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Intrinsic localized spin-wave resonances in ferromagnetic chains
with nearest- and next-nearest-neighbor exchange interactions

R. Lai, S. A. Kiselev,* and A. J. Sievers
Laboratory of Atomic and Solid State Physics and Materials Science Center, Cornell University, Ithaca, New York 14853-25

~Received 28 April 1997!

We demonstrate analytically and numerically that the simplest isotropic ferromagnetic one-dimensional
system to show intrinsic localized spin-wave resonances requires only isotropic exchange interactions between
first and second neighbors. Our numerical simulations indicate that the lifetime of these intrinsic localized
spin-wave resonances depends on the mode parity, the maximum spin deviation, and the relative strength of the
next-nearest-neighbor–to–nearest-neighbor exchange interactions. In the small amplitude limit translating lo-
calized spin-wave resonances behave like solitons but for larger amplitudes they are scattered by the discrete-
ness of the lattice and decay by radiating plane spin-wave modes.@S0163-1829~97!05134-5#
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I. INTRODUCTION

A wide variety of translationally invariant, nonlinea
physical systems can support long-lived, spatially localiz
excitations under certain conditions. These nonlinear lo
ized excitations are usually modeled as solitons, which
solutions of completelyintegrablenonlinear wave equation
and have infinite lifetimes.1,2 In particular, solitary excita-
tions in one-dimensional magnetic systems have been ex
sively investigated in the continuum limit.3 The situation for
discrete systems is quite different since few discrete latt
are integrable, except for the Toda lattice4 and the Ablowitz-
Ladik lattice5 and these lattice models appear to be integra
by construction rather than motivated by realistic physi
systems. Since the discovery of intrinsic localized mod
~ILM’s ! in perfectly periodic but anharmonic nonintegrab
discrete lattices,6–9 attention has focused on the study of l
calization in various periodic lattices where bothnonlinearity
and discretenessplay important roles and the study of th
intrinsic localizationin various nonlinear periodic lattices i
proving quite general.10–18 In magnetic systems, it has bee
shown that intrinsic localized spin wave modes~ILSM’s! can
also occur in perfect but nonintegrable magnetic chains.19–23

In the presence of a strong magnetic field perpendicula
the easy plane, both even-parity and odd-parity ILSM’s
pear in easy-plane Heisenberg ferromagnetic chains w
the strength of single-ion anisotropy exceeds a cer
value20,21 so that the ILSM frequencies are above the line
spin-wave band. In antiferromagnetic chains intrinsic loc
ized spin-wave gap modes~ILSG’s! have been shown to ex
ist within the gap produced by either exchange anisotrop
single-ion anisotropy.19,22 Like their vibrational counterpart
these highly localized ILSM’s involve only a few sites an
have amplitude-dependent frequencies outside the harm
plane-wave bands. More recently, it has been demonstr
numerically that in-band nonlinear localized excitations
easy-plane antiferromagnetic chains can occur and that
are long lived,23 although from analytical work lattice dy
namics resonant modes already have been proposed to
natural consequence of intrinsic localization.24 The key fea-
ture of the dynamics of an in-band intrinsic localized sp
560163-1829/97/56~9!/5345~10!/$10.00
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wave resonance~ILSR! is the uncoupling of an opticlike
ILSR from the acoustic linear spin-wave spectrum. So far
intrinsic localization of spin waves has been identified w
the anisotropy contribution in the magnetic properties
chains with nearest-neighbor interactions.

Here we demonstrate that intrinsic localization can oc
in isotropic chains of classical spins coupled ferromagne
cally through both nearest-neighbor~NN! and next-nearest
neighbor~NNN! exchange interactions. We find that lon
lived ILSR’s can exist near the Brillouin zone bounda
when the strength of NNN interaction relative to the N
interaction exceeds a threshold. The dynamic properties
mobility of the resulting ILSR’s are investigated in som
detail.

In the next section the stationary intrinsic spin-wave re
nances are derived. Both odd-parity and even-parity mo
are found that the dependence of these eigenfrequencie
the maximum spin deviation is determined, then molecu
dynamics simulations are used to estimate the lifetimes
these modes. In Sec. III stability analysis of extended pla
wave modes is used to predict under what conditions non
ear localized modes will occur. Contact is also made h
with envelope solitons associated with the continuum
proximation. Finally, the translational properties of these
citations are examined in Sec. IV. Both motion of a sing
ILSR and collisions between ILSR’s are considered. T
conclusions follow.

