at the selective location of t
nanograins.

First of all, this closed model establishes the crite
needed for observation of the collapse effect. Pfeiffer’s c
teria are sufficient to observe the collapse effect; howeve
reality the effect can be found at less stringent limitations
is found that the transition from the collapsed line to t
visually resolved hyperfine structure occurs in a very narr
interval of the rf-field strength aroundha and is accompanied
by qualitative changes in the magnetization-reversal proc
The magnetic hysteresis curves above and below this tra
tion point ha are absolutely different in character: Ath
.ha the hysteresis curve is symmetrical for rf-field revers
and ath,ha there is no such symmetry, but there exist tw
hysteresis curves transformed one into another with time
versal.

In Sec. III, a general equation for absorption spectra
derived. Even in its final representation, it appears to
rather complicated. The spectra are represented as a do
integral over operator functions, and the operators are ev
,
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ated by means of the solution of nonlinear equations,
number of which may be rather great for systems with
number of phases and distributions of parameters of p
ticles. Nevertheless, the calculation of the Mo¨ssbauer spectra
can be performed using a normal PC for systems in wh
the number of parameters exceeds one hundred. In the
iting case of fast relaxation, symplified equations for abso
tion Mössbauer spectra are derived. In order to clarify
qualitative behavior of Mo¨ssbauer spectra under rf-field e
citation, we will assume that the forced magnetostricti
vanishes completely.

II. FOUNDATION OF THE PROBLEM

In magnetic materials subjected to a time-dependent m
netic field ~i.e., rf field!, complicated relaxation processe
occur, which manifest themselves macroscopically, for
stance, as a magnetization reversal with pronounced hy
esis behavior. The same processes influence absorp
Mössbauer spectra. The shape of the spectra reflects m
detailed information about the magnetic relaxation proces
than magnetization measurements do. It is obvious that
magnetization reversal cannot be homogeneous over
sample’s bulk because of the anisotropy energy and is go
on in steps through particular small pieces if the latter
predetermined somehow by peculiarities of preparation
structure of the magnetic material as well as by excha
interactions. The most striking example here is a system
superparamagnetic particles, in which exchange interact
within a single particle exceed magnetic interactions betw
the particles. The experimental preparation technique of s
systems allows both the particle’s size and average dista
between them to be controlled within a wide range.21 Be-
cause of the presence of magnetic anisotropy energy or s
energy for particles of cubic symmetry, the magnetic m
ment of a single particle influenced by an external varia
magnetic field cannot change its direction continuously a
fluctuates between directions along the easiest magnetiza
axis. In general, such fluctuations are random in chara
and do not occur simultaneously for all particles. Moreov
in reality there are usually distributions of particles over
rections of the easiest magnetization axis~texture!, volumes,
and local nearest neighborhoods in the systems. The hy
fine fieldsHhf at nuclei in such a system obviously follow
changes in magnetic moments of particular particles and
those in the magnetic moment of the whole sample. Since
direction of a magnetic moment for a single particle chan
in time stochastically, theHhf(t) direction also will change
to some extent in time randomly. The relaxation model fo
single magnetic particle and a particle system will be de
mined in the next section, and right now we come to a de
vation of the general expression for absorption Mo¨ssbauer
spectra based only on the stochastic character ofHhf(t).

Let the time-dependent hyperfine fieldHhf(t) influence a
nucleus. Suppose it is always parallel to a certainz axis
while its value can vary arbitrarily including changes in si
to opposite one. In this case the Hamiltonian of the syst
can be written as

Ĥ5Ĥ01gmNÎ zHhf~ t !1V̂gN~ t0!, ~1!



a
te
tio

c

e
m

el

n
n
d

n

to
d
th
d-
In

ld
hi
itt

ned

of
s in
of
nd

by
e
t

r, it
ate

te

me
r
tes

ed

56 5491RELAXATION MÖSSBAUER SPECTRA UNDER rf . . .
where the HamiltonianĤ0 describes the energy levels of
nucleus in ground and excited states with no hyperfine in
action; the second term describes the hyperfine interac
Hereg is the nuclearg factor,mN is the nuclear magneton,I z
is the projection of nuclear spin on the hyperfine field dire
tion; V̂gN(t0) describes the interaction between theg quan-
tum and nucleus, andt0 is the switching on time of the
interaction.22 The timet0 is usually ignored, but there is th
time-dependent rf field in our case, which has its zero ti
reference; sot0 should be retained.

