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Inertial mass of the large polaron

A. E. Myasnikova and E. N. Myasnikov
Rostov State Pedagogical University, 344058 Rostov-on-Don, Russia

~Received 21 January 1997!

It is demonstrated that studies on the effective mass of the large polaron, including the pioneering work of
Landau and Pecar, contain a mistake of principle: namely, they ignore the spatial dispersion of the lattice
polarizability. As a result, the maximum phonon group velocity is zero so that polarization cannot follow the
polaron motion. Here we are deriving expressions for the inertial effective mass and for the mass coefficient
characterizing the velocity dependence of the polaron energy by taking into account the spatial dispersion of
the lattice polarizability. The polaron mass turns out to depend on the polaron velocity and on the minimum
phase velocity of phonons and can be more than twice as small or large in comparison with conventional
polaron theory predictions.@S0163-1829~97!05733-0#
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I. INTRODUCTION

For more than half a century, theorists and experimen
ists have studied large radius polarons as a first exampl
spontaneous symmetry breaking in a spatially homogene
system. However, several important problems remain in
physics of polarons. Data on the autolocalized charges
namics often differed essentially from the predictions
theory.1 In our previous work2 it was shown that neglecting
the spatial dispersion of the lattice polarizability was t
principal mistake of the polaron theory from the time
Landau and Pecar.3,4 If we take the spatial dispersion int
account the polaron velocity turns out to be limited by t
relatively small value of the maximum group velocity
phonons. This changes radically our notion about the pola
motion in crystals in comparison with conventional polar
theory.

Now we can say that all work on the calculation of t
polaron effective mass which does not take into account
spatial dispersion of the lattice polarizability, beginning w
the pioneering work of Landau and Pecar,3 contains a mis-
take of principle. The nature of this mistake is purely phy
cal. Indeed, neglecting the spatial dispersion means
group velocity of phonons participating in the carrier auto
calization is equal to zero. But in such a case the polariza
‘‘cloud’’ cannot move so that consideration of the movin
polaron without taking into account the spatial dispers
makes the theory contradictory. The mathematics applie
the calculations of the polaron effective mass masked
mistake because an impermissible expansion of the func
c(v)5const/(v22V2) having a pole in a power series o
v2/V2 was used.3 If this expansion is not used the calcul
tion shows that the polarization field following the movin
charge is delocalized.5,6,2

Taking into account the spatial dispersion of the latt
polarizability shows that the polarization field related to t
charge carrier is localized only at velocitiesv lower than the
minimum phase velocityu of relevant optical phonons.2,5

Thus, the polaron does not exist outside this sufficiently n
row interval of velocities (v,u), and only in this interval
the polaron effective mass has a sense~whereas atv.u the
effective mass of the charge carrier in the medium un
560163-1829/97/56~9!/5316~5!/$10.00
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consideration is equal to the effective mass of the delocali
carrier!. An attempt to calculate the polaron effective mass
the model of nonzero dispersion of phonons was made
Davydov and Enolskii,6 but they obtained the result only fo
the case of slight phonon dispersion and low polaron velo
(u,v!253104 cm s21). Below, taking into account the spa
tial dispersion of lattice polarizability rigorously, an expre
sion for the polaron effective mass correct for any values
u andv (v,u) will be obtained. Moreover, as will be seen
not only the energetic mass coefficient characterizing
change of the polaron energy with its velocity can be o
tained as was done earlier, but also the expression for
inertial mass of the large polaron can be derived.

II. INERTIAL MASS OF THE POLARON

The inertial mass of the polaron can be obtained as
time derivation of the polaron momentumP @in supposition
that v5v(t)# divided bydv/dt:

min
** 5

dP
dt S dv

dt D
21

. ~1!