II. STATIONARY INTRINSIC LOCALIZED
SPIN-WAVE RESONANCES

A. The 1D model

Previous study has shown that no intrinsic localizati
occurs in isotropic ferromagnetic chain with neare
neighbor interactions.20 Here we consider a one-dimension
ferromagnetic chain ofN spins which are coupled throug
both nearest-neighbor~NN! and next-nearest-neighbo
~NNN! isotropic exchange interactions. Hence, the Ham
tonian to be examined is

H522J1(
n

Sn•Sn1122J2(
n

Sn•Sn12 , ~1!
5345 © 1997 The American Physical Society
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where both the NN coupling constantJ1 and the NNN cou-
pling constantJ2 are positive, and periodic boundary cond
tions are to be applied.

Since the chain is isotropic we assume that all spins a
along thez axis in the ground state without losing generali
To investigate spin deviations from the ground state we
fine sn

65(Sn
x6 iSn

y)/S, andsn
z5Sn

z/S in the usual way where
S is the magnitude of spins. In these circular coordinates,
equations of motion are given by

i
\

2J1S

dsn
1

dt
5sn

1~sn21
z 1sn11

z 1Asn22
z 1Asn12

z !

2sn
2~sn21

1 1sn11
1 1Asn22

1 1Asn12
1 !, ~2!

where the dimensionless parameterA5J2 /J1 measures the
strength of NNN coupling relative to NN coupling. Herea
ter, we treat the spins as classical vectors. Sincesn

z5

A12usn
1u2, Eq. ~2! is intrinsically nonlinear insn

1 . The lin-
ear spin-wave dispersion curve can be obtained by linea
ing Eq. ~2!, i.e., approximatingsn

z by one. Introducingsn
1

5s0ei (qna2vt) the dispersion curve becomes

v~q!5
8J1S

\ Fsin2S qa

2 D1A sin2~qa!G , ~3!

whereq5(2p/Na)n, (n50,61,...,6N/2), anda is the lat-
tice spacing between adjacent spins.

Figure 1 shows the dispersion curves for different NN
coupling strengths. The frequency of the Brillouin-zo
boundary mode is independent of the NNN coupling beca
a precessing spin is in phase with its NNN’s in this mod
However, the NNN coupling tends to raise the dispers
curve at intermediate wave numbers so that its maxim
frequencyvmax may appear at a wave numberqmax other
thanp/a, i.e.,

FIG. 1. Dispersion curves of linear spin waves in isotropic f
romagnetic chains with both nearest-neighbor~NN! and next-
nearest-neighbor~NNN! exchange interactions. From top to bottom
the relative strength of the NNN couplingA5J2 /J1 are 1.0, 0.4,
and 0, respectively. WhenA is greater than 1/4 the maximum fre
quency would appear atqmax rather than the Brillouin-zone bound
ary. The ILSR arrow identifies the frequency of the intrinsic loc
ized spin-wave resonance described in the text.
n
.
-

e

z-

e
.
n
m

qmax5
p

a
2

1

a
cos21S 1

4AD and

vmax5
2J1

\
~114A!S 11

1

4AD , ~4!

when A is greater than 1/4. It may appear that intrinsic l
calization could first occur atqmax with frequency above
vmax; however, the nonlinear terms in Eq.~2! tend to lower
the frequency, and indeed, no intrinsic localized modes
found atqmax. The fact that the dispersion curve can have
maximum frequency at a wave number other than
Brillouin-zone boundary opens up a new possibility that I
SR’s may occur at the band edge. We will show later that
critical value ofA(51/4) is closely related to the existenc
of ILSR’s in this lattice.

B. ILSR’s at the zone boundary

To find the eigenvector of a stationary ILSR below t
Brillouin-zone boundary value all nonlinear terms must
included. Inserting the ansatz

sn
15sne2 ivr t, sn* 5sn , and sn

z5~12sn
2!1/2 ~5!

into Eq. ~2! gives the time-independent equation

\v r

2J1S
sn5sn@A12sn21

2 1A12sn11
2 1A~A12sn22

2

1A12sn12
2 !#2A12sn

2

3@sn211sn111A~sn221sn12!#, ~6!

wherev r is the frequency of the ILSR. Given the maximu
spin deviation at the mode centersmax, Eq. ~6! can be solved
numerically by using the globally convergent Newto
method25 to obtain the eigenvector shape and the freque
of the ILSR. The eigenvectors can be classified in terms
their parities. Both an odd-parity mode and an even-pa
mode an occur for a range of parameterA.

