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Variational states for the spin-Peierls system

Holger Frahm* and John Schliemann†
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~Received 6 January 1997; revised manuscript received 3 March 1997!

We introduce a family of Jastrow pair product states for quasi-one-dimensional spin systems. Depending on
a parameter they interpolate between the resonating valence-bond ground state of the Haldane-Shastry model
describing a spin liquid and the~dimerized! valence-bond solid ground states of the Majumdar-Ghosh spin
chain. These states are found to form an excellent basis for variational studies of Heisenberg chains with
next-nearest-neighbor interactions and bond alternation as realized in the spin-Peierls system CuGeO3.
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I. INTRODUCTION

Following the recent discovery of a spin-Peierls transit
in the inorganic compound CuGeO3,1 there has been grow
ing theoretical interest in this instability of one-dimension
spin chains. It has been proposed in Refs. 2 and 3 that f
trating next-nearest-neighbor~NNN! interactions in addition
to an explicitly broken translational invariance due to latt
dimerization is necessary to obtain a consistent descrip
of the experimental data. This leads to the following spin1

2

Hamiltonian:

H5 (
j 50

N21

$@11~21! jd#Sj•Sj 111aSj•Sj 12%. ~1.1!

For d50, the model is invariant under translations by o
lattice site. This case has been investigated in detail and
cludes the nearest-neighbor Heisenberg chain,a50, where
the complete spectrum can be obtained by means of the
the ansatz:4 the ground state is that of a spin liquid, has
vanishing spin gap, and algebraically decaying correlati
at T50. Ford50, a5 1

2, the Hamiltonian~1.1! becomes that
of the Majumdar-Ghosh~MG! model:5 here the system has
gap6 and the exact ground state is known to be a produc
nearest-neighbor singlet pairs showing a twofold deg
eracy:

ucVB
~1!&}@0;1#•••@~N22!;~N21!#,

ucVB
~2!&}@1;2#•••@~N21!;0# ~1.2!

(@a;b#5(1/A2)(u↑&au↓&b2u↓&au↑&b) denotes the single
state formed by the spins on sitesa andb). For intermediate
values of the NNN interaction the model~1.1! remains gap-
less fora,ac'0.2411~Refs. 7, 8, and 3! with its low en-
ergy sector described by an effective levelk51 SU~2! Wess-
Zumino-Witten~WZW! conformal field theory. Increasinga
beyond the ‘‘conformal point’’ac the NNN coupling be-
comes marginally relevant, producing an exponentially sm
gap D}exp@const/(a2ac)#. In this phase the system i
spontaneously dimerized. The properties of the system
a.1 have recently been discussed in Ref. 9. Extending
discussion to general couplings in thea-d plane, the system
has gap above a dimerized ground state for any nonzerod,10
560163-1829/97/56~9!/5359~7!/$10.00
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with the valence-bond ground states~1.2! on the line
2a1d51.11 Going to largerd the Hamiltonian~1.1! corre-
sponds to a ladder system of two coupled Heisenb
chains.12 In addition to numerical studies, several mean-fie
theories have been proposed for the Hamiltonian~1.1!.13 In
this framework physical properties have been calculated
ing reasonable agreement with the experimental data a
able for energy gaps, Raman spectra, and the susceptib
of CuGeO3 and hence further support the Hamiltonian~1.1!
as a model for this substance.

In this paper we propose a family of variational states
the ground state and low lying triplet of the Hamiltonia
~1.1!. While it will not be possible within this variationa
approach to compute the thermodynamical quantities m
tioned above, it turns out that the states proposed are ex
lent approximations to the true ground state of the sys
throughout the parameter region of interest here, nam
2a1d<1. Hence they can be used to obtain very go
variational bounds on energies and may provide a better
derstanding of the role of quantum fluctuations in these s
tems.

