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Fokker-Planck approach to nonlocal high-field transport
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The nonequilibrium energy distribution of electrons drifting in a solid subjected to a high electric field is
shown to obey a master equation of the Fokker-Planck type allowing for explicit position dependence of the
energy distribution, such as occurs in a sharply varying field. Excellent agreement is found between the
Fokker-Planck prediction of the energy distribution and a Monte Carlo simulation of transport in the absence
of any adjustable paramet¢60163-18207)05434-9

At low electric fields the drift velocity 4 of an electron in anlat+ dJglIE+ dd, 1 9x=0, 1)
a solid is proportional to the local value of the fididat x,
viz. v4(X)=puF(x), with u possibly a tensor. This comes involving a probability currend in E-x space. Following the
about because momentum-relaxing collisions occur over §eneral Fokker-Planck scherhehe current is envisioned as
time scaler,, associated with a spatial scale much smallethe sum of a drift term embodying the average trend, and a
thanF/(9F/dx). At low fields the electron enerdg is ther-  diffusion term associated with spreading

mal =~kT, and its increase in the field is given up to the
e th (Dgen)  a(De)

lattice .at th.e same rate as momentum, that is., the energy Je=W(E,x)n— , (29)
relaxation timerg~r,,, wherefore the energy distribution JE X
negligibly departs from that given by equilibrium statistics.
i i ili i d(Dygn) J(Dyyn
At high fields entailing average energies well abdvg a 3= vg(ExOn— (Dxen) (D« ). (2b)

distinct state of affairs is métowing to 7g> 7, for high-
energy electrons interacting with the lattice principally via ]
the emission of high-frequency phonons of enehgy<E. W (in eV/s) anduvq (in cm/g are the components, along the
This is associated with a characteristic energy-variatiortn€rgy and real-space axes, of the local drift velocity of a
lengthAg=vq7e, much larger than the mean free path Overpartl_cle _of_ energyE Ioc_ated ax. The matrixD is a positive
which momentum averaging determines. Therefore, the Seémidefinite symmetric one depending on tligX) point
energy distribution at the locationis not determined by the (time dependences are allowed though not written explic-
local value of the field, but also by fields upstreamxof  itly)- When Eqs(2a and(2b) are inserted into Eq(1), we
typically betweerx—\g andx. ha\_/e a multlvarlate Fokker-PIar_lck equation, the properties of
High-field transport in inhomogeneous fields entailingWhich are examined at length in van Kampen's tredtise.
nonlocal effects is crucial to the understanding of submi-Short, & monoenergetic localized distribution(E,x,0)
crometer semiconductor devices. It is usually addressed it 9(E—Eo) 8(X—Xo), evolves into a Gaussian packet of
Monte Carlo simulatiorfswhich provide an exact solution to Which the centroid travels i-x space at speed\(,v), and
the semiclassical Boltzmann transport equation, but a simh€ extension is determined by the diffusion matoix
pler approach is offered by Ridley’s lucky-drift theohRe- Before proceeding further, let us highlight the physical
cently, a critical comparisdrof both theories in the case of a Meaning of the transport coefficients appearing in K28,
homogeneous field disclosed two flaws in the latter whickand (2b). Quantities having straightforward meaning are
led to replace it by a Fokker-Planck approach which subsethose referring to real-space motion, namely,and D, in
quently was shown to agréwith Monte Carlo predictions in ~ Ed. (2b). They are just thespectraldrift velocity and diffu-
a variety of cases. More precisely, the new approach i§ion coefficientin the sense that averaging them over energy
equivalent to the Boltzmann transport equation doifting yields the conventional drift velocity and diffusion coeffi-
(i.e., not ballisti¢ electrons wherever the inelastic logsy,  cient. The use of spectral quantities is more familiar in
is smaller than the energy exchanged with the field betweef@seous than in solid-stat electronics. Specificallyp 4
two collisions. The purpose of this paper is to describe non=u(E)F(x) and D= ((v¢)«(vg)x7c)e, Whereu(E) is the
local transport within the Fokker-Planck framework. For mobility of a particle of energ§, andD,, is the autocorre-
simplicity a one-dimensional geometry is considered, wherdation of the group velocity, , with 7 the correlation time
current density and field are oriented alangand all quan- and(...)g the mean value over a constant-energy surface in
tities depend onx only. momentum space. Once the material band structure and
The basic quantityn(E,x,t) is the electron energy distri- electron-phonon dynamics have been specifie(E) and
bution atx at timet: n(E,x,t)dEdxis defined as the prob- D,,(E) are calculablé® This has been done in specific non-
ability of finding the electron in the spatial range,x  spherical nonparabolic materials in Ref. 5 where solutions of
+dx] in the energy intervdlE,E+dE]. Transitions inE-x  the x independenti.e., loca) Eqg. (1) have been obtained.
space being continuous fw<E, the probability is con- Generally speaking, at high scattering times are short and
served locally, anch obeys a continuity equation, entail small mobilitiesu(E), while group velocities ; grow
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in such a way that the increase z}@ usually outweighs the the last equality resulting from the symmetry of the diffusion
drop in 7, making the hight spectral part of the motion matrix. The novelties introduced by the nonlocal theory are
strongly diffusive. The functiong(E) andD,,(E) are pre- the nondiagonal diffusion coefficientSg,=D,eg and the
given quantities, which are independent of the actual occufield gradient in Eq(5a). The primary transport coefficients,
pation of energy space and thereby of the current state ofhence all others may be derived through Eg8)—(5¢), are
motion, in contradistinction to the conventionaland D, m(E) and D,,(E), which are obtainable from the material
which are ensemble averages of the spectral quantities. characteristic:>”