C. Eigenvector shapes

As an illustration, the eigenvectors of an odd-parity ILS
and an even-parity ILSR for the set of parametersA51.0
andsmax50.7 are plotted in Figs. 2~a! and 2~b!, respectively.
The one-dimensional chain consists of 256 spins with p
odic boundary condition. The symmetry center of the od
parity mode is on the lattice site with maximum spin dev
tion, while the symmetry center of the even-parity mode is
the middle between two adjacent sites with maximum s
deviation. The common feature of both ILSR’s is that t
spin deviations do not disappear with increasing dista
from the center. Instead the localized excitations evolve i
a weak plane wave pattern, as expected for a resonan23

Although breathers with extended plane-wave tails of non
caying amplitude were found before both in the continuo
f4 model26 and in discrete nonlinear lattices with substra
potentials,27 the ILSR’s in magnetic chains are fundame
tally different from these. In previously found resona
breathers, the localized center oscillates at a fundamenta
quencyoutsidethe liner spectrum while the extended plan

-
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56 5347INTRINSIC LOCALIZED SPIN-WAVE RESONANCES IN . . .
wave tail oscillates at the higher harmonics of the fundam
tal frequency. The extended plane-wave exists in th
resonant breathers because the nonlinear terms in the e
tion of motion generate high harmonics that are in the lin
spectrum. However, the fundamental frequency of
ILSR’s found here in these magnetic chains is in the lin
spectrum, and the ILSR’s are monochromatic.

The wave numbers associated with the weak plane w
pattern can be identified from the Fourier transformation

us~q!u25U(
n

snexp~ iqna!U2

. ~7!

In addition to Fourier components centered atq5p/a, there
is a sharp peak located atql with a strength that grows with
increasing maximum spin deviation. As expected, substi
ing ql into the linear spin dispersion relation Eq.~3! yields
the corresponding resonance frequencyv r .

For a given maximum spin deviation both the odd-par
mode and the even-parity mode become more localized
the amplitude of the off-center plane wave component
creases with decreasing relative strength of the NNN in
action, while when the strength of the NNN interaction
fixed the eigenvector shape of an ILSR becomes more lo
ized and the amplitude of off-center plane-wave compon
increases with increasing maximum spin deviation at

FIG. 2. Shapes of stationary intrinsic localized spin-wave re
nances of different parities. The ferromagnetic chain contains
spins with the parameterA51.0. Both modes have the same ma
mum spin deviationsmax50.7. ~a! Odd-parity mode, the symmetr
center is on the lattice siten5128. The left side shows a factor 4
expansion of the ordinate to display the plane-wave character in
wings. ~b! Even-parity mode, the symmetry center~the X) is be-
tween two adjacent sites. The left side shows the same facto
expansion and a sign alternation to illustrate the resonant m
plane-wave character.
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center. Our numerical search did not find localized solut
when A is less than 1/4. Here the value of 1/4 is only
estimate, which will be accurately determined later fro
both the stability analysis of extended band edge mode a
continuum approximation study. AsA approaches 1/4 from
above, the linear spin-wave dispersion curve becomes
nearq5p/a and hence has a high density of states at
Brillouin zone boundary. The localized center strongly inte
acts with the linear spectrum so that the amplitude of pla
wave tail increases rapidly with the maximum spin deviati
at the center. The amplitude of the plane-wave tail could
comparable to that of the center when the latter is beyon
certain value for a chain withA close to 1/4. However, the
larger the parameterA, the smaller the amplitude of plane
wave tail for a given maximum spin deviation at the cent
For example,ustail /smaxu is still less than 0.01 whensmax is as
large as 0.85 in a chain withA51.0.

D. Dependence of the mode frequency
on the maximum spin deviation

Figure 3 shows the dependence of the frequency of
ILSR on its maximum spin deviation in a ferromagne
chain of 256 spins. The NNN interaction parameterA is 1.0.
The open circles and crosses denote the frequencies o
odd-parity ILSR’s and the frequencies of the even-par
ILSR’s, respectively. The frequencies are found by nume
cally solving Eq.~6! with periodic boundary condition. Fo
small spin deviations, the frequency of an ILSR lies close
the Brillouin-zone boundary frequency of the linear-sp
wave band. With increasing spin deviation the mode
comes more localized and its frequency drops further into
linear spin-wave band. For fixed maximum spin deviatio
the frequency of the even-parity ILSR is lower than that
the odd-parity ILSR. Although there is no apparent distin
tion between odd-parity modes and even-parity modes w
small maximum spin deviations~and indeed they are ex
pected to approach the same continuum limit assmax→0) the

