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Inertial mass of the large polaron
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It is demonstrated that studies on the effective mass of the large polaron, including the pioneering work of
Landau and Pecar, contain a mistake of principle: namely, they ignore the spatial dispersion of the lattice
polarizability. As a result, the maximum phonon group velocity is zero so that polarization cannot follow the
polaron motion. Here we are deriving expressions for the inertial effective mass and for the mass coefficient
characterizing the velocity dependence of the polaron energy by taking into account the spatial dispersion of
the lattice polarizability. The polaron mass turns out to depend on the polaron velocity and on the minimum
phase velocity of phonons and can be more than twice as small or large in comparison with conventional
polaron theory prediction$S0163-1827)05733-0

[. INTRODUCTION consideration is equal to the effective mass of the delocalized
carrien. An attempt to calculate the polaron effective mass in

For more than half a century, theorists and experlmentalfhe model of nonzero dispersion of phonons was made by

ists have studied large radius. polgrons as a first example %avydov and Enolskif, but they obtained the result only for
spontaneous symmetry breaking in a spatially homogeneoyge case of slight phonon dispersion and low polaron velocity
system. However, several important problems remain in th‘?u,v<25>< 10* cm s1). Below, taking into account the spa-
physics of polarons. Data on the autolocalized charges dyia| dispersion of lattice polarizability rigorously, an expres-
namics often differed essentially from the predictions ofgjon for the polaron effective mass correct for any values of
theory! In our previous workit was shown that neglecting y andy (v<u) will be obtained. Moreover, as will be seen,
the spatial dispersion of the lattice polarizability was thenot only the energetic mass coefficient characterizing the
principal mistake of the polaron theory from the time of change of the polaron energy with its velocity can be ob-
Landau and Pecdr If we take the spatial dispersion into tained as was done earlier, but also the expression for the
account the polaron velocity turns out to be limited by theinertial mass of the large polaron can be derived.

relatively small value of the maximum group velocity of

phonons. This changes radically our notion about the polaron Il. INERTIAL MASS OF THE POLARON
motion in crystals in comparison with conventional polaron
theory. The inertial mass of the polaron can be obtained as the

Now we can say that all work on the calculation of the time derivation of the polaron momentuf[in supposition
polaron effective mass which does not take into account théhatv =v(t)] divided bydv/dt:
spatial dispersion of the lattice polarizability, beginning with
the pioneering work of Landau and Pedarontains a mis- w dP [dv -t
take of principle. The nature of this mistake is purely physi- Min “dt lat
cal. Indeed, neglecting the spatial dispersion means that
group velocity of phonons patrticipating in the carrier autolo-The operator of the full momentum of the polaron has the
calization is equal to zero. But in such a case the polarizatioform’

“cloud” cannot move so that consideration of the moving

polaron without taking into account the spatial dispersion AL N

makes the theory contradictory. The mathematics applied in P= p+f dkfikby by, )

the calculations of the polaron effective mass masked this

mistake because an impermissible expansion of the functiowherep is an operator of the carrier momentum. The motion
c(w)=const/@>—0? having a pole in a power series of of the polaron as a whole is naturally characterized by the
w?/Q? was used. If this expansion is not used the calcula- average momentum of the carrier since it ignores intrapo-
tion shows that the polarization field following the moving laron motion of the carrier. If the effective mass of the carrier
charge is delocalized®? in the periodic potentiaim* does not differ significantly

Taking into account the spatial dispersion of the latticefrom the electron mass\,, the carrier average momentum
polarizability shows that the polarization field related to thecan be written ap=m*v. (If the difference betweem*
charge carrier is localized only at velocitiedower than the andm, is essential, the velocity dependencenof must be
minimum phase velocity of relevant optical phonorfs>  taken into account.Thus, to find the polaron momentum we
Thus, the polaron does not exist outside this sufficiently narmust obtain the average momentum of phonons participating
row interval of velocities {<<u), and only in this interval in the polaron formation. The sum of two these average mo-
the polaron effective mass has a sefwhereas ab>u the = mentums gives us a certain value of the full momentum of
effective mass of the charge carrier in the medium undethe polaronp.

