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We employ a plaquette basis—generated by coupling the four spins in2alttice to a well-defined total
angular momentum—for the study of Heisenberg ladders with antiferromagnetic coupling. Matrix elements of
the Hamiltonian in this basis are evaluated using standard techniques in angular-mor(RRatain algebra.

We show by exact diagonalization of smallX2 and 2< 6) systems that in excess of 90% of the ground-state
probability is contained in a very small number of basis states. These few basis states can be used to define a
severely truncated basis which we use to approximate low-lying exact eigenstates. We show how, in this
low-energy basis, the isotropic spin-1/2 Heisenberg ladder can be mapped onto an anisotropic spin-1 ladder for
which the coupling along the rungs is much stronger than the coupling between the rungs. The mapping
thereby generates two distinct energy scales which greatly facilitates understanding the dynamics of the
original spin-1/2 ladder. Moreover, we use these insights to define an effective low-energy Hamiltonian in
accordance to the contractor renormalization gr@d@RE method. We show how a simple range-2 CORE
approximation to the effective Hamiltonian to be used with our truncated basis reproduces the low-energy
spectrum of the exact’26 theory at thes1% level.[S0163-18207)06433-3

I. INTRODUCTION elements of the Hamiltonian are trivially computed in this
basis. Yet, it is unlikely that th&, basis represents the “op-
Interest in the study of ladder compounds has been stimuimal” choice for the study of Heisenberg antiferromagnets
lated by suggestions that these deceptively simple materialsith isotropic coupling.
could exhibit some of the critical behavior believed to be Recent discussions of the possible utility of alternative
responsible  for high-temperature (high-T.) super- bases for the study of the ladder materials by Martins, Dag-
conductivity!> Moreover, these ladder materials—built one otto, and Rierd have stimulated us to examine this issue.
chain at a time—could bridge the transition from the one-The initial step in our program was to rediscover the
dimensional1D) chains, where large simulations are carried“plaquette” basis® and then to examine how it might be
out routinely, to the two-dimension&D) structures that are used in the study of spin ladders. A particularly appealing
known to be at the heart of the high- compounds. Al- feature of the plaguette basis—generated from the coupling
though this might very well be the case, the road from one t®f the four spins in a X2 lattice to a well-defined total
two dimensions has been full g¢fuantum surprise<. In- angular momentum—is that the states in the basis are the
deed, it is now known that some of the properties common t@igenstates of the largest two-leg ladder that can be solved in
the 1D and 2D systems—such as the absence of a spin gapelosed form. By this mere fact, it is clear that much of the
are only shared by the odd-leg ladders. In contrast, even-leignportant physics of the problem has been incorporated into
ladders have a finite spin gap which should manifest itself irthe basis. Obviously, an important component of our pro-
the form of an exponential behavior of the magnetic suscepgram is the evaluation of matrix elements of the Hamil-
tibility at low temperatures; thisexponentiagl activation has tonian. It is for this that we rely heavily on the sophisticated
been confirmed experimentafly Finally, the excitement apparatus of angular-momentum algébrd that has been
about the ladder materials has recently been fueled even fudeveloped in atomi¢ and nuclear physi¢$'® over many
ther by some preliminary reports that suggest a supercoryears.
ducting transition in some physical realizations of the ladders Our paper has been organized as follows. In Sec. Il we
at a critical temperature of abolit=12 K> describe the plaquette basis and compute all the necessary
An arsenal of numerical approaches has been employed toatrix elements of the Hamiltonian. In Sec. Il we study
elucidate the physics of the ladder materials. This includesmall 2<4 and 2<6 ladders to illustrate the advantage of
exact and Lanczos diagonalization techniqtiegyantum our approach. In particular, we define a severely truncated
Monte Carlo methods, and a density-matrix- basis which includes only the four lowest, out of 16, one-
renormalization-group approafhWhile these techniques plaquette energy levels. We use the contractor
have achieved a high degree of sophistication, the selectiorenormalizatio® (CORB method to construct a low-energy
of a basis has not. Indeed, the overwhelming majority—ifeffective Hamiltonian to be used with the truncated basis and
not all—of the calculations reported in the literature havefind that the exact eigenvalues of the three-plaquette system
relied on the traditional S,” basis. Undoubtedly, the big- are very accurately reproduced. Finally, we summarize in
gest advantage of tHg, basis is its simplicity. Indeed, matrix Sec. IV.
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II. FORMALISM