-
6

he

40
de

FIG. 3. Dependence of the frequency of stationary ILSR on
maximum spin deviation. The ferromagnetic chain contains 2
spins with the parameterA51.0. Open circles are the frequencies
odd-parity ILSR’s, and crosses are the frequencies of even-pa
ILSR’s. The dot-dashed line is the continuum approximation giv
by Eq. ~20c!. vZB is the frequency of linear spin wave at the Bri
louin boundary.
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FIG. 4. Time evolution of the energy densit
distributions of the ILSR’s shown in Figs. 2~a!
and 2~b!. The energy density shown here is me
sured from the ground-state energy density and
in units of 2J1 . Time is measured in units o
TZB . ~a! Odd-parity ILSR.~b! Even-parity ILSR.
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difference between them increases assmax increases. The
dot-dashed line is the continuum approximation freque
obtained later in Sec. III B, which is in good agreement w
the discrete results up tosmax50.5.

E. Lifetime of ILSR’s

Since the localized excitation is in resonance with
plane-wave spectrum it is expected that an ILSR beco
unstable and delocalizes after sufficient time. With the eig
vectors obtained by numerically solving Eq.~6! providing
the initial conditions, the lifetime of ILSR’s can be invest
gated by means of molecular-dynamics~MD! simulations. In
MD simulations the discrete equations of motion for thexyz
spin components are integrated numerically by using
fourth-order Runge-Kutta method with a time step
TZB/200 whereTZB is the period of the linear spin-wav
mode at the Brillouin zone boundary andTZB5p\/4J1S. At
each step conservation of energy and spin length~to 1 part in
105) serve as checks on the numerical accuracy. The num
cal simulations demonstrate that the lifetime of an ILSR
pends on three factors:~1! its parity, ~2! the maximum spin
deviation, and~3! the relative strength of the NNN interac
tion A.

At sufficient small amplitudes, ILSR’s of both parities ca
last many hundreds of periods. With increasing amplitu
y

e
es
-

e
f

ri-
-

e

the emission of plane-waves from the ILSR’s is observ
and the larger the amplitude the faster the decay, howeve
find that the even-parity mode is more unstable than the o
parity mode. Figures 4~a! and 4~b! show the time evolution
of the energy density given by

e~n!52J1sn•~sn211sn11!2J2sn•~sn221sn12! ~8!

for an odd-parity ILSR and an even-parity ILSR with mode
spin deviation (smax50.7), respectively. The energy densi
is measured from the ground-state value. The chain un
consideration contains 256 spins with periodic bound
condition. The odd-parity mode preserves its initial sha
over the entire period of 1500TZB . The figure shows that the
even-parity mode starts to move and decay while rema
localized after about 750TZB .

The decay of an ILSR is due to its coupling to the line
spin-wave spectrum. As the strength of the NNN interact
increases, the wave number of the spin wave that is in re
nance with the localized excitation moves away from t
band edge so that the coupling between the ILSR to the
wave becomes weaker and hence its lifetime increases.

III. EXISTENCE CONDITION FOR ILSR’s

Our numerical calculations indicate that the existence
ILSR’s depends strongly on the relative strength of the NN
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interaction. The interrelation between the modulational ins
bility of the extended band edge plane waves and the e
tence of spatially localized excitations has been establis
in a number of nonlinear lattices.28–34 Hence the stability
analysis of an extended plane wave provides a useful wa
predict under what conditions nonlinear localized excitat
can occur. In this section, the existence condition of ILSR
will be obtained from both linear stability analysis of th
extended nonlinear zone-boundary mode and the contin
approximation.

A. Modulational instability
of extended nonlinear spin-wave modes

The linear dispersion curve given by Eq.~3! is obtained
for spin-wave modes of virtually zero-spin deviation. F
finite spin deviation, Eq.~2! has also time-periodic solution
of spatially extended nonlinear spin-wave modes,sn

1(t)
5s0ei (qna2vt), whose frequency can be obtained as
th
le

he

r

-
is-
ed

to
n
s

m

v~q!5
8J1S

\ Fsin2S qa

2 D1A sin2~qa!G~12s0
2!1/2, ~9!

where the deviations0 is not negligible, and the nonlinea
terms tends to decrease the frequency. The extended
wave modes are modulationally unstable under certain c
ditions.