In fact, variational states have already been applied s
cessfully to some of the systems mentioned above: an e
way to incorporate two-particle correlations in a variation
state is to consider a Jastrow pair product wave functi
Specifically, the state

uc0
N,M ,J&5 (

n1 , . . . ,nM

c~$ni%!)
i 51

M

Sni

2u↑•••↑&,

c~$ni%!5)
i 51

M

g~ni !)
i , j

d~ni2nj !
2, ~1.3!

with d(n)5sin(pn/N), g(n)}exp@2pi(J/N)n#, and M5J
5N/2 has been found to reproduce the ground state en
of the nearest-neighbor Heisenberg chain ofN sites with
remarkable accuracy.14 Furthermore, Eq.~1.3! captures the
essence of the spin-spin correlations in this system. State
the form~1.3! span a large part of the Hilbert space includi
the ground state of the Haldane-Shastry~HS! spin chain with
long range exchange interactionsJkl}1/sin2@p(k2l)/N#.15

The spectrum of this model gives a representation of
5359 © 1997 The American Physical Society
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5360 56HOLGER FRAHM AND JOHN SCHLIEMANN
k51 SU~2! WZW conformal field theory16 ~note that the
next-nearest-neighbor interaction in the HS model is v
close toac).

The spin-Peierls system and ladderlike models on
other hand have been studied using short range resona
valence-bond~RVB! states as ground states and solit
states interpolating between the two singlet bond configu
tions ~1.2! for the excitations.17

In the following section we introduce variational stat
depending two free parameters and prove that they are ei
states of the total spin of the system. In Sec. II B we sh
that these states contain the valence-bond states~1.2! and the
Jastrow state~1.3! as certain limits. Their relation to
Gutzwiller projected states of spin-1

2 fermions is discussed in
Sec. II C. Finally, we apply the variational states to the sp
Peierls system~1.1! in Sec. III.

II. THE VARIATIONAL STATES

A. Construction

Let C1 and C2 be two parallels with polar anglesu and
p2u, respectively, on the two-dimensional sphereS2. For
even N we chooseN/2 equidistant points labeled by eve
numbers 0,2,4,. . . ,(N22) on C1 and similarlyN/2 points
labeled by odd numbers 1,3,5,. . . ,(N21) on C2 such that
their azimuthal angles satisfy

2p

N
~122r!5w2i 112w2i ~2.1!

for i P$0, . . . ,(N22)/2%. This defines a lattice onS2 char-
acterized by the parametersu andr consisting of two iden-
tical linear sublattices and obeying periodic boundary con
tions in the azimuthal direction. The lattice pointsaW can
be described in terms of polar coordinates on the sph
i.e., aW 5(coswasinua ,sinwasinua ,cosua). Alternatively, they
may be parametrized by spinor componentsua
5cos(ua/2)exp(ıwa/2), va5sin(ua/2)exp(2ıwa/2). Given two
pointsa,bPS2 we construct the spinor product

d~a,b!5~uavb2ubva! ~2.2!

that has the following properties:

ud~a,b!u25
1

4
i~a2b!i2,

arg@d~a,b!#5tan21S sin@~ua1ub!/2#sin@~wa2wb!/2#

sin@~ua2ub!/2#cos@~wa2wb!/2# D ,

~2.3!

wherei•i stands for the Euclidean norm inR3.
Now let each lattice point carry a spinSn with Sn5 1

2. In
the Hilbert space of theseN spins we consider the following
states@d given by Eq.~2.2!#:

ucN,M ,J~u,r!&} (
u$ni %u5M

)
i

eı~2p/N!JniS )j
i , j

d2~ni ,nj !D
3Sni

2u↑•••↑&. ~2.4!
y

e
g-

a-

n-

-

i-

e,

Here u↑•••↑& is the ferromagnetically ordered state with a
spins parallel. The sum extends over all possibilities to se
M out of N lattice sites and invert their spins. The sets of t
selected sites are denoted by$ni%. Each of those spin-produc
states contributes with an amplitude that consists of a pr
uct of single-site phase factors and a product of Jastrow-
two-site factors, depending on the underlying lattice, nam
the parametersu and r. The spinor components on thenth
lattice site may be rewritten up to a common fact
as un}exp$1ı(p/N)@n1(21)nw#%, vn}exp$2ı(p/N)@n
1(21)nw] % with w5r1ık and k52(N/2p)ln@cot(u/2)#.
Hence, the states defined in Eq.~2.4! depend analytically on
a complex parameter expressing a dimerized structure of
lattice and will be referred to asdimerized Jastrow state
~DJS’s!. Periodic boundary conditions require the parame
J to be taken integer. Requiring the DJS’s to have a defin
total spin restrictsJ even further: Clearly, Eq.~2.4! are
eigenstates of thez component of the total spin with eigen
valueN/22M . To show that they are eigenstates of the to
spin we rewriteS2 as(Sn

