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Spectral diffusion on ultralong time scales in low-temperature glasses
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A dynamical theory is constructed to describe spectral diffusion in glasses in the temperature range near 1
K on long time scales. The theory invokes interacting tunneling ceftiecslevel tunneling systemd@LS's)]
which provide an excess contribution to the spectral hole width which qualitatively accounts for the deviation
from standard logarithmic line broadening observed by Maieal. [Phys. Rev. Lett.76, 2085 (1996].
Alternative explanation schemes of the nonlogarithmic line broadening, avoiding interacting TLS's, are dis-
cussed. We devise experimental tests which could be used to access the validity of the proposed theories.
[S0163-182607)02533-2

I. INTRODUCTION where &k=E/2kgT)

At low temperatures the thermal, acoustic, and optical be- Rmax E) = aT3x cottx )
havior of glasses differs significantly from that of crystalline 5,
solids. As examples note the linear temperature dependence

of the specific heat, the pronounced absorption of sound even y2(2kg)®
below 1 K, and the anomalous broadening of spectral holes =7 & (6)
in the homogeneous line of chromophore molecules. It has 2mh"Qv

been known now for more than 20 years that phonons canngfe model describes most acoustic and optical experiments in
account for these observations; instead localized low-ener lasses satisfactorily. Herey is the deformation potential

excitations in the glass are needed. Since the introduction nergy of the TLS-phonon coupling, the mass density of
the standard tunneling modeé3TM) by Anderson, Halperin, o glass, and the sound velocity. '
and Varma and Phillips; and the experimental observation  pacent experiments report a systematic disagreement with
of saturability of ultrasound by Hunklinget al” and Gold-  yhe STM. An example is the attenuation of sound below 100
ing et al,* it is widely accepted that these low-energy exci- i« “The STM predicts &3 increase in contradiction with
tations are two-level tunneling systeniELS’s). Denoting the experimentalT®~2) |aw5® Deviations from the pre-
the left and right ground state of the double-well potential bydicted STM behavior were élso observed by Maier, Kharla-
|L} and|R), respectively, the Hamiltonian reads in a Pau"'mov, and Haarer in low-temperature holeiburning
Spin representation experiments:® They performed hole burning of a chro-
A 6 mophore embedded in_ PMMA at temperatures around 1 K
H=— 5 0% 502, (1) up to extremgly Ipng timegfrom 10 s to 10 days They
found a logarithmic time dependence with a crossover to an
whereA/# is the tunneling frequency the asymmetry en- algebraic behavior after about 3 h. Though theblehavior is
ergy, ando,=|L)(L|—|R)(R|. In the STM the interaction N agreement with the STM, the algebraic behavior is not.
between TLS's is neglected, and it is assumed that the tunChe authors could fit their data with @u hocansatz
neling parameterd and e are random variables with distri-

; 1 A
bution P(e,A)=Po| —+-—|, A=const, 7
A A
P
PY(e,A)dedA= XodedA, A=A, (2) for the TLS-parameter distribution function and the assump-

tion that relaxation occurs via the one-phonon process with
(with Py~0.6x10" 3" m~3 in PMMA, a polymer glags  the rate(4)—(6). They motivate the distribution functiof7)

The ensuing constant distribution for the TLS-energy split-0y recent publications focusing on the interaction of TLS's
ting, in glasses- % Indeed, Burin and Kagdh have shown, fol-

lowing earlier ideas of Yu and Leggéftthat pairs of inter-
E= A2+ &2, (3) qcting TLS’s do provide a means of congtituting a distrjbu—
tion like the second term in Eq7) for certain excitations in
explains in particular the linear specific heat. Including re-their energy spectrum. They called TLS’s which are distrib-
laxation of the TLS’s via the one-phonon process with rate uted according to the first term in E() primary TLS’s and
) those distributed according to the second term in(Eyg.i.e.,
R— ( é) R 4) pairs of primary TLS’ssecondary TLS:sThe nice feature of
E/ M their theory is that the distribution of secondary TLEec-
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ond term in Eq.(7)] is derivedfrom primary TLS’s which 2 t .
are distributed according to the STNirst term in Eq.(7)]. I(t)=T(tg)+ 3_h<C>P° keT Int— +AVaT3(\Vt— ) |,
In that sense, Burin and Kagan's theory stays within the 0
) > . (11
framework of the STM, and includes only excitations which
have not been considered in the traditional treatment. So fawith
these ideas have been worked out very qualitatively, and e
with emphasis on experiments in the millikelvin regime. a=9x10° K35 (12

Hence, the question arises whether they apply to the experf'r-1 PMMA. 28 To compare with the experiment, we have in-

e S evioar o e oy oy exelU0e0 I () processes Which re faster tan he hores
. . ys, . experimental timety, for which a hole broadening can be

sion of the STM—which would be as phenomenological a8 atermined. In Ref @) a fit to the experimental data pro-

the STM—has to be found in order to understand this experi- < ' ’ P P

; . . vided

ment. It is the purpose of this paper to address this issue by

presenting a detailed model that includes TLS-TLS coupling Alkg~10"7 K (13)

in the manner proposed by Burin and Kagan.