The operator of the full momentum of the polaron has
form7

P̂5 p̂1E dk\kbk
1bk , ~2!

wherep̂ is an operator of the carrier momentum. The moti
of the polaron as a whole is naturally characterized by
average momentum of the carrier since it ignores intra
laron motion of the carrier. If the effective mass of the carr
in the periodic potentialm* does not differ significantly
from the electron massme , the carrier average momentum
can be written asp̄5m* v. ~If the difference betweenm*
andme is essential, the velocity dependence ofm* must be
taken into account.! Thus, to find the polaron momentum w
must obtain the average momentum of phonons participa
in the polaron formation. The sum of two these average m
mentums gives us a certain value of the full momentum
the polaronP.
5316 © 1997 The American Physical Society
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56 5317INERTIAL MASS OF THE LARGE POLARON
The Hamilton function of the polarization field taking int
account the spatial dispersion of the lattice polarizability h
the form6

H5
2p

cV2 E FV2P21S ]P

]t D
2

2u2P¹ r
2PGd3r , ~3!

whereP is the polarization vector,V is a frequency of the
logitudinal optic phonons in the center of the Brilloin zonec
is inverse effective dielectric permittivity:c51/«`21/«0 ,
andu is an asymptotic value of the minimum phase veloc
of phonons and the maximum group velocity of ones. It
obvious that the character of spatial dispersion of the m
dium suspectibility in Eq.~3! is equivalent to the following
phonon-dispersion law:V2(k)5V21u2k2. By expansion of
the polarization vector in Fourier series, Eq.~3! can be trans-
formed to the following:

H5
2p

cV2 E @V2~k!PkP2k1ṖkṖ2k#
d3k

~2p!3 , ~4!

wherePk is the Fourier component of the polarization vect
Let us introduce the variableTk5bṖk ~generalized
momentum7!, with b54p/(cV2); then Eq. ~3! takes the
form

H5E Fb2 V2~k!PkP2k1
1

2b
TkT2kG d3k

~2p!3 . ~5!

To carry out the transition to a quantum Hamiltonian t
generalized coordinate and momentumPk ,Tk are substituted
with the corresponding operatorsP̂k ,T̂k . Keeping in mind
the form of the Hamiltonian in the filling number
representation–H5*d3k@\V(k)bk

1bk11/2# –the operators
P̂k ,T̂k can be easily related with the operators for the c
ation and annihilation of the longitudinal optical phono
with the wave vectork:

bk
15

V~k!b

2\~2p!3 P̂k2 i
1

2\~2p!3V~k!b
T̂k ,

bk5
V~k!b

2\~2p!3 P̂2k1 i
1

2\~2p!3V~k!b
T̂2k . ~6!

Now, using Eqs.~6! the operator of the momentum o
phononsp̂ph5*\kbk

1bkd
3k can be expressed as follows:
s

s
e-

.

-

p̂ph5E \kFV~k!b

2\
P̂kP̂2k1

1

2\V~k!b
T̂kT̂2k1

i

2\
P̂kT̂2k

2
i

2\
P̂2kT̂kG d3k

~2p!3 . ~7!

After an inverse substitution of the generalized coordin
and momentumPk ,Tk , instead of the operatorsP̂k ,T̂k in Eq.
~7!, we obtain the average momentum of phonons of
polaron polarization ‘‘cloud’’p̄ph. Let us choose a coordi
nate system with thez axis along the polaron velocityv.
Then the generalized momentum has the formTk
5 ikzvbPk . Taking into account thatP2k52Pk the average
phonon momentum takes the form

p̄ph5E d3k

~2p!3

kbV~k!

2
Pk

2F2122
kzv

V~k!
2S kzv

V~k! D
2G .

~8!

It must be noted that only thez projection of p̄ph ( p̄ph z)
differs from zero. Besides, only integration of the term w
even powers ofkz gives a nonzero contribution top̄ph z :

p̄ph z52bvE d3k

~2p!3 kz
2Pk

2. ~9!

To obtain the Fourier component of the polarization ve
tor Pk we used the ordinary relation between the polarizat
vector P(r ,t) and the polarization charger(r ,t). The last
can be expressed through the square of the carrier wave f
tion in the polaronc(r ,t) using a Green function2 G(r ,t):

r~r ,t !5ecV2E G~r2r 8,t !c2~r 8!d3r 8,

so that the polarization vector will take the form

P~r ,t !5
ecV2

4p
¹ rE G~r12r2 ,t !c2~r2 ,t !d3r1d3r2

ur2r1u
.