21(n,m(Sn
1Sm

21Sn
2Sm

112Sn
zSm

z ).

Obviously(nSn
2ucN,M ,J(u,r)&5 3

4 N,ucN,M ,J(u,r)& and

(
n,m

2Sn
zSm

z ucN,M ,J~u,r!&5
1

4
~M ~M21!1~N2M !

3~N2M21!22~N2M !M !

3ucN,M ,J~u,r!&. ~2.5!

For integerJ with M<J<N2M this gives, together with
the results of the Appendix,

S2ucN,M ,J~u,r!&5S N

2
2M D S N

2
2M11D

3ucN,M ,J~u,r!&. ~2.6!

Hence, under the above condition the stateucN,M ,J(u,r)& is
an SU~2! highest weight state with total spinS5N/22M for
arbitrary values of the parametersu,r. In particular, choos-
ing M5J5N/2 one obtains a singlet,M5N/221,
JP$N/221,N/2,N/211% gives three triplet states with
Sz51, etc.

B. Limiting cases

From Eq.~2.2! one finds that the amplitudes of the wav
functions ~2.4! will be complex in general. These ‘‘chiral’’
spin states are believed to arise in two-dimensional spin
tems due to frustrating interactions18 ~see also Sec. III A be-
low!. ChoosingwPR, i.e.,u5p/2, all lattice sites lie on the
equator of the sphere and the Jastrow factors in Eq.~2.4!
become all real: now the relative phases of the amplitu
are determined by the one-site factors alone. In this c
some of the states discussed in the Introduction can be
tained by properly choosingr:

~i! w50: Provided thatM21<J<N2M11, the DJS

ucHS
N,M ,J&:5UcN,M ,JS p

2
,0D L ~2.7!

are eigenstates of the Haldane-Shastry model15
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HHS5 (
n,m50
n,m

N21
1

$~N/p!sin@~p/N!~n2m!#%2
SnSm ~2.8!

with the eigenvalues

EN,M ,J5
1

3S p

ND 2S N

8
~N221!1M ~M221!23MJ~N2J! D .

~2.9!

The ground state is given by the singlet, the first excitatio
by the triplet withM5N/221, J5N/2.

In the thermodynamic limit the two spin correlation fun
tions have been evaluated exactly by Gebhard
Vollhardt.19 For the singlet state of Eq.~2.7! they have ob-
tained

lim
N→`

^cHS
N,N/2,N/2uSkSk1nucHS

N,N/2,N/2&5~21!n
3

4

Si~pn!

pn
.

~2.10!

This result is based on an alternative formulation of the D
that is discussed below.

~ii ! w5 1
2. Here an even-numbered lattice site coincid

with the next higher site. It is

UcN,N/2,N/2S p

2
,
1

2D L }ucVB
~1!&. ~2.11!

The singlet of the DJS atw51/2 is a valence-bond state
next neighbors are coupled to singlets. Equation~2.11! is
easily proved by calculating the scalar product of both sid
Similarly, we haveucN,N/2,N/2(p/2,21/2)&}ucVB

(2)& and

UcN,N/221,N/2S p

2
,
1

2D L }A2

N (
k50

N/221

@0;1#•••u↑&2k

3u↑&2k11•••@~N22!;~N21!#.

~2.12!

DJS with higher total spin cannot be cast in a compara
simple form atw51/2 due to the more complicated structu
of the remaining amplitudes.