@
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The Hamilton function of the polarization field taking into QKB ~ - 1 i~ -
account the spatial dispersion of the lattice polarizability haspph—f ﬁk{ 57, PxP-k 250K B T Tkt 57 57 PT—«
the fornf
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H= O2P%+

oP\? 5

c0? E) —u2PVrP}d3r, ) After an inverse substitution of the generalized coordinate
and momentun®, , T, instead of the operatof?,, T, in EqQ.

(7), we obtain the average momentum of phonons of the
polaron polarization “cloud”p_ph. Let us choose a coordi-
nate system with the axis along the polaron velocity.
Then the generalized momentum has the foriy
=ik, v BPy. Taking into account th&®_,= — P, the average

phonon momentum takes the form

whereP is the polarization vectol() is a frequency of the
logitudinal optic phonons in the center of the Brilloin zone,

is inverse effective dielectric permittivityc=1/e,,— 1/eq,
andu is an asymptotic value of the minimum phase velocity
of phonons and the maximum group velocity of ones. It is
obvious that the character of spatial dispersion of the me-
dium suspectibility in Eq(3) is equivalent to the following
phonon-dispersion law2?(k) = Q%+ u?k?. By expansion of
the polarization vector in Fourier series, E8) can be trans- d*%k kBQ(K) [ K, ( K, )2

2

formed to the following: Poh= a2 P _2
™

k) |\ Qk)

(8)
2 o d3k - S
H= —— J [Q2(K)PP_+PP_y] =—3, (4) It must be noted that only the projection of py, (Pphn2)
cQ (2m) differs from zero. Besides, only integration of the term with
whereP is the Fourier component of the polarization vector. €N POWErS ok, gives a nonzero contribution o, :

Let us introduce the variableT,=pBP, (generalized
momentunf), with B=4m/(cQ?); then Eq.(3) takes the

¢ _ d3k _—
orm Pph 2= —ﬂvf 23 kP €)
,6’ o2 1 d3k To obtain the Fourier component of the polarization vec-
H= j Q(k)PP- 2,8 T Tk @3 (5 tor P, we used the ordinary relation between the polarization

vector P(r,t) and the polarization charge(r,t). The last
To carry out the transition to a quantum Hamiltonian thecan be expressed through the square of the carrier wave func-
generalized coordinate and momentBm T are substituted tion in the polarony(r,t) using a Green functionG(r,t):
with the corresponding operatoR;, T, . Keeping in mind
the form of the Hamiltonian in the filling numbers
[eprgsentationH:fd3k[hQ(k)b;bk+ 1/2]-the operators
Py, T can be easily related with the operators for the cre-
ation and annihilation of the longitudinal optical phonons

p(l’,t)=eCQZf G(r—r',t)y?(r")d%

with the wave vectok: so that the polarization vector will take the form
L QB - 1 -
b =2hzm® D 2hzmiams T 2 2 3.3
(2m) (2m)°Q(k)B 5 _ec) Vf G(ry—r,,t) (1, 1)d3rd%r,
0= Vr [r—r,] '
e 0B 5 ! T (6) (10
K 2n(2m)3 KT 2kn(2m)3Qk)B K

Now, using Egs.(6) the operator of the momentum of The form of the Green functio®(r,t) has been obtained in
phononsp,,= f7i kb, b,d*k can be expressed as follows:  Ref. 5:

[ exp-Qulz—o0? By + 21 P 2
4mu? Byl (2= v B+ 172 A !
Q. _ t2/ 2 _ .2 1/2/ . _
Gi(r.t)= cog 2.[(z vt) ,822| 2Ir 1 i f/lz)1 o>, z—vt<0, 11
i=12 27U Boi[(z—vt)*/ B5i— 1] r<|z—uvt|/By;
z—vt<O,

