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Variational states for the spin-Peierls system
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We introduce a family of Jastrow pair product states for quasi-one-dimensional spin systems. Depending on
a parameter they interpolate between the resonating valence-bond ground state of the Haldane-Shastry model
describing a spin liquid and th@imerized valence-bond solid ground states of the Majumdar-Ghosh spin
chain. These states are found to form an excellent basis for variational studies of Heisenberg chains with
next-nearest-neighbor interactions and bond alternation as realized in the spin-Peierls system;. CuGeO
[S0163-182697)04930-9

I. INTRODUCTION with the valence-bond ground staté$.2) on the line
2a+ 6=1 Going to largers the Hamiltonian(1.1) corre-
Following the recent discovery of a spin-Peierls transmonsponds to a ladder system of two coupled Heisenberg
in the inorganic compound CuGe@ there has been grow- chains'? In addition to numerical studies, several mean-field
ing theoretical interest in this instability of one-dimensionaltheories have been proposed for the Hamiltor(iad). Bn
spin chains. It has been proposed in Refs. 2 and 3 that frushis framework physical properties have been calculated giv-
trating next-nearest-neighb@INN) interactions in addition ing reasonable agreement with the experimental data avail-
to an explicitly broken translational invariance due to latticeable for energy gaps, Raman spectra, and the susceptibility
dimerization is necessary to obtain a consistent descriptionf CuGeO; and hence further support the Hamiltonidn?)
of the experimental data. This leads to the following spin- as a model for this substance.
Hamiltonian: In this paper we propose a family of variational states for
the ground state and low lying triplet of the Hamiltonian
, (1.1). While it will not be possible within this variational
H= Zo {[1+(=1)/6]S-S+1+ S-Sz} (LD approach to compute the thermodynamical quantities men-
= tioned above, it turns out that the states proposed are excel-
For =0, the model is invariant under translations by onelent approximations to the true ground state of the system
lattice site. This case has been investigated in detail and ithroughout the parameter region of interest here, namely
cludes the nearest-neighbor Heisenberg chain0, where 2a+d<1. Hence they can be used to obtain very good
the complete spectrum can be obtained by means of the B&ariational bounds on energies and may provide a better un-
the ansatZ:the ground state is that of a spin liquid, has aderstanding of the role of quantum fluctuations in these sys-
vanishing spin gap, and algebraically decaying correlationgems.
atT=0. For6=0, a= %, the Hamiltonian(1.1) becomes that In fact, variational states have already been applied suc-
of the Majumdar-GhostMG) model® here the system has a cessfully to some of the systems mentioned above: an easy
gaP and the exact ground state is known to be a product ofvay to incorporate two-particle correlations in a variational
nearest-neighbor singlet pairs showing a twofold degenstate is to consider a Jastrow pair product wave function.
eracy: Specifically, the state

N-1

|py[0;1]- - -[(N—2);(N—-1)],

M
| My = 2 l//{n}HSnH
|y@)e[1;2]---[(N—1);0] w2 M -

([2ib1=(N2)( ol Do al 1)) denotes the singlet

state formed by the spins on si@@ndb). For intermediate )= _ —n)2

values of the NNN interaction the modél.1) remains gap- win) .U g(n,)iH e =) 3

less fora<a.~0.2411(Refs. 7, 8, and Bwith its low en-

ergy sector described by an effective lekel1 SU2) Wess-  with d(n)=sin(zn/N), g(n)xexd2mi(JN)n], and M=J
Zumino-Witten(WZW) conformal field theory. Increasing =N/2 has been found to reproduce the ground state energy
beyond the “conformal point”«. the NNN coupling be- of the nearest-neighbor Heisenberg chainNofsites with
comes marginally relevant, producing an exponentially smaltemarkable accuracy. Furthermore, Eq(1.3) captures the
gap Axexgdconst/(@— ac)]. In this phase the system is essence of the spin-spin correlations in this system. States of
spontaneously dimerized. The properties of the system fathe form(1.3) span a large part of the Hilbert space including
a>1 have recently been discussed in Ref. 9. Extending théhe ground state of the Haldane-Shastiy) spin chain with
discussion to general couplings in thes plane, the system long range exchange interactiord,o 1/sirf[ 7(k—I)/N].*°

