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Plaquette basis for the study of Heisenberg ladders
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~Received 16 December 1996!

We employ a plaquette basis—generated by coupling the four spins in a 232 lattice to a well-defined total
angular momentum—for the study of Heisenberg ladders with antiferromagnetic coupling. Matrix elements of
the Hamiltonian in this basis are evaluated using standard techniques in angular-momentum~Racah! algebra.
We show by exact diagonalization of small (234 and 236) systems that in excess of 90% of the ground-state
probability is contained in a very small number of basis states. These few basis states can be used to define a
severely truncated basis which we use to approximate low-lying exact eigenstates. We show how, in this
low-energy basis, the isotropic spin-1/2 Heisenberg ladder can be mapped onto an anisotropic spin-1 ladder for
which the coupling along the rungs is much stronger than the coupling between the rungs. The mapping
thereby generates two distinct energy scales which greatly facilitates understanding the dynamics of the
original spin-1/2 ladder. Moreover, we use these insights to define an effective low-energy Hamiltonian in
accordance to the contractor renormalization group~CORE! method. We show how a simple range-2 CORE
approximation to the effective Hamiltonian to be used with our truncated basis reproduces the low-energy
spectrum of the exact 236 theory at the&1% level.@S0163-1829~97!06433-3#
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I. INTRODUCTION

Interest in the study of ladder compounds has been sti
lated by suggestions that these deceptively simple mate
could exhibit some of the critical behavior believed to
responsible for high-temperature ~high-Tc) super-
conductivity.1,2 Moreover, these ladder materials—built on
chain at a time—could bridge the transition from the on
dimensional~1D! chains, where large simulations are carri
out routinely, to the two-dimensional~2D! structures that are
known to be at the heart of the high-Tc compounds.3 Al-
though this might very well be the case, the road from one
two dimensions has been full of~quantum! surprises.2 In-
deed, it is now known that some of the properties commo
the 1D and 2D systems—such as the absence of a spin g
are only shared by the odd-leg ladders. In contrast, even
ladders have a finite spin gap which should manifest itsel
the form of an exponential behavior of the magnetic susc
tibility at low temperatures; this~exponential! activation has
been confirmed experimentally.4 Finally, the excitement
about the ladder materials has recently been fueled even
ther by some preliminary reports that suggest a superc
ducting transition in some physical realizations of the ladd
at a critical temperature of aboutTc512 K.5

An arsenal of numerical approaches has been employe
elucidate the physics of the ladder materials. This inclu
exact and Lanczos diagonalization techniques,6 quantum
Monte Carlo methods,7 and a density-matrix-
renormalization-group approach.8 While these technique
have achieved a high degree of sophistication, the selec
of a basis has not. Indeed, the overwhelming majority—
not all—of the calculations reported in the literature ha
relied on the traditional ‘‘Sz’’ basis. Undoubtedly, the big-
gest advantage of theSz basis is its simplicity. Indeed, matri
560163-1829/97/56~9!/5366~7!/$10.00
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elements of the Hamiltonian are trivially computed in th
basis. Yet, it is unlikely that theSz basis represents the ‘‘op
timal’’ choice for the study of Heisenberg antiferromagne
with isotropic coupling.

Recent discussions of the possible utility of alternat
bases for the study of the ladder materials by Martins, D
otto, and Riera9 have stimulated us to examine this issu
The initial step in our program was to rediscover t
‘‘plaquette’’ basis10 and then to examine how it might b
used in the study of spin ladders. A particularly appeal
feature of the plaquette basis—generated from the coup
of the four spins in a 232 lattice to a well-defined tota
angular momentum—is that the states in the basis are
eigenstates of the largest two-leg ladder that can be solve
closed form. By this mere fact, it is clear that much of t
important physics of the problem has been incorporated
the basis. Obviously, an important component of our p
gram is the evaluation of matrix elements of the Ham
tonian. It is for this that we rely heavily on the sophisticat
apparatus of angular-momentum algebra11,12 that has been
developed in atomic13 and nuclear physics14,15 over many
years.