The wave functions of the groundcm(t) and excited
cM(t) nuclear states in the time-dependent hyperfine fi
can be defined as

cm~ t !5expF2 iggmNmE
t0

t

Hhf~ t8!dt8G um&,

~2!

cM~ t !5expF2 igemNME
t0

t

Hhf~ t8!dt8

1S i
E0

\
2

G0

2 D ~ t2t0!G uM &.

HereggmN andgemN are the nuclear magnetic moments,m
and M are the projections of nuclear spin on the hyperfi
field direction in the ground and excited states, correspo
ing, andE0 andG0 are the energy and width of the excite
nuclear level.

According to the general theory of the resona
radiation,22 the amplitude of absorption of theg quantum
with energyE5\v is given by

cmM~v!5E
t0

`

^cM* ~ t !uV̂gN~ t0!eiv~ t2t0!ucm~ t !&dt

[VmME
t0

`

expF E
t0

t

ivmM~ t8!dt81 i ṽ~ t2t0!Gdt,

~3!

wherevmM(t)5(geM2ggm)mNHhf(t), ṽ5v1 iG0/2, and
VmM are the matrix elements of the nuclear current opera
which include the Mo¨ssbauer effect probability. The square
modulus of the absorption amplitude is used to define
absorption cross section.22 However, such a procedure is a
equate only with no external perturbations like a rf field.
the presence of a rf field, the averaging over zero timet0
must be done. Because of the strict periodicity of the rf fie
it is obvious that the averaging should be performed wit
one period. Then the absorption cross section can be wr
as

s~v!5sa(
a

uÑau2w~a,v!, ~4!

where
r-
n.

-

e

d

e
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t

r,

e

,
n
en

w~a,v!

5
1

Trf
E

0

TrfK U E
t0

`

expH E
t0

t

i @ṽ2va~ t8!#dt8J dtU2L dt0

[
1

Trf
E

0

Trf
dt0E

t0

`

dt1 exp@2G0~ t12t0!#E
t1

`

dt

3K expH E
t1

t

i @ṽ2va~ t8!#dt8J L 1c.c. ~5!

Heresa5 f anas0ta is the effective absorber thickness,f a is
the probability of the Mo¨ssbauer effect in the absorber,na is
the density of resonant nuclei in the absorber,s0 is the trans-
verse resonant absorption cross section, andta is the ab-
sorber thickness;a5(m,M ); the coefficientsCa denote the
intensities of the corresponding transitions and are defi
through the Clebsch-Gordan coefficients;Trf52p/v rf is the
rf-field period.

Along with averaging over the rf-field period in Eq.~5!,
stochastic averaging over different time trajectories
Hhf(t) is to be performed, which is denoted as the bracket
Eq. ~5!. In order to understand clearly the way of solving
the problem, we will consider the case with no rf field a
render the deduction following the procedure suggested
Anderson.23,24 According to the latter, we assume that th
function Hhf(t) is given by a uniform Markoff process; tha
is, the hyperfine fieldHhf(t) can take onn discrete values
Hhf

(k) and fluctuates stochastically between them. Moreove
is assumed that the probability of a transition from the st
k1 to k2 for a small time intervalDt is given as

Pk1k2
~Dt !5pk1k2

Dt at k1Þk2 , ~6!

wherepk1k2
is the probability of thek1 to k2 transition per

unit time. Then the probability to stay within the current sta
for Dt is defined by the obvious condition

(
k2

Pk1k2
~Dt !51, ~7!

whence it appears

Pk1k1
~Dt !512 (

k1Þk2

pk1k2
Dt. ~8!

In this case the stochastic averaging over different ti
trajectories ofHhf(t) in Eq. ~5! is reduced to averaging ove
all possible combinations of transitions between the sta
Hhf

(k) . Let us divide the time interval (t1 ,t) into n equally
spacedDt steps. In accordance with what is mention
above, the expression in the brackets in Eq.~5! can be writ-
ten as

K expH E
t1

t

i @v2va~ t8!#dt8J L
5 (

k,k1 , . . . ,kn

Wk~ t1!ei ~ṽ2va
~k!

!DtPkk1
~Dt !

3ei ~ṽ2v
a

~k1!
!Dt . . . Pkn21kn

~Dt !. ~9!
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Hereva
(k)5(geM2ggm)mNHhf

(k) , andWk(t1) is the popula-
tion of the statek at t1 . For the subsequent work it is con
venient to introduce the matrix of hyperfine transitionsv̂a

and the relaxation matrixP̂, which are determined as

~v̂a!kk1
5va

~k!dkk1
, ~10!

~ P̂!kk1
5pkk1

at kÞk1 , ~11!

~ P̂!kk52 (
k1Þk

pkk1
. ~12!