0, v>u, . z—ut>0, B2=v?/u’>-1.
\ I I’>|Z—vt|/[5’2i BZI ! )
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As it is seen from Eq(11), at the velocityv =u there is a 2 IP\ 2
radical reconstruction of the Green function that results, as it Ho+Hpot Hint:f d3r[Vr¢2+ 02 [92P2+ E)
was demonstrated in our previous woik the fact that the
localized state cannot exist at-u. The expression for the b2
Green function Eq(11) was also obtained in Ref. 6. Unfor- —Uu“PV{P|—PD¢, (16)
tunately, the authors of Ref. 6 have not used the rigorous
expression foiG(r,t) in their calculation of the polaron ef- d3r
fective mass(they used for this purpose the simplified D= _eVrJ YAt ——,
Pecar’'s-like expression that completely distorted the expres- Ir=r’|
sion for the polaron effective maSsin comparison with
what we shall obtain below.

Due to the specific form of Eq10) the Fourier compo-
nent of the polarization vectd?, is the composition of the
Fourier components of function¥ (1/r|), G(r,t), and

wherey(r,t) is the carrier wave function. Let us consider a
change of energy of the polarization and of the interaction
between carrier and polarizatibty,q+ Hj,, with the velocity.
By taking into account the equation of motion feythis part

A1 1) of the Hamilton function(16) has the form
2 2
ecQ? 4mik 1 _ 1] 3., 2T f 3 (‘QP J°P
+Hp=—= +— —| -P—|.
P K242 K2(v2—u?) — K2u2— 02 v (12 HeotHm=—7 | PDAT+oaz [ A 5] —P afl?)

where ¢, is the Fourier component for the square of the o . . .
polaron wave function. The polarization vector in Eq17) is expressed in confor-

Now, using Eq.(12) in Eqg. (9) we obtain the expression mity with Eqg. (10.)' Due to the Spepiﬁ(.: type of integral in Eq.
for the average momentum of phonons forming the polarori10) the expression fa ,,+ Hiy will simplify after the tran-

polarization cloud: sition to Fourier components. If we choose the coordinate
' system with thez axis along the polaron velocity, Eq. (16)
_ 4mBuerc®Q? [ kdkidk, can be overwritten in the following form:
Pphz= 3 f 2.2
(2m) o kTHk; Ho ot H —1JPD d3k +47T d3k K2p2P2
(wE)Z pol int_i k k(2’7T)3 CQZ (277)3 2U y
X . 1
(07— 1) — K- 02)? 13 (18

where the fact thab_,=—D,, P_,=— Py is taken into ac-
count. Using Eq(12) and the corresponding expression for
Dy we transform Eq(18) to the following expression:

At last, the inertial mass of the polaran,, determined in
accordance with Eq1) has the form

F kdkidk,

o 2e%c0?
2 2
o kot+k; HpoI+Hint: -

)

mu

e’c0? f»o kdkdk
wu? k2+ k§

K1+ 3(v%/u?) ]+ K>+ Q?%/u? -
X(kf(l—UZ/u2)+k2+Qz/uz)3 ()”.

(14) kZ[1-3(v%/u?)]+k>+Q?%u?
(KZ(1-v?/u?) + K2+ Q2/u?)?