The paper is laid out as follows: in Sec. I, we analyze theat 1 and 0.5 K with an error of approximately 10%. Further-
experiment of Maieet al.”® and show the achievements and more, the experimental observation of spectral diffusion up
failures of Burin and Kagan’s approach for experiments into t,,,~ 10 s suggests
the kelvin regime; in Secs. lll and 1V, we propose a specific
model that combines interacting TLS’s with strong-coupling Amin/kg=10"% K (14
effects between TLS’s and phonons in the framework of the . .
theory of Kassner and Silbéy;in Sec. V, we compare the accorzdlng 3 o the relation tma=1/Rmin=(2kgT/
predictions of the model with the hole-burning data in Ref. 8,Am\i?) (LaT ).tl Buri d KaadA sh d that K
and also discuss alternative explanation schemes, WhiCP ery recently, Burin ar_ld agl IS owe at a wea
comprise an extension of the STM, and compare wit LS-TLS interaction provides ultralow-energy excitations.
equivalent hole-burning measurements in proteins; finally, in hey added to the Hamiltonia(1) an interaction term
Sec. VI, we discuss our results and conclude with a short 1
summary in Sec. VIl. The mathematical details are relegated HiisTis= — Z%-“ \]UU'ZJJZ, (15)

to three Appendixes in order not to obscure the basic ideas.

where the interaction energy
Il. HOLE BURNING AT ULTRALONG TIMES

AND THE BURIN-KAGAN THEORY Wii
']

|ri_rj|3

Jij= (16)

In Refs. 7 and 8 photochemical hole burning in PMMA at
1 and 0.5 K has been performed for extremely long times
tma=10P s. The authors found a tindependence with a falls off with distance|r;—r;| in a manner typical for a
crossover to an algebraic behavior after approximately 3 hdipole-dipole interaction. They assumed that the angular av-
The crossover shifts one order of magnitude in time fromerage of the coupling is zero,
10* to 1C° s, if the temperature is increased by a factor of 2.

A theoretical description of spectral diffusion in glasses (mij)=0, (17)
was provided by Hu and Walk¥rand Black and Halperif?
Reinecké® and, later, Bai and FayKrextended their results
to optical experiments. Based on this work the dependence PoUo<1, (18)
of the hole widthI'(t) on the waiting time is determined by

whereU, is set by the variance

and that the TLS-TLS coupling is weak, i.e.,

Po |1 A

—+
2J1-r| T ¥

P(E,r)=

. (8) (ufy=Us. (19)

Such an interaction could be mediated Wiytual phonon
exchangedelastic couplingor virtual photon exchangéelec-
trostatic couplingbetween the TLS's. In the former case the
energy scale of interactiof19) is easily found to be

where

r=R/Rpax, 9)
according to the equation
w? % E (1 € UOZ’]TQUZ' 20
F(t)=£<C)f dE SECHmJ drEP(E,r)
0 8lJo which, indeed, providesPoUy<1 for all glasses—in

% (1—e "Rmat). (10) PMMA:*® Uo~1 eV A® and PoUoy~10"*. Based on the
smallness oPyU, Burin and Kagan proposed that the TLS-
Here, (C) is the chromophore-TLS coupling strength. The TLS coupling in glasses is dominated at low temperatures by
distribution P(E,r) directly follows from Eq.(7) by using anup-down transition(cf. Fig. 1). Such an interaction con-
Egs.(3)—(5) and(9). With this, we find tains coherencebecause the up transition of one TLS inevi-
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FIG. 1. Coherent up-down coupling between two TLS’s. b o o m DD __ 1

tably has to be followed by a down transition of the coupled
TLS's. After rotating to the eigenbasj§;) and|1;) of Eq. 0;,0;) —— —HE/+Ej
Db
d . A A FIG. 2. Energy levels and eigenstates of the Hamiltonian
o= (€1E)S,— (A /E)S,, (21 Hojj=—(1/2)(E;S,+E;S) (E;>E,). Framed are the up-down
states which build a basis for the secondary TLS.
I __ | |
o= (MBS H(&/B)S 2 where®(x), the unit step function, is included to emphasize
where S,=]0;)(0;| —|1;){1;|, such an interaction is gener- that the distribution has a cutoff at small,. Note that the
ated by the density of states of the pairs is linearly temperature depen-
dent. Coherent coupling between pairs is destroyed if there is
AjA; - spontaneous decay during the up-down transition. For pri-
T aEE, Jij S8 (23 mary TLS's withE~2KkgT this occurs with a ratéd), which
. guided Burin and Kagan to estimate the lower boufat
part of Eq.(15). The eigenstatefl)=|0;,0;), |2)=|0;,1;),  secondary TLS’s formed from symmetric primary TLB's
I3)=11;,0;), [4)=[1;,3;) of the Hamiltonian H
— —(1/2)(E;S,+E;S)) (cf. Fig. 2 become mixed due to the Ap,min=haT?. (28)
i i . Fig.
interaction term(23). In the up-down subspacspanned by Comparing Eq(27) with Eq. (7) yields
|0;,1;)=0;)®]1;) and |1;,0;)=]|1;)®|0;) this pair cou-
pling can effectively be described by a TLS-Hamiltonian of A(T)=(m3/12) (PoU,) kgT. (29
the type (1) with O'Z:|0|,1J><0| '1J|_|1I’0J><1I’OJ|’
ox=10;,1;)(1;,0;|+]1;,0,)(0; , 1;|, and pair asymmetry en-
ergy, pair tunneling frequency, and pair level splitting

This looks encouraging; however, after a closer examination,
there are several inconsistencies. First, Mateal® could fit
their data with atemperature-independentarameterA.

