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Intrinsic localized spin-wave resonances in ferromagnetic chains
with nearest- and next-nearest-neighbor exchange interactions
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(Received 28 April 1997

We demonstrate analytically and numerically that the simplest isotropic ferromagnetic one-dimensional
system to show intrinsic localized spin-wave resonances requires only isotropic exchange interactions between
first and second neighbors. Our numerical simulations indicate that the lifetime of these intrinsic localized
spin-wave resonances depends on the mode parity, the maximum spin deviation, and the relative strength of the
next-nearest-neighbor—to—nearest-neighbor exchange interactions. In the small amplitude limit translating lo-
calized spin-wave resonances behave like solitons but for larger amplitudes they are scattered by the discrete-
ness of the lattice and decay by radiating plane spin-wave mgg@$63-18207)05134-3

I. INTRODUCTION wave resonancélLSR) is the uncoupling of an opticlike
ILSR from the acoustic linear spin-wave spectrum. So far the
A wide variety of translationally invariant, nonlinear intrinsic localization of spin waves has been identified with
physical systems can support long-lived, spatially localizedhe anisotropy contribution in the magnetic properties of
excitations under certain conditions. These nonlinear localchains with nearest-neighbor interactions.
ized excitations are usually modeled as solitons, which are Here we demonstrate that intrinsic localization can occur
solutions of completelyntegrablenonlinear wave equations in isotropic chains of classical_ spins coupled ferromagneti-
and have infinite lifetime$?2 In particular, solitary excita- Cally through both nearest-neighb®N) and next-nearest-
tions in one-dimensional magnetic systems have been exteff€i9hPor (NNN) exchange interactions. We find that long-
sively investigated in the continuum limitThe situation for lived ILSR's can exist near the Bnlloum zone boundary
discrete systems is quite different since few discrete Iattice)é"hen the strength of NNN interaction relat.|ve to th? NN
are integrable, except for the Toda latfiead the Ablowitz- interaction exceeds a threshold. The dynamic properties and

Ladik lattice’ and these lattice models appear to be integrabl%ne(ig::lty of the resulting ILSR's are investigated in some

by construc_tion rather_ than motiva}teq b_y realis_tic physical In the next section the stationary intrinsic spin-wave reso-
systems. Since the discovery of intrinsic localized modes,,nces are derived. Both odd-parity and even-parity modes
(ILM's) in perfef:gly periodic but anharmonic nonintegrable 5.6 found that the dependence of these eigenfrequencies on
discrete lattice§;® attention has focused on the study of lo- the maximum spin deviation is determined, then molecular-
calization in various periodic lattices where batbnlinearity dynamics simulations are used to estimate the lifetimes of
and discretenesplay important roles and the study of this these modes. In Sec. Il stability analysis of extended plane-
intrinsic localizationin various nonlinear periodic lattices is wave modes is used to predict under what conditions nonlin-
proving quite genera’~*®In magnetic systems, it has been ear localized modes will occur. Contact is also made here
shown that intrinsic localized spin wave mod#sSM’s) can  with envelope solitons associated with the continuum ap-
also occur in perfect but nonintegrable magnetic ch&ins proximation. Finally, the translational properties of these ex-
In the presence of a strong magnetic field perpendicular tgitations are examined in Sec. IV. Both motion of a single
the easy plane, both even-parity and odd-parity ILSM’s apiLSR and collisions between ILSR’s are considered. The
pear in easy-plane Heisenberg ferromagnetic chains wheronclusions follow.

the strength of single-ion anisotropy exceeds a certain

value¢®?! so that the ILSM frequencies are above the linear Il. STATIONARY INTRINSIC LOCALIZED

spin-wave band. In antiferromagnetic chains intrinsic local- SPIN-WAVE RESONANCES

ized spin-wave gap mod€HR_SG’s) have been shown to ex-
ist within the gap produced by either exchange anisotropy or
single-ion anisotropy®? Like their vibrational counterpart, Previous study has shown that no intrinsic localization
these highly localized ILSM'’s involve only a few sites and occurs in isotropic ferromagnetic chain with nearest-
have amplitude-dependent frequencies outside the harmoniighbor interaction) Here we consider a one-dimensional
plane-wave bands. More recently, it has been demonstratddrromagnetic chain oN spins which are coupled through
numerically that in-band nonlinear localized excitations inboth nearest-neighbor(NN) and next-nearest-neighbor
easy-plane antiferromagnetic chains can occur and that th&NN) isotropic exchange interactions. Hence, the Hamil-
are long lived?® although from analytical work lattice dy- tonian to be examined is

namics resonant modes already have bel%n proposed to be a

natural consequence of intrinsic localizatf@nThe key fea- - . _ .