To determine the parameter space in which they are
stable, we carry out linear stability analysis. Assuming
extended nonlinear spin-wave modesn

1(t)5s0ei (qna2vt) is
perturbed so that

sn
1~ t !→sn

1~ t !5~s01bn1 icn!ei ~qna2vt !, ~10!

where the frequencyv is given by Eq.~9! and the perturba-
tions bn andcn are real and much smaller thans0 in mag-
nitude. Substituting Eq.~10! into Eq. ~2! and keeping only
terms linear inbn andcn , we obtain two linear differential
equations forbn andcn :
\

2J1S

dbn

dt
5A12s0

2H 2S cosqa1

A cos2qaDcn2F ~bn112bn21sinqa1

~cn111cn21!cosqaG2AF ~bn122bn22!sin2qa1

~cn121cn22!cos2qa G J ~11a!

and

\

2J1S

dcn

dt
52A12s0

25 2~cosqa1A cos2qa!bn2
s0

2

~12s0
2!

F ~bn111bn2122bncosqa!1

A~bn121bn2222bncos2qa!
G

2F ~bn111bn21!cosqa2

~cn112cn21!sinqa G2AF ~bn111bn22!cos2qa2

~cn122cn22!sin2qa G 6 . ~11b!
a-

m
pin
For a chain ofN spins, we obtain 2N coupled linear differ-
ential equations. If the perturbation grows exponentially
extended nonlinear spin wave is modulationally unstab
otherwise it is stable. To obtain the eigenvalues of Eqs.~11a!
and ~11b!, we assume

bn5bei ~Qna2Vmt !1c.c., ~12a!

and

cn5cei ~Qna2Vmt !1c.c., ~12b!

whereQ andVm are the wave number and frequency of t
modulation wave, respectively. Substituting Eqs.~12a! and
~12b! into Eqs.~11a! and~11b!, we obtain two coupled linea
equations

S M11 M12

M21 M22
D S b

c D 50, ~13!

where the matrix elements ofM are given by
e
,

M115M22

5
\Vm

2J1S
22A12s0

2~sinQa sinqa1A sin2Qa sin2qa!,

~14a!

M1252 i2A12s0
2@~12cosQa!cosqa

1A~12cos2Qa!cos2qa#, ~14b!

and

M2152M122 i
2s0

2

A12s0
2@~cosQa2cosqq!

1A~cos2Qa2cos2qa!#. ~14c!

The dispersion curve of the modulation wave,Vm(q,Q), is
determined by the condition that the determinant of the m
trix M is zero so that Eq.~13! has nontrivial solutions.

Since the ILSR mode, if it exists, should bifurcate fro
the band-edge mode, we will focus on the band-edge s
wave. Settingqa5p, we obtain from the det(M )50 that
S \Vm

2J1SD 2

516 sin2
Qa

2 S 124A cos2
Qa

2 D H 4A sin4
Qa

2
1~124A22s0

2!sin2
Qa

2
1s0

2J . ~15!
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5350 56R. LAI, S. A. KISELEV, AND A. J. SIEVERS
Since the right-hand side~RHS! of Eq. ~15! is always posi-
tive for A<Ac with Ac50.25 regardless of the spin deriva
tion s0 , the extended nonlinear band-edge mode is stable
this parameter range. However, as the relative strengt
NNN coupling gets stronger so thatA.Ac , the extended
band-edge mode becomes modulationally unstable to lo
wavelength perturbations when the spin deviation exce
the threshold

sc'~4A21!1/2
p

N
. ~16!

Here we have made use of the fact thatN@1 so that
sin(p/N)'p/N. In a real systemsc is essentially zero since
N is of the order of 108. This instability region is also the
region in which ILSR’s can occur. The critical value ofAc is
in agreement with the numerical finding in the previous s
tion.

Figure 5 shows snapshots of the energy density distr
tion at different times as determined by MD simulation f
randomly perturbed extended nonlinear band-edge spin-w
mode in two chains each containing 256 spins with perio
boundary condition. The dot-dashed lines represent the
ergy density distribution of the ground state. In Figs. 5~a!,
the relative strength of the NNN interactionA50.2 is below
the critical value ofAc while in Fig. 5~b!, A50.6, above the
critical value. The initial spin deviations are the same
both chains, and are given bysn5(21)n0.11dsn where the
magnitude of random perturbationudsnu is less than 0.005
The behavior of the extended band-edge mode is qua
tively different. In a chain withA less thanAc , the energy
density distribution remains spatially extended through
the simulation period, as shown in Fig. 5~a!. However, Fig.
5~b! demonstrates that the band edge spin wave is unstab
a chain withA greater thanAc . As a consequence of th
modulational instability the extended nonlinear band-ed
mode is unstable and evolves into temporal ILSR-like loc
ized excitations. Att5360TZB , the initially uniformly dis-
tributed energy has been concentrated into 5 ILSR-like e
tations. These ILSR-like excitations move around a
gradually decay back into plane waves. This MD simulat
demonstrates that the modulational instability of the
tended band-edge mode is a possible mechanism for the
ation of ILSR excitations from extended modes. Recently
has been reported that in computer simulations the intrin
localized vibrational modes in perfect anharmonic lattic
with realistic interatomic potentials can be created throu
the modulational instability by exciting nonlinear extend
modes using an optical control scheme.35