Taking into account the notation and Eq.~8!, Eq. ~9! can be
reduced to the matrix representation

K expH E
t1

t

i @ṽ2va~ t8!#dt8J L
5^W~ t1!u)

k
ei @ṽ2v̂a2 P̂~ tk!#Dtu1&, ~13!

where tk5t11(k21)Dt, ^W(t1)u is the population vector
and u1& is the unity column.

In the absence of a rf field, the relaxation constants
well as the operatorP̂ do not depend on time. Besides tha
^W(t)u are the equilibrium population vectors and are a
time independent. Then Eq.~13! can be reduced to the ex
pression

K expH E
t1

t

i @ṽ2va~ t8!#dt8J L 5^W0uei ~ṽ2v̂a2 P̂!~ t2t1!u1&,

~14!

and, correspondingly, Eq.~5! becomes of the simple form

w~a,v!5
1

G0
K W0U i

ṽ2v̂a1 i P̂
U1L 1c.c. ~15!

This is the conventional representation of the relaxat
Mössbauer spectra, based on which the absorption sp
are practically analyzed in most of the works~see, for in-
stance, the review in Ref. 25!.

III. RELAXATION MO ¨ SSBAUER SPECTRA
UNDER rf MAGNETIC-FIELD EXCITATION:

GENERAL EQUATIONS

Let us have a look at Eq.~5!. Taking into account the
periodicity of the rf field, it can be transformed to an esse
tially simpler form. The integration overt0 can be performed
by parts, which results in
s

o

n
tra

-

w~a,v!5
1

G0Trf
H E

0

Trf
dt1E

t1

`

dt

3K expH E
t1

t

i @ṽ2va~ t8!#dt8J L
1E

0

`

dt1e2G0t1E
t1

`

dt

3F K expH E
t1

t

i @ṽ2va~ t81Trf!#dtJ L
2K expH E

t1

t

i @ṽ2va~ t8!#dt8J L G J 1c.c.

~16!

From the periodicity of rf field, it can be easily shown th
the second term in Eq.~16! is canceled and this equation
reduced to the form

w~a,v!5
1

G0Trf
E

0

Trf
dt1E

t1

`

dt

3K expH E
t1

t

i @ṽ2va~ t8!#dt8J L 1c.c. ~17!

The expression of the stochastic average in the brackets
regards to the time-dependent relaxation parameters has
obtained in the previous section and is determined by
~13!. The averaging procedure hardly differs from that f
the relaxation parameters being constant. However, in
case we cannot come from Eq.~13! to Eq. ~14!.

Let us introduce the operator

Ĝ~ t1 ,t !5 lim
Dt→0

)
k51

n

ei @2v̂a2 P̂~ tk!#Dt

5T̂ expH E
t1

t

dt8@2 i v̂a2 P̂~ t8!#J , ~18!

whereT̂ is the time-ordering operator which acts followin
the rule

T̂A~ t !B~ t8!5 HA~ t !B~ t8!, t.t8,
B~ t8!A~ t !, t8.t.

In accordance with the definition and the periodicity of the
field, the operatorĜ(t1 ,t) has the properties

Ĝ~ t1 ,t !5Ĝ~ t1 ,t2!Ĝ~ t2 ,t ! at t1,t2,t, ~19!

Ĝ~ t11Trf ,t1Trf!5Ĝ~ t1 ,t !. ~20!

Taking into account Eqs.~9! and ~18!, Eq. ~5! is reduced to

w~a,v!5
1

G0Trf
E

0

Trf
dt1E

t1

`

dt^W~ t1!uei ṽ~ t2t1!Ĝ~ t1 ,t !u1&

1c.c. ~21!
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FIG. 1. State of a particle with opposite direc
tions of the magnetic momentM in external mag-
netic fieldh @~a,b!# and scheme of the transition
between these two states~b!.
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Taking into consideration Eqs.~19! and~20!, Eq. ~21! can be
reduced to a form that is more convenient for practical c
culations:

w~a,v!5
1

G0Trf
E

0

Trf
dt1E

t1

t11Trf
dt

3^W~ t1!u
exp@ i ṽ~ t2t1!#

12exp~ i ṽTrf!Ĝ~ t1 ,t11Trf!

3Ĝ~ t1 ,t !u1&1c.c. ~22!