ture of the dynamics of an in-band intrinsic localized spin- H 2‘]12 S S 2‘]2; S Shez: @

A. The 1D model
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whenA is greater than 1/4. It may appear that intrinsic lo-
calization could first occur afjax With frequency above
wmax; however, the nonlinear terms in E@) tend to lower
the frequency, and indeed, no intrinsic localized modes are
found atq,a¢. The fact that the dispersion curve can have its
maximum frequency at a wave number other than the
- Brillouin-zone boundary opens up a new possibility that IL-
0.0 D EE—— SR’s may occur at the band edge. We will show later that the
0.0 0.2 04 . ; .
critical value of A(=1/4) is closely related to the existence
q (m/a) of ILSR’s in this lattice.
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FIG. 1. Dispersion curves of linear spin waves in isotropic fer-
romagnetic chains with both nearest-neighbtdiN) and next-
nearest-neighbdiNNN) exchange interactions. From top to bottom, To find the eigenvector of a stationary ILSR below the
the relative strength of the NNN coupling=J,/J, are 1.0, 0.4,  Brillouin-zone boundary value all nonlinear terms must be
and 0, respectively. Whea is greater than 1/4 the maximum fre- jncluded. Inserting the ansatz
quency would appear af.,., rather than the Brillouin-zone bound-
ary. The ILSR arrow identifies the frequency of the intrinsic local- 5: :Sne_iwrt' s;‘ =s,, and Sﬁ:(l—sﬁ)llz (5)
ized spin-wave resonance described in the text.

B. ILSR’s at the zone boundary

into Eq. (2) gives the time-independent equation

where both the NN coupling constai and the NNN cou- 5
pling constantl, are positive, and periodic boundary condi- @r s=slV1-%2 +V1-92.  +A(J1—-52 .
tions are to be applied. PRI [ V1=Sho 1 V1= s A n-2

Since the chain is isotropic we assume that all spins align 5 5
along thez axis in the ground state without losing generality. +V1-s0,,)]-V1-5;
To investigate spin deviations from the ground state we de- XS 148 . +A(S. +S 6
fines, =(S:+iSY)/S, ands:=S%/Sin the usual way where [Sn-1t o Alsn-z* Sns2)] ®
Sis the magnitude of spins. In these circular coordinates, thwherew, is the frequency of the ILSR. Given the maximum

equations of motion are given by spin deviation at the mode centgy,,, Eq.(6) can be solved
numerically by using the globally convergent Newton
_ h ds) v 5 method® to obtain the eigenvector shape and the frequency
'2\]15?:% (Sn—1tSni1tAs o+ ASL,) of the ILSR. The eigenvectors can be classified in terms of

their parities. Both an odd-parity mode and an even-parity
—Si(s_1+st 1 tAs ,+As,), (2  mode an occur for a range of parameter

