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Fokker-Planck approach to nonlocal high-field transport
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The nonequilibrium energy distribution of electrons drifting in a solid subjected to a high electric field is
shown to obey a master equation of the Fokker-Planck type allowing for explicit position dependence of the
energy distribution, such as occurs in a sharply varying field. Excellent agreement is found between the
Fokker-Planck prediction of the energy distribution and a Monte Carlo simulation of transport in the absence
of any adjustable parameter.@S0163-1829~97!05434-9#
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At low electric fields the drift velocityvd of an electron in
a solid is proportional to the local value of the fieldF at x,
viz. vd(x)5mF(x), with m possibly a tensor. This come
about because momentum-relaxing collisions occur ove
time scaletm associated with a spatial scale much sma
thanF/(]F/]x). At low fields the electron energyE is ther-
mal 'kT, and its increase in the field is given up to th
lattice at the same rate as momentum, that is, the en
relaxation timetE'tm , wherefore the energy distributio
negligibly departs from that given by equilibrium statistic
At high fields entailing average energies well abovekT, a
distinct state of affairs is met1 owing to tE@tm for high-
energy electrons interacting with the lattice principally v
the emission of high-frequency phonons of energy\v!E.
This is associated with a characteristic energy-variat
lengthlE5vdtE , much larger than the mean free path ov
which momentum averaging determinesvd . Therefore, the
energy distribution at the locationx is not determined by the
local value of the field, but also by fields upstream ofx,
typically betweenx2lE andx.

High-field transport in inhomogeneous fields entaili
nonlocal effects is crucial to the understanding of sub
crometer semiconductor devices. It is usually addresse
Monte Carlo simulations2 which provide an exact solution t
the semiclassical Boltzmann transport equation, but a s
pler approach is offered by Ridley’s lucky-drift theory.3 Re-
cently, a critical comparison4 of both theories in the case of
homogeneous field disclosed two flaws in the latter wh
led to replace it by a Fokker-Planck approach which sub
quently was shown to agree5 with Monte Carlo predictions in
a variety of cases. More precisely, the new approach
equivalent to the Boltzmann transport equation fordrifting
~i.e., not ballistic! electrons wherever the inelastic loss,\v,
is smaller than the energy exchanged with the field betw
two collisions. The purpose of this paper is to describe n
local transport within the Fokker-Planck framework. F
simplicity a one-dimensional geometry is considered, wh
current density and field are oriented alongx, and all quan-
tities depend onx only.

The basic quantityn(E,x,t) is the electron energy distri
bution atx at time t: n(E,x,t)dEdx is defined as the prob
ability of finding the electron in the spatial range@x,x
1dx# in the energy interval@E,E1dE#. Transitions inE-x
space being continuous if\v!E, the probability is con-
served locally, andn obeys a continuity equation,
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]n/]t1]JE /]E1]Jx /]x50, ~1!

involving a probability currentJ in E-x space. Following the
general Fokker-Planck scheme,6 the current is envisioned a
the sum of a drift term embodying the average trend, an
diffusion term associated with spreading

JE5W~E,x!n2
]~DEEn!

]E
2

]~DExn!

]x
, ~2a!

Jx5vd~E,x!n2
]~DxEn!

]E
2

]~Dxxn!

]x
. ~2b!

W ~in eV/s! andvd ~in cm/s! are the components, along th
energy and real-space axes, of the local drift velocity o
particle of energyE located atx. The matrixD is a positive
semidefinite symmetric one depending on the (E,x) point
~time dependences are allowed though not written exp
itly !. When Eqs.~2a! and ~2b! are inserted into Eq.~1!, we
have a multivariate Fokker-Planck equation, the propertie
which are examined at length in van Kampen’s treatise.6 In
short, a monoenergetic localized distribution,n(E,x,0)
5d(E2E0)d(x2x0), evolves into a Gaussian packet
which the centroid travels inE-x space at speed (W,vd), and
the extension is determined by the diffusion matrixD.

Before proceeding further, let us highlight the physic
meaning of the transport coefficients appearing in Eqs.~2a!
and ~2b!. Quantities having straightforward meaning a
those referring to real-space motion, namely,vd andDxx in
Eq. ~2b!. They are just thespectraldrift velocity and diffu-
sion coefficient in the sense that averaging them over ene
yields the conventional drift velocity and diffusion coeffi
cient. The use of spectral quantities is more familiar
gaseous7 than in solid-state8 electronics. Specifically,vd

5m(E)F(x) andDxx5„(vg)x(vg)xtc…E, wherem(E) is the
mobility of a particle of energyE, andDxx is the autocorre-
lation of the group velocityvg , with tc the correlation time5

and(...)E the mean value over a constant-energy surface
momentum space. Once the material band structure
electron-phonon dynamics have been specified,m(E) and
Dxx(E) are calculable.4,9 This has been done in specific no
spherical nonparabolic materials in Ref. 5 where solutions
the x independent~i.e., local! Eq. ~1! have been obtained
Generally speaking, at highE scattering times are short an
entail small mobilitiesm(E), while group velocitiesvg grow
5328 © 1997 The American Physical Society
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56 5329FOKKER-PLANCK APPROACH TO NONLOCAL HIGH- . . .
in such a way that the increase invg
2 usually outweighs the

drop in tc , making the high-E spectral part of the motion
strongly diffusive. The functionsm(E) andDxx(E) are pre-
given quantities, which are independent of the actual oc
pation of energy space and thereby of the current stat
motion, in contradistinction to the conventionalm and Dxx
which are ensemble averages of the spectral quantities.