The focus of our paper is the plaquette basis. This basis i,s1

generated from the coupling of the four spins in a
2X 2 plaquette to a well-defined total angular momentum

To define the basis and to illustrate most of the technique$

it is sufficient to concentrate on the X2 (or two-
plaquette¢ antiferromagnet with isotropic nearest-neighbor
couplingJ=1. Moreover, we restrict ourselves to t8e 1/2
case,
few modifications to arbitrary spin. Indeed, we exploit
this flexibility when, in Sec Ill, we discuss spin-1 ladders

which are in some sense equivalent to the spin-1/2
ladders discussed in this section. The model Hamiltonian is

given—adopting open boundary conditions—by

H=%_)> S-S =Hq(1)+Hp(2)+V(1,2), (1)
where(i,j) denotes nearest-neighbor sites and
Ho(1)=S,-$1+5,-5+5-5+ 5S4, (2a)
Ho(2)=S5-S+ S-S+ S-S+ 5+ S, (2b)
V(1,2=S3;-5+54- S5 (20

Note that this simple two-leg ladder is formed from
two interactingn=4 spin chains; spins on the leftight)
chain are labeled with oddever numbers. Moreover,
Ho represents the Hamiltonian of an isolatedx 2
system, while V(1,2) is the coupling “potential.”
The 2xX2 Hamiltonian H—a simple “antiferromagnet”
(Ref. 10—can be rewritten in the following
form:

1
Ho(1)=(S1+S)-(S+ ) =Ly Ly=5(J-LI-L3),
()
where we have defined
momentum variables, respectively, as

Li=S+S; L=5+S;;

Ji=L1+L,=5+S+$+S,. 4

The physically appealing feature of the plaquette basis is that

Hg is diagonal in this basis. That is,

1
Ho(1)[l4l5,j1my) = E[jl(jl+ H—1y(1,+1)

=Lyl + )74l j1my). 5

It is interesting to note that one needs to couple the spin

along the diagonal—which are the only spins that do not

interact—in order to bring the Hamiltonian into a diagonal
form. The eigenvalues and eigenvectors of the2Hamil-
tonian have been listed in Table I. It is also instructive to
write  the ground state of Hy, namely, the
[I,=1,=1,j,=m,;=0) state, in terms of th&, basis. That is,
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although the formalism can be applied with1

link and plaquette angular-
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TABLE |. Eigenvalues and eigenvectors of th&2 system.

(P i1 E Degeneracy
1 1 0 -2 1
1 1 -1 3
0 0 0 0 1
0 1 1 0 3
1 0 1 0 3
1 2 +1 5

1 1 1
o) = LI+ =3 111D =3 11110)

1 1
=5 T =51L1). ®)

This simple finding, namely the strong fragmentation of the
ground-state probability in théS, basis—but not in the
plaguette basis—represents one of our central results.

The most challenging part of the calculation in the
plaguette basis is the computation of the matrix elements of
the coupling potential/(1,2); recall that in theS, basis ma-
trix elements of the Hamiltonian can be evaluated by inspec-
tion. Although by no means trivial, the sort of computations
which arise in this new basis are done routinely in atdthic
and nuclear physic¥:'® Indeed, over the years a sophisti-
cated formalism—known generically as Racah algebra—has
been developed to tackle these computatidrtd.lt is on
these techniques that we rely heavily to compute the matrix
elements ol/(1,2). We find
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FIG. 1. Distribution of strength for the ground state of the
2X 4 Hamiltonian in theS, basis and in the plaquette basis.
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Note that we have defined= \2x+ 1 and that ther signin  observed for the ground state remain valid in this case as
the above expression should be adopted Whenevé/ﬂe”.. Based on this eVidence, .We be”eye that the plaquette
L+ 15+15+14+]1+ji+j,+]s=evenfodd. Aside from basis could prove very useful in numerical computations of
simple phases and numerical factors, the matrix elements ¢fdder compounds.