Our paper has been organized as follows. In Sec. II
describe the plaquette basis and compute all the neces
matrix elements of the Hamiltonian. In Sec. III we stud
small 234 and 236 ladders to illustrate the advantage
our approach. In particular, we define a severely trunca
basis which includes only the four lowest, out of 16, on
plaquette energy levels. We use the contrac
renormalization16 ~CORE! method to construct a low-energ
effective Hamiltonian to be used with the truncated basis
find that the exact eigenvalues of the three-plaquette sys
are very accurately reproduced. Finally, we summarize
Sec. IV.
5366 © 1997 The American Physical Society
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II. FORMALISM

The focus of our paper is the plaquette basis. This bas
generated from the coupling of the four spins in
232 plaquette to a well-defined total angular momentu
To define the basis and to illustrate most of the techniq
it is sufficient to concentrate on the 234 ~or two-
plaquette! antiferromagnet with isotropic nearest-neighb
couplingJ[1. Moreover, we restrict ourselves to theS51/2
case, although the formalism can be applied w
few modifications to arbitrary spin. Indeed, we explo
this flexibility when, in Sec III, we discuss spin-1 ladde
which are in some sense equivalent to the spin-
ladders discussed in this section. The model Hamiltonia
given—adopting open boundary conditions—by

H5(
^ i , j &

Si•Sj[H0~1!1H0~2!1V~1,2!, ~1!

where^ i , j & denotes nearest-neighbor sites and

H0~1![S1•S21S1•S31S2•S41S3•S4 , ~2a!

H0~2![S5•S61S5•S71S6•S81S7•S8 , ~2b!

V~1,2![S3•S51S4•S6 . ~2c!

Note that this simple two-leg ladder is formed fro
two interactingn54 spin chains; spins on the left~right!
chain are labeled with odd~even! numbers. Moreover
H0 represents the Hamiltonian of an isolated 232
system, while V(1,2) is the coupling ‘‘potential.’’
The 232 Hamiltonian H0—a simple ‘‘antiferromagnet’’
~Ref. 10!—can be rewritten in the following
form:

H0~1!5~S11S4!•~S21S3!5L1•L25
1

2
~J1

22L1
22L2

2!,

~3!

where we have defined link and plaquette angu
momentum variables, respectively, as

L1[S11S4 ; L2[S21S3 ;

J1[L11L25S11S21S31S4 . ~4!

The physically appealing feature of the plaquette basis is
H0 is diagonal in this basis. That is,

H0~1!u l 1l 2 , j 1m1&5
1

2
@ j 1~ j 111!2 l 1~ l 111!

2 l 2~ l 211!#u l 1l 2 , j 1m1&. ~5!

It is interesting to note that one needs to couple the sp
along the diagonal—which are the only spins that do
interact—in order to bring the Hamiltonian into a diagon
form. The eigenvalues and eigenvectors of the 232 Hamil-
tonian have been listed in Table I. It is also instructive
write the ground state of H0, namely, the
u l 15 l 251,j 15m150& state, in terms of theSz basis. That is,
is

.
s

r

2
is

-

at

s
t
l

uC0&5
1

A3
@ u↑↓↓↑&1u↓↑↑↓&2

1

2
u↑↑↓↓&2

1

2
u↑↓↑↓&

2
1

2
u↓↑↓↑&2

1

2
u↓↓↑↑&. ~6!

This simple finding, namely the strong fragmentation of t
ground-state probability in theSz basis—but not in the
plaquette basis—represents one of our central results.

The most challenging part of the calculation in th
plaquette basis is the computation of the matrix element
the coupling potentialV(1,2); recall that in theSz basis ma-
trix elements of the Hamiltonian can be evaluated by insp
tion. Although by no means trivial, the sort of computatio
which arise in this new basis are done routinely in atomi13

and nuclear physics.14,15 Indeed, over the years a sophis
cated formalism—known generically as Racah algebra—
been developed to tackle these computations.11,12 It is on
these techniques that we rely heavily to compute the ma
elements ofV(1,2). We find

FIG. 1. Distribution of strength for the ground state of th
234 Hamiltonian in theSz basis and in the plaquette basis.