where the dimensionless paramefer J,/J; measures the _
C. Eigenvector shapes

strength of NNN coupling relative to NN coupling. Hereaf-
ter, we treat the spins as classical vectors. Siste As an illustration, the eigenvectors of an odd-parity ILSR
V1=1s}1?, Eq.(2) is intrinsically nonlinear irs’ . The lin-  and an even-parity ILSR for the set of parametérs 1.0
ear spin-wave dispersion curve can be obtained by lineariZZndsma,= 0.7 are plotted in Figs.(d) and 2b), respectively.
ing Eq. (2), i.e., approximatings? by one. Introducings,” Thg one-d|menS|ona}I'chaln consists of 256 spins with peri-
—5,€!(ana- e the dispersion curve becomes odlt_: bounda_ry condltlon._The_sym_metry center of_the odd-
parity mode is on the lattice site with maximum spin devia-
8J;5]  ./ga _ tion, while the symmetry center of the even-parity mode is in
o(q)= ﬂSIﬁ(j +A sir’(qa) |, (3)  the middle between two adjacent sites with maximum spin
deviation. The common feature of both ILSR’s is that the
whereqg=(2w/Na)n, (n=0,=1,...N/2), anda is the lat-  spin deviations do not disappear with increasing distance
tice spacing between adjacent spins. from the center. Instead the localized excitations evolve into
Figure 1 shows the dispersion curves for different NNNa weak plane wave pattern, as expected for a resorfance.
coupling strengths. The frequency of the Brillouin-zoneAlthough breathers with extended plane-wave tails of nonde-
boundary mode is independent of the NNN coupling becauseaying amplitude were found before both in the continuous
a precessing spin is in phase with its NNN's in this mode.¢* modef® and in discrete nonlinear lattices with substrate
However, the NNN coupling tends to raise the dispersiorpotentials’’ the ILSR’s in magnetic chains are fundamen-
curve at intermediate wave numbers so that its maximuntally different from these. In previously found resonant
frequencyw,x May appear at a wave numbey,., other  breathers, the localized center oscillates at a fundamental fre-
than/a, i.e., guencyoutsidethe liner spectrum while the extended plane-
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FIG. 3. Dependence of the frequency of stationary ILSR on its
maximum spin deviation. The ferromagnetic chain contains 256
spins with the parametéy=1.0. Open circles are the frequencies of
odd-parity ILSR’s, and crosses are the frequencies of even-parity
ILSR’s. The dot-dashed line is the continuum approximation given
by Eq.(200. wzg is the frequency of linear spin wave at the Bril-
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site n
center. Our numerical search did not find localized solution

FIG. 2. Shapes of stationary intrinsic localized spin-wave resoWhenA is less than 1/4. Here the value of 1/4 is only an
nances of different parities. The ferromagnetic chain contains 25@stimate, which will be accurately determined later from
spins with the parameték=1.0. Both modes have the same maxi- both the stability analysis of extended band edge mode and a
mum spin deviatiors,,,,=0.7. (a) Odd-parity mode, the symmetry continuum approximation study. A& approaches 1/4 from
center is on the lattice site=128. The left side shows a factor 40 above, the linear spin-wave dispersion curve becomes flat
expansion of the ordinate to display the plane-wave character in theearq=7/a and hence has a high density of states at the
wings. (b) Even-parity mode, the symmetry cenigne X) is be-  Brillouin zone boundary. The localized center strongly inter-
tween two adjacent sites. The left side shows the same factor 44cts with the linear spectrum so that the amplitude of plane-
expansion and a sign alternation to illustrate the resonant modggve tail increases rapidly with the maximum spin deviation
plane-wave character. at the center. The amplitude of the plane-wave tail could be

comparable to that of the center when the latter is beyond a
wave tail oscillates at the higher harmonics of the fundamencertain value for a chain witi close to 1/4. However, the
tal frequency. The extended plane-wave exists in thosgrger the parametek, the smaller the amplitude of plane-
resonant breathers because the nonlinear terms in the equgave tail for a given maximum spin deviation at the center.

tion of motion generate high harmonics that are in the lineagqy example|Syi/Smay is still less than 0.01 whesy,.,is as
spectrum. However, the fundamental frequency of thqarge as 0.85 in a chain witA=1.0.

ILSR’s found here in these magnetic chains is in the linear
spectrum, and the ILSR’s are monochromatic.

The wave numbers associated with the weak plane wave D. Dependence of the mode frequency
pattern can be identified from the Fourier transformation on the maximum spin deviation

Figure 3 shows the dependence of the frequency of the
ILSR on its maximum spin deviation in a ferromagnetic
chain of 256 spins. The NNN interaction parameieis 1.0.