e —E —E. Burin and Kagan’s theory giveAxT. The 10% variation,
Pt T which Maieret al® found between the 1 and 0.5 K data, is
too weak to account for the linear temperature dependence of
the theory. Second, puttin49 in numbers, we find, for PMMA

at 1 K, A(1 K)/kg=10* K and A, pin/kg=400 mK,
Ep= VASJF ErZJ' which is inconsistent with the experinpfental valyas) and
(14) by several orders of magnitude. Indeed, at 1 K, TLS'’s
with A,in/kg~0.4 K can never be responsible for spectral
17 < /E 1—</E diffusion on the time scale betW(_aen3_1;§)nd 16 s. However,
|+)= \/% |Oi,1j)+ \/% |1i,oj>, it is possible that very asymmetric primary TLS’s are respon-
sible for long-time spectral diffusion. For very asymmetric
(29 TLS's, the estimate of Burin and Kagan, E&8), would be
significantly reduced. Hence, though Burin and Kagan'’s

|-)= /1+fp/Ep 12,,0)— ll_fp/Ep 10,,1) theory predicts the measured time dependence quite accu-
2 " 2 e rately, there arise severe inconsistencies in orders of magni-

(26) tude and the temperature dependence upon applying their

Clearly, the more asymmetric the pair is, i.e., the larger thetheory at 1 K. It should be mentioned that Burin and Kagan

energy offse; —E; is, the more localized at one TLS is the fr?gsseldsrrggle?r@./ the millikelvin regime, which avoids all
pair excitation.

Based on the distributiof®) of the single TLS tunneling
parameters and a uniform spatial distribution of the single
TLS in the glass, Burin and Kag&nderived the following
distribution function for the parameters of coherently Though the picture developed by Burin and Kagan is very
coupled pairs: appealing, it explains only qualitatively the hole-burning
data of Maieret al.”® The question arises whether a micro-
scopic calculation can yield testable predictions based on the
interacting TLS scheme of Burin and Kagan. We carry out
(27) calculations based on a strong coupling of TLS’s to phonons

The eigenstates for the coherently coupled pair then read

Ill. KASSNER-SILBEY APPROACH FOR PRIMARY
AND SECONDARY TLS’s

3

@ ™ 1
P (EpaAp):E(POkBT)(POUO)PG)(Ap_Ap,min),
p



56 SPECTRAL DIFFUSION ON ULTRALONG TIME SCALES ... 5253

with deformation potentiay~1 eV. This allows for a shift- The result is a stretching of the distribution intowards
ing of the rate distribution towards longer times and indeedsmaller values; i.e.P)(r) has an extended tail for such
brings the “calculated” value oA [see Eq(29)] into closer rates. The flaws and merits of the Kassner-Silbey way of
agreement with experiment. Furthermore, the inclusion ohandling strong-TLS-phonon-coupling effects have been dis-
strong-coupling effects alone gives a reasonable fit to theussed in Ref. 13. An important point is that&‘@ inter-
experiment of Maieret al. for intermediate timegcf. Fig.  action between TLS'’s, as used in Burin and Kagan’'s ap-
3@l proach, cannot be derived from this approach.

Let us start with the usual spin-boson Hamiltonian for an  In Appendix A we have generalized Kassner and Silbey’s
ensemble of TLS'’s interacting with phonons via a strainapproach to include coherent coupling between pairs. Our

field. In the TLS eigenbasis the Hamiltonian reads procedure has been as follows. First, we have eliminated the
1 diagonal §,) and off-diagonal §) coupling in the Hamil-
H=—2=> ES+> (uS—us)c (b,+b ) tonian(30) by two separate unitary transformatioisl) and
22i S % 1527 iS50 (B a (AB). Second, instead of continuing with the full transformed
Hamiltonian, we have projected out tbee-phonon coupling
+> % wqbgbq, (30) Partin the dressed state basis. This has been achieved by
q expanding the generated phonon shift operators around their
with mean value up to the first leading termd!;\. This generates
one-phonon transition matrix elements in the four-level sys-
- vz tem of the pair and, more importantly, Debye-Waller factors
=179 25V i (3D which renormalize Burin and Kagan’s coherent coupling
a term (23) as
and , ,
_ —J;;Aje~Cla /BN o= Gl /B 2/ (4EESISL . (39)
ui:Ai/Ei: Ui:€i/Ei. (32) e ! o
Here,
According to this, the TLS’s become dressed with clouds of
virtual phonons. As a result the coupling between the TLS's 1 ccl
will also be changed. The assumption traditionally made is ZJ” =E hq 3 (39
that the dressed entities can be considered as weakly inter- a N@q

acting. Hence, first-order perturbation theory in the dressegnich is equivalent to Eqg16)—(20). The pair asymmetry

states might be sufficient at low temperatures. energy and tunneling amplitude read
Based on this picture, Kassner and Silfegerived a
S,S) interaction between TLS’s and a reduction of relaxation e.—E.e WiGWR2_E o~ WGu 12 (40)
rates for asymmetric TLS’s. Compared to E4), they found P ! '
well below the Debye temperature of the glafs®p,
ye temp 918t o Ap=JiAje~CU2A e~ U E, (41)
A 2
R= E) e CEE R . (39  with W,=e CU2 One should note that foG>1 the
2
Debye-Waller factoe™"i%i’? is practically unity except for
where[cf. Eq. (6)] nearly symmetric TLS’s. Since we will be mainly interested
G=(h/8mks) 01@20- (34) in strongly asymmetric TLS’s, we will always use this sim-

plification hereafter. In Appendix B we calculate the pair
It is a peculiar feature of their approach that symmetricparameter distribution function. The result is

TLS'’s have no reduced rates—i.&,,y is still given by Eq.

(5)—and have zero interaction. It is this very fact which P@(e,,Ap)=P2(A)PP(ep), (42)
significantly changes the distribution functiéf*)(E,r) of with

single TLS energie€ and dimensionless relaxation rates

r =R/Rhax compared to the STM resUlef. first term in Eq.

