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Ferrimagnetism in a one-dimensional Heisenberg model
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~Received 24 October 1996!

In this paper, we show that for a one-dimensional antiferromagnetic Heisenberg model with unequal spins,
its absolute ground state has both antiferromagnetic and ferromagnetic long-range orders.
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In recent years, the study of one-dimensional~1D! quan-
tum spin chains has attracted many physicists’ interest. V
ous powerful techniques, such as the Bethe ansatz solut
bosonization method,1,2 and the so-called matrix produc
states technique3,4 have been introduced to reveal the ri
physical properties of these models. It should be mentio
that these systems are also directly related to some real m
netic materials.1,5

As is well known by the Mermin-Wagner theorem,6 a
one-dimensional quantum spin system cannot possess a
netic long-range order when temperatureTÞ0. On the other
hand,T50 may be a critical point. However, in neither spi
1
2 nor spin-1 antiferromagnetic Heisenberg models on
simple chain has a magnetic long-range order been fou
Very recently, Mikeskaet al. considered a Heisenberg ferr
magnetic spin chain.7,8 By using either the spin-wave theory7

or the matrix product states approach,8 they have shown
clearly that the absolute ground state of this model ha
ferrimagnetic long-range order.9 Then they carried out the
calculations on the low-lying excitations.

In this paper, we study this ferrimagnetic model by a d
ferent approach and prove the existence of the ferrimagn
long-range order in its absolute ground state in a mathem
cally rigorous way. Our conclusions confirm the previo
results of Mikeskaet al.7,8

To begin with, we would like to introduce some usef
definitions and terminologies. Take a finite simple latti
chainL with lattice constanta51 and impose the periodi
boundary condition on it. LetNL52N be the number of
lattice sites inL. Then the Hamiltonian of the ferrimagnet
Heisenberg model studied in Refs. 7 and 8 can be writte

HL5(
j 51

N

s2 j•t2 j 11 , ~1!

wheres2 j andt2 j 11 are spin-12 and spin-1 operators locate
at sites 2j and 2j 11, respectively. Apparently, with respe
to Hamiltonian~1!, lattice L is bipartite and each sublattic
has the same number of sites. As pointed out in Ref. 8, s
real magnetic materials belonging to the family
Cu~II !Ni~II ! complexes can be well described by this mode5

This model can be slightly generalized as follows. W
take an arbitrary latticeL and divide it into two separate
sublatticesA andB. Correspondingly, we let each site ofL

be occupied by a spins̃, where s̃i5si if iPA and s̃i5ti if
iPB. We define
560163-1829/97/56~9!/5355~4!/$10.00
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H̃L5(
iPA

(
jPB

Jij s̃i• s̃j , ~2!

where $Jij>0% is a set of antiferromagnetic coupling con
stants and they are allowed to be site dependent. We s
require that latticeL be connected by$Jij %.

Let C̃ be an eigenstate ofH̃L . WhenL is a simple cubic
lattice, which is a special case of the bipartite lattices,
transverseandlongitudinalspin-correlation functions can b
simply defined by

gT~q![^C̃u S̃1~2q! S̃2~q!uC̃&,

gL~q![^C̃u S̃z~2q! S̃z~q!uC̃&, ~3!

where

S̃a~q![
1

ANL
(
iPL

s̃ iaexp~ iq• i!, a51,2,z ~4!

and q is a reciprocal vector of the simple cubic lattice.
inequality gT(q)>bNL (gL(q)>bNL), where b.0 is a
constant independent ofNL , holds for some reciprocal vec
tor q as NL→`, we say thatC̃ has a momentum-q trans-
verse~longitudinal! magnetic long-range order~MLRO!. In
particular, the momentum-0 MLRO is the ferromagne
long-range order and the momentum-Q @Q5(p,p,•••,p)#
MLRO represents the antiferromagnetic long-range orde

For an arbitrary bipartite latticeL, the above definition is
not suitable. To extend the definition of MLRO to such
lattice, we introduce

Definition 1: A complex functionf ( i) defined on lattice
L is called admissible ifu f ( i)u51 for any iPL. For a spe-
cific admissible functionf ( i), we define

gT~ f ![^C̃u S̃1~ f * ! S̃2~ f !uC̃&,

gL~ f ![^C̃u S̃z~ f * ! S̃z~ f !uC̃& ~5!

to be the transverse and longitudinal momentum-f spin-
correlation functions ofC̃, respectively. In formula~5!,
S̃a( f )[(1/ANL)( iPL f ( i) s̃ ia ,a51,2,z.