B. Continuum approximation: Envelope solitons

When the maximum spin deviation of an ILSR is small,
extends over a large number of lattice sites. In this case
magnitude of the spin deviationsn varies slowly with site
index n, and the continuum approximation can be invoke
The continuum approximation can determine the existe
condition of ILSR’s and provide some properties of sm
amplitude ILSR’s which are expected to be qualitatively c
rect even for ILSR’s in the discrete limit. Since the spat
or
of
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symmetry of a small-amplitude ILSR is close to that of t
corresponding plane wave, we introduce the staggered v
able

fn5~21!nsn
1 , ~17!

wherefn is complex. Here we do not limit the analysis
the stationary modes but instead assume that the wave n
ber associated with the ILSR is close to the band edge so
both the phase and the magnitude offn vary slowly in space.
Substituting Eq.~17! into Eq. ~2! and neglecting nonlinea
terms higher than cubic terms, we obtain, in the continu
approximation, a nonlinear Schro¨dinger~NLS! type equation
for f(x,t), namely,

i
]f

]t
5

2J1S~124A!a2

\

]2f

]x2
1

8J1S

\
f2

4J1S

\
ufu2f,

~18!

where the linear term on the RHS can be eliminated b
simple gauge transformation. The NLS is integrable, and
condition for Eq. ~18! to have a localized solution~one-
soliton solution! is that the coefficient of the second-ord
spatial derivative and the coefficient of the cubic nonline
term be of the same sign, that is,A.0.25. This critical value
of A agrees withAc that we found from the linear stability
analysis of the extended nonlinear band edge spin wave

Equation~18! has both stationary and moving localize
solutions whenA.Ac , which are given by

f~x,t !5fm sechS x2net

l e
De2 i ~Kx2vr t1a0!, ~19!

FIG. 5. Modulational instability of extended band-edge sp
waves. The snapshots of energy density distributions are de
mined by MD simulations for randomly perturbed extended ba
edge spin waves in chains containing 256 spins with perio
boundary condition. One ordinate unit is 0.05. The dot-dashed l
are the energy density distribution of the ground states.~a! The
NNN interaction parameterA50.2 is less than the critical value
Ac . ~b! The NNN interaction parameterA50.6 is greater than the
critical valueAc .
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wherep/a2K is the wave number of the carrier wave ass
ciated with the ILSR,fm the maximum spin deviation an
a0 a constant phase factor. The envelope velocityne , the
envelope widthl e , and the frequency of the traveling ILS
v r are given by

ne52
4J1Sa2

\
~4A21!K, ~20a!

l e5
~4A21!1/2

fm
a, ~20b!

and

v r5
8J1S

\
1

2J1S~4A21!

\
~Ka!22

2J1S

\
fm

2 . ~20c!

From Eq.~20a!, a stationary mode can be obtained by sett
K50. The traveling velocityne of the envelope is just the
group velocity of the corresponding linear spin wave. Fro
the linear spectrum, Eq.~3!, we obtain the group velocity

ng5
dv

dq
5

4J1Sa

\
~sinqa12A sin2qa! ~21!

for the linear spin wave with wave numberq. Equation~20a!
can be recovered by substitutingqa5p2Ka(Ka!1) into
Eq. ~21!.

Some insight can be gained from Eqs.~20b! and~20c!. In
the continuum approximation for a given maximum spin d
viation, the traveling ILSR and stationary ILSR have t
same envelope shape whose width is inversely proportio
to the maximum spin deviation and increases with the N
coupling strength increasing as one might expect. The
term on the right-hand side of Eq.~20c! is just the frequency
of the linear band-edge spin wave, and the third term is
anharmonic frequency shift. Since the frequency shift
negative,v r , is in the linear spin-wave band. The indepe
dence of the mode frequency on the strength of NNN c
pling is consistent with the factor that at the Brillouin-zo
boundary the spins precess in phase with their NNN’s. In
discrete limit where the ILSR is highly localized so that t
continuum approximation breaks down, these observat
are still expected to be qualitatively correct.