The open circles and crosses denote the frequencies of the
In addition to Fourier components centeredjatw/a, there  odd-parity ILSR’s and the frequencies of the even-parity
is a sharp peak located qf with a strength that grows with ILSR’s, respectively. The frequencies are found by numeri-
increasing maximum spin deviation. As expected, substituteally solving Eq.(6) with periodic boundary condition. For

ing g, into the linear spin dispersion relation E@) yields  small spin deviations, the frequency of an ILSR lies close to
the corresponding resonance frequeagy the Brillouin-zone boundary frequency of the linear-spin-

For a given maximum spin deviation both the odd-paritywave band. With increasing spin deviation the mode be-
mode and the even-parity mode become more localized anebmes more localized and its frequency drops further into the
the amplitude of the off-center plane wave component indinear spin-wave band. For fixed maximum spin deviation,
creases with decreasing relative strength of the NNN interthe frequency of the even-parity ILSR is lower than that of
action, while when the strength of the NNN interaction isthe odd-parity ILSR. Although there is no apparent distinc-
fixed the eigenvector shape of an ILSR becomes more location between odd-parity modes and even-parity modes with
ized and the amplitude of off-center plane-wave componensmall maximum spin deviationgand indeed they are ex-
increases with increasing maximum spin deviation at thepected to approach the same continuum limig,gs— 0) the

2
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FIG. 4. Time evolution of the energy density
Time distributions of the ILSR’s shown in Figs.(&
and 2b). The energy density shown here is mea-

15 sured from the ground-state energy density and is
in units of 2J,. Time is measured in units of
% ] Tzg. (a) Odd-parity ILSR.(b) Even-parity ILSR.
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difference between them increases s, increases. The the emission of plane-waves from the ILSR’s is observed
dot-dashed line is the continuum approximation frequencynd the larger the amplitude the faster the decay, however we

obtained later in Sec. Ill B, which is in good agreement withfind that the even-parity mode is more unstable than the odd-
the discrete results up &),,,=0.5. parity mode. Figures(4) and 4b) show the time evolution

of the energy density given by

E. Lifetime of ILSR’s e(n)=—318 (S 1T S+1) —J2S8 (S1—2+Sh42) (8

Since the localized excitation is in resonance with thefor an Odd-parity ILSR and an even-parity ILSR with modest
plane-wave spectrum it is expected that an ILSR becomespin deviation §,.,=0.7), respectively. The energy density
unstable and delocalizes after sufficient time. With the eigeni's measured from the ground_state value. The chain under
vectors obtained by numerically solving E@) providing  consideration contains 256 spins with periodic boundary
the initial conditions, the lifetime of ILSR’s can be investi- condition. The odd-parity mode preserves its initial shape
gated by means of molecular-dynam{®4D) simulations. In  gyver the entire period of 15095 . The figure shows that the
MD simulations the discrete equations of motion for #y&  even-parity mode starts to move and decay while remains
spin components are integrated numerically by using thepcalized after about 7505
fourth-order Runge-Kutta method with a time step of The decay of an ILSR is due to its coupling to the linear
Tz8/200 whereTg is the period of the linear spin-wave spin-wave spectrum. As the strength of the NNN interaction
mode at the Brillouin zone boundary afidg=7%/4J;S. At increases, the wave number of the spin wave that is in reso-
each step conservation of energy and spin lefigttl partin - nance with the localized excitation moves away from the
10°) serve as checks on the numerical accuracy. The numeriand edge so that the coupling between the ILSR to the spin
cal simulations demonstrate that the lifetime of an ILSR de-Wave becomes weaker and hence its lifetime increases.
pends on three factorgl) its parity, (2) the maximum spin
deviation, and3) the relative strength of the NNN interac-
tion A.

At sufficient small amplitudes, ILSR’s of both parities can ~ Our numerical calculations indicate that the existence of
last many hundreds of periods. With increasing amplituddLSR’s depends strongly on the relative strength of the NNN

IIl. EXISTENCE CONDITION FOR ILSR’s
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interaction. The interrelation between the modulational insta- 8J,5 _.(qa _ 1
bility of the extended band edge plane waves and the exis- ~ «(d)=— sir? - | tA sir’(ga) |(1-sp)%  (9)

tence of spatially localized excitations has been established
in a number of nonlinear latticé&8-3* Hence the stability where the deviatiors, is not negligible, and the nonlinear
analysis of an extended plane wave provides a useful way tterms tends to decrease the frequency. The extended spin-
predict under what conditions nonlinear localized excitatiorwave modes are modulationally unstable under certain con-
can occur. In this section, the existence condition of ILSR’sditions.

will be obtained from both linear stability analysis of the  To determine the parameter space in which they are un-
extended nonlinear zone-boundary mode and the continuustable, we carry out linear stability analysis. Assuming an

approximation.