()%,
At polaron velocities) low in comparison with the minimum (19
phase velocity of phonons (v<u), the polaron inertial

mass can be approximated by the following expression:  The mass coefficient characterizing the change of the polaron
energy with its velocity obtained from Eq19) as mg,

2,02 o
m> =m'+ 2e7c() f kdklédkz =2[E(v)—E(0)]/v? whereE is the polaron energy has the
in,u<u 4 2 2 .
U o kot+k; form:
2 27,2 2 27,2
kz[1+6§U /l2.l )]";k 2+SQ /u ((pi)z (15 H_ZGZCQZ fx kdkdk, -
(ks +k“+Q4/u?) Men=""2,2 o KK, (4) K2+ K2+ Q202
lll. VELOCITY DEPENDENCE K130/’ ]+ K2+ Q% 20
OF THE POLARON ENERGY (k2(1—v?/u?) +k2+ Q%u?)? |

All the previous works on the polaron effective mass ¢
s_tudled not me(tlgl polaron mass but rather the mass coe_ff-arison with the minimum phase velocity of phonango
cient characterizing the change of the polaron energy wit : : : )

. . . ? <u), is easily obtained from Eq19):
the change of its velocity. Let us obtain an expression for
this mass coefficientwhich we shall also call an energetic 5 o 2.2
mass of the polardn m _2e7cq J kdkKdk, (i) _

The Hamilton function for the system of a charge carrier s ut Joo K2k (Ki+HKP+ Q2 u?)?
and polarizable medium has the fdfrm (21)

he expression fom,, at polaron velocities, low in com-
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FIG. 2. The energetic mass coefficient characterizing the veloc-
ity dependence of the polaron energy as a function of the polaron
velocity for different values of the minimum phase velocity of
phonons: curves 1, 2, and 3 correspondije=2x10° cms%, u,

. . . . v(10%cm/s) =10° cm s, anduz=5x10° cm s ! accordingly. Other medium
0.0 0.4 0.8 1.2 1.6 2.0 parameters are taken as follows= 360 cml, ¢=0.27, m*/ mg
=1.

FIG. 1. The inertial effective mass of the polaron as a function
of its velocity for different values of the minimum phase velocity of ing to the minimum of the functional of the polaron energy,
phonons: curves 1, 2, and 3 correspondije-2x10° cms™*, u,  taking into account the polarizability spatial dispersion, does
=10° cms!, andu;=5x10° cm s ! accordingly. Other medium not differ considerably from the oner 0.97c) obtained by
parameters are taken as follows=360 cmi!, ¢=0.27, m*/m.  Pecaf in the model with zero group velocity of phonons.
=1 This is, obviously, owing to the fact that at such valuesi of
the increase of the polaron radius caused by the spatial dis-
persion of polarizability is not essential. The Fourier compo-
As it is seen from Eqg14) and(20) the effective mass of nent wﬁ of the square of Pecar’s wave function has the form
the large polarorn(as inertial as “energetic)’ depends not
only on the phonon frequendy, inverse effective dielectric

IV. DISCUSSION

permittivity ¢, and the ratiom’/m, as it was usually , 16a* 1

considered;>*®but also on the dispersion of phonons partici- Y= 77 (4P +K2+K2)2

pating in the carrier localizatiofmore exactly, on the mini-

mum phase velocity of phonon$ and on the polaron ve- 96a*— 4a®(k2+ k§)—(k2+ k’zl)2