The two valence-bond singlets span the ground s
space of the Majumdar-Ghosh model5

HMG5 (
n50

N21 S SnSn111
1

2
SnSn12D . ~2.13!

Recently, Nakano and Takahashi have generalized
Hamiltonian to a variety of models with interactions of arb
trary range that have the same property.20 In the thermody-
namic limit these models have a finite gap for excitatio
over the twofold degenerate ground state leading to spin-
correlations that decay exponentially at large distances. T
is in contrast to the Haldane-Shastry model which has no
and according to Eq.~2.10! correlations decaying algebra
ically.

Hence the DJS’s withu5p/2 andM5J5N/2 interpolate
between a ‘‘resonating-valence-bond’’ singlet forr50 and
the nearest-neighbor ‘‘valence bond solid’’ described by E
~1.2! for r5 1

2. Despite their essentially distinct propertie
these states have a remarkably large overlap. In Fig. 1
s
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squares of the overlaps as computed numerically are plo
for systems up toN524. At N524 the singlet subspace ha
the dimension 208 012, so that a square overlap of 0
should be regarded as quite large.

It would be interesting if one could find a Hamiltonia
interpolating between one of the models given in Ref. 20 a
the Haldane-Shastry model, so that the singlet DJS isalways
the exact ground state.

~iii ! u→0. For u→0 and finiter the chainsC1,C2 are
drawn to the poles of the sphere. In Eq.~2.4! all amplitudes
and consequently the normalization sum become zero. In
limit tensor products of Haldane-Shastry type states arise
the simplest case, the singlet DJS, one obtains for evenN/2

lim
u→0

ucN,N/2,N/2~u,r!&}ucHS
N/2,N/4,N/4& ^ ucHS

N/2,N/4,N/4&,

~2.14!

The first factor in the tensor product refers toC1, the second
to C2. Other DJS’s can also be examined by expliciting th
dependence on the parametersu andr.

C. Relation to the Gutzwiller wave function

It is worthwhile noticing that the DJS’s can also be fo
mulated analogous to the Gutzwiller wave function.21

Let ans
1 ,ans be canonical creation and annihilation oper

tors on thenth site for spin-12 particles withSn
z5s and u0&

the vacuum of the system. ForM5J5N/2 one can use the
following construction: With the definition

bks
1 ~w!5

1

AN
(
n50

N21

eık~n1~21!nw!ans
1 , ~2.15!

we have

ucN,N/2,N/2~u,r!&}Pbk0↑
1 ~w!•••bkN/221↑

1 ~w!

3bk0↓
1 ~w!•••bkN/221↓

1 ~w!u0&

~2.16!

FIG. 1. Overlapu^cN,N/2,N/2(p/2,0)ucN,N/2,N/2(p/2,1/2)&u2 be-
tween the ground state of the Haldane-Shastry model and
valence-bond state.
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5362 56HOLGER FRAHM AND JOHN SCHLIEMANN
with kn52p/21p/N1(2p/N)n and P being the
Gutzwiller projector excluding double occupancies, i.
P5)n50

N21(12nn↑nn↓), nns5ans
1 ans . Equation ~2.16! can

be proved using similar arguments as in Ref. 15. So
DJS’s are deformed Gutzwiller wave functions characteri
by a complex parameterw. Analytical results concerning th
two-site correlations have been found forw50.19,22For non-
zerow the dimerization leads to complications that cannot
resolved following these methods.

An obvious generalization is to construct wave functio
of the above type with arbitrary filling. Starting from stat
without double occupancies on the equidistant lattice as c
sidered in Ref. 23, one can introduce double occupancies
dimerization while keeping the Jastrow form of the state24

Again they can be constructed to be highest weight state
the total spin. Since empty and doubly occupied lattice s
do not contribute to the spin, there are large additional p
sibilities of varying the wave functions in the case of gene
filling and strength of the Gutzwiller projection.

III. APPLICATION TO THE SPIN-PEIERLS SYSTEM

We now use the DJS as variational ansatz for the
lying states of the model~1.1!. As mentioned above, th
analytical methods of Refs. 19 and 22 cannot be applie
the dimerized system, hence the results presented b
were obtained by numerical evaluation of the relevant ma
elements for system sizes up toN526 lattice sites.