TABLE I. Eigenvalues and eigenvectors of the 232 system.

l 1 l 2 j 1 E Degeneracy

1 1 0 22 1
1 1 1 21 3
0 0 0 0 1
0 1 1 0 3
1 0 1 0 3
1 1 2 11 5
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^~ l 18l 28! j 18 ,~ l 38l 48! j 28 , jmuV~1,2!u~ l 1l 2! j 1 ,~ l 3l 4! j 2 , jm&5
3

2
~21! l 21 l 31 j j 1̂ j 2̂ j 18̂ j 28̂H j 1 j 18 1

j 28 j 2 j J
3F d l 2l

28
d l 3l

38
l 1̂l 4̂l 18̂l 48̂H l 1 l 18 1

j 18 j 1 l 2J H l 1 l 18 1

1/2 1/2 1/2J
3H l 4 l 48 1

j 28 j 2 l 3J H l 4 l 48 1

1/2 1/2 1/2J
6d l 1l

18
d l 4l

48
l 2̂l 3̂l 28̂l 38̂H l 2 l 28 1

j 18 j 1 l 1J H l 2 l 28 1

1/2 1/2 1/2J
3H l 3 l 38 1

j 28 j 2 l 4J H l 3 l 38 1

1/2 1/2 1/2J G . ~7!
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Note that we have definedx̂[A2x11 and that the6 sign in
the above expression should be adopted whene
l 11 l 281 l 381 l 41 j 11 j 181 j 21 j 285even/odd. Aside from
simple phases and numerical factors, the matrix element
V(1,2) depend on scalar functions~i.e., independent ofm)
known as Racah coefficients; here we cast the matrix
ments in terms of the more symmetric 62 j symbols.11,12

Closed-form expressions are readily available for the
merical computation of these~and many other! recoupling
coefficients.17

III. APPLICATIONS

In the present section we concentrate on small (234 and
236) ladders to illustrate some of the advantages of the n
basis. Our aim is to provide convincing evidence, by me
of a few simple examples, of the utility of the plaquet
basis. Hopefully, the evidence will be strong enough to p
suade some researchers in the field to exploit this basi
future calculations.

A. Distribution of ground-state strength

In Fig. 1 we display the ground-state probabiliti
(u^auC0&u2 with a an element of the basis! for the 234
Hamiltonian. This picture emphasizes what was already
dent from Eq.~6!, namely, a strong fragmentation of groun
state strength among the many~70! states in theSz basis.
Indeed, the only basis states containing a nontrivial amo
(;15%) of strength are the~staggered! Néel states. In con-
trast, in the plaquette basis a single state carries 85% o
ground-state probability and with two states one can pra
cally account for the full probability. Moreover, this pictur
deteriorates little as one increases the size of the sys
Indeed, for a 236 system one basis state—out of 132
carries in excess of 70% of the ground-state probability
with only three states one can account for almost 90% o
In Fig. 2 we show the corresponding distribution of streng
for the first excited state of the system. Most of the featu
er
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observed for the ground state remain valid in this case
well. Based on this evidence, we believe that the plaqu
basis could prove very useful in numerical computations
ladder compounds.

B. Contractor renormalization group method

Given that most of the physics of the ground state~and of
the low-lying excited states! is contained in a very few num
bers of plaquette-basis states, it seems natural to atte

FIG. 2. Distribution of strength for the first-excited state of t
234 Hamiltonian in theSz basis and in the plaquette basis.
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some form of truncation of the basis so that larger syste
may be more readily simulated in the computer. The cho
becomes obvious upon glancing at Table I; one should re
the first four states, having energiesE522 and E521
~threefold degenerate!, respectively. Note that with this
choice the link angular momenta—the high-energy degr
of freedom in the theory—have been ‘‘frozen’’ a
l 15 l 251, while the plaquette angular momentum, havi
values of j 150,1, becomes the effective low-energy degr
of freedom in the new theory. In this way the original theo
defined on a 16-dimensional Hilbert space~per plaquette!
will get mapped into a new effective theory having the sa
low-energy physics as the original theory, but defined o
Hilbert space of one-fourth the size. The low-energy eff
tive theory will now be constructed using the contrac
renormalization group~CORE! method.16