This representation where integration is performed in fin
terms is the most appropriate for computer calculations.
tually, Eqs. ~21! and ~22! replace the known Singwi
Sjolander equation26 when the sample is subjected to a va
able magnetic field. This resultsolves the considere
problem completelyand delivers the shape of absorptio
Mössbauer spectra in the presence of relaxation and rf-
perturbation, provided that the magnetic dynamics of the s
tem is known. In general form, the time evolution of th
population vector̂ W(t1)u is described by the equation

^W~ t1!uĜ0~ t1 ,t !5^W~ t !u, ~23!

whereĜ0(t1 ,t) is determined by Eq.~18! at va50. Equa-
tions ~21!–~23! can be used for a wide variety of relaxatio
processes.

IV. RELAXATION MODEL AND DYNAMICS
OF A MAGNETIC SYSTEM

In the following we propose an example of a model d
scribing the magnetic relaxation processes in a ferromag
Let us consider a ferromagnet as an ensemble of Sto
Wohlfarth particles and suppose that exchange interact
within a single particle exceed the exchange and/or dip
dipole interactions between the particles. The interaction
tween particles will be taken into consideration within t
molecular-field approximation, in which the interaction
described in terms of an exchange fieldhex proportional to
the magnetizationM (t) of the whole sample:

hex5cexM ~ t !, ~24!

wherecex is a factor that determines the Curie temperature
seen below. If the particles are of the same kind, equal
ume, and the sample’s bulk is closely packed with the p
ticles, M (t) coincides with the specific magnetization of
single particle.
l-

e
-

ld
s-

-
et.
r-

ns
-

e-

s
l-
r-

Along with the exchange interaction, the magnetic anis
ropy energy of a particular particle should be taken into c
sideration, which is used to be determined as

Ean5KV0sin2u, ~25!

whereK is the magnetic anisotropy energy constant,V0 is
the volume of the particle, andu is the angle between th
magnetization vector and its easy direction in the partic
Below, we will suppose that the magnetic anisotropy ene
is much greater than temperature:

KV0@kBT. ~26!

If the condition is valid, then such a particle may stay only
two states with opposite directions of its magnetic mome
Under thermal fluctuations the particle jumps from one st
to another~see Fig. 1!. With neither external magnetic field
nor the exchange interaction between the particles, th
states are equally populated, and the transition frequen
p12 andp21 are equal to each other. In an external magne
field h, the states appear to be variously populated:

w1,2
0 5

exp~6Eh /kBT!

exp~Eh /kBT!1exp~2Eh /kBT!
, ~27!

where

Eh5M0V0h ~28!

and M0 is the specific saturation magnetization of a sing
particle.

In accordance with Eqs.~27! and ~28!, the equilibrium
magnetic moment of a particle is determined by the equa

m0~T!5M0~T!/M0tanh~M0V0h/kBT!. ~29!

In the absence of an external field,h5hex, and according to
Eq. ~24!, we find

m0~T!5tanh@m0~T!TC /T#, ~30!

where

TC5M0
2V0cex/kB . ~31!

HereTC is the Curie temperature. In the paramagnetic ran
at T.TC only the trivial solutionM0(T)50 exists, while at
T,TC , in the ferromagnetic state, a nonzero solution exis
In our case, in a system of identical particles,M0(T) is just
the specific magnetization of the whole sample.

In an external magnetic fieldh, along with changes in the
equilibrium populations, the probabilities of transitions b
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5494 56A. M. AFANAS’EV, M. A. CHUEV, AND J. HESSE
tween the equilibrium states change too and become fu
tions of the applied field. Determination of the field depe
dences of the relaxation parameters is a quite complic
problem.27 However, the relation between the relaxation p
rameters, which is defined by the detailed balancing p
ciple, remains valid:

w1
0p125w2

0p21. ~32!

For definition, we suppose that the energy of magnetic in
actions is rather smaller than the magnetic anisotropy ene
that is,

Eh!Ean. ~33!

In this case the probabilities of transitions can be written

p125p0exp@~2Ean1Eh!/kBT#,
~34!

p215p0exp@~2Ean2Eh!/kBT#,

wherep0 is a constant. Equations~34! will be used for the
calculation of both the magnetization curves and Mo¨ssbauer
spectra. Since the relaxation process in this case is of u
barrier nature, the external magnetic field may change
relaxation parameters by several orders of magnitude. N
that for strong magnetic fields more accurate equations
be used.27

As easily seen from Eqs.~23!, the time evolution of the
magnetic moment of a particle subjected to an externa
field,

hrf~ t !5h0cos~v rft !, ~35!

is described within a simple equation

dm~ t !

dt
52p~ t !@m~ t !2m0~T!#, ~36!

where

m~ t !5M ~ t !/M0 , p~ t !5p12„h~ t !…1p21„h~ t !…,

andm0(t) is given by Eq.~29!, in which h is to be replaced
by

h5hex1hrf~ t !. ~37!