A. Ground state properties

For the ground state of the model we have used the sin
DJS (M5J5N/2) as a variational ansatz. The numeric
results can be summarized as follows.

For 2a1d<1 the expectation value of the Hamiltonian
minimized by realw, i.e., u5p/2 with r varying from 0 to
1/2, 2a1d51 corresponds to a valence-bond sta
(w51/2).11 On the other hand, for 2a1d>1 we find
r51/2 and varyingu. For a5d50 the minimum is given
by the Haldane-Shastry ground state (w50). The exact
ground state energy per spin is known to
2 ln211/4.20.443 147 for an infinite system, the vari
tional value is2(3/4)Si(p)/(p).20.442 177 from~2.10!.
In Table I we present the extrapolation to an infinite syst
of the variational ground state energies for various value
a andd. Comparison with data from numerical diagonaliz
tion obtained by Chitraet al.25 shows excellent agreemen
the variational energies per spin differ by only about 1023

from diagonalization values except for the last row of Ta
I. In general, the quality of the singlet DJS as a variatio
ansatz is found to decrease for values ofa exceeding 0.5.
Hence, we have found an effective one-parametric va
tional wave function that gives an excellent approximation
the ground state energy of the model considered withi
large area of its parameters, in particular for any antifer
magnetic NNN couplingsa with 2a1d<1. Note that in
this case the optimum singlet DJS~2.4! hasreal amplitudes.
For 2a1d.1 they become properly complex: this ca
therefore is called a chiral phase. FordÞ0 the translational
invariance of the system is explicitly broken leading to
dimerized variational ground state with finiter. For d50
,
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and small values of the NNN coupling 0<a<a* , the varia-
tional energy is minimized forw50. A transition to a dimer-
ized ground state is observed at the ‘‘critical’’ value
a* .0.271660.0002 forN→`. For a.a* r becomes fi-
nite. In the absence of the alternating term, the Hamilton
(d50) of the system is invariant under translation by
single lattice site, while the states~2.4! do not have such a
symmetry forwÞ0. This leads one to consider the ansatz

ucN~r!&}UcN,N/2,N/2S p

2
,r D L 1UcN,N/2,N/2S p

2
,2r D L

~3.1!

with N chosen even. This construction corresponds to
lattice momentum of the ground state of finite systems
tained in Ref. 26. With the states~3.1! one observes slight
but numerically significant, improvements of the grou
state energy as shown in Table II. Furthermore, the par
eter r remains zero for 0<a<a** with a** .0.1737
60.0002, which is much smaller than thea* mentioned
above. In Fig. 2 we present the ground state energy per
as a function ofa, in Figs. 3 and 4 NN and NNN correlation
calculated within the states~3.1! are plotted. These diagram
agree very well with the corresponding figures given in R
26.

Spin-spin correlations beyond those entering the exp
sion for the ground state energy show the correct long
tance asymptoticŝS0Sn&}(21)n/n as long asr50 ~2.10!,
which corresponds to the massless regimea& 1

4, d50 de-
scribed by the WZW conformal field theory~see, e.g., Ref.
7!. Nonzeror leads to a suppression of long range corre
tions. The system sizes that we have analyzed numeric
do not allow one, however, to study the dependence of
correlation length onr. Only on the line 2a1d51, where
the states show perfect dimerization, are the correlations
off trivially.

B. Excitations

The results of the previous section suggest using DJS w
higher spin as variational ansatz for excitations of our mod
Unfortunately the situation is not as clear as before. Here

TABLE I. Variational ground state energies per spin f
N→`. The last column shows numerical data from Ref. 25.

a d ES
var(a,d,`) E0

diag/N

0.2411 0.00 20.40160 20.401866
0.2411 0.04 20.40793 20.409051
0.2411 0.16 20.44237 20.442862
0.2411 0.32 20.49673 20.496844
0.2500 0.00 20.40008 20.40045
0.2500 0.35 20.50721 20.50727
0.2500 0.20 20.46242 20.46329

0.4000 0.50 20.56550 20.56611
0.4800 0.10 20.41272 20.41281
0.5500 0.10 20.41519 20.41610
0.2000 0.80 20.67601 20.67613
0.3000 0.80 20.67896 20.67966
0.4800 0.80 20.68897 20.69256
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concentrate on the cased50 and mention that the eigen
states of the Haldane-Shastry model provide a good des
tion of low lying states for 0<a<0.3.