; (2) _ Po —GI2y2 _ _
(8)]. According to Eq.(33) P (Ap) Pe 15(GIAHO(Ap—Ap min), (43
P
2
r:(%) e~ G(elE)? (350  Wwherely(2) is a modified Bessel function, and
2 —
[compared to the STM result= (A/E)?]. With this, Kassner P®(ep)=1f(ep) +1(—ep), (44)
and Silbey derived the distribution with
Po

(36) A(T)

(1)
PH(ET) f(ep)=1—ﬁ®(Emax—ep)[|n
—e €p

B 2ru(nN{1+G[1-u?(n]}’

2
1+e Pep
whereu_(r)ze/E is the inverse function of 14+ e PEmax

1—|—e7ﬁ(5p+Ema)()

. (45

r(U)=(1-u?e oV, (37)
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The parameterg ., andA, i, are cutoffs which are set by A, 2

the requirement of stability for the coupled paiEs,,y is a "=lE | (51)
cutoff in the energy of th@rimary TLS’s, which, as we will P

see below, is generally a function of the temperature. If REﬁQﬁaT?’xgcotmp, (52)

EmakeT, P@(e,) is the sum of a constant and a bell-
shaped curve centered aroung=0 with a width of andx,=E//2kgT. We used thaty,~«, as discussed in Ap-
O(kgT). It can be approximated by pendix A. Note that there is no Debye-Waller factor of the
5 Kassner-Silbey type because of the coupling of the phonons
P@(ep)=A(T)[IN2+(1-In2)exp(— B%€;/9)] (46) 1o o} instead of tos?. The coherent coupling is destroyed
by spontaneous decay during the up-down transition of pri-
mary TLS’s constituting a pair: for instance,
|0,1),|1,0)—0,0). Based on this argument, Burin and Kagan
P@(€p)~A(T)Emad T)/4kgT. (47) estimatedA , nin=%aT?, where aT? is the decay rate of
symmetri¢ primary TLS’s with E=2kgT. Clearly, on the
In the limit E;,,,>KgT andG, e,/kgT<1, we find Burin and  time scale explored in the experiment of Maiet al.,
Kagan's result27). This confirms that their model is valid at strongly asymmetric TLS’s dominate the hole width instead
ultralow temperatures for nearly symmetric TLS'’s with weak of symmetric ones. Note that in constructify?)( €0 Ap)
coupling to phonons. In the lim&>1, the asymptotic ex- [Eq. (42)], we integrated over values of the energy splittings
pansion of the modified Bessel functiohy(z)~e®/\2mz  of the primary TLS’s less thaB,,(T), which have the cor-
(z>1), provides a renormalization dP, by a factor of rect initial population factors to ensure the creation of stable
2/(mG). pair excitations. We now investigate which primary TLS'’s
are able to guarantee stability of secondary TLS’'s at 1 K; i.e.,
IV. STABILITY ANALYSIS we ask whether the limiE, . (T)>kgT or <kgT applies.
We first study if secondary TLS’s may be formed from pri-
To determineEy,, and Ay mip, We first neglect the level  mary TLS's with thermal splittingE~O(kgT), at 1 K. We

broadening effect of the phonons. Théf,,, scales with the  npeed to satisfy three conditions. First, we require

glass transition temperature, aid ., is set by the concen-

tration N, of pairs in the glass. To determiné,, we start Ep/h=R(E=2KgT), (53
with estimating the probability for two TLS's separated by a _ _ 3 ) )
distancer to form a pair toP(r)~PyU,/(8/3)|r|3. Then where R(E=2kgT)=raT <1/ is the relaxation rate of a

the concentration of pairs in a shdlV—V/2V+V/2] is Primary thermal TLS's which has not yet decayed ate.,

given byN,~ [3/°nP(r)dr, wheren=PgkgT is the number for which [cf. Eq. (33)]

of thermal TLS’s. This yields 1Ur=aT3t~ 103106 (54)

for all practical purposes. IE,<kgT, the distribution
P®2)(e,) becomes independent ef,

Np=(1/2)(PoT)(PoUp)In3, (48)  with t=10°-1C s. These two requirements guarantee that

the secondary TLS is coherent on the time scale where de-

viations from logarithmic spectral diffusion is seen. Further-

more, if secondary TLS’s are responsible for the spectral line

broadening after 0s, the pair rate must satisigPt=1.

This provides the relation/,/E,)?= 1/aT3tx3cothx,. Us-

ing this relation, multiplying Eq(53) by 1/E,, and squaring

1 - it, one can now easily check that E§4) always implies Eq.

Ap,minzi‘]minzg(POUO)2 kgT (49 (53. ] -

With respect to the stability of secondary TLS’s at 1 K,

as a reasonable estimation of the lower bound. Indeed, fa#€ conclude the following: First, from the conditi¢s4) we

PMMA, Eq. (49) providesA,, min/ke=10"8 K which, at 1 K,  deduce the criteriom<1; i.e., the primary TLS’s must be

corresponds to a maximum relaxation timg,=10°-10' s, ~ Very asymmetric. Second, upon replaciag=Jr [cf. Eq.
Let us now include decoherence effects by phonons. Wé41)] and noting thak, / x,cothx,~1 for O=x,=<1, we find

will not provide a full discussion of the relaxation dynamics the criterion

in the four-level system of the pair, but instead try to argue

more physically. After two unitary transformatio(&1) and

(AB6), one finds the HamiltoniafA11) as pointed out in Ap- 2kgT

pendix A. Here, only the termcS,® S, allows relaxation , _ 3 _ 3

within the up-down subspacg0,1),|1,0)}. The relaxation ~Hence, according 19=U,/d” and Uy~ 10° KAZ, the rel-

mechanism is a flip-flop process linked with the emission o€Vant TLS’s are separated by a distacel A. Note that

absorption of a phonon. The relaxation rate scales wittj€S€ estimates are highly approximate. In particular, we

