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Semiempirical tight-binding interatomic potentials based on the Hubbard model
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By use of the perturbation method for the Hubbard model, we discuss the contribution of the interatomic
electron correlations to the cohesive energy in terms of the bond-order potential. With the first-order approxi-
mation for the bond order, we present a semiempirical tight-binding model for the interatomic potential. Based
on this model, the influence of the on-site Coulomb interaction on materials properties such as phase stability,
Cauchy pressure, and elastic anisotropy ratio is studied. It is shown that although it is a pair-functional one, the
present model can describe very well the elastic properties and phase stabilities of the bcc transition metals
without resorting to angular bonding or spline-function modeling. The model is also applied to calculating the
epitaxial Bain paths. The results show that V, Nb, Cr, and W have a metastable tetragonal phase while Ta, Mo,
and Fe do not. The vacancy-formation energies and surface tensions calculated with the suggested parameters
for V, Nb, Ta, and Fe are reasonable, while those for Cr, Mo, and W are not c¢86&63-18207)02534-4

I. INTRODUCTION In the TB-SMA, the cohesive energy is written as
The extensive interest in atomistic simulation for materi- 1 / 2
als has resulted in the need to develop robust interatomic Ecoh:ii%i Vij(RiJ)_Z JE#I hij (Rij), @

potentials. The past decade saw the development of different
potentials, such as the widely used embedded-atom methouhereh;; are the hopping integraly; are the repulsive pair
(EAM) for the Cu and Ni columns of the transition metals potentials added to avoid collapse, argl are the distances
(or its equivalent, the glue modeland Tersoff's empirical between atoms and j. The above model can exactly be
many-body potential for Si. derived provided that the density of state is of rectangular
One path to the quantum-mechanical interatomic potenshape. It has been shown that Eb.is able to describe very
tials is to derive them from the very beginning, namely, fromwell the properties of the fcc transition metals and alloys
the Hamiltonian. This has been well exemplified by thewith full or nearly full d bands'?> However, there are some
bond-order potentialBOP) of Pettifor, which is derived problems when it is used to model the bcc transition metals
from the tight-binding (TB) Hamiltonian by using the with half-filled or nearly-half-filledd bands. The calculated
Lanczos recursion algorithm and the Green’s functionelastic anisotropy ratios are sometimes too large. Moreover,
theory?=® It has been shown that both the EAM and theit usually tends to predict the close-packed lattice as the
Tersoff potential are just to some extent the approximationground-state structure if the cutoff distance is reasonably
of the BOP’ One remarkable success of the BOP is its abil-long (so that the contribution of the atoms beyond the cutoff
ity to reveal the structural trend across the transition metalgo the total energy can be reasonably smaller than the desired
However, electron correlations may turn out to be importanstructural energy differengeThis is a common problem for
for the structural stabilities of narrow band solids like thethe pair-functional models There have been some attempts
d-band transition metals. The role dfd electron correla- to attack these problems such as using a more flexible spline-
tions on the cohesion of the transition metals has been digunction model®!* and considering contributions of low-
cussed by Friedel and Sayers using a second-order perturbarder moments® However, the spline-function potentials are
tion approximation based on Gutzwiller's approximatfoin.  short ranged, and the results of structural stabilities produced
is shown that the correlation energy increases the cohesidmy them are sensitive to the unphysically imposed cutoff and
and decreases the surface tension and the maximum effdeénce quite arbitary. On the other hand, the low-order mo-
occurs in the half-filled case. Also the electron correlationaments method goes beyond the pair-functional category and
are important in predicting the ground-state properties othus becomes rather time consuming when applied to
group-1V semiconductordThe calculated result for the in- molecular-dynamics simulation.
teratomic correlation energy for diamond based on the local In this paper, we use a single-band BOP associated with
ansatz is—2.52 eV per unit cell, amounting to about a quar-the perturbation method for the Hubbard model to derive a
ter of the Hartree-Fock cohesive energy. semiempirical TB potential. Based on this model, we study
The first-order approximation of the BOP, namely, thethe effect of electron correlations on the materials properties.
second-moment approximation of the tight-binding modelwWe show that the present model, being a pair-functional one,
(TB-SMA), has been proposed by a number of authBfs. can be used to give correct phase stabilities and elastic con-
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stants for the bcc transition metals. Also it can be used tdistribution of atoms in the presence of defects. Because of
model the materials with negative Cauchy pressures. Moreghese reasons, we shall not neglect this contribution in the
over, it is applied to studying the Bain paths. It is found thatfollowing derivation.

