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Ferrimagnetism in a one-dimensional Heisenberg model
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In this paper, we show that for a one-dimensional antiferromagnetic Heisenberg model with unequal spins,
its absolute ground state has both antiferromagnetic and ferromagnetic long-range orders.
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In recent years, the study of one-dimensiofidd) quan- - _
tum spin chains has attracted many physicists’ interest. Vari- Ha=2 2 Jisis;, 2
ous powerful techniques, such as the Bethe ansatz solutions, <A <8
bosonization methoti? and the so-called matrix product where{J;=0} is a set of antiferromagnetic coupling con-
states techniqié have been introduced to reveal the rich stants and they are allowed to be site dependent. We shall
physical properties of these models. It should be mentionegequire that lattice\ be connected by}
that these systems are also directly related to some real mag- | ¢t ¥ pe an eigenstate &1, . WhenA is a simple cubic

netic materials: lattice, which is a special case of the bipartite lattices, the

As is well known by the Mermin-Wagner theoréna transverseandlongitudinal spin-correlation functions can be
one-dimensional quantum spin system cannot possess a Magmply defined by

netic long-range order when temperatire 0. On the other
Tand,T=Q may be_ a critical p0|.nt. Ho_wever, in neither spin- gT(q)E(q’|§+(—q)§7(q)|{f’),
5 nor spin-1 antiferromagnetic Heisenberg models on a
simple chain has a magnetic long-range order been found. L EIE T ~
Very recently, Mikeskaet al. considered a Heisenberg ferri- 9L (@=(P[SL=a)S,()|V), ®)
magnetic spin chaifi® By using either the spin-wave thedry where
or the matrix product states approdclthey have shown
clearly that the absolute ground state of this model has a _ 1 _
ferrimagnetic long-range ord&rThen they carried out the Sa(q)E—E Si.expigq-i), a=+,—,z (4
calculations on the low-lying excitations. VNpieA
In this paper, we study this ferrimagnetic model by a dif- 5 ¢ s a reciprocal vector of the simple cubic lattice. If

ferent approach and prove the existence of the ferrimagnetiﬁequa"ty 9+(9)= BN, (g.(q)=BN,), where 8>0 is a

Iong-ra}nge order in its absolute g.round state in a mathe.matl:'onstant independent &f, , holds for some reciprocal vec-
cally rigorous way. Our conclusions confirm the previous

results of Mikeskaet al’*8 tor g asN,—o, we say that? has a momenturg-trans-
To begin with, we would like to introduce some useful vers_e(longltudlnab magnetic Iong-rang_e ordéMLRO). In )
definitions and terminologies. Take a finite simple latticeParticular, the momentum-0 MLRO is the ferromagnetic

chain A with lattice constana=1 and impose the periodic '°Ng-range order and the moment@ntQ=(m,m, - -, )]
boundary condition on it. LeN,=2N be the number of MLRO represents the antiferromagnetic long-range order.

lattice sites inA. Then the Hamiltonian of the ferrimagnetic For an arbitrary bipartite latticd, the above definition is

Heisenberg model studied in Refs. 7 and 8 can be written al%ct):icseuit/?/zlieﬁt;[)%uecxéend the definition of MLRO to such a

N Definition 1: A complex functionf(i) defined on lattice
HA=2 S T2j+1, (1) A is called admissible iff(i)|=1 for anyie A. For a spe-
=1 cific admissible functiorf (i), we define
wheres,; and ;. ; are spins and spin-1 operators located

at sites 2 and 2 + 1, respectively. Apparently, with respect gr(H)=(T|S.(f*)S_(H)|F),
to Hamiltonian(1), lattice A is bipartite and each sublattice
has the same number of sites. As pointed out in Ref. 8, some gL(f)E<\Tf|§Z(f*)§Z(f)|fI’f> (5)

real magnetic materials belonging to the family of o )
Cu(INNi(I) complexes can be well described by this madel. 0 be the transverse and longitudinal momenturapin-

This model can be slightly generalized as follows. Wecorrelation functions of¥, respectively. In formula(5),
take an arbitrary lattice\ and divide it into two separate S (f)=(1/\yN,)SiAf(i)Sip.a=+,—,z

sublatticesA andB. Correspondingly, we let each site f Obviously, the correlation functions defined above coin-
be occupied by a spis, wheres;=s if ie A and s;=7; if cide with their counterpart on a simple cubic lattice if we
ie B. We define choosef (i)=exp(qg-i). In particular, letting
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. 1, for ieA, ible in the sense that, for any pair of basis vectéfsand ¢”,
e(i)=y _ 1. for icB, (6)  there is an integeM =0 such that
we see that the momentua<correlation functionsgq(e) (¢'|(HOM[¢")#O0. 11

andgy (e), are the transverse and longitudinal antiferromag, such a matrix, the well-known Perron-Bemius theorem
netic spin-correlation functions oF. Similarly, the ferro- applies’® The theorem tells us that

magnetic correlation functions can be writtenggg!) and (i) The ground statd (M) of F’, in V(M) is unique:

g (1) with 1(i)=1 for anyieA. . O AT T ’

Now, we are ready to state our result. It can be summa- (i) The expansion coefficient@,} of ¥o(M) in terms
rized in the following theorem. of the basis vectorss({s;,})} are positive.