(A,/E,)% have approximated the rate at which coherence in a second-
p/Ep)™:

ary TLS is destroyed by the relaxation rate of a primary TLS,
RP =y R®) 50 without consideration of the true rates that govern the
r pRmax: (50 .
coupled four-level system. However, we may still conclude
where that & 1 K it is unlikely that primary TLS’s with thermal

which in three dimensions is independent of the voluvhe
due to the|r| 3 law of interaction. The maximum volume
V, = (4m/3)|r, |® each of these pairs can occupy is given by
1/N, which determines the minimum interaction energy
Jmin=Uo/|r,|. This provides according to E¢41)

> \/aT3t~10°-10. (55)
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splitting E~O(kgT) can form pairs, unless they sit ex-
tremely close to each other. This fact suggests a natural cut-

SPECTRAL DIFFUSION ON ULTRALONG TIME SCALES ...

off E.a{T) in the energy splittings of the primary TLS’s

that comprise the secondary TLS’s existing at 1 K. This cut-
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AF(Z)(t):;T_ﬁ e ®213(Gl4) (C)P,
<A T (TG 69

off is motivated by the above stability criteria, and can

change the temperature dependenc®9i(e,) in Eq. (44)

and of the hole width in general. We will return to this point Putting Eqs.(61)—(63) together provides an equation which
in the next section. According to this, the distribution is very similar to the resulfl11). However, this equation is

P@(E,,rp) reads

PA(E,,rp)=P2(r) PA(E,,T,), (56)
where
Py e ®23(G/l4)
PA(r)=——m——0(ry— Iy min) (57)
(rp 2r;°;’2\/1—_rp (Fp= " p,min
and
_ A(T) [
PO(E,, r,)= In
(Ep. 1) |Ep|(1—e*rpBEp)L 1+e5rpEp)
1+e_BEmax
- 1+ e Al pEp*Emax 8
+ (Ep——Ep), (59)

with 0<E,<Ema(T), r_p= Vv1—r, andA(T) given by Eq.
(29.

V. COMPARISON WITH EXPERIMENT

based on the microscopic picture of phonon-mediated TLS-
TLS interaction. There are two regimes where the func-
tion u(1/aT3t) can be determined analyticallyi) short-
time limit aT3<e® which gives u?(1/aT3)
~[1/(1+G)]In(aT3) and (ii) long-time limit aT3t>e®
which givesu?(1/aT3t)~1—e% aT3t. In Ref. 8b), Maier

has fit his data with only the first term in E¢61). By nu-
merical inversion of Eq(37), he could find good agreement
on intermediate time scales up to 200—300 min. We have
illustrated this in Fig. 8). The values for the fit parameters
G and Po(C) are 32 and & 10 °, respectively. With this
value for G, the crossover from the short- to the long-time
behavior happens after 150 min; Eqs(12) und(34) yield a
Debye temperature 0P =108 K, which is in reasonable
agreement with literature data for PMMA. It is in part due to
the success of the Kassner-Silbey theory at intermediate
times that we have adopted the strong-coupling approach as
our dynamical starting point. For times larger than 300 min,
Maier attributed the deviations of the theory from the experi-
mental data to the contribution of interacting TLS’s. If this is
true, we should find agreement between theory and experi-
ment when including the second term in E§1). In Fig.

3(b) we have plottedAT'(t), Egs. (61)—(63), together with

We now calculate the broadening of a spectral hole in thehe experimental data of Ref. 8 for 1 (Kpper curveéand 0.5
inhomogeneous line due to spectral diffusion induced by (lower curveé. We used the same value f& as in the
single_ TLS’s and pairs. According to the standardprevious plot, and have optimized the TLS-TLS coupling

theory/ 1417

AT (t)=TI'(t) —I'(ty) can be written as

2 o —
AT (1) = ;T—h<c>fo dE secﬁ%f:dr [u(r)POE )

+V1-rP@(E,r)](e Rmato—eg Rmat)  (60)
where PA)(E,r) and P@)(E,r) is given by Egs.(36) and

(56), respectively. To calculate these integrals, we repla

the last factor by the step function, which restricts the
integration to the intervel1/Rad, 1/Rmato]- This gives

AT (1)=ATD(t)+ AT (1), (61)
where
ATO(t) 1T2<c>P T Int e 62)
= — n —
30T T _U2(1aTt)

the experimentally observed line broadening parameteiP,U, and the TLS-chromophore coupling param-

eter Po(C) to find best agreement for the 0.5 K data. The
result isPqUo=2.5X 10" % andPy(C)=4x10"°. The upper
curve shows the prediction of the theory foeth K data.
The parameter value fd?PyU,, which fits the 0.5 K data, is
by a factor 25—35 smaller than the literature vaftielow-
ever, we see that a superposition of adnd at®° term can
be interpreted as an effectit&3® power law on the experi-
cénental time scale as seen by Magdral. Hence, under the
assumption that primary TLS’s with thermal energy splitting
can form stable secondary TLS's at 1 K, we find"(®
«T52 giving a temperature dependence that is too strong
compared with the experimental observation which indicates
AT @) T3 at least in fitting the data at the two tempera-
tures 0.5 K and 1 K. This can clearly be seen by the predic-
tion of the theory for the data in Fig(I3.

B. Limit Epna(T)<kgT

is the contribution of the primary TLS's to the spectral hole

width. To calculate the pair contributiohI ()(t), we con-
sider the limitsk,,(T)>kgT and <kgT, separately.