A. Modulational instability
of extended nonlinear spin-wave modes

The linear dispersion curve given by E@®) is obtained

extended nonlinear spin-wave modg(t)=sqe'(" Y js
perturbed so that
Sy (1) =87 () =(So+ by +ign)e @Y, (10

where the frequency is given by Eq.(9) and the perturba-

for spin-wave modes of virtually zero-spin deviation. Fortions b, and s, are real and much smaller thag in mag-
finite spin deviation, Eq(2) has also time-periodic solutions nitude. Substituting Eq(10) into Eq. (2) and keeping only

of spatially extended nonlinear spin-wave modss (t)
=spe' (@3- @Y whose frequency can be obtained as

terms linear inb,, and ¢,,, we obtain two linear differential
equations foib,, and ¢, :

L%:\/l__sé{z( cogja+ n_{(bnﬂ—bnlsinanr - (bp42—bn_5)singa+ ] 13
2J.S dt A cosja (Yn41+ ¥n_1)coga (Yn42+ h,_o)COSTa
and
sz [(byy1+b,_1—2b,cogja)+
. dl//n:_m 2(comja+A Coszqa)b”_mA(bn+2+bn,2—2bncosaqa) a1
2J;S dt °l  [(bpiatb, 1)coma—]  [(by.1+b, ,)cosza—

(¢n+l_ ‘ﬁn—l)smqa

(¢n+2_ lﬂn—z)SmZQa

For a chain ofN spins, we obtain B coupled linear differ- M ;;=M,,
ential equations. If the perturbation grows exponentially the A0
extended nonlinear spin wave is modulationally unstable, _Mm 2w : : :
otherwise it is stable. To obtain the eigenvalues of Etjsg 2J3,S 2V1-sp(sinQa sinqa+A sinZQa sinja),
and(11b), we assume (143
by=be @&Vt c.c., (129 M 1= —i2y1—s3[(1—coRa)coga
and +A(1—-cosXa)cosal, (14b)
. and
o= pe' @M+ cc, (12b )
2s
whereQ and(},, are the wave number and frequency of the Mo1=—Mo— i\/—_oz[(cosQa— cogq)
modulation wave, respectively. Substituting E¢E2a and 1-s
(12b) into Egs.(1139 and(11b), we obtain two coupled linear +A(cosRa—cosa)]. (140
equations
a The dispersion curve of the modulation wa¥g,(q,Q), is
M M b determined by the condition that the determinant of the ma-
( 1 12)( ) =0, (13)  trix M is zero so that Eq.13) has nontrivial solutions.
M21 M/ \ ¢ Since the ILSR mode, if it exists, should bifurcate from
the band-edge mode, we will focus on the band-edge spin
where the matrix elements & are given by wave. Settingga= 7, we obtain from the deN) =0 that
|
A\ ? _,Qa Qa _Qa . ,Qa
<2J18) =16 S|r?7 1—4A 00527 4A sin 7+(1—4A—230)sm27+s0 . (15)
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Since the right-hand siddRHS) of Eq. (15) is always posi- symmetry of a small-amplitude ILSR is close to that of the
tive for A<A_; with A.=0.25 regardless of the spin deriva- corresponding plane wave, we introduce the staggered vari-
tion sy, the extended nonlinear band-edge mode is stable faable

this parameter range. However, as the relative strength of

NNN coupling gets stronger so that>A;, the extended dn=(—1)"s., a7
band-edge mode becomes modulationally unstable to long-

wavelength perturbations when the spin deviation exceed¢here ¢, is complex. Here we do not limit the analysis to
the threshold the stationary modes but instead assume that the wave num-

ber associated with the ILSR is close to the band edge so that
both the phase and the magnitudefgfvary slowly in space.
~ 12" Substituting Eq.(17) into Eq. (2) and neglecting nonlinear
sc~(4A-1) . (16) . . o= .
N terms higher than cubic terms, we obtain, in the continuum
approximation, a nonlinear Schtimger(NLS) type equation

Here we have made use of the fact thde1 so that for #(x,t), namely,

sin(@/N)~=/N. In a real systens,; is essentially zero since

N is of the order of 18. This instability region is also the 9¢  20,S(1-4A)a* ¢ 8);S 4SS
region in which ILSR’s can occur. The critical value &f is . A w2 kTR [B*¢,
in agreement with the numerical finding in the previous sec- (18)
tion.