From analytical and numerical studies this model
known to be gapless fora<ac . As predicted by conforma
field theory, at the ‘‘conformal point’’ac is defined by the
occurrence of many degeneracies in addition to the u
SU~2! symmetry. Okamoto and Nomura examined the sp
trum of Eq. ~1.1! for d50 in finite systems by numerica
diagonalization.8 They found a linear dependence of the e
ergy of the ground state and the two first excitations~triplet,
singlet! on a in the above intervall. From the condition, th
the two excitations should degenerate, they obtained a
cise value for the conformal point asac50.241160.0001.
Within the concept of DJS, there is only one singlet cor
sponding to the ground state, but in the HS case (w50) an
additional singlet can be derived from the triplet excitati
by using the Yangian symmetry of this model.27

The Yangian of the Haldane-Shastry model is genera
by the total SU~2! spin or ‘‘level-0 operators’’Q0

a5(Sn
a

and the ‘‘level-1-operators’’ Q1
a5(mÞncot@(p/N)(m

2n)]«abgSm
b Sn

g . We do not repeat any details of this sym
metry algebra and its representations here. In the HS m
the lowest excitation for an even number of spins is given
the triplet DJSucHS

N,N/221,N/2&. This state degenerates with
singlet that can be obtained by applyingQ1

25Q1
x2ıQ1

y on
ucHS

N,N/221,N/2& and projecting onto the singlet space, i.e.,

TABLE II. Ground state energies per spin atd50 andN→`.
The second column shows variational results obtained from
~2.4!, the third from Eq.~3.1!. The data in the last column are take
again from Ref. 25.

a ES
var(a,0,`) ES,k50

var (a,0,`) E0
diag/N

0.20 20.40852 20.40880 20.40885
0.25 20.40008 20.40045 20.40045
0.30 20.39158 20.39240 20.39284
0.40 20.37919 20.37924 20.38028

FIG. 2. Variational ground state energy per spin atd50 as a
function of a.
ip-

al
c-

-

e-

-

d

el
y

ucHS
S* &}~22Q0

2!Q1
2ucHS

N,N/221,N/2&. ~3.2!

As mentioned before, the minimum expectation value of t
Hamiltonian on the lined50 is given by the HS ground stat
for a<a* . So we evaluated the Hamiltonian also for the tw
excited HS states above. Note that in this ansatz there is
variational parameter included, because Eq.~3.2! is not de-
fined forwÞ0. In Fig. 5 the difference of these energies wi
the ground state value given in Fig. 2 is plotted. F
a<0.3 there is good agreement with the corresponding d
of Ref. 8. At somea5ã the singlet and triplet energie
coincide. Table III shows values forã in finite systems,
which can be extrapolated toN→` smoothly giving

q.

FIG. 3. Nearest-neighbor spin correlationŝSn
zSn11

z &
51/3̂ SnSn11& in the variational ground state of Eq.~1.1! for
d50 as functions ofa calculated from Eq.~3.1! for different sys-
tem sizesN.

FIG. 4. Next-nearest-neighbor spin correlations^Sn
zSn12

z &
51/3̂ SnSn12& of the variational ground state of Eq.~1.1! for
d50 as functions ofa calculated from Eq.~3.1! for different sys-
tem sizesN.
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5364 56HOLGER FRAHM AND JOHN SCHLIEMANN
ã50.236860.0002. This is remarkably close to the val
ac50.241160.0001 obtained from numerical diagonaliz
tion.