A. Limit Epa(T)>kgT

We have noted in the previous section that it is very un-
likely that thermal primary TLS’s can form stable pairs at 1
K. If we impose a minimum separation distance between
primary TLS’s(say 5 A, then a natural energy cutoff enters
due to the stability requirements outlined in the previous

Remember, in this limit coherently coupled pairs can besection. If we assume that this cutdf,,, satisfies the con-

built by thermal primary TLS'’s. We find from Ed60)

dition
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Emad T)<kgT, (64) sible that a picture based on coupled TLS’s can account for
all the properties currently observed in longtime spectral dif-
fusion experiments.
So far we have shown the pros and cons of applying the

then we can estimatg,,(T) from the conditions consid-
ered in Sec. IV. Specifically, fromRt~1, R®t~1,

Xp/ Vxpcothe,~1, andr=A,/J, idea of coupled pairs to hole-burning experiments on
ultralong-time scales at 1 K. Here we propose an interesting

EmadT))° EmalT) _ Jmax (65) experiment which, although difficult to perform, would pro-
2kgT 2kgT 2kgT\aT3t’ vide a conclusive test of the coupled TLS hypothesis. A cru-

cial observation is that the exponent of the power law de-
where Jna=Uo/d3,,. This shows thatE,(T)~T ¥4  pends on thedimensionality of the glassy probe. For
which significantly alters the temperature dependence of thexample, the exponent would be systematically smaller if the
hole width. If the above condition is met, then primary TLS's were confined tdquas) two dimensions,
while the interaction between them still varies als |2/ This
@ 1 would result in a distribution functiorP(Ap)ocAg’3 [from
PED) = AT Enad T)/AkaT~T ©6  P(a,)=P()=P(|r])|r|(|d|r|/dJ]) and 3=r| =3, P(Ir|)=
and consy and therefore in a** power law. The experiment we
suggest has already been performed, albeit not for the pur-
pose that we discuss here and not on a time scale up’ts. 10
2 The hole-burning experiment by Orgt al?! on an ionic dye
AT (t)~ gefGlzl o(G/4) (CYPy (Nt—1lto) in a Langmuir-Blodgett monolayer lying on a three-
dimensional substrate is an experiment of the type we pro-
EmadT)\? posed above—the TLS dynamics is restricted to two dimen-
X\aT? A(T) ( KT ) : (67)  sions whereas sound waves and strain are not affected by the
B interface between the amorphous layer and the bulk. Indeed,
In the regime wher&,,.,(T)<kgT, this expression is essen- Orrit et al?! have observed spectral diffusion which could be
tially temperature independent. Thus, the stability requireexplained by Pack and Fayeéwusing the standard tunneling
ments imply an interesting thermal breakup of the secondargnodel. From this perspective it seems promising to extend
TLS's. the experiment of Orritet al. to longer times and look
whether a power law weaker than the three-dimensional re-
VI. DISCUSSION Sult t0'5 COUId be Observed. ] .
There are, however, reasons to be skeptical of the picture

For very low temperaturelsE,,( T)>kgT], the majority  we have outlined. A number of approximations have been
of asymmetric TLS’s are stable even if constructed frominvoked that render only a semiquantitative description of
asymmetric primary TLS’s that have energy splittings on thethe experimental results. These approximations include the
order ofkgT, leading to the strong temperature dependenceeduction of the primary TLS to an effective secondary TLS,
depicted in Fig. @). We have argued that at higher tempera-and the use of relaxation rates for uncoupled TLS'’s to dis-
tures, a crossover should occur where the temperature depetuss decoherence effects for coupled secondary TLS's.
dence should become weaker, as secondary TLS's beconTese approximations, especially the first one, may not be
less stable. Therefore, it is qualitatively consistent with thisvalid at temperatures near 1 K. Clearly, one has to think
picture that the observed temperature dependencelalis  about alternative explanations. A simple idea would be to
weaker than that shown in Fig(t3. Such arguments require attribute the deviation from the standard mehavior to a
further “slowing down” of the temperature dependerJr@e. nonequilibriumstate of those TLS’s which relax on these
This is indeed seen experimentally at 2KHanniget al.are  long-time scales. Indeed, recent experiments by Friedrich
able to fit their data with essentially the same valuedcit et al?® have proved that spectral diffusion in glasses under
0.5 K and 1 K, and a value of 08T=0.5 K) at 2 K.  nonequilibrium conditions results in a nonlogarithmic time
Eventually, the entire TLS picture should break down atevolution of the hole width. However, the data in the experi-
some temperature in the range 1-10 K. A clear test of thenent of Maieret al. were obtained after letting the sample
validity of this picture would be to see if the stronger tem-relax at the measurement temperature for a longer period
perature dependence emerges at lower temperatures. Sutlan the later data recording period. Hence, one expects that
experiments are difficult to conduct at ultralow temperaturesall relaxation processes shorter than this waiting time occur
due to slow equilibration effects. under equilibrium conditions.

We may also note that the discrepancy between the “de- It is interesting to compare the glass results with equiva-
rived” and literature values dPyU, can be explained by the lent experiments on proteins. Hole-burning experiments on
thermal breakup of secondary TLS’s demanded by stabilityproteins show almost no hole broadening up to 3 h, followed
criteria. As the temperature is raised, the primary TLS’s musby a nonlogarithmic hole-broadening regiffelemperature-
lie closer together to form a stable secondary TLS’s at longycle hole-burning experimerifslead to the conclusion that
times. The probability of finding two neighboring primary the excess broadening of the hole in the protein cannot be
TLS'’s a very close distance apart is small, which effectivelyinterpreted in the framework of the STM. Hence, one might
decreases the “derived” value d¥,U,. Note that there is speculate that in both glasses and proteins, the interaction of
also a reduction i I'®)(t) due to the factor E,/2kgT)?>  TLS's becomes important at long-time scales. An alternative
[see Eq.(67)]. Thus, at least qualitatively, it is indeed pos- conclusion avoids the notion of interacting TLS's altogether.
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with the Kassner-Silbey theory for single TLS's.
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Perhaps the energy landscape of glasses is not too differeWe note that if indeed specific polymer dynamitke side
from that of proteins, and also shows features of organizatioshain motion are responsible for deviations from logarith-
at high barriers. Recall that the experiments of Maeal. = mic spectral diffusion, perhaps a deuterated sample may
were carried out in PMMA, which is a polymer glass. Poly- show different hole-broadening behavior.