Figure 5 shows snapshots of the energy density distribuwhere the linear term on the RHS can be eliminated by a
tion at different times as determined by MD simulation for simple gauge transformation. The NLS is integrable, and the
randomly perturbed extended nonlinear band-edge spin-wawondition for Eq.(18) to have a localized solutioone-
mode in two chains each containing 256 spins with periodicsoliton solution is that the coefficient of the second-order
boundary condition. The dot-dashed lines represent the erspatial derivative and the coefficient of the cubic nonlinear
ergy density distribution of the ground state. In Fig&a)p term be of the same sign, that &3> 0.25. This critical value
the relative strength of the NNN interactiédn=0.2 is below  of A agrees withA; that we found from the linear stability
the critical value ofA. while in Fig. 5b), A=0.6, above the analysis of the extended nonlinear band edge spin wave.
critical value. The initial spin deviations are the same for Equation(18) has both stationary and moving localized
both chains, and are given Isy=(—1)"0.1+ 8s, where the  solutions whemA>A_, which are given by
magnitude of random perturbatidds,| is less than 0.005.

The behavior of the extended band-edge mode is qualita-

tively different. In a chain withA less thanA., the energy d(X,1)= secVE
density distribution remains spatially extended throughout

the simulation period, as shown in Figiah However, Fig.

5(b) demonstrates that the band edge spin wave is unstable (@) (b)

a chain withA greater tharA;. As a consequence of the i
modulational instability the extended nonlinear band-edge i =800 ]
mode is unstable and evolves into temporal ILSR-like local-
ized excitations. At=2360T g, the initially uniformly dis-
tributed energy has been concentrated into 5 ILSR-like exci N
tations. These ILSR-like excitations move around and L -
gradually decay back into plane waves. This MD simulation
demonstrates that the modulational instability of the ex-
tended band-edge mode is a possible mechanism for the cr
ation of ILSR excitations from extended modes. Recently, it
has been reported that in computer simulations the intrinsi
localized vibrational modes in perfect anharmonic lattices i
with realistic interatomic potentials can be created througt L 4 t J
the modulational instability by exciting nonlinear extended - 1 F .

modes using an optical control schefie. 0 ——t——t—t— — 1
0 64 128 192 256 0 64 128 192 256

site n site n

X_Vet)e—i(Kx_ﬂ’rt+‘10)’ (19)

le

e(n)/2],

B. Continuum approximation: Envelope solitons
. . L . . FIG. 5. Modulational instability of extended band-edge spin
When the maximum spin deviation of an ILSR is small, it waves. The snapshots of energy density distributions are deter-

extends over a large number of lattice sites. In this case thineq by MD simulations for randomly perturbed extended band-
magnitude of the spin deviatios, varies slowly with sit¢  eqge spin waves in chains containing 256 spins with periodic
indexn, and the continuum approximation can be invoked.poundary condition. One ordinate unit is 0.05. The dot-dashed lines
The continuum approximation can determine the existencgre the energy density distribution of the ground statesThe
condition of ILSR’s and provide some properties of smallNNN interaction parameteA=0.2 is less than the critical value
amplitude ILSR’s which are expected to be qualitatively cor-A.. (b) The NNN interaction parameteés=0.6 is greater than the
rect even for ILSR’s in the discrete limit. Since the spatialcritical valueA...
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wherew/a—K is the wave number of the carrier wave asso-internal degree of freedom and the translational motion as an
ciated with the ILSR,¢$,, the maximum spin deviation and external one. The separation of degrees of freedom is a good

ap a constant phase factor. The envelope veloeity the  approximation only when the wave number of the carrier
envelope width ., and the frequency of the traveling ILSR wave is close to Brillouin zone boundary and hence the trav-

w, are given by eling velocity of the ILSR is small compared to the phase
2 velocity of the carrier wave. To excite traveling ILSR’s we
43 S '
D= — 1 (4A— 1)K, (208 seek solutions of the form
(F) /ey — i(qna—o,t)
s, (t)=s,(t)e r
(4A—1)Y2 ! ) |
A (200 = (-1 K, (22
and where ¢,(t) is real and