Equation~36! is to be supplemented with initial condition
In our case the latter is the periodic boundary condition

m~ t1Trf!5m~ t !. ~38!

In solving the nonlinear equation~36!, one should use Eq
~29!, along with Eq.~38!. Examples of the solution of thes
equations will be presented in the following sections inclu
ing the hysteresis curves.

Let us turn to the general equations~21! and ~22!. The
matrix i v̂a1 P̂(t) that appears therein can be written as
c-
-
ed
-
-

r-
y,

s

er
e
te
an

rf

-

i v̂a1 P̂~ t !5S iva1p12~ t ! 2p12~ t !

2p21~ t ! 2 iva1p21~ t !
D , ~39!

and the population vector components are determined a

w1,2~ t !5 1
2 @16m~ t !#. ~40!

Taking into account thatm(t) can be evaluated according t
the procedure discussed above, Eqs.~39! and ~40! allow the
absorption Mo¨ssbauer spectra to be calculated.

V. FAST RELAXATION REGIME

As can be understood from the above, the shape of
sorption Mössbauer spectra is a complicated function of
rf-field frequency and strength, Larmor frequencies, and
laxation parameters as well. In the general case calculat
of the spectra are rather extensive, and the general equa
cannot be simplified without any assumptions. However,
several limiting cases, two of which will be considered b
low, Eqs.~21! and ~22! can be greatly simplified.

Let us consider a situation when the relaxation proces
extremely fast so that the parameter

p~0!5p0exp~2Ean/kBT!, ~41!

which determines an ‘‘initial’’ relaxation of ferromagneti
particles with no external magnetic field, appears to be m
greater than both the rf-field frequency and Larmor f
quency:

p~0!@v rf ,va . ~42!

In the limit of high p(0) one can neglect the left part of Eq
~36! and get

m~ t !5M ~ t !/M05tanh@~m~ t !1hrf~ t !/hex
~0!!TC /T#,

~43!

wherehex
(0)5cexM0 .

Suppose that the sample’s temperature is belowTC . Then
there are two qualitatively different kinds of solution of E
~36! as a function of the rf-field strengthh0 . At h0 greater
than a threshold fieldha , Eq. ~36! has the only solution
symmetrical with respect to time reversal. Ath0,ha there
exist two solutions, each of which transforms into the oth
with time reversal. It can be easily found that the thresh
field is determined from

ha5hex
~0!HA12T/TC2

T

2TC
lnF2TC

T
~11A12T/TC!21G J .

~44!

Naturally,ha depends on temperature and the dependenc
shown in Fig. 2. The characteristic magnetization curves
hysteresis loops are shown in Fig. 3. In high fieldsh0 the
hysteresis behavior corresponds to simple physical con
tions. The fieldh0 breaks off the exchange interactions, a
due to the fast relaxation processes, the particle’s magn
moment has time to change its direction, which results in
hysteresis curve being symmetrical with respect to time
versal. In a small magnetic field insufficient for magnetiz
tion reversal, the magnetic moment of a particle as well
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that of the whole sample may slightly oscillate around
equilibrium state which is, generally speaking, determin
by the initial state of the whole sample or particular doma
In a ferromagnet, there are two such states with oppo
directions of the sample’s magnetic moment with respec
the rf magnetic-field axis. In principle, the states are ab
lutely equivalent, but either the initial state of the who
sample before rf-field switching on or an additional sm
magnetic field predetermines the alternative of the two so
tions. The transition from one regime to another occurs
definite values ofh0 when the sample’s state with the ma
netic moment direction opposite to the rf-field direction b
comes absolutely unstable. Within the fast relaxation lim
the system falls down to the state with the magnetic mom
aligned parallel with the rf field applied at the moment.
this case, a distinctive symmetry breaking of the magn
system in the external rf field takes place. It is similar
thermodynamical considerations concerning the broken s
metry in ferromagnets. Here it is, on principle, impossible
determine the direction of a magnetic moment of the wh
sample~or a particular domain! while an extremely smal
constant magnetic field predetermines the direction. W
the relaxation processes are not extremely fast, the trans
from one regime to another is going on more or le
smoothly ~see Fig. 4!. Note that the value of the thresho
field in the whole temperature range, except for the lo
temperature region, appears to be considerably smaller
the temperature averaged and exchange fieldhex(T)
5hex

(0)M (T)/M0 , the temperature dependence of which
also presented in Fig. 3.