only some bcc transition metals have a metastable tetragonal In the case of double electron-hole pair excitation, the
phase. On the other hand, the calculated vacancy-formatiogerturbation energf$s® = (0|H;,|f®) can be written as
energies and surface tensions for Cr, Mo, and W are unfor-

tunately not correct at all, in spite of the fact that those for 5 1 Er Er
the other metals are basically reasonable. EY )=§2 Uinf dEmj dE, fE dEpr dE,
1,0 F F
Il. ELECTRON CORRELATIONS Pﬂ(Em)Pﬁ(En)Pﬁ(Ep)Pﬁ(Eq)

i . 5
IN THE BOND-ORDER FORMALISM Ent En—E,—Eq )

To study the electron correlations, the single-band Hub- L . .
PN ~ ~ As a reasonable approximatidhthe denominators in Egs.
bard HamiltoniarH=H{g+ H;,; is employed, wherél 1z is

| luesw(?)
the single-band TB Hamiltonian used in the BOP for the(3) ?Qd () are replaced by average vallesi; and
} ) A ~ A i — W™, Thus Eqgs(3) and(5) can be written as

noninteracting electronsH;,.=Z;,(Ui/2)n;,ni,, with U;

denoting the on-site Coulomb repulsion, ang the number Uy . .
operator for the local staé) with spino. In the case when EWY= —__E (1)’ (NigHNj O (Pi—065) (6)
U, is small the total energy can be written in the second- o Wij

order perturbation forf}

and

_ A (Ol Aind F)I? U,
Ewa=Eo+(OFn|0)+ > —2—c—. (@ EQ— > )
7o Eo—E; 2 “ ZW(»Z)

J

: 070 (Pi—0)(Pi-07), (7)
'O i
where|0) and|f) are the ground and excited states for the, ..
noninteracting system, which can be written in terms of the
Slater determinants constructed with one-electron wave Ey
functions, andE, and E; are the eigenenergies for the Pi‘}=f p{}(E)dE, (8)
ground and excited states, respectively.

The first-order perturbation energy is simply e
E,=(1/2)2;,Ui(n;,)(ni5), where(n;,) is the local electron @f}:f p{ (E)dE, ©)
number on sitei with spin o, which is given by

(ni,)=%%p;,(E)dE, wherep;,(E) is the corresponding lo- whereE,, is the upper bound of the ban@,; is the bond
cal density of stated_ DOS) andEg the Fermi energy. There order with sping, and P{ is the bond order with full band.
are two types of second-order terms associated with the ex- In this paper, magnetism is not considered; i.e., the local
citation of one or two electron-hole pairs. In the case Ofyot gpin (Ni,)—(Ni7) is assumed to be zero, dn;,)

single electron-hole pair excitation, the perturbation energy_<ﬁ —=N,/2 (N is the on-site occupation numbeff all
=(Nig)=N; i -

(1) — O [£(1) i ¢ . . .
E3"'=(0|Hin ") can be written as the sites are assumed to be equivalent, then the intrasite cor-
relation energy can be expressed by

~ N EF P-U-(Em)Pq(E )
(L= un . ) i [l
EV=2 U.U,<n.?><n1?>f dEmeFd & E.-E, ESl=— (2U2/WE)(N/2)3(1- N/2)
3
@ and
wherep{j(E) are the LDOSIf i =) and the intersite density 2 2 2) ) )
of states(if i #]), defined by E5 o= — (UW5)(N/2)%(1—N/2)~.
1 These contributions, together with the tefy, are not the
Pﬂ(E): — —lim ImGﬁ(EJri 7), (4 interatomic parts which contribute to crystal binditig this
T —0 regard, we would like to point out that the treatment in Ref.