has gap above a dimerized ground state for any nongéfo The spectrum of this model gives a representation of the
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k=1 SUZ2) WZW conformal field theor}f (note that the Here|]- - -1) is the ferromagnetically ordered state with all
next-nearest-neighbor interaction in the HS model is veryspins parallel. The sum extends over all possibilities to select
close toa,). M out of N lattice sites and invert their spins. The sets of the

The spin-Peierls system and ladderlike models on theelected sites are denoted{my}. Each of those spin-product
other hand have been studied using short range resonatingtates contributes with an amplitude that consists of a prod-
valence-bond(RVB) states as ground states and solitonuct of single-site phase factors and a product of Jastrow-like
states interpolating between the two singlet bond configuratwo-site factors, depending on the underlying lattice, namely
tions (1.2) for the excitations’ the parameter® and p. The spinor components on timgh

In the following section we introduce variational stateslattice site may be rewritten up to a common factor
depending two free parameters and prove that they are eigeas u,xexp{+I1(7/N)[n+(—=1)"W]}, v,xexg—i1(a7/N)[n
states of the total spin of the system. In Sec. Il B we showt (—1)"w]} with w=p+1x and k= —(N/27)In[cot(6/2)].
that these states contain the valence-bond stat8sand the  Hence, the states defined in £§.4) depend analytically on
Jastrow state(1.3) as certain limits. Their relation to a complex parameter expressing a dimerized structure of the
Gutzwiller projected states of spinfermions is discussed in lattice and will be referred to adimerized Jastrow states
Sec. II C. Finally, we apply the variational states to the spin{DJS’s. Periodic boundary conditions require the parameter

Peierls systengl.l) in Sec. Ill. J to be taken integer. Requiring the DJS’s to have a definite
total spin restricts] even further: Clearly, Eq(2.4) are
Il. THE VARIATIONAL STATES eigenstates of the component of the total spin with eigen-
_ valueN/2— M. To show that they are eigenstates of the total
A. Construction spin we rewriteS? asS S+ 3, (S S, + S, S+ 252 S2).

Let C; andC, be two parallels with polar angle and Obvious|yznsn?|l/,NJV'vJ(g,p)):%N,WNMJ(@,,})) and
m— 6, respectively, on the two-dimensional sph&e For
evenN we chooseN/2 equidistant points labeled by even 1
numbers 0,2,4,..,(N—2) onC; and similarlyN/2 points > 2SS lﬂN’M’J(ﬁ’,p)):Z(M(M —1)+(N—=M)
labeled by odd numbers 1,3,5,.,(N—1) onC, such that "~
their azimuthal angles satisfy X(N=M=1)—2(N—=M)M)

X [gNMI(9,p)). (2.5

For integerd with M<J<N-—M this gives, together with
the results of the Appendix,

2w
W(l—zp)=¢2i+1—€02i (2.1

forie{0,...,(N—2)/2}. This defines a lattice 068? char-

acterized by the parametefisand p consisting of two iden- N N

tical linear sublattices and obeying periodic boundary condi- S| yNMI(9,p)) = 5~ M ) (E —M+ 1)

tions in the azimuthal direction. The lattice poirﬁscan

be described in terms of polar coordinates on the sphere, X |ygpNMI(6,p)). (2.6)

ie., 52(cospasinaa,sincpasinaa,cosﬂa). Alternatively, they
may be parametrized by spinor components,
=cos@y/2)exple./2), v,=sin(0/2)exp(—1¢,/2). Given two
pointsa,b e S*> we construct the spinor product