Now let us turn to Eq.~18!. Let l i(t) be the eigenvalues
and uu( i )(t)& and ^v ( i )(t)u be the right and left eigenvector
of the matrixi v̂a1 P̂(t). Then each factor in Eq.~18! can be
represented in the form

ei @2v̂a2 P̂~ tk!#Dt5(
j 51

n

e2 il~ tk!uu~1!~ tk!&^v ~ f !~ tk!u. ~45!

In the case of a two-level system, the matrixi v̂a1 P̂(t) is
represented by Eq.~45! where in the fast relaxation limit

p5p121p21@va ~46!

FIG. 2. Temperature dependence of the threshold fieldha and
exchange fieldhex normalized tohex

(0) .
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and the eigenvalues and eigenvectors are easily found t

l1~ t !5v̄a~ t !5vam~ t !, uu~1!~ t !&5S 1
1D ,

^v ~1!~ t !u5„w1~ t !,w2~ t !…,

l2~ t !5p, uu~2!~ t !&5S 2w2~ t !
w1~ t ! D , ^v ~2!~ t !u5~21,1!,

~47!

wherew1,2(t) is defined by Eq.~40!. If the inequality~46! is
held, the only term withj 51 in the sum overj on the right
of Eq. ~45! can be kept, the other terms vanishing in the f
relaxation limit. As a result, the operatorĜ(t1 ,t) is defined
by the simple equation

Ĝ~ t1 ,t !5expF2 i E
t1

t

v̄a~ t8!dt8G S w1~ t ! w2~ t !

w1~ t ! w2~ t !
D .

~48!

Then, a new representation of the functionw(a,v) from Eq.
~21! is easily found to be

w~a,v!5
1

G0Trf
E

0

Trf
dt1E

0

`

dt

3expH 2 i E
0

t

@ṽ2v̄a~ t81t1!#dt8J 1c.c.

~49!

FIG. 3. Magnetization curves~left! in a 100-MHz rf field at
T/TC50.5 for different rf-field strengths: h0 /hex55.0, 0.2665,
0.2664, and 0.01 from~a! to ~d! and corresponding absorptio
Mössbauer spectra~right! at vL560 MHz in the fast relaxation re-
gime.
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This equation by analogy with Eq.~22! is reduced to a form
more appropriate for concrete calculations:

w~a,v!5
1

G0Trf
E

0

Trf
dt1E

0

Trf
dt

3
exp@ i ṽt2 i *0

t v̄a~ t81t1!dt8#

12exp@ i ṽTrf2 i *0
Trfv̄a~ t81t1!dt8#

1c.c.

~50!

Note that Eqs.~49! and ~50! do not include the population
w1,2(t) which appear in the initial equations~21! and ~22!:
however, the magnetism does not vanish completely, bu
involved in the equations for the absorption spectra thro
the functionv̄a defined within Eq.~47!.

Figure 3 shows also the absorption Mo¨ssbauer spectra fo
different values of the rf-field strengthh0 , which have been
calculated within Eqs.~4! and~50!. At high h0 much greater
thanhex, when the external rf field breaks off the exchan
interactions, the magnetization reversal, suggested by
iffer as a condition to observe the collapse effect, is realiz
That is, the sample’s magnetic moment follows the exter
rf field almost everywhere, except for a smallhrf(t) range
@Fig. 3~a!#. When the rf-field direction changes to the opp
site one, the magnetic moment changes its direction alm
simultaneously to the opposite. Besides that, according
Eq. ~47!, the hyperfine field at the nuclei always follows th
sample’s magnetic moment. For the whole rf-field perio
the hyperfine field is completely averaged to zero so that
resulting absorption spectrum looks like a single line acco
panied by weak sidebands, which is in accordance with
lier theoretical predictions. With decreasingh0 the hysteresis
curves change in shape, and in the vicinity of the thresh
field ha the magnetic moment does not completely follow t
rf field @Fig. 3~b!#, but for half the timem(t) appears to be
oriented in the direction opposite with respect to the rf-fie
direction. Nevertheless, as seen from Fig. 3~b!, the collapse
effect is realized in a complete manner with slight change
the line shape.Thus, in order to observe the complete co
lapse effect, it is sufficient that the hyperfine field be av
aged to zero for the rf-field period and it is not necessa
that the magnetic moment totally follow the rf field. Besides
that, a rather weak rf-field strength considerably smaller t
the exchange field one is quite enough to give rise to
collapse effect. With further decreasingh0 , just at the point
where it becomes smaller thanha , the process of magneti
zation reversal changes abruptly in character, as has
discussed already, and a well-resolved sextet appears in
absorption spectra@Fig. 3~c!#. At lower h0 values the mag-
netization curve and the spectra change slightly. Thus, in
fast relaxation limit, the collapse effect is of pronounc
threshold character. Ath0,ha the well-resolved hyperfine
structure is to be observed, while ath0.ha the collapsed
spectrum is revealed.