Obviously, the correlation functions defined above co
cide with their counterpart on a simple cubic lattice if w
choosef ( i)5exp(iq• i). In particular, letting
5355 © 1997 The American Physical Society
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e~ i!5H 1, for iPA,

21, for iPB,
~6!

we see that the momentum-e correlation functions,gT(e)
andgL(e), are the transverse and longitudinal antiferroma
netic spin-correlation functions ofC̃. Similarly, the ferro-
magnetic correlation functions can be written asgT(I ) and
gL(I ) with I ( i)51 for any iPL.

Now, we are ready to state our result. It can be summ
rized in the following theorem.

Theorem: Let NA and NB be the numbers of sites i
sublatticeA andB, respectively. WhenNA5NB5N, the ab-
solute ground stateC̃0 of H̃L has total spinS̃5us2tuN.
Furthermore, it supports both antiferromagnetic and fer
magnetic long-range orders. In other words, the system
ferrimagnet.

The proof of the first statement in our theorem is alm
identical to the proof of the well-known Lieb-Matti
theorem.10 For completeness, we shall briefly repeat it in t
following. The technique in proving the second statemen
the theorem was developed in some of our previo
papers.11,12

Proof of the theorem: First, we notice that the total spi
operatorS̃25(( iPL s̃i)

2 and the total spinZ-component op-
erator S̃z5( iPL s̃iz commute withH̃L . Consequently, they
are conserved quantities and the Hilbert space ofH̃L can be
divided into numerous subspaces$V(M )%. Each of them is
characterized by a quantum numberS̃z5M . Now, we show
that in each subspaceV(M ), the ground stateC̃0(M ) of H̃L

is unique.
SinceL is bipartite, it is possible to introduce a unita

transformationÛ0, which transforms the spin operators̃i5si
at a site ofA by

Û0
†sixÛ052six ; Û0

†siyÛ052siy ; Û0
†sizÛ05siz , ~7!

and leaves the spin operator at each site ofB unchanged.
Formally, Û0 can be written as

Û05expS ip(
iPA

sizD . ~8!

Under this transformation, HamiltonianH̃L is transformed
into

H̃L8 5Û0
†H̃LÛ05(

iPA
(
jPB

Jij ~2 s̃ix s̃jx2 s̃iy s̃jy1 s̃izs̃jz!

5(
iPA

(
jPB

Jij F2
1

2
~ s̃i1 s̃j21 s̃i2 s̃j1!1 s̃izs̃jzG , ~9!

and subspaceV(M ) is mapped into itself.
Choosing the natural basis ofV(M )

f~$ s̃ iz%!5u s̃1z , s̃2z ,•••, s̃NLz& ~10!

with ( iPL s̃ iz5M , we are able to writeH̃L8 in a matrix
whose off-diagonal elements are nonpositive. By the conn
tivity condition on$Jij %, it can be shown thatH̃L8 is irreduc-
-

-

-
a

t

f
s

c-

ible in the sense that, for any pair of basis vectorsf8 andf9,
there is an integerM>0 such that

^f8u~H̃L8 !Muf9&Þ0. ~11!

For such a matrix, the well-known Perron-Fro¨benius theorem
applies.13 The theorem tells us that

~i! The ground stateC̃08(M ) of H̃L8 in V(M ) is unique;

~ii ! The expansion coefficients$af% of C̃08(M ) in terms

of the basis vectors$f($ s̃ iz%)% are positive.
As a consequence of~i!, the ground stateC̃0(M ) of H̃L

in V(M ) is also nondegenerate since the Hamiltonian is u
tarily equivalent toH̃L8 . By following the proof of the Lieb-
Mattis theorem10 and using conclusion~ii !, one can easily
show that the ground stateC̃0(M ) of H̃L has a nonzero
overlap with the ground stateF0(M ) of the so-called Lieb-
Mattis Hamiltonian

HL5(
iPA

(
jPB

s̃i• s̃j . ~12!

In HamiltonianHL , Jij 51 for any pair of sitesiPA and j
PB. Therefore,C̃0(M ) and F0(M ) must have the same
total spin and total spinZ component. In particular, theab-

soluteground statesC̃0 of H̃L and theabsoluteground states
F0 of HL should have the same total spin, which can
easily calculated forF0. In our case, it is equal to

S̃05us2tuN. ~13!