Although the continuum approximation describes well t
shape of the center of an ILSR when the maximum s
deviation is small and gives the correct threshold ofA, the
essential feature of an ILSR, that is, the nondecaying pla
wave tail, does not appear in the solution. The linear disp
sion curve of the continuum model described by Eq.~18! can
be obtained by settingfm50 in Eq.~20c!, which has a para-
bolic shape with a gap atK50. Hence, the solution Eq.~19!
is simply a gap soliton in the continuum model.

IV. TRAVELING ILSR’s

So far the large-amplitude localized ILSR excitation
assumed to be described by an elementary excitation w
circular precession frequencyv r . If an ILSR is traveling
through the chain then the circular precession is treated a
-

g

-

al

st

e
s
-
-

e

ns

n

e-
r-

a

an

internal degree of freedom and the translational motion as
external one. The separation of degrees of freedom is a g
approximation only when the wave number of the carr
wave is close to Brillouin zone boundary and hence the tr
eling velocity of the ILSR is small compared to the pha
velocity of the carrier wave. To excite traveling ILSR’s w
seek solutions of the form

sn
~1 !~ t !5sn~ t !ei ~qna2vr t !

5~21!nfn~ t !e2 i ~Kna1vr t !, ~22!

wherefn(t) is real and

qa5p2Ka and Ka!1. ~23!

Then substituting Eq.~22! into Eq. ~2! gives

\

2J1S

dfn

dt
5A12fn

2@~fn212fn11!sinKa

2A~fn222fn12!sin2Ka# ~24a!

and

\v r

2J1S
fn5fnA12fn21

2 1A12fn11
2 1AA12fn22

2

1A12fn12
2 1A12fn

2@~fn211fn11!cosKa

2A~fn221fn12!cos2Ka#. ~24b!

Equation~24a! determines the traveling velocity of the ILSR
As expected a stationary ILSR would be found if we s
Ka50 in Eq.~24a!. Equation~24b! determines the envelop
of the traveling ILSR and can be transformed back to Eq.~6!
for Ka50.

A. Single traveling ILSR

In the discrete limit~large spin deviation!, the envelope of
a traveling ILSR can be found by numerically solving E
~24b!. When the maximum spin deviation of a travelin
ILSR is small so that it extends over a large number of latt
sites the continuum approximation can be invoked to s
plify the problem. The traveling envelope soliton solutio
are given by Eq.~19!. Once the initial envelope shape of a
ILSR is obtained the MD simulations can be used to inv
tigate its motion. The chain under consideration contains
spins and the periodic boundary condition is applied in
MD simulations in this section.

Figure 6~a! shows the time evolution of an ILSR with
smax50.3, Ka5p/32, andA51.0. Since the maximum spin
deviation is small, the initial envelope shape can be obtai
from the continuum approximation, Eq.~19!. In this case the
characteristic off-central plane-wave pattern of a reson
mode, which would occur if Eq.~24b! is solved, is negli-
gible. It appears that this small-amplitude ILSR can tra
freely through the lattice with the velocity given by Eq
~20a!, and no apparent decay or slow down is observed.
the maximum spin deviation increases the continuum
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FIG. 6. Time evolution of the energy densit
distribution of two traveling ILSR’s with differ-
ent sets of parameters.~a! A51.0,smax50.3, and
Ka5p/32. ~b! A51.0, smax50.7, and Ka
5p/32. Each chain contains 256 spins. For cla
ity, only part of the chain is shown in~b!. The
energy density shown here is measured from
ground-state energy density and is units of 2J1 .
Time is measured in units ofTZB .
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proximation breaks down and one has to solve Eq.~24b!
numerically to obtain the initial spin deviations. Like a st
tionary ILSR, the moving ILSR has weak plane-wave tails
the off-central region. Figure 6~b! shows the time evolution
of an ILSR with smax50.7, Ka5p/32, and A51.0. The
maximum spin deviation is modest and the ILSR can s
travel through the lattice, but it is scattered by the discre
ness of the lattice and the decay into plane waves is appa
By the time of 800TZB , about 5% of the energy has decay
into the plane-wave modes. The larger its amplitude and
faster its velocity, the more emission of plane spin-wa
modes. However, the stationary mode of the same maxim
spin deviation is much more stable in our simulations
shown in Fig. 4~a!.