When the relaxation is not extremely fast, the gene
equation ~22! should be used to calculate the absorpt
spectra. In this case the external-field dependence of the
laxation constants must be known, and Eqs.~36! and ~39!
will be used below. Figure 4 shows the magnetization cur
and absorption Mo¨ssbauer spectra for the case when the
is
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laxation constantp(0) is only twice greater than the rf-field
frequency. In this situation it is already possible to trace th
characteristic features of the transition from the collapse
line to the resolved spectrum. In approaching the thresho
point from high-rf-field strength, a strong broadening of the
spectrum occurs, and as seen from Figs. 4~b! and 4~c!, the
intensities of sidebands decrease. A similar picture reveals
approachingha from weak fieldsh0 , a partial averaging of
the hyperfine field and broadening of particular spectral line
occur @Figs. 4~c! and 4~d!#, the outmost lines being broad-
ened more strongly than the inner ones. Note that even
this case, when the relaxation process is not so fast andp(0)

is only twice the rf-field frequency, the transition takes plac
in a rather narrow range of the rf-field strength. The rf-field
strengths for Figs. 4~b! and 4~d! differ only by several frac-
tions of a percent. Nevertheless, the transition interval is a
ready much broader than that in the fast relaxation lim
where the transition widthDh/ha can be very small in the
range of about 1027.

VI. MULTIPHASE SYSTEMS

It is obvious that in real situations it is difficult to find a
system that consists of identical particles. Indeed, there a

FIG. 4. Magnetization curves~left! in the 100-MHz rf field at
T/TC50.5 for different rf-field strengths: h0 /hex50.4, 0.327,
0.3263, 0.3262, 0.326, and 0.25 from from~a! to ~f! and corre-
sponding absorption Mo¨ssbauer spectra~right! at vL560 MHz in
the fast, but finite relaxation regime atp(0)5200 Mhz.
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spreads in the volumeV0i and the orientation of particlesni
as well as the system may contain a number of differ
phases which differ in the specific saturation magnetic m
mentsM0i , the anisotropy energy, and, therefore, the rel
ation parameterspi(t), and also in the constantscex

( i ) . The
dynamics of a magnetic system will be described by co
bined equations like Eq.~36! for particles of different kinds:

dMi~ t !

dt
52pi~ t !@Mi~ t !2M0i~T!#, ~51!

where the indexi denotes particles of a particular kind andni
is the unit vector along thei th magnetic moment direction
Then the sample’s magnetic moment can be determined

M ~ t !5(
i

giM inni , ~52!

wheren is the unit vector along the sample’s magnetic m
ment direction, which is supposed to be aligned along
magnetic rf field, andgi is the weight factor for particles o
the i th kind. With that the ‘‘equilibrium’’ magnetic momen
of a particle will be defined through the average one
means of

M0i~T!5M0i tanhFacih̃i~ t !
TC

T G ~53!

where

h̃i~ t !5@m~ t !1hrf~ t !/hex
~0!!nni ,

m~ t !5(
i

giM i~ t !nniY (
i

giM0inni ,

kBTC5(
i

gicex
~ i !V0iM0i

2 ~nni !
2,

hex
~0!5(

i
gicex

~ i !M0inni ,

aci5M0iV0i(
k

gkM0knnkY (
k

gkM0k
2 V0k~nnk!

2.

Note that Eqs.~51! are not independent, but coupled in
nonlinear manner through Eqs.~52!. Nevertheless, the solu
tion of such equations, when the number of them is not
ceeding 100, can be performed even using personal com
ers.

As an example, consider the case when the sample
single-phase magnetic system consisting of particles of e
volume, but their easiest magnetization axes are distribu
uniformly over all directions. The corresponding magnetiz
tion curves and absorption spectra for two close values of
rf-field strength are shown in Figs. 5~a! and 5~c!. Addition-
ally, the hysteresis curves and corresponding partial spe
for particles whose easiest magnetization axes are orie
t
-
-