Next, we show the coexistence of the antiferromagne
and ferromagnetic long-range orders in the absolute gro
stateC̃0 of H̃L . For this purpose, we shall exploit the pos
tivity of the expansion coefficients$af% of C̃08(M ), the

ground states ofH̃L8 ~not H̃L), again.
Take two arbitrary lattice pointsh and l of lattice L and

consider the expectation value of operators̃h1 s̃ l2 in
C̃08(M ). Since

s̃h1uh, s̃z&5A s̃~ s̃11!2 s̃z~ s̃z11!uh, s̃z11&,

s̃ l2u l, s̃z&5A s̃~ s̃11!2 s̃z~ s̃z21!u l, s̃z21&, ~14!

we should have

^C̃08~M !u s̃h1 s̃ l2uC̃08~M !&>0 ~15!

by the positivity of the expansion coefficients$af%.
We now perform the inverse unitary transformationÛ0

21

in the subspaceV(M ). H̃L8 is mapped back ontoH̃L and

C̃08(M ) onto C̃0(M ). However, inequality~15! now reads

^C̃0~M !u s̃h1 s̃l2uC̃0~M !&H >0, for h, lPA or B;

<0, otherwise.
~16!

according to Eq.~7!. Consequently, thetransversespin-
correlation function of the nondegenerate ground state ofH̃L

in each subspaceV(M ) satisfies
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gT~e!>gT~ f ! ~17!

for any admissible functionf ( i). In particular, the inequality
holds for I ( i)51. Applying inequality~17! to the 2S̃011
absolute ground states$C̃0(M ),2 S̃0<M< S̃0% of H̃L , we
see that, ifC̃0 has the transverse ferromagnetic long-ran
order, it must also support the transverse antiferromagn
long-range order.

Next, we would like to extend inequality~17! to the lon-
gitudinal spin-correlation functiongL( f ). At the first glance,
this extension seems straightforward sinceH̃L has SU~2!
spin symmetry. However, as we show in the following, th
problem demands a more careful thinking due to the hi
spin degeneracy of the absolute ground state ofH̃L .

We notice that when the external fields are absent,
2S̃011 degenerate absolute ground states ofH̃L have the
same statistical mechanics weight. In other words, they
experimentally indistinguishable. Therefore, if one tries
detect MLRO in these states by some means~such as the
neutron-scattering technique!, one can only obtain average
data. This fact leads us to introduce the following definitio

Definition 2: Let f ( i) be an admissible function define
on latticeL. We define the averaged spin-correlation fun
tions by

GT~ f ![
1

2S̃011
(

M52 S̃0

S̃0

^C̃0~M !u S̃1~ f * !

3 S̃2~ f !uC̃0~M !&,

GL~ f ![
1

2S̃011
(

M52 S̃0

S̃0

^C̃0~M !u S̃z~ f * !

3 S̃z~ f !uC̃0~M !&. ~18!

Since inequality~17! holds for eachC̃0(M ), we immedi-
ately obtain
e
tic

-

e

re

.

-

GT~e!>GT~ I !. ~19!

Furthermore, we have the following lemma.
Lemma: Identity

GT~ f !52GL~ f ! ~20!

holds for any admissible functionf ( i) defined onL.
Proof: By the definitions ofS̃1( f * ) and S̃2( f ), gT( f )

can be rewritten as

gT~ f !5^C̃0~M !u S̃x~ f * ! S̃x~ f !1 S̃y~ f * ! S̃y~ f !uC̃0~M !&

1
i

NL
^C̃0~M !u (

h,1PL
f * ~h! f ~ l!@ s̃hy s̃ lx

2 s̃hx s̃ ly#uC̃0~M !&. ~21!

First, we simplify the last sum on the right-hand side
Eq. ~21!. When hÞ l, we have@ s̃hx , s̃ ly#5@ s̃hy , s̃ lx#50.
Therefore, s̃hy s̃ lx2 s̃hx s̃ ly is a Hermitian operator and
hence, its expectation value in any state is a real quantity.
the other hand, sinceH̃L is a real matrix, its absolute groun
states$C̃0(M ),2 S̃0<M< S̃0% can be chosen as real sta
vectors. Consequently, the expectation valueF of
s̃hy s̃ lx2 s̃hx s̃ ly in C̃0(M ) must be a pure imaginary quan
tity because the operator is an imaginary matrix. This impl
that F[0. Therefore, the sum on the right-hand side of E
~21! is reduced to

i

NL
^C̃0~M !u (

hPL
u f ~h!u2@ s̃hy s̃hx2 s̃hx s̃hy#uC̃0~M !&5

M

NL
.

~22!