V(1,2) depend on scalar functiofiise., independent ofm)
known as Racah coefficients; here we cast the matrix ele-
ments in terms of the more symmetric-¢ symbolst!? . .
Closed-form expressions are readily available for the nu- Given that most of the physics of the ground stated of

merical computation of thes@nd many othérrecoupling  the low-lying excited statgss contained in a very few num-
coefficientsl” bers of plaguette-basis states, it seems natural to attempt

B. Contractor renormalization group method

IIl. APPLICATIONS 05 1 T T T T T

In the present section we concentrate on smaX 42and
2X6) ladders to illustrate some of the advantages of the new
basis. Our aim is to provide convincing evidence, by means
of a few simple examples, of the utility of the plaquette
basis. Hopefully, the evidence will be strong enough to per-
suade some researchers in the field to exploit this basis in
future calculations.

I(jl=1’j2=0)j=1> g S;-Basis (56 states)

Plaquette-Basis (28 states)

N
»~
I

<« I(j,=0,j,=1)j=1>

e
w

A. Distribution of ground-state strength

In Fig. 1 we display the ground-state probabilities
({a|¥e)|? with @ an element of the bagidor the 2x4
Hamiltonian. This picture emphasizes what was already evi-
dent from Eq.(6), namely, a strong fragmentation of ground-
state strength among the mafi§0) states in theS, basis.
Indeed, the only basis states containing a nontrivial amount j
(~15%) of strength are thestaggerefiNeel states. In con-
trast, in the plaguette basis a single state carries 85% of the
ground-state probability and with two states one can practi-
cally account for the full probability. Moreover, this picture
deteriorates little as one increases the size of the system.
Indeed, for a X6 system one basis state—out of 132— 0.0 LIy ]l fln) li{n/liilion..
carries in excess of 70% of the ground-state probability and 0 10 20 N 30 40 50
with only three states one can account for almost 90% of it.

In Fig. 2 we show the corresponding distribution of strength  FIG. 2. Distribution of strength for the first-excited state of the
for the first excited state of the system. Most of the featureg x4 Hamiltonian in theS, basis and in the plaquette basis.
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some form of truncation of the basis so that larger system8,). This is the 2<4 Hamiltonian of Eq(2). In constructing
may be more readily simulated in the computer. The choicghe various contributions to the cluster expansion one must
becomes obvious upon glancing at Table I; one should retaipay particular attention to the overlaps between the exact
the first four states, having energiés=—2 andE=-1 eigenstates of the original Hamiltonian and the low-energy
(threefold degenerale respectively. Note that with this basis. Since it is simpler to study these overlaps in Hilbert
choice the link angular momenta—the high-energy degreespaces which reflect the symmetries of the Hamiltonian, we
of freedom in the theory—have been “frozen” at work with a low-energy basis of definite total spin; recall
[,=1,=1, while the plaguette angular momentum, havingthat [H,J]=0, whereJ=S=%,;S is the total spin of the
values ofj;=0,1, becomes the effective low-energy degreesystem.
of freedom in the new theory. In this way the original theory = We start with thej =0 sector. In this sector, there are 14
defined on a 16-dimensional Hilbert spa@eer plaquette  eigenstates of the exact& Hamiltonian, while there are
will get mapped into a new effective theory having the sameonly two low-energy states in the truncated basis, namely,
low-energy physics as the original theory, but defined on a¢,)=|j;=j,=0,j=m=0) and |¢,)=|j;=j,=1,j=m
Hilbert space of one-fourth the size. The low-energy effec-=0). These two states have a nonzero overlap with the exact
tive theory will now be constructed using the contractorground statelEg°)>. Indeed, these are the two states that
renormalization grougCORE) method*® dominate the ground-state probability in Fig. 1. In particular,
CORE provides a systematic approach at constructing thghis implies that both of these basis states will “contract”

new low-energy theory using contraction and cluster-onto the same eigenstate of the Hamiltonian, i.e.,
expansion techniques. The first step into the implementation

of CORE is the selection of an “elementary” t_)lock and a lime ™M ¢)<|EX)Y and lime ™| p,)=|EL). (9)
truncation scheme. In our case the block is thx22 t—oo t—oo

plaquette and the truncation scheme has been described )

above; the link variables become frozen and the plaquette ORE demands that only one low-energy basis state should
variable is limited to take the valugs=0,1. Constructing an contract into the ground state. CORE also offers a simple
effective Hamiltonian with the same low-energy propertiesSelution to this problem: construct a new truncated basis by
as the original theory—on a system that contains only onerforming a similarity transformation on the original one so

single block B,)—is straightforward. We obtain that each state in the new basis)(contracts onto a unique
eigenstate of the exact Hamiltonian, i.e.,