~10!

The form of the Green functionG(r ,t) has been obtained in
Ref. 5:
Gi~r ,t !
i 51,2

55
exp~2V i@~z2vt !2/b1i

2 1r 2#1/2/ui !

4pui
2b1i@~z2vt !2/b1i

2 1r 2#1/2 , v,ui , b1i
2 512v2/ui

2

cos~V i@~z2vt !2/b2i
2 2r 2#1/2/ui !

2pui
2b2i@~z2vt !2/b2i

2 2r 2#1/2 , v.ui , H z2vt,0,
r ,uz2vtu/b2i

0, v.ui , H z2vt,0,
r .uz2vtu/b2i

, z2vt.0, b2i
2 5v2/ui

221.
6 . ~11!
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5318 56A. E. MYASNIKOVA AND E. N. MYASNIKOV
As it is seen from Eq.~11!, at the velocityv5u there is a
radical reconstruction of the Green function that results, a
was demonstrated in our previous work2 in the fact that the
localized state cannot exist atv.u. The expression for the
Green function Eq.~11! was also obtained in Ref. 6. Unfor
tunately, the authors of Ref. 6 have not used the rigor
expression forG(r ,t) in their calculation of the polaron ef
fective mass~they used for this purpose the simplifie
Pecar’s-like expression that completely distorted the exp
sion for the polaron effective mass,6 in comparison with
what we shall obtain below.!

Due to the specific form of Eq.~10! the Fourier compo-
nent of the polarization vectorPk is the composition of the
Fourier components of functions¹ r(1/ur u), G(r ,t), and
c2(r ,t):

Pk5
ecV2

4p

4p ik

k21kz
2

1

kz
2~v22u2!2k2u22V2 ck

2, ~12!

where c2
k is the Fourier component for the square of t

polaron wave function.
Now, using Eq.~12! in Eq. ~9! we obtain the expressio

for the average momentum of phonons forming the pola
polarization cloud:

p̄ph z5
4pbve2c2V4

~2p!3 E
0

` kdkkz
2dkz

k21kz
2

3
~ck

2!2

~kz
2~v22u2!2k2u22V2!2 . ~13!

At last, the inertial mass of the polaronmin
** determined in

accordance with Eq.~1! has the form

min
** 5m* 1

2e2cV2

pu4 E
0

` kdkkz
2dkz

k21kz
2

3
kz

2@113~v2/u2!#1k21V2/u2

~kz
2~12v2/u2!1k21V2/u2!3 ~ck

2!2. ~14!

At polaron velocitiesv low in comparison with the minimum
phase velocity of phononsu (v!u), the polaron inertial
mass can be approximated by the following expression:

min,v!u
** 5m* 1

2e2cV2

pu4 E
0

` kdkkz
2dkz

k21kz
2

3
kz

2@116~v2/u2!#1k21V2/u2

~kz
21k21V2/u2!3 ~ck

2!2. ~15!

III. VELOCITY DEPENDENCE
OF THE POLARON ENERGY

All the previous works on the polaron effective ma
studied not inertial polaron mass but rather the mass co
cient characterizing the change of the polaron energy w
the change of its velocity. Let us obtain an expression
this mass coefficient~which we shall also call an energet
mass of the polaron!.

The Hamilton function for the system of a charge carr
and polarizable medium has the form6
it

s

s-

n

fi-
h
r

r

H01Hpol1H int5E d3r H ¹ rc
21

2p

cV2 FV2P21S ]P

]t D
2

2u2P¹ r
2PG2PDJ , ~16!