CORE provides a systematic approach at constructing
new low-energy theory using contraction and clust
expansion techniques. The first step into the implementa
of CORE is the selection of an ‘‘elementary’’ block and
truncation scheme. In our case the block is the 232
plaquette and the truncation scheme has been desc
above; the link variables become frozen and the plaqu
variable is limited to take the valuesj 150,1. Constructing an
effective Hamiltonian with the same low-energy propert
as the original theory—on a system that contains only
single block (B1)—is straightforward. We obtain

^ j 18m18uHeff~B1!u j 1m1&5F1

2
j 1~ j 111!22Gd j 1 j

18
dm1m

18
.

~8!

This low-energy Hamiltonian constitutes the range-1 term
the cluster expansion and is denoted byh1(B1)5Heff(B1).
One now proceeds to calculate the range-2 contribution
the cluster expansion by computing an effective Hamilton
on a system that contains two connected blocks (B1 and
s
e
in

s

e

e
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e
-
n

ed
te

s
e

n

to
n

B2). This is the 234 Hamiltonian of Eq.~2!. In constructing
the various contributions to the cluster expansion one m
pay particular attention to the overlaps between the ex
eigenstates of the original Hamiltonian and the low-ene
basis. Since it is simpler to study these overlaps in Hilb
spaces which reflect the symmetries of the Hamiltonian,
work with a low-energy basis of definite total spin; reca
that @H,J#50, whereJ[S5( iSi is the total spin of the
system.

We start with thej 50 sector. In this sector, there are 1
eigenstates of the exact 234 Hamiltonian, while there are
only two low-energy states in the truncated basis, nam
uf1&[u j 15 j 250,j 5m50& and uf2&[u j 15 j 251,j 5m
50&. These two states have a nonzero overlap with the e
ground stateuE0

(0)&. Indeed, these are the two states th
dominate the ground-state probability in Fig. 1. In particul
this implies that both of these basis states will ‘‘contrac
onto the same eigenstate of the Hamiltonian, i.e.,

lim
t→`

e2tHuf1&}uE0
~0!& and lim

t→`

e2tHuf2&}uE0
~0!&. ~9!

CORE demands that only one low-energy basis state sh
contract into the ground state. CORE also offers a sim
solution to this problem: construct a new truncated basis
performing a similarity transformation on the original one
that each state in the new basis (j i) contracts onto a unique
eigenstate of the exact Hamiltonian, i.e.,

lim
t→`

e2tHuj1&}uE0
~0!& but lim

t→`

e2tHuj2&}uE1
~0!&,

~10!

where E1
(0) is the second lowest eigenvalue of the Ham

tonian in thej 50 sector. This is all that is needed. In th
way, the relevant matrix elements of the effective Ham
tonian in thej 50 sector become
28

be

ly,
^ j 18 j 28 j 50uuHeff~B1 ,B2!uu j 1 j 2 j 50&5S cosu0 2sinu0

sinu0 cosu0 D S E0
~0! 0

0 E1
~0!D S cosu0 sinu0

2sinu0 cosu0D , ~11!

whereE0
(0)524.293,E1

(0)522.500, andu05218.482°.
The construction of the effective Hamiltonian in thej 51 sector proceeds in a similar fashion. In this sector there are

eigenstates and three low-energy basis states~each with a threefold degeneracy!. These areuf3&[u j 151 j 250,j 51 m&,
uf4&[u j 150 j 251,j 51 m&, anduf5&[u j 15 j 251,j 51 m&. Since, in this particular case, only the first two states need to
transformed, the similarity transformation can again be parametrized in terms of a single angle. That is,

^ j 18 j 28 j 51uuHeff~B1 ,B2!uu j 1 j 2 j 51&5S cosu1 2sinu1 0

sinu1 cosu1 0

0 0 1
D S E0

~1! 0 0

0 E1
~1! 0

0 0 E2
~1!D S cosu1 sinu1 0

2sinu1 cosu1 0

0 0 1
D , ~12!

whereE0
(1)523.523,E1

(1)522.915,E2
(1)522.590, andu1545°.