Theorem: Let N, and Ng be the numbers of sites in As a consequence @f), the ground stat& ,(M) of H
sublatticeA andB, respectively. WhetNy,=Ng=N, the ab- in V(M) is also nondegenerate since the Hamiltonian is uni-
solute ground statd, of H, has total spinS=|s—7|N. tarily equivalent toH . By following the proof of the Lieb-
Furthermore, it supports both antiferromagnetic and ferroMattis theorert® and using conclusiotii), one can easily
magnetic long-range orders. In other words, the system is gnhow that the ground stat®,(M) of H, has a nonzero

ferrimagnet. overlap with the ground sta®,(M) of the so-called Lieb-
The proof of the first statement in our theorem is almostyattis Hamiltonian

identical to the proof of the well-known Lieb-Mattis
theoremt® For completeness, we shall briefly repeat it in the ~ ~

following. The technique in proving the second statement of HA:% ;B Si-Sj- (12
the theorem was developed in some of our previous .
papers:112 In Hamiltonian,, , J;=1 for any pair of sitese A andj

Proof of the theoremFirst, we notice that the total spin < B. Therefore,¥,(M) and ®o(M) must have the same
operatorS?=(3;_,'s)? and the total spirZ-component op- total spin and total spi@ component. In particular, thab-

eratorS,=3;_,'s;, commute withH, . Consequently, they soluteground state¥, of H,, and theabsoluteground states

are conserved quantities and the Hilbert spactl pfcan be ~ ®o 0f H, should have the same total spin, which can be
divided into numerous subspacpg(M)}. Each of them is easily calculated fofbo. In our case, it is equal to

characterized by a quantum numi&=M. Now, we show
that in each subspad& M), the ground stat& ,(M) of H

is ur)ique. S _ _ _ Next, we show the coexistence of the antiferromagnetic
Since A is bipartite, it is possible to introduce a unitary and ferromagnetic long-range orders in the absolute ground

transfprmatiorf)o, which transforms the spin operats=s  state¥, of A, . For this purpose, we shall exploit the posi-
at a site ofA by tivity of the expansion coefficient$a,} of Po(M), the
Ols, 0= —sy: Ols U ——s.: OlsOy=s. . (7 ground states oIf.-Il’x (notl—!A), again. '
0™ix=0 x 0Siy~0= Sty 0SizUo=Siz, (7) Take two arbitrary lattice pointh and| of lattice A and
and leaves the spin operator at each sitBofinchanged. consider the expectation value of operatsf.s,_ in

§o:|s_ T|N (13)

Formally, U, can be written as W((M). Since
0= exp(mZ Slz) ® Sha S =VS(5+1)—5,(5,+1)|h,5,+1),
ieA
SI13)=VS(5+ )~ 5,5~ DILE,~1), (14

Under this transformation, Hamiltoniad , is transformed
into we should have

=, atoe ~— Ti(M)|'Spe s |PH(M))=0 15
HA:U(JSHAUOZE, Jij(_Sixij_siysjy+sizsjz) < 0( )| h+ I| 0( )> (15

leAeB by the positivity of the expansion coefficier{ta,;}.
B 3 1. - N N © We now perform the inverse unitary transformatlag !
TS 5 (Si+ 8- Si-5j4) + SigSe . in the subspac&/(M). H), is mapped back ontéi, and

and subspac¥(M) is mapped into itself. Yo(M) onto W y(M). However, inequality(15) now reads

Choosing the natural basis ¥{M) =0. for h. leA or B:
- - o~ - (To(M)[Shs 52| To(M)) ,

$({Sih)=[512.522. 5w, (10 =0 ohewise

with =,_,s,=M, we are able to wnteHA in a matrix according to Eq.(7). Consequently, thdransversespin-

whose off-diagonal elements are nonpositive. By the conneceorrelation function of the nondegenerate ground staté of

tivity condition on{J;}, it can be shown thatl, is irreduc-  in each subspacé(M) satisfies
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gr(e)=gr(f) 17 Gr(€)=G+(l). (19
for any admissible functioffi(i). In particular, the inequality Furthermore, we have the following lemma.
holds for I (i)=1. Applying inequality(17) to the 2S,+1 Lemma: Identity

absolute ground statd®,(M),— So<M=<S,} of H,, we

9o 4o(M). ~ S of Of Hy Gr(f)=2G,(f) (20)
see that, if¥ has the transverse ferromagnetic long-range
order, it must also support the transverse antiferromagnetigo|ds for any admissible functiof(i) defined onA.