Hence, under the above condition the sfat®™:3(9,p)) is
an SU2) highest weight state with total sp#=N/2—M for
arbitrary values of the parametefisp. In particular, choos-
ing M=J=N/2 one obtains a singlet,M=N/2—1,
Je{N/2—1N/2,N/2+1} gives three ftriplet states with

d(a,b)z(uavb—ubva) (22) SZ::L, etc.
that has the following properties:
B. Limiting cases
d(a b)|2=1||(a—b)||2 From Eg.(2.2) one finds that the amplitudes of the wave
unctions(2.4) will be complex in general. These “chira
’ 4 ' functions (2.4) will b lex i I. Th “chiral”
—1 Sin (0,7+ 6,)/2]siN (¢a— ¢p)/2] spin states are believed to arise in two-dimensional spin sys-

ardd(a,b)]=tan S (0, — 05)/2]c03 (9a—w0)/2] )" tems due to frustrating interactiofigsee also Sec. Il A be-
2 low). Choosingw e R, i.e., 8= /2, all lattice sites lie on the

equator of the sphere and the Jastrow factors in (B
where| || stands for the Euclidean norm R?. become all real: now the relative phases of the amplitudes
Now let each lattice point carry a sp®, with S,=3. In  are determined by the one-site factors alone. In this case,
the Hilbert space of thedd¥ spins we consider the following some of the states discussed in the Introduction can be ob-
stateq d given by Eq.(2.2)]: tained by properly choosing:
(i) w=0: Provided thaM —1<J<N—-M+1, the DJS

|¢N,M,J( 0,p)>OC|{ % H el(27'r/N)Jni( H dZ(ni !nj))
nijI=M 1 N
i<j

|wH'sM'J>:=wN’M’~’(§,O)> (2.7

X SrTiH‘ 1) 249 are eigenstates of the Haldane-Shastry mddel
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N—1 T
Hoee 2.8
oy (Nms () n-mpz o @8
n<m 1.0F o .
with the eigenvalues
1/ 7 2 N 08 . 1
EN,M,J:§<N) g(N2—1)+M(M2—1)—3MJ(N—J) .
(2.9 06 | ° :
The ground state is given by the singlet, the first excitations ° .
by the triplet withM =N/2—1, J=N/2. 0.4 - o ]
In the thermodynamic limit the two spin correlation func- ° .
tions have been evaluated exactly by Gebhard and02 | o |
Vollhardt!® For the singlet state of Eq2.7) they have ob- ' °
tained
35( ) *%.0 100 200 30.0
lim (g2 S S nl g 2N = (- 1)" 7 —— N
N— o
(2.10 FIG. 1. Overlap|(yN'N2N2(7/2,0) yNN2N2( 72 1/2))|? be-

tween the ground state of the Haldane-Shastry model and the
This result is based on an alternative formulation of the DJ§,5jence-bond state.

that is d|scussed below.
(i) w=3. Here an even-numbered lattice site coincidessquares of the overlaps as computed numerically are plotted

with the next higher site. It is for systems up tdN=24. At N= 24 the singlet subspace has
the dimension 208 012, so that a square overlap of 0.17
‘¢N N/2, N/2( )> |9’/ (2.1 should be regarded as quite large.
2'2 It would be interesting if one could find a Hamiltonian

The singlet of the DJS a=1/2 is a valence-bond state: interpolating between one of the models given in Ref. 20 and
next neighbors are coupled to singlets. Equat{@rll) is tEe Hald?ne Shg\strtytmodel, so that the singlet DIwsys
easily proved by calculating the scalar product of both sides. € exact ground state . .
Similarly, we have| N2, N/2( 2, — 1/2)>o<|¢(2>> and (i) #—0. For ~—0 and finitep the chainsC;,C, are