Finally, since ~up to a fivefold degeneracy! there is a uniquej 52 state in the low energy basis, name
uf6&[u j 15 j 251,j 52 m&, the effective Hamiltonian in this sector is simply given by

^ j 18 j 28 j 52uuHeff~B1 ,B2!uu j 1 j 2 j 52&5E0
~2!522.207. ~13!

Collecting all the above results we can now write the effective 234 low-energy Hamiltonian in the direct product basis:
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^ j 18m18 , j 28m28uHeff~B1 ,B2!u j 1m1 , j 2m2&5dm
181m

28 ,m11m2(j
^ j 18 j 28 j uuHeff~B1 ,B2!uu j 1 j 2 j &^ j 18m18 , j 28m28u j m181m28&

3^ j 1m1 , j 2m2u j m11m2&, ~14!
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where ^ j 1m1 , j 2m2u jm& are Clebsch-Gordan coefficient
The range-2 contribution to the cluster expansion is obtai
by simply removing fromHeff(B1 ,B2) those range-1 term
that have already been included in the single-block calc
tion, i.e.,

h2~B1 ,B2!5Heff~B1 ,B2!2h1~B1!2h1~B2!. ~15!

To construct the renormalized Hamiltonian one must c
tinue this procedure, indefinitely, on larger and larger c
nected blocks. Here we will stop at the range-2 contributi
Note that for our choice of basis, this range-2 approximat
already takes into account correlations among next-to-n
nearest neighbors. The approximate~up to range-2! renor-
malized Hamiltonian becomes

H ren5(
j 51

`

@h1~Bj !1h2~Bj ,Bj 11!#. ~16!

It is instructive to use this approximation to compute t
low-energy spectrum of the 236 ~three-plaquette! Heisen-
berg antiferromagnet. For this case, the range-2 approx
tion yields

H ren5h1~B1!1h1~B2!1h1~B3!1h2~B1 ,B2!1h2~B2 ,B3!.
~17!

This expression is useful as it suggests when the cluster
pansion might become rapidly convergent. If an optimal
sis has been chosen—provided that one exists—one m
hope that most of the low-energy spectrum could be ge
ated by the range-1 terms, leaving the range-2 terms
charge of the fine tuning. Alternatively, an optimal ba
could generate—dynamically—two energy scales in
problem; a large one associated with physics within
blocks and a small one associated with the ‘‘residual in
action’’ between the blocks. Our investigations show tha
for our truncated basis—such is indeed the case. First,
can simply compare the individual matrix elements ofh1 and
h2. Those of the former are typically four to eight time
larger than those of the latter. Second, one can arrive a
same conclusion by mapping the original isotropic spin-
ladder onto an equivalent anisotropic spin-1 ladder as
lows. Note that for the two-plaquette system@see Eq.~2!#

H0~1!1H0~2!5~S11S4!•~S21S3!1~S51S8!•~S61S7!

5L1•L21L3•L4. ~18!

In the truncated basis, all link angular momenta are 1; he
the L i are spin-1 operators. Now consid
V(1,2)5(S3•S51S4•S6). In the truncated basis, symmetrie
permit the interaction to be written as
d

a-

-
-
.
n
xt

a-

x-
-
ht
r-
in

e
e
r-

ne

he
2
l-

ce

V~1,2!5S3•S51S4•S6

→
1

4
@~S21S3!•~S51S8!1~S11S4!•~S61S7!#

5
1

4
@L1•L41L2•L3#. ~19!