8J,;S 2J,S(4A-1) 2)S ga=wm—Ka and Ka<1. (23

Then substituting Eq(22) into Eq. (2) gives

From Eq.(209, a stationary mode can be obtained by setting hodg

K=0. The traveling velocityr, of the envelope is just the n_ /—_

group velocity of the corresponding linear spin wave. From 2J,S dt $ol(fn-1= ¢nia)sinka
the linear spectrum, Ed3), we obtain the group velocity

~A(¢n—2— ¢ni2)sinXKa] (249

do 4J18a

dq (singa+ 2A sin2ga) (21 and

Vg=

Tg = b1 7+ VI dl AV 0T

for the linear spin wave with wave numbgr Equation(20a
can be recovered by substitutiggp= 77— Ka(Ka<1) into

Eq. (22). 1= gLt 1— ¢ + K
Some insight can be gained from E¢80b) and(200). In V1= Gzt V1= Gl (9% 1) cOKa
the continuum approximation for a given maximum spin de- —A(¢n_»+ Ppio)c0sKal. (24b)

viation, the traveling ILSR and stationary ILSR have the

same envelope shape whose width is inversely proportionaquation(24a determines the traveling velocity of the ILSR.
to the maximum spin deviation and increases with the NNNAs expected a stationary ILSR would be found if we set
coupling strength increasing as one might expect. The firska=0 in Eq.(24a. Equation(24b) determines the envelope

term on the right-hand side of E€ROC) is just the frequency of the traveling ILSR and can be transformed back to(Bj.
of the linear band-edge spin wave, and the third term is thggr Ka=0.

anharmonic frequency shift. Since the frequency shift is
negative,w, , is in the linear spin-wave band. The indepen-
dence of the mode frequency on the strength of NNN cou-
pling is consistent with the factor that at the Brillouin-zone  In the discrete limitlarge spin deviatiop the envelope of
boundary the spins precess in phase with their NNN's. In th@ traveling ILSR can be found by numerically solving Eq.
discrete limit where the ILSR is highly localized so that the (24b). When the maximum spin deviation of a traveling
continuum approximation breaks down, these observationd-SR is small so that it extends over a large number of lattice
are still expected to be qualitatively correct. sites the continuum approximation can be invoked to sim-

Although the continuum approximation describes well theplify the problem. The traveling envelope soliton solutions
shape of the center of an ILSR when the maximum spirfre given by Eq(19). Once the initial envelope shape of an
deviation is small and gives the correct thresholddofthe ~ ILSR is obtained the MD simulations can be used to inves-
essential feature of an ILSR, that is, the nondecaying plandigate its motion. The chain under consideration contains 256
wave tail, does not appear in the solution. The linear disperspins and the periodic boundary condition is applied in all
sion curve of the continuum model described by 8@ can ~ MD simulations in this section.
be obtained by setting,=0 in Eq.(200), which has a para- ~ Figure Ga) shows the time evolution of an ILSR with
bolic shape with a gap & =0. Hence, the solution Eq19)  Smax=0.3, Ka= /32, andA=1.0. Since the maximum spin
is simply a gap soliton in the continuum model. deviation is small, the initial envelope shape can be obtained
from the continuum approximation, EQL9). In this case the
characteristic off-central plane-wave pattern of a resonant
mode, which would occur if Eq(24b) is solved, is negli-

So far the large-amplitude localized ILSR excitation isgible. It appears that this small-amplitude ILSR can travel
assumed to be described by an elementary excitation with faeely through the lattice with the velocity given by Eq.
circular precession frequenay, . If an ILSR is traveling (203, and no apparent decay or slow down is observed. As
through the chain then the circular precession is treated as dhe maximum spin deviation increases the continuum ap-

A. Single traveling ILSR

IV. TRAVELING ILSR’s
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(a)

Energy Density

FIG. 6. Time evolution of the energy density
distribution of two traveling ILSR’s with differ-
200 250 O ent sets of parameter@) A= 1.0, S,,,= 0.3, and

Ka=#/32. (b) A=1.0, sp»=0.7, and Ka
=/32. Each chain contains 256 spins. For clar-
(b) ity, only part of the chain is shown ifh). The
energy density shown here is measured from the
ground-state energy density and is units df 2
Time is measured in units afzg.