' drawn to the poles of the sphere. In EJ.4) all amplitudes

S SN2-1 and consequently the normalization sum become zero. In this
’,/,N N/2— 1N/2( >> E [0;1]---]1) 2 limit tensor products of Haldane-Shastry type states arise. In
2°2 the simplest case, the singlet DJS, one obtains for &/&n
X|TYakr1 - [(N=2);(N=1)]. lim [ pNN2N2( g o) yoc | NZNINIY o |y NI2NI4NIAY
2.1 =0
(2.12 (2.19

DJS with higher total spin cannot be cast in a comparabl ' .
simple form atw=1/2 due to the more complicated structureyrhe first factor |n’the tensor product r_efersCT.Q, the_ s_e_cond .
to C,. Other DJS’s can also be examined by expliciting their

of the remaining amplitudes. q H q
The two valence-bond singlets span the ground statgepen ence on the parametérandp.

space of the Majumdar-Ghosh motlel
C. Relation to the Gutzwiller wave function
N-1

Hue= 2 SiSvi1t 5 &SM (2.13

It is worthwhile noticing that the DJS’s can also be for-
mulated analogous to the Gutzwiller wave functfdn.

Leta,, ,a,, be canonical creation and annihilation opera-
rs on thenth site for spins particles withS;=o and|0)
the vacuum of the system. F&t =J=N/2 one can use the
following construction: With the definition

Recently, Nakano and Takahashi have generalized thi
Hamiltonian to a variety of models with interactions of arbi-
trary range that have the same propéftyn the thermody-
namic limit these models have a finite gap for excitations

over the twofold degenerate ground state leading to spin-spin N-1
correlations that decay exponentially at large distances. This b, (w)= > elk<n+(fl>”w>a:w (2.15
is in contrast to the Haldane-Shastry model which has no gap JN#=0

and according to Eq(2.10 correlations decaying algebra-

¢ we have
ically.
Hence the DJS’s witl#= 77/2 andM = J= N/2 interpolate |¢N,N/2,N/2( 6,p)>oc7>b; (W) - b,j (W)
between a “resonating-valence-bond” singlet fo+=0 and 0 niz-1
the nearest-neighbor “valence bond solid” described by Eqg. X by ICORE .b:N/Z 1L(W)|0>

(1.2) for p=3. Despite their essentially distinct properties
these states have a remarkably large overlap. In Fig. 1 the (2.16
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with  k,=—#/2+#/N+(27/N)n and P being the and small values of the NNN couplingQa< a*, the varia-
Gutzwiller projector excluding double occupancies, i.e.,tional energy is minimized fow=0. A transition to a dimer-
P=TIN-3(1—npyNy,), Nno=2a,,a,,. Equation(2.16 can ized ground state is observed at the “critical” value of
be proved using similar arguments as in Ref. 15. So ther*=0.2716+-0.0002 forN—«. For a>a* p becomes fi-
DJS’s are deformed Gutzwiller wave functions characterizedite. In the absence of the alternating term, the Hamiltonian
by a complex parametev. Analytical results concerning the (6=0) of the system is invariant under translation by a
two-site correlations have been found for= 0.1%%?For non-  single lattice site, while the staté2.4) do not have such a
zerow the dimerization leads to complications that cannot besymmetry forw+0. This leads one to consider the ansatz
resolved following these methods.

An obvious generalization is to construct wave functions |N(p))ox ¢N,N/2,N/2<z ol )+ le,N/Z,N/Z(z —p)
of the above type with arbitrary filling. Starting from states 2’ 2’
without double occupancies on the equidistant lattice as con- (€

sidered in Ref. 23, one can introduce double occupancies angh, N chosen even. This construction corresponds to the
dimerization while keeping the Jastrow form of the stafes. |yyice momentum of the ground state of finite systems ob-
Again they can be constructed to be highest weight states Qlineq in Ref. 26. With the staté8.1) one observes slight,

the total spin. Since empty and doubly occupied lattice siteg, numerically significant, improvements of the ground

do not contribute to the spin, there are large additional posgi4ie energy as shown in Table II. Furthermore, the param-

sibilities of varying the wave functions in the case of generaly;q, p remains zero for &a<a** with o** =0.1737
filling and strength of the Gutzwiller projection.