Hence, in the truncated basis—which carries much of
important physics of the problem—the isotropic tw
plaquette spin-1/2 system is equivalent to a one-plaqu
spin-1 system where the coupling along the run
(L1•L21L3•L4) is four times as strong as the coupling b

tween the rungs (14 @L1•L41L2•L3#). In this context our ba-
sis is optimal in the sense that the much stronger ‘‘run
couplings are diagonal in it. We also note that this mappi
in conjunction with CORE techniques similar to those d
cussed above, is likely to provide a useful starting point
formulating a renormalization group transformation whi
can permit us to estimate properties of infinite ladders. T
will be the topic of a future publication.

In Table II we display the low-energy spectrum of th
236 Hamiltonian using a variety of approximations; the r
tio to the exact value appears in parenthesis. Recall that
spectrum has been computed with open boundary conditi
The states have been classified according to their total s
which is listed in the first column. In the second column w
report the results from an extreme ‘‘weak-coupling’’ calc
lation. In this approximation the 232 plaquettes are treate
exactly but the residual interaction between the plaquette
neglected@i.e., V( j , j 11)[0; see Eq.~2!#. We observe that
at the 80–90 % level, the spectrum is, indeed, accounted
by the mere selection of the basis. In the third column
report a calculation which uses the exact 236 Hamiltonian
but with the truncated low-energy basis. Departures from
exact results are only 5–10 %. In principle, this truncati
could enable the simulations of larger systems, as the n
ber of states increases with the number of plaquettes (Np)
only as 4Np, rather than as 42Np. However, in many applica-
tions, this level of accuracy may still be insufficient. Ama
ingly, a dramatic improvement on these calculations res
from expending the very little additional effort required
construct the CORE effective Hamiltonian for the truncat
basis. As shown in Table II, CORE-improved calculatio
yield results that range from a fraction of 1% to a few pe
cent of the exact answer. Note that these results were
tained by the diagonalization of—at most—20320 matrices;
instead, the exact calculation in theSz basis requires a diago
nalization of a 9243924 matrix. In the near future, we pla
to use this renormalized Hamiltonian, perhaps includ
range-3 contributions, to simulate larger systems.

We conclude this section with a brief comment about
doping of the ladders. In order to gain some qualitative
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TABLE II. Low-lying spectrum for the 236 Heisenberg ladder. The different approximations are
plained in the text. Quantities in parenthesis represent the ratio to the exact value.

S Weak coupling Truncated CORE~range-2! Exact

0 26.000 (0.909) 26.335 (0.959) 26.588 (0.998) 26.603
24.000 (0.818) 24.396 (0.899) 24.899 (1.002) 24.888
24.000 (0.836) 24.250 (0.889) 24.882 (1.021) 24.783

1 25.000 (0.844) 25.580 (0.942) 25.928 (1.001) 25.924
25.000 (0.909) 25.112 (0.930) 25.458 (0.993) 25.498
25.000 (0.983) 24.666 (0.917) 25.132 (1.009) 25.087
24.000 (0.797) 24.538 (0.905) 25.092 (1.015) 25.017
24.000 (0.850) 24.125 (0.877) 24.809 (1.022) 24.705

2 24.000 (0.823) 24.413 (0.908) 24.862 (1.000) 24.862
24.000 (0.925) 23.875 (0.890) 24.426 (1.017) 24.352