long-range order. Proof B L ~ s ~
. . . . By the definitions ofS, (f*) and S_(f), g(f)
Next, we would like to extend inequalit}d7) to the lon- can be rewritten as

gitudinal spin-correlation functiog, (f). At the first glance,
this extension seems straightforward sirfldg has SU2)
spin symmetry. However, as we show in the following, this
problem demands a more careful thinking due to the high-

gr(F)=(To(M)| S(F*)S,(F)+ S, (F*)S,(F)|To(M))

i - ~
spin degeneracy of the absolute ground statel pf + N_A<\IIO(M)|h,]_zeA P FDsnySix
We notice that when the external fields are absent, the o
2S,+1 degenerate absolute ground statediaf have the — StxSiyl|Wo(M)). (21

same statistical mechanics weight. In other words, they are o _ _
experimentally indistinguishable. Therefore, if one tries to  First, we simplify the last sum on the right-hand side of

detect MLRO in these states by some meésch as the Eq. (21). When h#1, we have[“s'hx,’gly]z[ghy,glx]zo_

neutron-scattering technigyeone can only obtain averaged Therefore, 'ghyglx_ghxgly is a Hermitian operator and

data. This fact leads us to introduce the following definition.hence’ its expectation value in any state is a real quantity. On
Definition 2: Let f(i) be an admissible function defined

on lattice A. We define the averaged spin-correlation func-the other hand, sindd, is a real matrix, its absolute ground

tions by states{¥o(M),— Sy=<M<S,} can be chosen as real state
vectors. Consequently, the expectation valke of
1 £ ShySix— SnxSiy i Fo(M) must be a pure imaginary quan-
G(f)=— > (To(M)|SL(F%) tity because the operator is an imaginary matrix. This implies
2Sp+1um=-75, that F=0. Therefore, the sum on the right-hand side of Eq.

_ - (21) is reduced to
XS_(F)[Wo(M)),

3 i e "
> N T oM 2 [F() TSy S SicSnyIITo(M)) = G-
G (f)=— qf M § f* e
(1) 25+ IMEE()( o MISA) (22)
X S,(f)|Wo(M)). (18) Next, ~we  apply the  unitary  operator

U,=exp((i m/2)2;. A'Si,), which rotates each localized spin

Since inequality(17) holds for each¥,(M), we immedi- ~ about thégiz axis by an angler/2, to rewrite the expectation
ately obtain value of S, (f*)S,(f) in W,(M). We obtain

(To(M)[S(F%)Sy ()T o(M)y=(To(M)|U;(0]S,(F*)01) (0TS, (1)U 0| To(M))
=<\Tfo<M>|exp( - I%TM)§x<f*>§x<f>exp(%TM)l\Tfo(nA»

= (W o(M)[Sy(F*)S(F)|Fo(M)). (23)
Substituting Eqs(22) and (23) into Eq. (21), we obtain

— —_ —_ — M
gr(F)=2(To(M)[S,(1*) SN[ Fo(M)) + G- (24)
and
2 So _ — _ _
G(f)= 2§0+1M§§O (T o(M)|S(F) S| To(M)). (25)



5358

GUANG-SHAN TIAN 56

Next, we apply the unitary operator,= exp[(iw/Z)E,EA§,y] to the left-hand side of Eq25). SinceU}H,U,=H, , under

U2, the 2S,+ 1 degenerate absolute ground stz{t&g‘,(M) —Sp=

M= SO} of H, will be transformed in terms of a%,+ 1

dimensional irreducible unitary representatids= (U,,,) of the SU2) group* Consequently, we obtain

So
Gr(h= 250+ 1m73,
% % %
28+ Lu E_ 1:2—50 MZ:E—EO
, % 5

250+ 1m;=-5, Mp=-5,

S

280+ 1M1**SO

In the above derivation, we used the fact thiat (uy,) is a
unitary matrix.
Combining identity(20) and inequality(19), we obtain

G.(e)= %GT(f)B%GT(I):GL(I)- (27)
A little algebra yields
1 So
Gu(h)= (250+—1>NAM_ZSO (To(M)[S,5,|To(M))
— o~ 3?
= (2~SO+—1)NA[33+(50—1)2+ : 'HZPW'

(28)

Therefore, asSy=N|s— 7/=N/2=N,/4, we have
GL(e)=GL(1)=BN, (29)

with 8= 4. It implies that the absolute ground statesby,

> (To(M)|0,(0S,(F%)0,)(0]S,(f

Unt (T o(M1)[S(F%)S

2 S m{To(M)[S(F*)S

> (To(My)|SLF*)SAH)|To(M1))=2G(f).

)U,) US| To(M))

HITo(M2))

HITo(M))

(26)

magnetic long-range orders. Therefore, they are ferrimag-
nets.

Our proof is accomplishedED.

In summary, we showed in this article that the global
ground states of some ferrimagnetic Heisenberg model on a
bipartite latticeA, in particular, the one-dimensional ferri-
magnetic model studied in Refs. 7 and 8, have both ferro-
magnetic and antiferromagnetic long-range orders, with the
antiferromagnetic long-range order being predominant. It is
interesting to see that although the “parents” models, which
have either spin-1 or spif-localized at each site, do not
have the magnetic long-range orders, their mixture, the one-
dimensional ferrimagnetic model, does support a ferrimag-
netic MLRO.
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