-

s

-
e
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-
ut-

a
al

ed
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e

tra
ed

by the angleu510°, 45°, and 80° with respect to the rf-fiel
direction are shown@Figs. 5~b! and 5~d!#. As seen from the
figure, for each group of particles the hysteresis curves
fer, but they are similar to each other and to that for t
whole sample in their character. That is, ath0 greater than a
threshold field all the curves are symmetrical in time rev
sal, and ath0 lower than the threshold field there are tw
solutions, which transform one into another with time rev
sal, for both particles of a certain kind and the whole samp
@There are no dual solutions in Fig. 5~d! from visual aids.#
Figure 6 shows the absorption Mo¨ssbauer spectra in a wide
range of the rf-field strengths. Despite the character of
hysteresis curves changing abruptly withh0 crossing the
threshold field, there are no sharp changes in the spe
within the field transition, as has been observed above for
case of a single particle, and a rather smooth transition fr
the collapsed line to the resolved hyperfine structure occ
The character of this transition differs qualitatively for th
approach to the transition point from high and low fiel
h0 . In a strong rf field, a narrow single line is observe
together with weak sidebands. Their appearance in the h
h0 limit is according with the results of earlier theoretic
calculations,16 while with h0 decreasing the central lin
broadens to some extent and the intensities of sidebands
creases. In approaching the threshold field, the intensitie
the sidebands practically vanish. It is clear from the abo
analysis that it is hardly possible to derive any simple d
scription of the field dependence of the intensities of si
bands. In the region of low rf field, the transition appears

FIG. 5. Magnetization curves and Mo¨ssbauer spectra in the 100
MHz rf field with h0 /hex50.2910 ~a! and 0.2905~c! at T/TC

50.5, vL560 MHz, andp(0)5200 MHz for a distribution of easi-
est magnetization axes of particular particles.~b!, and ~d! are the
corresponding partial magnetization curves and subspectra for
ticles with u510° ~crossed line!, 45° ~dotted line!, and 80°~solid
line!. Dual solution is not presented in~d!.
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be essentially more prolonged. As seen from Fig. 5~d!, the
hysteresis curves for particles with different orientations
the easiest magnetization axes strongly differ near the t
sition point and, correspondingly, that is true for Mo¨ssbauer
spectra. Since the resulting spectrum is a superpositio
partial ones for particles of different kind, the field depe
dence of the spectral shape is observed down to rather lo
field, which becomes apparent as remarkable line shifts
changes in shapes of particular lines.

In similar manner the calculations of Mo¨ssbauer spectra
can be performed in the presence of distribution of partic
over their volumes and for multiphase systems as well as
the cases when all the distributions mentioned take pla
However, there are a variety of situations so that the prob
needs to be specially studied, which will be done elsewh

FIG. 6. Mössbauer spectra in the 100-MHz rf field of differe
strengthsh0 /hex51.0, 0.3, 0.2908, 0.2906, and 0.28, and 0.0
from ~a! to ~g! at T/TC50.5, vL560 MHz, andp(0)5200 MHz for
a uniform distribution of easiest magnetization axes of the partic
m

f
n-

of
-
rf

nd

s
or
e.
m
e.

VII. CONCLUSIONS

Thus, in the present study, the general equations wh
describe the transformation of absorption Mo¨ssbauer spectra
under rf-field excitation with arbitrary rf-field frequency an
strength have been derived. Within the model chosen fo
ferromagnet as a system of interacting Stoner-Wohlfa
single-domain particles, the evolution of the spectra a
function of temperature and the initial relaxation paramet
can be traced. It is found that the collapse effect is o
pronounced threshold character with respect to the rf-fi
strength and does not need strong rf fields for its realizat
The effect reveals in clear form even in rf fields by far low
than the exchange and dipole-dipole fields. The neces
condition for the observation of the collapse effect is only
rf field of such a strength that the corresponding magnet
tion curves would be symmetrical in time reversal.

The theory developed allows the corresponding calcu
tions for multiphase systems to be performed which, from
theoretical point of view, are also interesting by the fact th
therein evidently occurs a situation when the resulting sp
trum is a superposition of partial ones for particular sup
paramagnetic particles and the hyperfine field at nuclei d
not follow the total magnetic moment of the whole samp
but the magnetic moment of a particular particle. This c
cumstance determines a rather nontrivial transition from
collapsed line~in a strong enough rf field! to the well-
resolved hyperfine structure~in a weak rf field!.

In real conditions a number of factors should be taken i
account to describe the experimental data. Due to the
nounced threshold specificity of the effect near the transit
field, it is necessary to take into consideration a small spr
in the values of parameters such as temperature and w
constant magnetic field as well as the rf field strength,
latter inevitably arising due to the skin effect. Averagin
over the distributions of the parameters is directly perform
on the basis of the derived equations and offers no spe
complication. Besides that, the rf field may cause additio
spectral lines appearing as sidebands similar to that du
magnetostriction. Within the until now existing theories, th
effect only is taken into account in terms of a simple mu
plication of the initial spectrum at corresponding periods~see
Ref. 12!. All these problems need to be studied in detail a
will be considered for future work.
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