mer glasses may be expected to have conformations similar One is tempted to speculate that these “non-STM-like”
to proteins. For example, such “conformational” dynamics high barriers arise from the presence of the chromophore in
may involve side chain motions. The physical picture is thathe glassy host’ because they have not been observed in
the energy landscape comprises high barriers in addition teound attenuation experiments up to 108%K° Note, how-
constantly distributed lower barriers within each of its ba-ever, that these experiments were not performed on polymer
sins. The algebraic behavior then results from tunnelingylasses, and that sound attenuation experiments on PMMA
through those high barriers, which have to be distributechnd PS indeed show a strong increase in the mechanical loss
around a “typical” valueV,. This value has to be suffi- above~50 K2 Interestingly, doping a network glass with
ciently high in order that the onset of the algebraic behaviolOH impurities leads to the same observatidmyhich con-
occur only after 3 h. We give some details on these ideas igeivably supports the importance of side chain motion in
Appendix C; more can be found in Ref. 26. The model prepolymer glasses. Furthermore, in contrast to the glass, the
dicts a temperature and time dependence of the hole widtprotein probe is not doped by a dye. Instead part of the
with an exponent which is slightly weaker th&¥? andt*?,  protein is chemically changed in order to serve as a chro-
respectively, and a slowly decreasing functionTofandt.  mophore. Thus, it seems that such deviations from standard
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spectral diffusion behavior are not due to the inclusion of thelo the Hamiltonian(30) which eliminates the diagonal cou-
chromophore into the sample. pling of phonons toS,. The transformed Hamiltonian
One should also note that nonlogarithmic line broadening4— U; *HU; reads, WithS&Z(l/Z)(SiiiS{,),lg
is the typical case because a logarithmic time dependence
occurs only in case of a A" distribution for the singular
casen=1. Without invoking the physical reasons for devia- 1 _
tions from the standard A/ distribution function introduced H=- 52 EiS,+ >, hwgbibg
by Anderson, Halperin, and Varma and of Phillips, we may ' d
say that for small values a&f (corresponding to long timgs _ o o
the distribution of barriers is not really flat, but instead a — 2 uicy(bg+bl o) (BLS, +BLS))
smoothly varying function of the parametersee Appendix b4
C). That the distribution of barriers in such a model turns out 1 o _ S
to be a log-normal distribution shows a striking similarity to - ZZ Jij [uUju;S;S,—2u;uj(BLS, +B. S )9,
general systems exhibiting f/ noise3! b
(A2)

VII. CONCLUSIONS

. . where
In this paper we have analyzed the consistency of the

conjecture thatoupled pairs of TLS’s dominate spectral dif- 1 i
fusion on ultralong time scale8ecause the pair distribution ~J=2 (A3)
P@(e,,Ap) is correlated with the distribution of the pri- 4 q hog
mary “STM-like” TLS’s, we have in a sense pushed the

STM as far as possible by looking at these low-energy excif’lnd
tations. We believe that this is an important step, which has

to be donebefore trying to find another extension of the BL:ex;{iE (zfic;/hwq)(bq—biq) =g %
STM for every new experiment. The question was whether q

they also apply to # 1 K regime and, in particular, whether (A4)

they can provide an explanation of the longtime hole-burnin i :
experiment of Maieret al. We find that a picture based on gl'he B.. are the usual phonon shift operators. Instead of pro-

the idea of interacting tunneling systems seems consistefff€ding with the full transformed Hamiltonian, we project
with the experimental data, although we are unable to fiout theone-phonon fluctuationsround the shifted harmonic

certain aspects of the experiment, such as the temperatufgciiators coordinates. This is achieved by expanding
dependence, quantitatively. Also, alternative explanation§==(Bx)*(BL—(B.))=(B.)*¢;, where

have been presented. These models are, at the moment, at

least as speculative as the scenario of coherently coupled . 5

pairs. For this reason, we have discussed some possible ex- (Bl )=e Cla/B)72 (A5)
perimental tests of the theoretical models we have presented. ) ) )

More theory and experiments have to be done to finally@nd neglecting two-phonon terms. Applying Fermi's golden
evaluate the role of coupled TLS's in glasses and to underule to the remaining one-phonon term directly yields the

stand the origin of nonlogarithmic hole broadening in rate(33). A coherent coupling between pairs is generated by
glasses. eliminating this term by a second unitary transformation

— > (2u(BL)cy/hwg)(bg—b' )S /2
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This yields
APPENDIX A

In this appendix we generalize Kassner and Silbey’s ap- 1 —_ 1 -
proach to include coherent coupling between pairs. For this H=- EZi Ei Slz+2 ﬁ‘“qbabq_ ZZ Jij {UinS'zS]z
goal we first apply the unitary transformation K !

| +ui(Bl)u(BL) S&S&_zuiu_j(<BiJ:>Six_i¢i§;/)§jz}1
U1=ex;{z (ZU_iCL/ﬁwq)(bq—bT_q)SiZIZ}EH e#iS;/2 (A7)
1,q i
(A1)  where



S)=Sjcoshp; —iS)sinhg; , (A8)