3 23.000 (0.895) 22.750 (0.821) 23.414 (1.019) 23.351
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sight into the nature of hole correlations, Dagotto and c
laborators introduced two energy scales in the problem
large exchange couplingJ8 along the rungs relative to
small exchange couplingJ along the chains.1 They observed
that if a pair of holes is added to the system, the energy
get minimized whenever the two holes go into the same r
in the ladder. Further, they concluded by means of numer
evidence that most of the arguments developed for the an
tropic case remain valid even whenJ8'J; note that to date,
the physical realization of the ladders seem to obey the
tropic relation.2 In this paper we have only considered t
isotropic case. A particularly gratifying aspect of the ma
ping described above is the natural appearance in the is
pic system of distinct energy scales in the effective spin
ladder. This appears to permit carrying over the argument
Dagotto and collaborators with little modification. Now it
the rungs on the spin-1 ladder which are strongly bou
consisting of a pair of ‘‘frozen’’ spin triplets coupled to a
overall angular momentum of zero; interactions betwe
rungs are relatively weak. In terms of the original spin-1
ladder, we may conclude that individual plaquettes inter
only weakly. Hence the weak-coupling limit defined abo
should be a reasonable approximation when applied to v
large systems just as we have found it to be by compa
with exact results for the three-plaquette case. In this lim
is simple to see that the ground state of the system con
of all plaquettes being in the lowestj 50 state, with energy
per plaquette of22 ~see Table I!. When a pair of holes is
introduced into the system the holes can go into two differ
plaquettes at a cost in energy of12 ~the lowest energy of
three spins in a plaquette is equal to21). Alternatively, the
holes can go into a rung—or along a chain—in the sa
plaquette at a cost in energy of15/4 ~the lowest energy of
two spins in a plaquette is equal to23/4). Hence, it become
energetically favorable for the two holes to bind and break
few j 50 plaquettes as possible. Moreover, as another pa
holes is added into the system, it becomes energetic
favorable—at least for holes with no mobility—for the fou
holes to go into the same plaquette, rather than for the
pair to break another plaquette.
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IV. CONCLUSIONS

We have employed a plaquette basis for the study of
tiferromagnetic Heisenberg ladders. The states in the b
represent the eigenstates of the 232 plaquette and are con
structed from the angular-momentum coupling of the fo
spins in the plaquette. Matrix elements of the Hamiltoni
were computed in this basis and were expressed in terms
product of five Racah coefficients. These expressions
considerably more complicated than the corresponding o
obtained using the conventionalSz basis. Yet, they can be
efficiently computed by employing angular-momentum tec
niques that have been developed over the years in atomic
nuclear physics. Moreover, this basis seems to capture s
of the important physics of these complicated systems.
deed, we have shown that the distribution of ground-st
and first-excited-state strength is concentrated in a very
number of states. This is in contrast to theSz basis where the
strength is strongly fragmented. This concentration
strength among a few states provides a very natural trun
tion scheme for the basis. We selected a low-energy b
which reduces the size of the Hilbert space by a factor o
per plaquette. By using the original (236) Hamiltonian in
this truncated space we obtained a low-energy spectrum
was within 10% of the exact answer. However, by improvi
the Hamiltonian—via CORE—we were able to get with
1% of the exact answer. Moreover, the mere selection of
basis dynamically generates two-energy scales in
problem—even in the case of an isotropic coupling. T
phenomenon is most clearly understood by mapping
original isotropic spin-1/2 ladder onto an effective spin
ladder in which the coupling along rungs is four times stro
ger than the coupling between rungs. This separation
scales is important for the development of qualitative
sights into the nature of hole doping. In particular, it suppo
the notion that holes will go into the ladders in such a way
to disturb the minimum number ofj 50 plaquettes.

We emphasize that our main goal was the introduction
an optimal basis that could prove useful in numerical co
putations of the ladder compounds. Ideally, one would t



in
a

th
le
n
ec
s
em
t,

on

o
er

tion
of

re
ci-
ls.

use-
by
00,

5372 56J. PIEKAREWICZ AND J. R. SHEPARD
this assertion by using a variety of numerical techniques
cluding Lanczos approaches. In the present paper we h
restricted such investigations to the implementation of
CORE method. Although the utility of CORE as a viab
numerical technique is yet to be established, the selectio
an efficient truncation scheme—which is linked to the sel
tion of the basis—is a necessary condition for the succes
the method. We have shown that such a trucation sch
appears naturally in our plaquette basis. We speculate tha
contrast, implementation of CORE in the traditionalSz basis
will not be possible, due to the lack of an efficient truncati
scheme.

In summary, we have provided solid evidence in supp
of a plaquette basis for the study of Heisenberg ladd
s.
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Much work remains to be done, such as the implementa
of a Lanczos diagonalization procedure and the study
larger systems using the renormalized range-2~or even
range-3! CORE Hamiltonian. Yet, we believe that the me
selection of a basis could play a prominent role in the elu
dation of the important physics behind the ladder materia
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