Ensemble average is defined by We now illustrate themodus operandbf the nonlocal

Fokker-Planck transport equation in the case of steady-state

+oo transport in a uniformF with the condition n(E,x=0)
Jo ()n(E,x)dE =ny8(E) (densityny of cold electrons injected at=0).
(Oe=—7= , (3)  This is indeed a nonlocal transport problem, considering
f n(E,x)dE n(E,0) to be determined by the field(x)=0 atx<0, and
0 the step increase iR at x=0 to be the field inhomogeneity.

From Egs.(1), (2), and(5) the Fokker-Planck equation is
thus involving the distributiom. Integrating Eqs(1) and gs(1), @ ® a

(2b) overE leads to

. , d #(E) d(Dyxn)  d(Dyyn)
anldt+dj w1 9x=0, (1) (qF)Z{ £+a(qFx) q n— E )
I[(Dy(E (W
= (u(E)eF Gon - LOAEVED] o 2, ©

where n=[5“n(E,x)dE is the usual particle densit(in
cm™Y), andj = [§“J,(E.X)dE is the usual particle current Which is more conveniently expressed by takigig qFx
density (in s 1). Equations(1’) and (2b') are the familiar —E andE as independent variables,
particle-conservation and drift-diffusion equations, respec-
tively, exceptthat the mobility(«(E))g and diffusion coef-

ficient (D,,(E))g are high-field quantities depending on the I(Wprn) _9 [qF2u(E)+ W, Jn— 7 (qZFZDXXn)}.
energy distributiom(E,x,t) and thereby on the position and 23 JE P JE
electric field. This stands in stark contrast with the low-field (7)

((E))e and (D,,(E))e which are determined by the ca-

nonical ensemble averagingn(E)~N(E)exa(—E/kT)  The boundary conditions &dz=0 atE=0 and-+. Solv-
[N(E) is the density of conduction-band states ~_ing for Eq.(7) also requires an “initial” condition, namely
The second class of transport coefficients appears in Egy g, £=0). At this juncture, it is essential to remember that
(28 referring to the motion along the energy axis, and wegq (7) can only describe the drift mode, which starts once
now proceed to determine them. The componkndf the  the electron experiences its first momentum-relaxing
probability current along the energy axis reflects the energyglision! Now, immediately after injection the electron

gain or loss of the particle. In the semiclassical transportrayels ballistically, and its distribution iE-x space, as the
picture, it is made up of two decoupled contributions, onefirst scattering event initiates the drift motion, is

from the field and one from the phonon bath. As shown

earlier? energy exchange with the phonon bath gives rise to

a drift term (embodying the average exchangé&/,(E)n n(E=qFx,x)=g0(qF)\)‘1 exp(—Xx/\), )]

<0, the diffusion term(embodying the fluctuations about the

average being of order fw)? and thus negligible in the . )

high-energy limit"S Energy exchange with the field is just Where for defln_lte_ness an engrgy-lndependenft mean free path
related to the real-space motidp, and contributesF(x)J, \ is taken. Ballistic motion will be embedded in the Fokker-

to Jg, wheregF(x) is the force exerted on the particle. Planck fra_mework as the initial cor_ld?tion: sinée=0 at x
Then, =0, and¢ is conserved along a ballistic path, let

Je=Wen(BE)n+qF(x)Jy. “) n(E,£=0)=ng(qF\) L exp( —E/qF)) @)

Substituting Eq(2a) for Jg and Eq.(2b) for J, in Eq. (4), an

identity is obtained if and only if be the initial condition.(This is in keeping with Ridley’s

combination of the ballistic and drift transport mode’.
Specializing now Eq(7) to the case of nearly-free elec-

W=th(E)+qF(X)2,u(E)+Dxx(E) a(qF), (59 trons of effective massm*, isotropical[y exchanging _
IX constant-energy phonons at a rate proportional to the density
of conduction-band states yields a mean free path
Dex=aF(X)Dxx(E), (5b)  constant for E>%w, and the functions u(E)=2q\/

3m*vy(E), Du(E)=Avg(E)/3, and Wy(E)=—[2n(w)
Dee=qF(X)Dye(E,X)=[qF(x)]°Dy(E), (50 +1lhwvg(E)/N are already knowtr [vg(E) denotes
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FIG. 2. Fokker-Planckpoints and Monte Carlo(solid line)
average electron energi€s,(x) against distance covered, in a
uniform electric fieldF=10° V/cm, with E,(0)=0 as the initial
condition. The straight solid line shows the ballistic Idy/(x)
=gFx, and the horizontal dashed line shows the asympgic. .
Same parameters as in Fig. 1.