S} =) coshp; +iSlsinhg; . (A9)
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around the shifted harmonic oscillator coordinate by replac-
ing S)~SK(DL)—i¢;S, andS|~S(DL)+i¢;S}, where

(DI, )= e~ C(BLIE)2, (A10)

Expanding again around the one-phonon fluctuation®ne finds

H=—%Ei E((DL)S,+ 2 hagbgbe* '52 EihiS) %EJ Jj {ui(DL)uy(DL)S,S)+ui(BL)ui(BL) S8

—2ui(BL)u(DL)S,S+2i ui(BL)u;¢;SS)+2i u(DL)u(DL)e;S,S,—i uju;((DL) ¢S, S,+(DL) ¢SS}

The only operators which act nontrivially in the up-down

subspacg{|0,1),|1,0} are S,®1, 18S,, §®S,, $®S,,

andS,® S, . If we define new pseudospin operators for pairs

(i),
oy=10;,1)(1;,0 +1;,0,)(0;, 3, (A12)
:_I|0|111><1|!O]|+||1|!O]><0lllj|! (A13)
a9=10;,2)€0;,3;| —[1;,0;)(1;,0,/, (Al14)

we can project the quoted operators onto the up—down sub-

space, which yields S®l—db, 18S,——0ab,
S ®S,— ok, S® S—— 0' , andS,® S,— 0'p If we project
the Hamiltonian(A11) accordmgly, we flnd for each pair

H pair= —AZ ap—E ap+|ApaPZ b —b"y)
+§ fiwgbiby, (A15)
with
AA
Ap=Jj; 2EE<B }BL), (A16)
e,=Ei(DL)—E;(DL), (A17)
ch=cy(&/E) —cl(e /E)). (A18)

Applying Fermi’s golden rule to the interaction term in Eq.

(A15) provides a one-phonon relaxation rate
Rp=aAJE,/(2kp)® cOth Ey/2kgT).  (A19)

Here, we have used that the oscillating termcffch* is

small so that pairs and single TLS’s relax approximately

with the same coupling parametexr provided that

(A11)

APPENDIX B

In this appendix we calculate the distribution function for
the pair parameters, ande, of Egs.(40) and(41). We note
that the single-TLS distribution function fan=A/E and

E=JAZ+ € readsP(E,u)=Py/(uy1—u?). The distribu-

tion function for the pair parameter is then given by

P@(ey,Ap)

_J’ dE; j dE, f fd
T 1re ) Trep)o )

xf dJ P(E;.up)P(Ey up)P(J)

1
XE{(S(GP_ El+ E2)+ 5(€p+ El_EZ)}

1
X 8| Ap— EJuluze—e(l—uf)/ze—ea—ug)/z . (B1)

The factors (# e“#F) "1 account for the thermal occupation
of the primary TLS’s. If the TLS’s are homogeneously dis-
tributed in the glass and interact via a dipolar coupling,

J=U,/|r|3, the distribution function of] reads for a three-
dimensional probe
p(3)= 27 Yo B2
D=7 72 (B2
Using now that
—uGI2
f dus e ©"1y(Gl4), (B3)

wherely(z) is a modified Bessel function, and

1+u

dx 1[ 2
"y

y (THX)(1+ px) =1—M['”1+y -

€, /E;=~1. Note that because of the coupling of phonons to

o} (instead ofa}), there is no diagonal coupling termS)
as in Eq.(30) after rotation to the pair-TLS eigenbasis.

with x=e PE, y=e PEmax and u=e P, one easily finds
Egs.(42)—(45).
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APPENDIX C v(R)
_ PO B Rmax
In this appendix we show how a modified tunneling (e/E) P(E’R)_7 §+R1+v(R> ' (C4
model which comprises an additional Gaussian distribution
in the tunneling parameter centered around the mean value Where
Ao>1 can provide an algebraic )!ine broadening. The new 1 1
distribution reads, witA =% wy e ", »(R)= 5™ 8_)\0 IN(Rya/R). (C5)
P(e,\)=Po+ PoA e7<x7>\o>2/202, (C1) From this expression, it is obvious that an algebraic line
2o’ broadeningAT (t)«t#* with an exponeni<0.5 occurs for
-~ . . . No>>In[R(T)t]. The exact calculation reveals
where A is a dimensionless constant, and=\,,(E),
Amin(E) =In(fiwy/E). A similar model has been used previ- 2
ously by Jankowiak and Sm#fland by Zimdars and Fay®r AT (t) =37 Po(C)kgT| In(t/to)
to discuss three-pulse photon echo daf¥.A combination
of both terms is needed in order that the onset of the alge-
braic line broadening does not occur too early. In the follow- +A rf:,{ Ao~ (1/2)In(KTY)
ing it will turn out sufficient to reduce the number of param- \/2_)\0
eters by setting
) , erh( )\0—(1/2)In(KTt0)) 1 -
g )\0. (C ) \/2—)\0 ’
The ensuing distribution iA then reads ) )
where erfck) is the complementary error function, and
1 B (fiwg)t (V20)n(hwgld) KE(ﬁa())o/ksl)za-l With hwolkB=O§1 'K), one findg
P(e,A)=P, it N2 Wmgegn) | (C3 |_<~101 K ~1s71 For \o>In(KTt) this gives an algebraic
line growth
whereB=Ae *0?/\[2m\,. This distribution has to be com- AT (1) BT(KTt) (Y2~ (1/8)In(KTY (C7)

pared with Eq(7). Defining the maximum relaxation rate at
givenE by R=e 2D min(®IR (E), the distribution func- More details and a comparison to experiment can be found in
tion in relaxation rate® and TLS energie& reads Ref. 26.
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