D52e¹ rE c2~r ,t !
d3r 8

ur2r 8u
,

wherec(r ,t) is the carrier wave function. Let us consider
change of energy of the polarization and of the interact
between carrier and polarizationHpol1H int with the velocity.
By taking into account the equation of motion forP, this part
of the Hamilton function~16! has the form

Hpol1H int52
1

2 E PDd3r1
2p

cV2 E d3r F S ]P

]t D
2

2P
]2P

]t2 G .
~17!

The polarization vector in Eq.~17! is expressed in confor
mity with Eq. ~10!. Due to the specific type of integral in Eq
~10! the expression forHpol1H int will simplify after the tran-
sition to Fourier components. If we choose the coordin
system with thez axis along the polaron velocityv, Eq. ~16!
can be overwritten in the following form:

Hpol1H int5
1

2 E PkDk

d3k

~2p!3 1
4p

cV2 E d3k

~2p!3 kz
2v2Pk

2,

~18!

where the fact thatD2k52Dk , P2k52Pk is taken into ac-
count. Using Eq.~12! and the corresponding expression f
Dk we transform Eq.~18! to the following expression:

Hpol1H int52
e2cV2

pu2 E
0

` kdkdkz
k21kz

2

3
kz

2@123~v2/u2!#1k21V2/u2

~kz
2~12v2/u2!1k21V2/u2!2 ~ck

2!2.

~19!

The mass coefficient characterizing the change of the pola
energy with its velocity obtained from Eq.~19! as men

**

52@E(v)2E(0)#/v2 whereE is the polaron energy has th
form:

men
** 5

2e2cV2

pu2v2 E
0

` kdkdkz
k21k2

z
~ck

2!2H 1

kz
21k21V2/u2

2
kz

2@123~v2/u2!#1k21V2/u2

~kz
2~12v2/u2!1k21V2/u2!2 J . ~20!

The expression formen
** at polaron velocities, low in com-

parison with the minimum phase velocity of phononsu (v
!u), is easily obtained from Eq.~19!:

men,v!u
** 5

2e2cV2

pu4 E
0

` kdkkz
2dkz

k21kz
2

~ck
2!2

~kz
21k21V2/u2!2 .

~21!
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56 5319INERTIAL MASS OF THE LARGE POLARON
IV. DISCUSSION

As it is seen from Eqs.~14! and~20! the effective mass o
the large polaron~as inertial as ‘‘energetic’’! depends not
only on the phonon frequencyV, inverse effective dielectric
permittivity c, and the ratiom* /me as it was usually
considered,1,3,8 but also on the dispersion of phonons parti
pating in the carrier localization~more exactly, on the mini-
mum phase velocityu of phonons! and on the polaron ve
locity v. Moreover, the energy of the polaron at rest a
depends on the minimum phase velocity of phonons@as it is
seen from Eq.~19!#, which is natural since the characterist
size of the polarization charge distribution generated by
moving point charge@G(r ,t), Eq. ~11!# is proportional to
u/V.

Figures 1 and 2 demonstrate the inertial mass and
‘‘energetic’’ mass of the polaron accordingly calculated
conformity with Eqs.~14! and ~20! as functions of the po-
laron velocityv for different values of the minimum phas
velocity of phononsu. Curve 1 in Fig. 1 and curve 1 in Fig
2 show min

** (v) and men
** (v) accordingly for the minimum

phase velocity of phononsu523106 cm s21; curve 2 in
Fig. 1 and in Fig. 2 givesmin

** (v) andmen
** (v), respectively,

for u5106 cm s21; and at last, curve 3 in Fig. 1 and in Fig
2 demonstratemin

** (v) and men
** (v), respectively, foru55

3105 cm s21. The medium parameters were taken as f
lows: V5360 cm21, c50.27, m* /me51. Pecar’s wave
function4 c(r ,t)5a3/2(7p)21/2(11ar ) exp(2ar) was
used wherea is determined by the minimization of the func
tional of the polaron energy. At considered values ofu
(u,23106 cm s21), the value of parametera correspond-

FIG. 1. The inertial effective mass of the polaron as a funct
of its velocity for different values of the minimum phase velocity
phonons: curves 1, 2, and 3 correspond tou1523106 cm s21, u2