FIG. 1. Monte Carldpointg and Fokker-PlancKines) electron
energy distributionn(E,x), with distancex covered, or voltage
dropFx, as a parameter. Electric fiell=10° V/cm. (Parameters
from Ref. 10: m*/my=0.22, \=282 A, Zw=29 meV, T
=300 K.)

(2E/m*)¥2 andn(w) is the Bose-Einstein numblefTaking

9(E, &)= VEn(E,x) as the unknown function, Eq7) reads Pler approach to nonlocal transport than present-day Monte

Carlo codes. Note that nowhere does our approach rely on a
ag 9 [( E, a9 specific band model, although the Monte Carlo simulation
o0& OE|\ E

g_EW(Q_E

E ' () supporting the Fokker-Planck prediction has been performed
) in a parabolic band. The general criterion for the validity of
where E,,=[2n(w)+1](qF\)*/3%iw. The solutiong(E.£)  the Fokker-Planck approach is the same in the local and non-
has been obtained by means of a Crank-Nicholson finiteg,c| cases, namely, the inelastictiy should be small and
difference scheme, and the distributio(E,x) is plotted in ¢ gjectrons are drifting. Therefore the same degree of ac-
Fig. 1 for several values of. Asymptotically, itis found 0 ¢, -5cy that has been observed in the local tasexpected
become independent &f viz. in the nonlocal one. A detailed, kinetic-theoretical proof of
_ 12 . the equivalence of the Boltzmann and Fokker-Planck trans-
N(E, + o) =no{2hw/[2n(w) + 1]aFA} VE exp( E/E"E)g') port equations in arbitrary bands and three-dimensional
space is planned for future publication.
As could be expected from E@7) and Ref. 4, Eq(9) is just A final remark is in order. Our nonlocal transport equation
the local distribution in a field= and yields an asymptotic is arrived at from a nonequilibrium statistical-mechanical
average energy,,.=3E,/2. It is found to hold forx  standpoint, with no appeal to kinetic theory. It is interesting
>Eay./qF, which therefore has the meaning of an energyto note that special instances of the equation have previously
relaxation length\ . _ _ _ been obtained by means @éngthy kinetic-theoretical cal-
Next, a Monte Carlo simulation has been ca.rrlled out_ tOzylations. We shall give two exampleg) In the case of an
study the transport of an ensemble of electrons injected in @jactron submitted to a high field in a weakly ionized gas,

uniform field F atx=0 with zero energy. Typically 25000 ;04 assuming steady-state and unifod Druyvesteyi?
histories have been analyzed using an energy ni&380 has found thah(E,x) obeys an equation which is identical

=59 meV and a position medh,/60qF=30 A, and the . .
energy distribution is shown in Fig. 1. The same parameterts0 our Eq.(2a equated to zero, in whicp(E) andD(E)

(from Ref. 1Q are used in obtaining the Monte Carlo and are those used in Eq7’), andW,,(E) stands for the rate of

Fokker-Planck data, which are seen to agree very well wittg 9y loss to the gas atont) In the case of a fast neutron

. . owed down in a medium consisting of heavy atoms, the
each other, with no adjustable parameter. From the data 0 ; e
. . . evolution ofn(E,x,t) toward the thermal distribution should
Fig. 1 the average enerdy,(x) at locationx is computed

and shown in Fig. 2. Again the agreement between thfe governed by a Fokker-Planck equation whsgeduces

Fokker-Planck and Monte Carlo predictions is excellent, no 0 the loss term am_]x |s_purely diffusive, since|=0. _In Ref.
. : . s 3, thesameequation is derived from an expansion of the
only in the drift region &>\), but also where ballistic elec-

trons bring an important contribution ta This is attributed _Boltzmann transport equation, |n_wh|ch thg Sm"’!” parameter
LS " , ) . is the energy lost by the neutron in a collision, similarite
to our initial condition(8’) and is analogous to the interpo- . . . )
: . e e ; in a solid. Therefore our formalism encompasses a variety of
lation of the Sharvin(ballistic) and Drude(diffusive) resis- X A ; : .
. ; physical situations while bypassing heavy calculations.
tances in a metal wirk- Thus, for nonlocal as well as local

transport, the Fokker-Planck equatidrere, a partial differ- It is a pleasure to thank Catherine Oppenheim for infor-

ential equation in two variableg, andx) is equivalent to the mation on Charpak’s wire chambers, Bernadette Thomas for
Boltzmann partial differentio-integral equation in four vari- a discussion about partial differential equations, and A.

ables,p,, py, P;, andx. This allows a considerably sim- Bourdon for a critical reading of the manuscript.
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