+0.0002, which is much smaller than the* mentioned
above. In Fig. 2 we present the ground state energy per spin
. APPLICATION TO THE SPIN-PEIERLS SYSTEM as a function ofy, in Figs. 3 and 4 NN and NNN correlations
o calculated within the statd8.1) are plotted. These diagrams
‘We now use the DJS as variational ansatz for the lowygree very well with the corresponding figures given in Ref.
lying states of the mode{1.1). As mentioned above, the 5g
analytical methods of Refs. 19 and 22 cannot be applied to  gpin-spin correlations beyond those entering the expres-

the dimerized system, hence the results presented beloyon for the ground state energy show the correct long dis-
were obtained by numerical evaluation of the relevant matrixance asymptoticéSyS,)oc(—1)"/n as long ap=0 (2.10),

elements for system sizes up fb=26 lattice sites. which corresponds to the massless regime, §=0 de-
scribed by the WZW conformal field theolgee, e.g., Ref.
A. Ground state properties 7). Nonzerop leads to a suppression of long range correla-

tions. The system sizes that we have analyzed numerically

For the ground state of the model we have used the singlg, 1ot allow one, however, to study the dependence of the
DJS M=J=N/2) as a variational ansatz. The numerical ., a|ation length om. Only on the line 2+ 6=1, where

results can be summarized as follows. .. the states show perfect dimerization, are the correlations read
For 2a+ <1 the expectation value of the Hamiltonian is ¢ trivially.

minimized by realw, i.e., 6= 7/2 with p varying from 0 to
1/2, 2a+6=1 corresponds to a valence-bond state
(w=1/2)1* On the other hand, for 2+ =1 we find
p=1/2 and varyingf. For a= §=0 the minimum is given The results of the previous section suggest using DJS with
by the Haldane-Shastry ground state=0). The exact higher spin as variational ansatz for excitations of our model.
ground state energy per spin is known to beUnfortunately the situation is not as clear as before. Here we
—In2+1/4~=—0.443 147 for an infinite system, the varia- o ) ]

tional value is— (3/4) Si(m)/(7)=—0.442 177 from(2.10. TABLE I. Variational ground stgte energies per spin for
In Table | we present the extrapolation to an infinite systend\—>- The last column shows numerical data from Ref. 25.

of the variational ground state energies for various values of

B. Excitations

var, diag
a and 8. Comparison with data from numerical diagonaliza- ¢ 0 Es(@.0,%) Eo™/N
tion obtained by Chitraet al?® shows excellent agreement: .2411 0.00 —0.40160 —0.401866
the variational energies per spin differ by only about 30 2411 0.04 —0.40793 —0.409051
from diagonalization values except for the last row of Tableg 2411 0.16 —0.44237 —0.442862
I. In general, the quality of the singlet DJS as a variationaly o411 0.32 —0.49673 —0.496844
ansatz is found to decrease for valuesaobxceeding 0.5. (2509 0.00 —0.40008 —0.40045
Hence, we have found an effective one-parametric variagy 55q 0.35 —0.50721 —0.50727
tional wave function that gives an excellent approximation of ,5q, 0.20 046242 046329
the ground state energy of the model considered within a
large area of its parameters, in particular for any an'uferro—ol4000 050 056550 056611
magnetic NNN couplingsy with 2a+ §<1. Note that in
. . g . 0.4800 0.10 —0.41272 —0.41281
this case the optimum singlet DJ3.4) hasreal amplitudes.
R 0.5500 0.10 —0.41519 —0.41610
For 2a+ 6>1 they become properly complex: this case " 0o 0.80 _ 0.67601 _0.67613
therefore is called a chiral phase. F®# 0 the translational 0'3000 0.80 0.67896 0.67966
invariance of the system is explicitly broken leading to a™ ' g g
0.4800 0.80 —0.68897 —0.69256

dimerized variational ground state with finige For 6=0
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TABLE Il. Ground state energies per spin &0 andN— .
The second column shows variational results obtained from Eq
(2.4), the third from Eq(3.1). The data in the last column are taken
again from Ref. 25.