Site n

Energy Density

proximation breaks down and one has to solve &b sites apart in a chain of 512 spins with periodic boundary
numerically to obtain the initial spin deviations. Like a sta- condition. The NNN interaction paramet&r=1.0. The pa-
tionary ILSR, the moving ILSR has weak plane-wave tails inrameters for the two ILSR’s are lefts,,,=0.2, Ka=

the off-central region. Figure(B) shows the time evolution — 7/256: right, s,,.,=0.3, Ka=7/25.6. The collision is

of an ILSR with s;,,,=0.7, Ka=7/32, andA=1.0. The pjotted in Fig. 7a). Before and after collision the two modes
maximum spin deviation is modest and the ILSR can stillmoye with uniform velocity and maintain their original
travel through the lattice, but it is scattered by the discretespapes. More accurate integration shows that the energy
ness of the lattice and the decay into plane waves is appareffansfer between them is less than 0.5% of the total energy.
By the time of 80075, about 5% of the energy has decayed \ynen |LSR's with large spin deviatiofi.e., stronger non-

into the plane-wave modes. The larger its amplitude and thg,o 2ty are involved in a collision different behavior is

faster its velocity, the m issi in- . . .
aster its velocity, the more emission of plane spin WaV€ hserved: the interaction between them becomes more vio-

spin deviation is much more stable in our simulations asr!%m. as the mode amplitude INCreases. .AS an examplle, the

" collision between a large amplitude stationary ILSR with a
shown in Fig. 49). : : . ) .

small amplitude traveling ILSR in a chain of 256 spins is

shown in Fig. Tb). Each mode maintains its own shape be-

B. Collision of ILSR’s fore the collision, they interact strongly when they meet, and

Another important aspect of the nonlinear dynamics isboth become unstable after collision. Only a fraction of the
how localized excitations interact with each other. A funda-small-amplitude traveling ILSR can pass through the station-
mental property of solitons is that they pass through eaclry ILSR, and it decays quickly into plane-wave modes after
other as noninteracting particles. Recent studies have shovihe collision. Meanwhile the stationary ILSR also shakes
that this is not the case for intrinsic localized modes in dis-away energy from its central region after the collision though
crete lattices, and both energy transfer between intrinsic loit still remains localized over our simulation interval. When
calized modes and collision-induced decay into plane-wavéoth ILSR’s have large amplitudes neither can survive the
modes are observed in computer simulatibi¥. collision. The observation reported in Ref. 11 that the colli-

In the FM chains we investigate, solitonlike behavior ission between intrinsic localized vibrational modes tends to
expected for small-amplitude ILSR’s. To launch two small-favor the growth of the larger excitation is not seen in our
amplitude ILSR’s moving toward each other, two small- simulations for the ferromagnetic chain with both NN and
amplitude ILSR’s obtained from Eq19) are placed 256 NNN interactions. One possible reason is that the frequency
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of an ILSR is in the linear spectrum and thus it strongly maximum spin deviation, the traveling ILSR and stationary
interacts with plane-wave modes, and the NNN couplingLSR have the same envelope shape; its width is inversely

tends to spread the energy. proportional to the maximum spin deviation and increases
with increasing NNN coupling strength. The properties of
V. CONCLUSIONS translating ILSR depend on the size of the spin deviation. If

) . ) . the maximum spin deviation is modest the ILSR can travel
~ For isotropic exchange coupling and no anisotropy termsnrough the lattice, but it is scattered by the discreteness of
in the 1D Hamiltonian we have found that when the strengthpe |attice and decays into plane spin waves over sufficient
of NNN exchange interaction relative to the NN interaction gistances: the larger its amplitude, or the faster its velocity,
exceeds a specific threshold value then ILSR’s of both odghe |arger the emission of plane-wave modes. For colliding
and even parity may appear in the small-amplitude plang SR's solitonlike behavior is found for small spin devia-
spin-wave spectrum. A common feature of both ILSR’s istions put for large amplitudes neither can survive the colli-
that the spin deviations do not disappear with increasing disgjgn,.
tance from the center. For small spin deviations, the fre-
guency of an ILSR lies close to the Brillouin-zone boundary ACKNOWLEDGMENTS
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