- . 1 .
<J1m1|Heﬁ(Bl)|]1ml>:[§]1(Jl+1)_2}5j1j15m1m1- |ime_tH|§l>oc|EE)0)> but |ime_tH|§2>o<|E(10)>,
® o t
This low-energy Hamiltonian constitutes the range-1 term in
the cluster expansion and is denotedtyyB,)=H.«(B;). whereE{” is the second lowest eigenvalue of the Hamil-
One now proceeds to calculate the range-2 contribution ttonian in thej =0 sector. This is all that is needed. In this

the cluster expansion by computing an effective Hamiltoniarway, the relevant matrix elements of the effective Hamil-
on a system that contains two connected blocBg &nd  tonian in thej =0 sector become

— 0

(10

EY 0
0o EY?

cosy —sind,

(j1i2i=0[|He(B1,Bp)||j1j2i=0) = ( sinf, cosy (11

—sinfy, coY,

cosy  sind, )

whereE{”= —4.293,E{”)= — 2,500, andd,= — 18.482°.

The construction of the effective Hamiltonian in the 1 sector proceeds in a similar fashion. In this sector there are 28
eigenstates and three low-energy basis stédash with a threefold degeneracyrhese arg ¢3)=|j;=1j,=0,j=1m),
|pa)=|j1=0j,=1j=1m), and|¢s)=|j1=]j,=1,j=1m). Since, in this particular case, only the first two states need to be
transformed, the similarity transformation can again be parametrized in terms of a single angle. That is,

cosy; —sing; 0 E" O 0 cosd; sind; O
(12 =1||Hei(B1,B2)|]j1] 2=1)= sinfy  cosdy 0 0 B 0 sinfy  cosdy 0 , (12
0 0 1 0 o EW 0 o 1

2

whereE{=—3.523,E(!=—2.915,E{Y= —2.590, andg, =45°.
Finally, since (up to a fivefold degeneragythere is a uniquej=2 state in the low energy basis, namely,
|ps)=|j1=]j»=1,j=2m), the effective Hamiltonian in this sector is simply given by

(j1i%i =2|[Hef(B1,By)||j1j 2] =2) = E{’ = —2.207. (13

Collecting all the above results we can now write the effectived42low-energy Hamiltonian in the direct product basis:
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<j:,Lmi-jémé|Heff(BlaBZ)|jlmlaj2m2>: 5mi+mé,m1+m2; <]i] éJ ||Heﬁ(BlvBZ)||j1j ZJ><J:,Lm:,L-Jémé|J m:/L+mé>

X(j1my,jomplj my+my), (14

where (j;my,j.m,|jm) are Clebsch-Gordan coefficients. V(1,2=S;S+5,- S5
The range-2 contribution to the cluster expansion is obtained

by simply removing fromH(B;,B,) those range-1 terms E ) )
that have already been included in the single-block calcula- - 4[(SZJr S (S50 F(S1+S) - (SetS7)]
tion, i.e., 1
=lLiLatLaLs] (19
h2(B1,B2) =He(B1,B2) —h1(B1)—hy(By). (19 4

To construct the renormalized Hamiltonian one must conHence, in the truncated basis—which carries much of the
tinue this procedure, indefinitely, on larger and larger conimportant physics of the problem—the isotropic two-
nected blocks. Here we will stop at the range-2 contributionplaquette spin-1/2 system is equivalent to a one-plaquette
Note that for our choice of basis, this range-2 approximatiorspin-1 system where the coupling along the rungs
already takes into account correlations among next-to-nextL;-L,+L3-L,) is four times as strong as the coupling be-
nearest neighbors. The approximatep to range-2renor-  yyeen the rungsi[L,-L4+L,-L3]). In this context our ba-
malized Hamiltonian becomes sis is optimal in the sense that the much stronger “rung”

couplings are diagonal in it. We also note that this mapping,

- in conjunction with CORE techniques similar to those dis-

Hien= ]241 [h1(Bj)+ha(B;,Bj.1)]. (16) cussed above, is likely to provide a useful starting point for

formulating a renormalization group transformation which

It is instructive to use this approximation to compute theCan permit us to estimate properties of infinite ladders. This
low-energy spectrum of the>26 (three-plaguetteHeisen-  Will be the topic of a future publication.