5106 cm s21, andu3553105 cm s21 accordingly. Other medium
parameters are taken as followsV5360 cm21, c50.27, m*/ me

51.
e

e

-

ing to the minimum of the functional of the polaron energ
taking into account the polarizability spatial dispersion, do
not differ considerably from the one (a50.97c) obtained by
Pecar4 in the model with zero group velocity of phonon
This is, obviously, owing to the fact that at such values ou
the increase of the polaron radius caused by the spatial
persion of polarizability is not essential. The Fourier comp
nentck

2 of the square of Pecar’s wave function has the fo

ck
25

16a4

7p

1

~4a21k21kz
2!2

3S 11
96a424a2~k21kz

2!2~k21kz
2!2

~4a21k21kz
2!

D . ~22!

It can be seen from Eqs.~15! and ~21! that for any fixed
value ofu the limits atv50 of the inertial mass and ‘‘ener
getic’’ mass of the polaron coincide. This can also be se
from Figs. 1 and 2. By increasing the polaron velocity bo
its inertial mass and ‘‘energetic’’ mass rise owing to t
deformation of the polarization charge distribution. Indee
as seen from Eq.~11! the higher the minimum phase velocit
of phononsu the greater the degree of spreading the po
ization charge distribution in the polaron. At the polaron v
locity v50 this distribution has spherical symmetry but wi
an increase of the velocityv, it experiences increasing con
traction in the direction of the motion~resembling the rela-
tivistic contraction!. This contraction results in increasing th
polarization field energy and, consequently, in increasing
polaron effective mass. The inertial mass rises withv/u
more rapidly in comparison with the energetic mass. T
situation resembles the behavior of two masses of a rela
istic particle ~although, of course, the increase in polar
masses withv/u is much smaller than for relativistic particl
masses!.

n

FIG. 2. The energetic mass coefficient characterizing the ve
ity dependence of the polaron energy as a function of the pola
velocity for different values of the minimum phase velocity
phonons: curves 1, 2, and 3 correspond tou1523106 cm s21, u2

5106 cm s21, andu3553105 cm s21 accordingly. Other medium
parameters are taken as followsV5360 cm21, c50.27, m*/ me

51.
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5320 56A. E. MYASNIKOVA AND E. N. MYASNIKOV
Figures 1 and 2 demonstrate that the greater phonon
persion corresponds to the smaller low-velocity limit of t
polaron mass. This effect results naturally from the spread
the polarization charge distribution with an increase in p
non dispersion~or u value! demonstrated by Eq.~11!. As a
result the energy of the polarization field and, consequen
the polaron effective mass decrease with increasingu. The
limit at u⇒0 of the both polaron masses corresponding
the casev!u @the limit at u⇒0 of Eqs.~15! and ~21!# has
the form

lim m**

u⇒0,v!u
5

2e2c

pV2 E kdkkz
2dkz

k21kz
2 ~ck

2!2. ~23!

It is easy to show that this limit coincides~as in any physics
problem! with the limit v⇒0, u50 which was considered b
er
is-

g
-

y,

o

Landau and Pecar3,4 ~although, as we discussed in the intr
duction the polaron states with the velocitiesv.u50 cannot
exist.!

The point on the axisv50 in Figs. 1, 2 with the notation
mPec

** shows the value of the polaron mass predicted by L
dau and Pecar’s formula3,4 for the considered medium pa
rameters. As seen from the figures, due to the strong de
dence of the polaron mass on the minimum phase velocit
phonons it can be twice as small or more in comparison w
one predicted by the conventional polaron theory (mPec

** ). On
the other hand, due to the polaron mass dependence o
velocity, the inertial mass of the polaron can be twice
large or more than the mass predicted by the polaron the
This new notion~and the fact that polarons exist only in th
interval of their velocitiesv,u! must change strongly the
predictions of the polaron theory for experimentally obse
able values and effects, as well as notions about the valu
the bipolaron effective mass that may be important for
bipolaron theory in high-temperature superconductivity.
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