a E&'(@,0,%) Egik-o(@,0,) EQ°IN -0.130
0.20 —0.40852 —0.40880 —0.40885
0.25 —0.40008 —0.40045 —0.40045
0.30 —0.39158 —0.39240 ~0.39284
0.40 —0.37919 —0.37924 —0.38028

-0.140

concentrate on the cas®=0 and mention that the eigen-
states of the Haldane-Shastry model provide a good descri|
tion of low lying states for 8= «<0.3.

From analytical and numerical stgdles this model is -0-150 010 0.20 050 0.40
known to be gapless far<«.. As predicted by conformal
field theory, at the “conformal point’a, is defined by the
occurrence of many degeneracies in addition to the usual FIG. 3. Nearest-neighbor spin correlation§S:SZ, ;)
SU(2) symmetry. Okamoto and Nomura examined the spec=1/3(S,S,.,) in the variational ground state of Eq1.1) for
trum of Eq.(1.1) for =0 in finite systems by numerical §=0 as functions ofx calculated from Eq(3.1) for different sys-
diagonalizatiorf. They found a linear dependence of the en-tem sizesN.
ergy of the ground state and the two first excitatigniplet,
singled on « in the above intervall. From the condition, that
the two excitations should degenerate, they obtained a pre- S* Vo (92— 02O | N:N2—1N/2
cise value for the conformal point ag = 0.2411+0.0001. |97 (2= Qo) Qu [vis ) @2

Within the concept of DJS, there is only one singlet corre-aos mentioned before, the minimum expectation value of the
sponding to the ground state, but in the HS cage=0) an  Hamiltonian on the lined=0 is given by the HS ground state
additional singlet can be derived from the triplet excitationfor o< o* . So we evaluated the Hamiltonian also for the two
by using the Yangian symmetry of this modél. excited HS states above. Note that in this ansatz there is no
The Yangian of the Haldane-Shastry model is generategariational parameter included, because &3 is not de-

by the total SW2) spin or “level-0 operators”Qg=X=S7  fined forw=0. In Fig. 5 the difference of these energies with
and the “level-1-operators” Qi=ZX..cof(a/N)(m the ground state value given in Fig. 2 is plotted. For
- n)]s“ﬁ“/Sﬁ]Sf{. We do not repeat any details of this sym- «<0.3 there is good agreement with the corresponding data

metry algebra and its representations here. In the HS modef Ref. 8. At somea=a the singlet and triplet energies

the lowest excitation for an even number of spins is given bycoincide Table Ill shows values fa& in finite systems
the triplet DJS| N2~ 1N This state degenerates with a ’

| ) Dt which can be extrapolated ttN—o smoothly giving
singlet that can be obtained by applyi@j =Q7—1Q} on

|yNJ/2=1N12y ‘and projecting onto the singlet space, i.e.,

-0.36 .
-0.38 0.040
-0.40
-0.42

0.020
-0.44
—0.46 |- _
-0.48 ] 0.000 : * ; ‘

0.00 0.10 0.20 0.30 0.40
o
_0'50 1 ) 1 ]
0.00 0.10 0.20 0.30 0.40 _ _ L
K FIG. 4. Next-nearest-neighbor spin correlatioS;S: ., ,)