berg antiferromagnet. For this case, the range-2 approxima- !N Table Il we display the low-energy spectrum of the
tion yields 2X 6 Hamiltonian using a variety of approximations; the ra-

tio to the exact value appears in parenthesis. Recall that the
_ spectrum has been computed with open boundary conditions.
= + + + + . - . : .
Hren=h1(B1) TN (B2) +h1(B3) +ha(B1,Bo) hZ(BZ'Bi) The states have been classified according to their total spin,
which is listed in the first column. In the second column we

This expression is useful as it suggests when the cluster exePort the results from an extreme “weak-coupling” calcu-
pansion might become rapidly convergent. If an optimal balation. In this approximation the’22 plaquettes are treated
sis has been chosen—provided that one exists—one mig§&actly but the residual interaction between the plaquettes is
hope that most of the low-energy spectrum could be genemeglectedi.e., V(j,j+1)=0; see Eq(2)]. We observe that
ated by the range_l terms, |eaving the range_z terms |ﬁt the 80—-90% Ievel, the Spectrum iS, indEEd, accounted for
charge of the fine tuning. Alternatively, an optimal basisPy the mere selection of the basis. In the third column we
could generate—dynamically—two energy scales in thdeport a calculation which uses the exact @ Hamiltonian
problem; a large one associated with physics within thedut with the truncated low-energy basis. Departures from the
blocks and a small one associated with the “residual interexact results are only 5-10 %. In principle, this truncation
action” between the blocks. Our investigations show that—could enable the simulations of larger systems, as the num-
for our truncated basis—such is indeed the case. First, onleer of states increases with the number of plaquett&d (
can simply compare the individual matrix elementsipiand ~ only as 4%, rather than as #'. However, in many applica-

h,. Those of the former are typically four to eight times tions, this level of accuracy may still be insufficient. Amaz-
larger than those of the latter. Second, one can arrive at th@gdly, a dramatic improvement on these calculations results
same conclusion by mapping the original isotropic spin-1/2rom expending the very little additional effort required to
ladder onto an equivalent anisotropic spin-1 ladder as folconstruct the CORE effective Hamiltonian for the truncated

yield results that range from a fraction of 1% to a few per-

cent of the exact answer. Note that these results were ob-
Ho(1) +Ho(2)= (511 Sy) - (S+S) + (S5t ) - (S S) tained by the diagonalization of—at most—200 matrices;
=L LotLa Ly (18  instead, the exact calculation in tBgbasis requires a diago-
nalization of a 924 924 matrix. In the near future, we plan
In the truncated basis, all link angular momenta are 1; henc® use this renormalized Hamiltonian, perhaps including
the L; are spin-1 operators. Now consider range-3 contributions, to simulate larger systems.
V(1,2)=(S;- S5+S4-Ss). In the truncated basis, symmetries  We conclude this section with a brief comment about the
permit the interaction to be written as doping of the ladders. In order to gain some gqualitative in-
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TABLE II. Low-lying spectrum for the 2 6 Heisenberg ladder. The different approximations are ex-
plained in the text. Quantities in parenthesis represent the ratio to the exact value.

S Weak coupling Truncated COREange-2 Exact
0 —6.000 (0.909) —-6.335 (0.959) —6.588 (0.998) —-6.603
—4.000 (0.818) —4.396 (0.899) —4.899 (1.002) —4.888
—4.000 (0.836) —4.250 (0.889) —4.882 (1.021) —4.783
1 —5.000 (0.844) ~5.580 (0.942) —~5.928 (1.001) ~5.924
—5.000 (0.909) —5.112 (0.930) —5.458 (0.993) —5.498
—5.000 (0.983) —4.666 (0.917) —5.132 (1.009) —5.087
—4.000 (0.797) —4.538 (0.905) —5.092 (1.015) -5.017
—4.000 (0.850) —-4.125 (0.877) —4.809 (1.022) —4.705
2 —4.000 (0.823) —4.413 (0.908) —4.862 (1.000) —4.862
—4.000 (0.925) —3.875 (0.890) —4.426 (1.017) —4.352
3 —3.000 (0.895) —2.750 (0.821) —3.414 (1.019) -3.351
sight into the nature of hole correlations, Dagotto and col- IV. CONCLUSIONS

laborators introduced two energy scales in the problem: a

large exchange coupling’ along the rungs relative to a . i ) ! )
small exchange coupling along the chain They observed tiferromagnetic Heisenberg ladders. The states in the basis