Ensemble average is defined by

^ &E5

E
0

1`

~ !n~E,x!dE

E
0

1`

n~E,x!dE

, ~3!

thus involving the distributionn. Integrating Eqs.~1! and
~2b! over E leads to

]n/]t1] j x /]x50, ~18!

j x5^m~E!&EF~x!n2
]@^Dxx~E!&E n#

]x
, ~2b8!

where n5*0
1`n(E,x)dE is the usual particle density~in

cm21), and j x5*0
1`Jx(E,x)dE is the usual particle curren

density ~in s21). Equations~18! and ~2b8! are the familiar
particle-conservation and drift-diffusion equations, resp
tively, exceptthat the mobility^m(E)&E and diffusion coef-
ficient ^Dxx(E)&E are high-field quantities depending on th
energy distributionn(E,x,t) and thereby on the position an
electric field. This stands in stark contrast with the low-fie
^m(E)&E and ^Dxx(E)&E which are determined by the ca
nonical ensemble averagingn(E);N(E)exp~2E/kT)
@N(E) is the density of conduction-band states#.

The second class of transport coefficients appears in
~2a! referring to the motion along the energy axis, and
now proceed to determine them. The componentJE of the
probability current along the energy axis reflects the ene
gain or loss of the particle. In the semiclassical transp
picture, it is made up of two decoupled contributions, o
from the field and one from the phonon bath. As sho
earlier,4 energy exchange with the phonon bath gives rise
a drift term ~embodying the average exchange! Wph(E)n
,0, the diffusion term~embodying the fluctuations about th
average! being of order (\v)2 and thus negligible in the
high-energy limit.4,5 Energy exchange with the field is jus
related to the real-space motionJx , and contributesqF(x)Jx
to JE , where qF(x) is the force exerted on the particle
Then,

JE5Wph~E!n1qF~x!Jx . ~4!

Substituting Eq.~2a! for JE and Eq.~2b! for Jx in Eq. ~4!, an
identity is obtained if and only if

W5Wph~E!1qF~x!2m~E!1Dxx~E!
]~qF!

]x
, ~5a!

DEx5qF~x!Dxx~E!, ~5b!

DEE5qF~x!DxE~E,x!5@qF~x!#2Dxx~E!, ~5c!
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the last equality resulting from the symmetry of the diffusi
matrix. The novelties introduced by the nonlocal theory a
the nondiagonal diffusion coefficientsDEx5DxE and the
field gradient in Eq.~5a!. The primary transport coefficients
whence all others may be derived through Eqs.~5a!–~5c!, are
m(E) and Dxx(E), which are obtainable from the materia
characteristics.4,5,9

We now illustrate themodus operandiof the nonlocal
Fokker-Planck transport equation in the case of steady-s
transport in a uniformF with the condition n(E,x50)
5n0d(E) ~density n0 of cold electrons injected atx50).
This is indeed a nonlocal transport problem, consider
n(E,0) to be determined by the fieldF(x)50 at x,0, and
the step increase inF at x50 to be the field inhomogeneity
From Eqs.~1!, ~2!, and~5! the Fokker-Planck equation is

~qF!2F ]

]E
1

]

]~qFx! GF m~E!

q
n2

]~Dxxn!

]E
2

]~Dxxn!

]~qFx! G
1

]~Wphn!

]E
50, ~6!

which is more conveniently expressed by takingj5qFx
2E andE as independent variables,

]~Wphn!

]j
5

]

]E H @qF2m~E!1Wph#n2
]

]E
~q2F2Dxxn!J .

~7!

The boundary conditions are6 JE50 atE50 and1`. Solv-
ing for Eq. ~7! also requires an ‘‘initial’’ condition, namely
n(E,j50). At this juncture, it is essential to remember th
Eq. ~7! can only describe the drift mode, which starts on
the electron experiences its first momentum-relax
collision.1 Now, immediately after injection the electro
travels ballistically, and its distribution inE-x space, as the
first scattering event initiates the drift motion, is

n~E5qFx,x!5n0~qFl!21 exp~2x/l!, ~8!

where for definiteness an energy-independent mean free
l is taken. Ballistic motion will be embedded in the Fokke
Planck framework as the initial condition: sincej50 at x
50, andj is conserved along a ballistic path, let

n~E,j50!5n0~qFl!21 exp~2E/qFl! ~88!

be the initial condition.~This is in keeping with Ridley’s
combination of the ballistic and drift transport modes.1,3!