Next, we apply the unitary operato
Û15exp„( ip/2)( iPL s̃ iz…, which rotates each localized spi
about thes̃ iz axis by an anglep/2, to rewrite the expectation
value of S̃y( f * ) S̃y( f ) in C̃0(M ). We obtain
^C̃0~M !u S̃y~ f * ! S̃y~ f !uC̃0~M !&5^C̃0~M !uÛ1~Û1
†S̃y~ f * !Û1!~Û1

†S̃y~ f !Û1!Û1
†uC̃0~M !&

5^C̃0~M !uexpS 2
ip

2
M D S̃x~ f * ! S̃x~ f !expS ip

2
M D uC̃0~M !&

5^C̃0~M !u S̃x~ f * ! S̃x~ f !uC̃0~M !&. ~23!

Substituting Eqs.~22! and ~23! into Eq. ~21!, we obtain

gT~ f !52^C̃0~M !u S̃x~ f * ! S̃x~ f !uC̃0~M !&1
M

NL
~24!

and

GT~ f !5
2

2S̃011
(

M52 S̃0

S̃0

^C̃0~M !u S̃x~ f * ! S̃x~ f !uC̃0~M !&. ~25!
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Next, we apply the unitary operatorÛ25exp@(ip/2)( iPL S̃iy# to the left-hand side of Eq.~25!. SinceÛ2
†H̃LÛ25H̃L , under

Û2, the 2S̃011 degenerate absolute ground states$C̃0(M ),2 S̃0<M< S̃0% of H̃L will be transformed in terms of a 2S̃011
dimensional irreducible unitary representationU5(Umn) of the SU~2! group.14 Consequently, we obtain

GT~ f !5
2

2S̃011
(

M52 S̃0

S̃0

^C̃0~M !uÛ2~Û2
†S̃x~ f * !Û2!~Û2

†S̃x~ f !Û2!Û2
†uC̃0~M !&

5
2

2S̃011
(

M52 S̃0

S̃0

(
M152 S̃0

S̃0

(
M252 S̃0

S̃0

ūM1MuM2M^C̃0~M1!u S̃z~ f * ! S̃z~ f !uC̃0~M2!&

5
2

2S̃011
(

M152 S̃0

S̃0

(
M252 S̃0

S̃0

dM1 ,M2
^C̃0~M1!u S̃z~ f * ! S̃z~ f !uC̃0~M2!&

5
2

2S̃011
(

M152 S̃0

S̃0

^C̃0~M1!u S̃z~ f * ! S̃z~ f !uC̃0~M1!&[2GL~ f !. ~26!
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In the above derivation, we used the fact thatU5(umn) is a
unitary matrix.

Combining identity~20! and inequality~19!, we obtain

GL~e!5
1

2
GT~e!>

1

2
GT~ I !5GL~ I !. ~27!

A little algebra yields

GL~ I !5
1

~2S̃011!NL
(

M52 S̃0

S̃0

^C̃0~M !u S̃zS̃zuC̃0~M !&

5
2

~2S̃011!NL

@ S̃0
21~ S̃021!21•••112#>

S̃2

3NL
.

~28!

Therefore, asS̃05Nus2tu5N/25NL/4, we have

GL~e!>GL~ I !>bNL ~29!

with b5 1
48. It implies that the absolute ground states ofH̃L ,

as well as Hamiltonian~1! defined on the one-dimension
chain, have both longitudinal ferromagnetic and antifer
E

m

e

-

magnetic long-range orders. Therefore, they are ferrim
nets.

Our proof is accomplished.QED.
In summary, we showed in this article that the glob

ground states of some ferrimagnetic Heisenberg model o
bipartite latticeL, in particular, the one-dimensional ferr
magnetic model studied in Refs. 7 and 8, have both fe
magnetic and antiferromagnetic long-range orders, with
antiferromagnetic long-range order being predominant. I
interesting to see that although the ‘‘parents’’ models, wh
have either spin-1 or spin-1

2 localized at each site, do no
have the magnetic long-range orders, their mixture, the o
dimensional ferrimagnetic model, does support a ferrim
netic MLRO.

I would like to thank Dr. J. T. Chalker and Dr. F. Essl
for helpful discussions. I would also like to thank Profess
H.-J. Mikeska for correspondence. In particular, I thank P
fessor Xin Sun for directing my interest towards on
dimensional magnetic systems. This work was financia
supported by the Swire Foundation and the Chinese Natio
Science Foundation under Grant No. 19574002.
ens.

. B
1I. K. Affleck, in Strings, Fields and Critical Phenomena, Les
Houches Summer School 1988, Session XLIX, edited by
Brezin and J. Zinn-Justin~North-Holland, Amsterdam, 1990!.

2E. Fradkin, Field Theories of Condensed Matter Syste
~Addison-Wesley, Redwood City, CA, 1991!.

3M. Fannes, B. Nachtergaele, and R. F. Werner, Europhys. L
10, 633 ~1989!.
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