X| 1+

locity v. Moreover, the energy of the polaron at rest also (22

depends on the minimum phase velocity of phon@ssit is
seen from Eq(19)], which is natural since the characteristic |1 can be seen from Eq€15) and (21) that for any fixed
size'of the'polarization charge distribut'ion genergted by thg iue ofu the limits aty =0 of the inertial mass and “ener-
moving point chargdG(r,t), Eq. (11)] is proportional to  getic” mass of the polaron coincide. This can also be seen
U/Q; i . from Figs. 1 and 2. By increasing the polaron velocity both
Figures 1 and 2 demonstrate the inertial mass and thgs jnertial mass and “energetic” mass rise owing to the
“energetic” mass of the polaron accordingly calculated in geformation of the polarization charge distribution. Indeed,
conformity with Egs.(14) and (20) as functions of the po- a5 seen from Eq11) the higher the minimum phase velocity
Iaron_velocnyv for different va_lues_ of the m|n|mum_pha}se of phononsu the greater the degree of spreading the polar-
velocity of phononsu. Curve 1 in Fig. 1 and curve 1 in Fig. jzation charge distribution in the polaron. At the polaron ve-
2 showm, (v) and mg,(v) accordingly for the minimum  |ocity v =0 this distribution has spherical symmetry but with
phase velocity of phonone=2x10° cms™*; curve 2 in  an increase of the velocity, it experiences increasing con-
Fig. 1 and in Fig. 2 givesn, (v) andmg,(v), respectively, traction in the direction of the motiofresembling the rela-
for u=10° cm s’} and at last, curve 3 in Fig. 1 and in Fig. tivistic contraction. This contraction results in increasing the
2 demonstratemi*,: (v) and m*e*n(v), respectively, foru=5 polarization field energy and, consequently, in increasing the
x10° cm s 1. The medium parameters were taken as fol-polaron effective mass. The inertial mass rises with
lows: Q=360cm?!, ¢=0.27, m/m,=1. Pecar's wave more rapidly in comparison with the energetic mass. This
functiorf  ¢(r,t)=a®¥(77) "Y1+ ar) exp(~ar) was situation resembles the behavior of two masses of a relativ-
used wherey is determined by the minimization of the func- istic particle (although, of course, the increase in polaron
tional of the polaron energy. At considered valuesuwf masses withv/u is much smaller than for relativistic particle
(u<2x10 cms?Y), the value of parameter correspond- Mmasses

(4a®+K*+K?)



5320 A. E. MYASNIKOVA AND E. N. MYASNIKOV 56

Figures 1 and 2 demonstrate that the greater phonon digandau and Pecif (although, as we discussed in the intro-
persion corresponds to the smaller low-velocity limit of the duction the polaron states with the velocities u=0 cannot
polaron mass. This effect results naturally from the spreadingxist)
the polarization charge distribution with an increase in pho- _The point on the axis =0 in Figs. 1, 2 with the notation
non dispersior(or u value demonstrated by Eq11). As a  Mpe.Shows the value of the polaron mass predicted by Lan-
result the energy of the polarization field and, consequentlygau and Pecar’'s formuld for the considered medium pa-
the polaron effective mass decrease with increasinfhe ~ rameters. As seen from the figures, due to the strong depen-
limit at u=0 of the both polaron masses corresponding todence of the polaron mass on the minimum phase velocity of

the case <u [the limit atu=0 of Egs.(15) and(21)] has  Phonons it can be twice as small or more in comparison with
the form one predicted by the conventional polaron theans{). On

the other hand, due to the polaron mass dependence on its
velocity, the inertial mass of the polaron can be twice as

262¢ kd kk§dk large or more than the mass predicted by the polaron theory.
lim m™ = — J e (Y2 (23 This new notion(and the fact that polarons exist only in the
umop<u T k*+k; interval of their velocitiesv <u) must change strongly the

predictions of the polaron theory for experimentally observ-

able values and effects, as well as notions about the value of
It is easy to show that this limit coincidéas in any physics the bipolaron effective mass that may be important for the
problem) with the limitv=0, u=0 which was considered by bipolaron theory in high-temperature superconductivity.

1The Polaronsedited by Yu. A. FirsoNauka, Moscow, 1975 A 5, 73(1980.

2A. E. Myasnikova, Phys. Rev. B2, 10 457(1995. 8A. S. Davydov and V. Z. Enolskii, Phys. Status SolidlB3 167

L. D. Landau and S. I. Pecar, Sov. Phys. JEIEP419 (1948 (1987.

4S. 1. PecarStudies in Electronic Theory of Crystal§ostekhiz- "A. S. Davydov, Theory of the Solid StatéNauka, Moscow,
dat, Moscow, 19511 1976.

SE. N. Myasnikov and A. P. Popov, Dokl. Akad. Nauk SSSR Ser. 8R. P. Feynmann, Phys. Re®7, 660 (1955.