8 is problematical since the intrasite correlation terms con-
whereG;;(E) are the intersite Green's functions.Uf; and  tripute nothing to thecohesive energgf the system
(niz) do not change from site to site and the bases for the For the interatomic contributions, let us first observe what
one-particle ground and excited states are orthogonal to eacpm”. and®;; (i #]) will be within the framework of the BOP.
other, then one will findE{Y= 0.6 However, the interatomic  The bond order can be written‘as
part of ESY, which is exactly the negative of the intra-atomic
part, should not be neglected when calculating materials ~ “
properties like the phonon spectrum, since the contribution ©ij=— ZO Xon,no(Eg) 8a)— 21 Xotn—1),no( Er)25b)
of ESY to the dynamical matrix does not vanish. There are "~ "~ (10)
some other reasons which make EB8). not vanish, such as
the effect of intersite charge transfer due to the asymmetriand similiarly P;; can be written as
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* * order approximation it is, namely, E¢L)], we have the fol-
Pij=— > Xon.no(Eu) 8a)— > Xo(n_l),nO(EU)ZﬁbQ, lowing expression for the binding energy per atdfor a
n=0 n=1 perfect crystat
11
where the response functiogm no(w) are defined by E= EE V(R)
1#0
o o @)= —lim Imijg (E+i7n)G\(E+indE
m,n m n "
M0 ~y/ 2 9(R)+U > 93’2<Ri>/ > g(R)
(12) i#0 i#0 i#0
N , . . . 2
Gnm(E) are the Green'’s fun(:_t!ons on the recursion basis, ~U,>, g% Ri)/ E GHE (15)
is the phase factor for the initial state of the Lanczos recur- i#0 i#0

ston |W3)=(1/J?)[||>+ez<p(|¢)|1)], W.hlch 's defined as where R; is the distance of atom to the central atom,
)\.z COSp, :?m_d §anxand 5br£ are the derivatives of the recur- g(r)=h?(r), and U,,U, are two dimensionless constants
sion cioeffu:;entsan a”dPn W";h respect to the phase factor rg|ated to the on-site Coulomb repulsion of the Hubbard
A: ba, = dap/dN and sby = dbp/oN. model. Equation(15) is the central point of this paper. The

If Pettifor's approximation is used, i.e., the recursion co-first two terms in Eq.(15) are the conventional TB-SMA.
efficients are taken to be the samaj,=0, b)= b  The remaining two terms are due to the Hubbard model, and
= — V[Skxihgi+ Zksjhijl/2, then the reduced response will be referred to ad) terms throughout this paper.
functions ;(p: b xp(p=m+n+2) will be? )“(p(a,)zsir{(p ' The contribution Qf the electron correla'tions to _the cohej
~1)0,]1/[(p—1)7]—sin(p+1)8,)[(p+1)=], with cos,  Sive energy should increase when enlarging the interatomic
= w/2b. In this approximation, the LDOS is of a semielliptic SPacing or Iatt|%e constarfbecause localization becomes
shape, with the upper bound equakt@b. This corresponds More significant™ Equation(15) shows this tendency—the

to 6= . Therefore,y,(Ey)=0 andP; =0. Thus we have ratio of the electron-correlation termUg term) to the
u=TmT. plEu) = ij= Y.

the interatomic perturbation energies second-moment term_UZEiiogS’z(Ri)/.[Ei¢Og(Ri)]5’2, in-
creases when the lattice constant is increased.

According to the classification of CarlssbhEg. (15) is a

UiUjNiN; 92 _ Uil 04 (13) pair-functional model. The pair-functional potentials are

2\/\/i(].1> 4 V\/f]” N much simpler than the angularly dependent potentials for

molecular-dynamics simulations. However, at least three

where the spin degeneracy has been considered. The aboymblems hinder the application of the conventional pair-
equation says that the contribution of electron correlations téunctional potentials like the EAM or TB-SMA. The first one

the binding energy is aonlinearfunction of the bond order is that they usually tend to predict the most close-packed
(while the single-electron contribution scales linearly with lattice to be the ground-state structd?elhe second one is

Einter: 2
i,j#i

the bond order that they impose positive Cauchy press(vecause the sec-
ond derivative of the embedding function or second moment

lIl. SEMIEMPIRICAL TIGHT-BINDING INTERATOMIC is always posmv? The third one is tha; they.usually give
POTENTIAL very wrong elastic constants for materials with low elastic

_ _ o _ anisotropy ratios. These problems are crucial in the field of
In_ this section, we simplify the bond order by takmg_ only computer simulation for crystal growth, because first in order
the first-order ternti.e., the second-moment teyrand write  to predict which structure can be grown on the substrate we

it as need a reliable interaction model which is capable of repro-
ducing the correct bulk properties, and second, the physically
h(R;j) feasible structure of strained layers is related to the phase
Ojj=— ———, (14)  stabilities and elastic constants.
> h?(Ri)
k#i IV. INFLUENCE OF U TERMS

. . ON MATERIAL PROPERTIES
where the prefactor of the first-order electronic response

function has been droppedctually it is this prefactor that In this section, we study the influence of the Coulomb
says the correlation effect reaches maximum in the half-fillejparameter&; andU, on the physical properties of materials
cas@. Equation(14) is exact for a hydrogen dimer. Consid- by using analytical modeling so that the results can be more
ering the physical restriction that the lattice sum of the inter-explicit. For convenience, we assume thét) andV(r) are
atomic perturbation energy should converge when the crystalower-law functions:

lattice is expanded to the atomic limit, we find that" and .