=1/3(S,S,;») of the variational ground state of Eql.1) for
FIG. 2. Variational ground state energy per spindat0 as a  §=0 as functions ofx calculated from Eq(3.1) for different sys-
function of «. tem sizesN.
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. ; . TABLE IIl. Location of the degeneracy between singlet and

triplet excitation for differentN.
N a
0.40
10 0.23967
12 0.23876
14 0.23820
0.30 16 0.23785
18 0.23757
20 0.23739
0.20 22 0.23722
o 0.2368
010 1 L ] 1
0.00 0.10 0.20 0.30 0.40

* ground state space linear combinations exist that represent

FIG. 5. Energy gap between the variational ground state and theimerized states. This is expressed within our variational ap-
lowest tripletA, and the singlet3.2) A, for 6=0 as a function Proach by the fact that even fdinite systems dimerized

of a for N=20. The degeneracy determines our estimate of thetates(with p#0) are good approximations of the ground
conformal pointa . state. The corresponding translational invariant stéseh

lead to small improvements to the ground state energy, but
reproduce the spin correlations between nearest and next-
nearest-neighbors very well.

As mentioned above a generalization of this variational
state to similar systems away from half filling is straightfor-
ward. This may allow for similar studies of the Zn-doped
compound Cy_,Zn,GeO; (Ref. 28 when the Zn-sites are
treated as static spin-0 sites in the spin chain.

@=0.2368+0.0002. This is remarkably close to the value
a.=0.2411-0.0001 obtained from numerical diagonaliza-
tion.

IV. CONCLUSIONS
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strated that for6=0 and 0<«<0.3 the ground state and

lowest excitations of our model can be described amazingly APPENDIX: OFF-DIAGONAL MATRIX ELEMENTS

well by eigenstates of the HS model. F6# 0 the varia- OF THE DJS

tional 1a0nsatz reproduces the explici.t dimerization of the 1, compute the action oEn<m(S§S,;+S;Sr;) on the
model:” For vanishing bond alternatiod=0 the ground DJS (2.4) we define

state of the finite system has a well-defined lattice momen-

tumkse {0,7} (Ref. 26 while the lowest excitationgriplet,

singled have k;,kg =7—Kkg(mod 27). In the thermody- |X({ni})>:H Sylt---1) (A1)
namic limit the excitation gap of the triplet vanishes for i :

a<a., While for largera the singlet degenerates with the
ground state of the finite system. The momenta of these tw
states differ byw. Consequently, in this two-dimensional = (z2%)" D" we find

1(27IN)

With [{ni}|=M. Introducing z=e and

<X({ni})|2n<m(sr?sr;1+ Sgsr;)‘/’N'M'J( 0,p)
x{nip g M2(6,p))

(ZV+ 20— ZN) (2~ N2z Ny pn 22— 2N (L )2 T2 =27

N/2—1
-3 3|
n=1 i

i#] (ZN=2Z")(z "Ni—z"") un2i=2"  (Uup)z M-z "
|ni—ﬂj|62N i i

i#]
[nj—n;l¢2N
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N/2—1 (1/,LLn_)Zni+2n+l—Zni ,un_z_“i_zn_l—z_”i
+ Zen+1) i i
ngo Eu |1;[J ZzNi—2Z"i z M-z
|nifnj\ e2N
ZNi+2n+1_nj S—n—=2n—1_ ,—n;
x |1 (A2)
i#] wnZ"i=2" (Upp)z "i—z "
[nj—n;l¢2N i i

The two sums originate from hopping terms between spins separated by an even and odd number of lattice sites, respectively.

Combining these term@\2) can be rewritten as

(XUNiDIZn<m(S; Sut Sy Sn) ¥ (6.p)

N—-1

Odnip[NM2(0,p))

+M:n§O ZP[(=2)",(*2)" "], (A3)

where P is a polynomial in its arguments with coefficients independent rof Only powers (-z)"% with
—(M—-1)<k=(M—1) arise in the expansidi\3), so that for integed with M<J<N-—M the sum taken over each term of

P vanishes leading to

ngm (St Sm+Sh SIENMI(8,p)) = —M[ygNMI(9,p)).

(A4)
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