Specializing now Eq.~7! to the case of nearly-free elec
trons of effective massm* , isotropically exchanging
constant-energy phonons at a rate proportional to the den
of conduction-band states yields a mean free pathl
constant for E@\v, and the functions m(E)52ql/
3m* vg(E), Dxx(E)5lvg(E)/3, and Wph(E)52@2n(v)
11]\vvg(E)/l are already known4,5 @vg(E) denotes
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(2E/m* )1/2, andn(v) is the Bose-Einstein number#. Taking
g(E,j)5AEn(E,x) as the unknown function, Eq.~7! reads

]g

]j
52

]

]EF S Ew

E
21Dg2Ew

]g

]E G , ~78!

whereEw5@2n(v)11#(qFl)2/3\v. The solutiong(E,j)
has been obtained by means of a Crank-Nicholson fin
difference scheme, and the distributionn(E,x) is plotted in
Fig. 1 for several values ofx. Asymptotically, it is found to
become independent ofx, viz.

n~E,1`!5n0$2\v/@2n~v!11#qFl%1/2AE exp~2E/Ew!.
~9!

As could be expected from Eq.~7! and Ref. 4, Eq.~9! is just
the local distribution in a fieldF and yields an asymptotic
average energyEav,̀ 53Ew/2. It is found to hold forx
@Eav,̀ /qF, which therefore has the meaning of an ener
relaxation lengthlE .

Next, a Monte Carlo simulation has been carried out
study the transport of an ensemble of electrons injected
uniform field F at x50 with zero energy. Typically 25 000
histories have been analyzed using an energy meshEw/30
559 meV and a position meshEw/60qF530 Å, and the
energy distribution is shown in Fig. 1. The same parame
~from Ref. 10! are used in obtaining the Monte Carlo an
Fokker-Planck data, which are seen to agree very well w
each other, with no adjustable parameter. From the dat
Fig. 1 the average energyEav(x) at locationx is computed
and shown in Fig. 2. Again the agreement between
Fokker-Planck and Monte Carlo predictions is excellent,
only in the drift region (x@l), but also where ballistic elec
trons bring an important contribution ton. This is attributed
to our initial condition~88! and is analogous to the interpo
lation of the Sharvin~ballistic! and Drude~diffusive! resis-
tances in a metal wire.11 Thus, for nonlocal as well as loca
transport, the Fokker-Planck equation~here, a partial differ-
ential equation in two variables,E andx) is equivalent to the
Boltzmann partial differentio-integral equation in four va
ables,px , py , pz , andx. This allows a considerably sim

FIG. 1. Monte Carlo~points! and Fokker-Planck~lines! electron
energy distributionsn(E,x), with distancex covered, or voltage
drop Fx, as a parameter. Electric fieldF5105 V/cm. ~Parameters
from Ref. 10: m* /m050.22, l5282 Å, \v529 meV, T
5300 K.)
-

y

o
a

rs

h
of

e
t

pler approach to nonlocal transport than present-day Mo
Carlo codes. Note that nowhere does our approach rely
specific band model, although the Monte Carlo simulat
supporting the Fokker-Planck prediction has been perform
in a parabolic band. The general criterion for the validity
the Fokker-Planck approach is the same in the local and n
local cases, namely, the inelasticity\v should be small and
the electrons are drifting. Therefore the same degree of
curacy that has been observed in the local case5 is expected
in the nonlocal one. A detailed, kinetic-theoretical proof
the equivalence of the Boltzmann and Fokker-Planck tra
port equations in arbitrary bands and three-dimensio
space is planned for future publication.

A final remark is in order. Our nonlocal transport equati
is arrived at from a nonequilibrium statistical-mechanic
standpoint, with no appeal to kinetic theory. It is interesti
to note that special instances of the equation have previo
been obtained by means of~lengthy! kinetic-theoretical cal-
culations. We shall give two examples.~i! In the case of an
electron submitted to a high field in a weakly ionized ga
and assuming steady-state and uniformJx , Druyvesteyn12

has found thatn(E,x) obeys an equation which is identica
to our Eq.~2a! equated to zero, in whichm(E) andDxx(E)
are those used in Eq.~78!, andWph(E) stands for the rate o
energy loss to the gas atoms.~ii ! In the case of a fast neutro
slowed down in a medium consisting of heavy atoms,
evolution ofn(E,x,t) toward the thermal distribution shoul
be governed by a Fokker-Planck equation whereJE reduces
to the loss term andJx is purely diffusive, sinceq50. In Ref.
13, thesameequation is derived from an expansion of th
Boltzmann transport equation, in which the small parame
is the energy lost by the neutron in a collision, similar to\v
in a solid. Therefore our formalism encompasses a variet
physical situations while bypassing heavy calculations.

It is a pleasure to thank Catherine Oppenheim for inf
mation on Charpak’s wire chambers, Bernadette Thomas
a discussion about partial differential equations, and
Bourdon for a critical reading of the manuscript.

FIG. 2. Fokker-Planck~points! and Monte Carlo~solid line!
average electron energiesEav(x) against distancex covered, in a
uniform electric fieldF5105 V/cm, with Eav(0)50 as the initial
condition. The straight solid line shows the ballistic lawEav(x)
5qFx, and the horizontal dashed line shows the asymptoticEav,̀ .
Same parameters as in Fig. 1.
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