B. Collision of ILSR’s

Another important aspect of the nonlinear dynamics
how localized excitations interact with each other. A fund
mental property of solitons is that they pass through e
other as noninteracting particles. Recent studies have sh
that this is not the case for intrinsic localized modes in d
crete lattices, and both energy transfer between intrinsic
calized modes and collision-induced decay into plane-w
modes are observed in computer simulations.11,34

In the FM chains we investigate, solitonlike behavior
expected for small-amplitude ILSR’s. To launch two sma
amplitude ILSR’s moving toward each other, two sma
amplitude ILSR’s obtained from Eq.~19! are placed 256
ll
-
nt.

e
e
m
s

s
-
h

wn
-
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e
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sites apart in a chain of 512 spins with periodic bound
condition. The NNN interaction parameterA51.0. The pa-
rameters for the two ILSR’s are left,smax50.2, Ka5
2t/25.6; right, smax50.3, Ka5p/25.6. The collision is
plotted in Fig. 7~a!. Before and after collision the two mode
move with uniform velocity and maintain their origina
shapes. More accurate integration shows that the en
transfer between them is less than 0.5% of the total ene

When ILSR’s with large spin deviation~i.e., stronger non-
linearity! are involved in a collision different behavior i
observed: the interaction between them becomes more
lent as the mode amplitude increases. As an example,
collision between a large amplitude stationary ILSR with
small amplitude traveling ILSR in a chain of 256 spins
shown in Fig. 7~b!. Each mode maintains its own shape b
fore the collision, they interact strongly when they meet, a
both become unstable after collision. Only a fraction of t
small-amplitude traveling ILSR can pass through the stati
ary ILSR, and it decays quickly into plane-wave modes af
the collision. Meanwhile the stationary ILSR also shak
away energy from its central region after the collision thou
it still remains localized over our simulation interval. Whe
both ILSR’s have large amplitudes neither can survive
collision. The observation reported in Ref. 11 that the co
sion between intrinsic localized vibrational modes tends
favor the growth of the larger excitation is not seen in o
simulations for the ferromagnetic chain with both NN a
NNN interactions. One possible reason is that the freque
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FIG. 7. Collision between two ILSR’s.~a!
Two traveling small-amplitude ILSR’s in a chai
of 512 spins withA51.0. The parameters for th
two ILSR’s: left,smax50.2,Ka52p/25.6; right,
smax50.3, Ka5p/25.6. The two ILSR’s pass
through each other as noninteracting particle
The energy transfer between them is less th
0.5% of the total energy after one collision.~b! A
traveling small-amplitude ILSR and a stationa
large-amplitude ILSR in a chain of 256 spin
with A51.0. The small-amplitude ILSR are cha
acterized bysmax50.2, Ka5p/32, and the sta-
tionary ILSR bysmax50.7, Ka50. Both modes
are unstable after the collision.
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of an ILSR is in the linear spectrum and thus it strong
interacts with plane-wave modes, and the NNN coupl
tends to spread the energy.

V. CONCLUSIONS

For isotropic exchange coupling and no anisotropy ter
in the 1D Hamiltonian we have found that when the stren
of NNN exchange interaction relative to the NN interactio
exceeds a specific threshold value then ILSR’s of both o
and even parity may appear in the small-amplitude pla
spin-wave spectrum. A common feature of both ILSR’s
that the spin deviations do not disappear with increasing
tance from the center. For small spin deviations, the f
quency of an ILSR lies close to the Brillouin-zone bounda
frequency of the linear spin-wave band. Our numerical sim
lations demonstrate that the lifetime of an ILSR depends
the mode parity, the maximum spin deviation, and the re
tive strength of the NNN interaction to the NN one. M
simulations demonstrate that the modulation instability of
extended band-edge mode provides a possible mecha
for the creation of ILSR excitations from extended modes.
the small-amplitude continuum approximation for a giv
g
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maximum spin deviation, the traveling ILSR and stationa
ILSR have the same envelope shape; its width is inver
proportional to the maximum spin deviation and increa
with increasing NNN coupling strength. The properties
translating ILSR depend on the size of the spin deviation
the maximum spin deviation is modest the ILSR can tra
through the lattice, but it is scattered by the discretenes
the lattice and decays into plane spin waves over suffic
distances: the larger its amplitude, or the faster its veloc
the larger the emission of plane-wave modes. For collid
ILSR’s solitonlike behavior is found for small spin devi
tions but for large amplitudes neither can survive the co
sion.
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