that if a pair of holes is added to the system, the energy wilfepresent the eigenstates of the 2 plaquette _and are con-
get minimized whenever the two holes go into the same rungtructéd from the angular-momentum coupling of the four
in the ladder. Further, they concluded by means of numericatPins in the plaquette. Matrix elements of the Hamiltonian
evidence that most of the arguments developed for the anisdrere computed in this basis and were expressed in terms of a
tropic case remain valid even whédh~J; note that to date, Product of five Racah coefficients. These expressions are
the physical realization of the ladders seem to obey the iso=onsiderably more complicated than the corresponding ones
tropic relation? In this paper we have only considered the obtained using the convention8} basis. Yet, they can be
isotropic case. A particularly gratifying aspect of the map-efficiently computed by employing angular-momentum tech-
ping described above is the natural appearance in the isotroiques that have been developed over the years in atomic and
pic system of distinct energy scales in the effective spin-Inuclear physics. Moreover, this basis seems to capture some
ladder. This appears to permit carrying over the arguments a¥f the important physics of these complicated systems. In-
Dagotto and collaborators with little modification. Now it is deed, we have shown that the distribution of ground-state
the rungs on the spin-1 ladder which are strongly boundand first-excited-state strength is concentrated in a very few
consisting of a pair of “frozen” spin triplets coupled to an number of states. This is in contrast to tebasis where the
overall angular momentum of zero; interactions betweerstrength is strongly fragmented. This concentration of
rungs are relatively weak. In terms of the original spin-1/2strength among a few states provides a very natural trunca-
ladder, we may conclude that individual plaquettes interaction scheme for the basis. We selected a low-energy basis
only weakly. Hence the weak-coupling limit defined abovewhich reduces the size of the Hilbert space by a factor of 4
should be a reasonable approximation when applied to verger plaquette. By using the original ¥%) Hamiltonian in
large systems just as we have found it to be by comparinghis truncated space we obtained a low-energy spectrum that
with exact results for the three-plaquette case. In this limit itwas within 10% of the exact answer. However, by improving
is simple to see that the ground state of the system consistse Hamiltonian—via CORE—we were able to get within
of all plaquettes being in the lowept0 state, with energy 1% of the exact answer. Moreover, the mere selection of the
per plaguette of-2 (see Table)l When a pair of holes is basis dynamically generates two-energy scales in the
introduced into the system the holes can go into two differenproblem—even in the case of an isotropic coupling. This
plaquettes at a cost in energy ©f2 (the lowest energy of phenomenon is most clearly understood by mapping the
three spins in a plagquette is equal+td). Alternatively, the  original isotropic spin-1/2 ladder onto an effective spin-1
holes can go into a rung—or along a chain—in the samdadder in which the coupling along rungs is four times stron-
plaquette at a cost in energy of5/4 (the lowest energy of ger than the coupling between rungs. This separation of
two spins in a plaquette is equal t63/4). Hence, it becomes scales is important for the development of qualitative in-
energetically favorable for the two holes to bind and break asights into the nature of hole doping. In particular, it supports
few j =0 plaquettes as possible. Moreover, as another pair dhe notion that holes will go into the ladders in such a way as
holes is added into the system, it becomes energeticallio disturb the minimum number gf=0 plaquettes.
favorable—at least for holes with no mobility—for the four ~ We emphasize that our main goal was the introduction of
holes to go into the same plaquette, rather than for the newn optimal basis that could prove useful in numerical com-
pair to break another plaquette. putations of the ladder compounds. Ideally, one would test

We have employed a plaquette basis for the study of an-
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this assertion by using a variety of numerical techniques inMuch work remains to be done, such as the implementation

cluding Lanczos approaches. In the present paper we haw# a Lanczos diagonalization procedure and the study of

restricted such investigations to the implementation of thdarger systems using the renormalized rangés2 even

CORE method. Although the utility of CORE as a viable range-3 CORE Hamiltonian. Yet, we believe that the mere

numerical technique is yet to be established, the selection afelection of a basis could play a prominent role in the eluci-

an efficient truncation scheme—which is linked to the selecdation of the important physics behind the ladder materials.

tion of the basis—is a necessary condition for the success of

the method. We have shown that sqch a trucation schem_e ACKNOWLEDGMENTS
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