IV. CONCLUSIONS

We have constructed a family of variational states wh
contain excellent approximations to the ground state of
model~1.1! for a large range of its parameters. The states
strictly spin singlets and can be characterized by a sin
complex parameter. Moreover, in Sec. III we have dem
strated that ford50 and 0<a<0.3 the ground state an
lowest excitations of our model can be described amazin
well by eigenstates of the HS model. FordÞ0 the varia-
tional ansatz reproduces the explicit dimerization of
model.10 For vanishing bond alternationd50 the ground
state of the finite system has a well-defined lattice mom
tum ksP$0,p% ~Ref. 26! while the lowest excitations~triplet,
singlet! have kt ,ks* 5p2ks(mod 2p). In the thermody-
namic limit the excitation gap of the triplet vanishes f
a<ac , while for largera the singlet degenerates with th
ground state of the finite system. The momenta of these
states differ byp. Consequently, in this two-dimension

FIG. 5. Energy gap between the variational ground state and
lowest tripletDst and the singlet~3.2! Dss* for d50 as a function
of a for N520. The degeneracy determines our estimate of
conformal pointac .
h
e
re
le
-

ly

e

-

o

ground state space linear combinations exist that repre
dimerized states. This is expressed within our variational
proach by the fact that even forfinite systems dimerized
states~with rÞ0) are good approximations of the groun
state. The corresponding translational invariant states~3.1!
lead to small improvements to the ground state energy,
reproduce the spin correlations between nearest and n
nearest-neighbors very well.

As mentioned above a generalization of this variatio
state to similar systems away from half filling is straightfo
ward. This may allow for similar studies of the Zn-dope
compound Cu12xZnxGeO3 ~Ref. 28! when the Zn-sites are
treated as static spin-0 sites in the spin chain.
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APPENDIX: OFF-DIAGONAL MATRIX ELEMENTS
OF THE DJS

To compute the action of(n,m(Sn
1Sm

21Sn
2Sm

1) on the
DJS ~2.4! we define

ux~$ni%!&5)
i

Sni

2u↑•••↑& ~A1!

with u$ni%u5M . Introducing z5eı(2p/N) and mni

5(z2w)(21)ni we find

TABLE III. Location of the degeneracyã between singlet and
triplet excitation for differentN.

N ã

10 0.23967
12 0.23876
14 0.23820
16 0.23785
18 0.23757
20 0.23739
22 0.23722

` 0.2368

he

e

^x~$ni%!u(n,m~Sn
1Sm

21Sn
2Sm

1!cN,M ,J~u,r!

^x~$ni%!ucN,M ,J~u,r!&

5 (
n51

N/221

zJ2n(
i S )

iÞ j
uni2nj uP2N

~zni12n2znj !~z2ni22n2z2nj !

~zni2znj !~z2ni2z2nj !
)
iÞ j

uni2nj u¹2N

mni
zni12n2znj

mni
zni2znj

~1/mni
!z2ni22n2z2nj

~1/mni
!z2ni2z2nj D



pectively.

f

56 5365VARIATIONAL STATES FOR THE SPIN-PEIERLS SYSTEM
1 (
n50

N/221

zJ~2n11!(
i S )

iÞ j
uni2nj uP2N

~1/mni
!zni12n112znj

zni2znj

mni
z2ni22n212z2nj

z2ni2z2nj

3 )
iÞ j

uni2nj u¹2N

zni12n112znj

mni
zni2znj

z2ni22n212z2nj

~1/mni
!z2ni2z2nj D . ~A2!

The two sums originate from hopping terms between spins separated by an even and odd number of lattice sites, res
Combining these terms~A2! can be rewritten as

^x~$ni%!u(n,m~Sn
1Sm

21Sn
2Sm

1!cN,M ,J~u,r!

^x~$ni%!ucN,M ,J~u,r!&
1M5 (

n50

N21

znJP@~6z!n,~6z!2n#, ~A3!

where P is a polynomial in its arguments with coefficients independent ofn. Only powers (6z)nk with
2(M21)<k<(M21) arise in the expansion~A3!, so that for integerJ with M<J<N2M the sum taken over each term o
P vanishes leading to

(
n,m

~Sn
1Sm

21Sn
2Sm

1!ucN,M ,J~u,r!&52M ucN,M ,J~u,r!&. ~A4!
ss

.

se
s.

n.

v

-
.
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ens.
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se-
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ys.
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