Wi(jz) should increase with respect to the increasing of the V(r):\/e(%) , (16)
interatomic distance. For simplicity, they are assumed as fol-

lows: U|UJN|NJ /Wl(ll)oc hl] and U|UJ /\NI(JZ)OCh” . By addlng B

these two terms to the cohesive energy equation of the BOP, 9N =g (%) 17)
ECOh:(1/2)2i,j¢iV(Rij)+2i,j¢ih(Rij)ij [Wlthln the first- e\ r '
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whereR,, is the equilibrium nearest-neighbor distance, and ‘50 . . :
Ve, Oe, @, andB are parameters. The lattice sums o
- 15| 1
(Ry)= 2 WinV(PRy), -
m=1 S o0t o) o] }
g 1
=
T(R)= 3 Wnd(PaRy),  IRD)= 2 Wag®A(PrRy), g 057 8 0 '
m=1 m=1 =% 8
z o :
and g oor 3 I
o o) o o]
~ 0.5 | 1
K(R)= 2 Wmg™(PmRy)
(wherew,, are the numbers of atoms on theh shell with 1050 20 80 120 16.0

radiusp,,R,) are
®(Ry)=S(a)Ve(Rie/R)?,  T'(R)=S(B)0e(Rie/Ry)?,
J(Ry)=S(3B/2) 94 Rye/Ry) 32,
and
K(Ry)=S(58/2)9g A Rye/Ry) %72,

where

S(X)= > Win/pl-
m=1

Coordination number

FIG. 1. Cauchy pressur@,,— C,, vs coordination numbez for
the cubic structures diamond, bcc, and fcc. The circles are experi-
mental data, taken from Simmons and WdRef. 17. The curve is
the fitting result withU,=0.80, U,=0.25.

45(5812)
Up——|
S(B)
Equation(20) shows that the present model is able to de-
scribe the materials with negative Cauchy pressures. If the
nearest-neighbor approximatiofNNA) is used, i.e.,
S(x)=z, then Q(Ci,—Cu)=(8%9s/9)(N2/4+4U,/z
—Uj,), and the Cauchy pressure will change from negative to

(20

We choose the following properties which reflect the extenpositive at a certain coordination numbgtig. 1). This is
of how the interatomic potential deviates from the TB-SMA. consistent with the fact that covalent solids with diamond

A. Phase stability

structure g=4) have negative Cauchy pressures while most
of the transition metalsz= 8 for bcc andz= 12 for fco) have
positive ones.

In the present model, the binding energy as a function of

the nearest-neighbor distanBg is written as

BI2
Econ= st)v( ) J_xua)( ) (18

where

_ J58)- 5(35/2) S(5p812)

One can see from the above equation thatWh&erms im-

(19

prove the flexibility of the mininum energies with respect to

C. Anisotropy ratio

The anisotropy ratio for the elastic constaisrefers to
the ratio of the rhombohedral shear moduldg, and the
tetragonal shear modul@' =(C,;— C5)/2. For bcc, with a
cutoff between second- and third-nearest-neighbor distances,
Q can be expressed by

8 RiVer(Ry) —RiVe(Ry)
R3VZi(R2) —RoVir(Ry)

The effective pair potential for the present model is the com-
bination of three Lennard-Jones-like functions:

(21)

structures. @ 8
Verl(r) = Ve(%) - /—@ (E)
B. Cauchy pressure S(B)

The elastic constants consist of the contributions of three U V0e Rle Spl2 ~ S(38/2) Rle
terms: C,,,=C>VA+6C,,,+ 8°C,,,, whereC3)* are con- * 1S(B)! S(B)
tributed by the flrst two terms of Ed15), and 6C,, and 5512
520 , are contributed by the other two terms, respectively _ \/9— [(Rle> _ 25(53/2)( Rl«%) }
(see the Appendix for the expressiprishe Cauchy pressure 52( B) S(B) r

can be expressed by

Bad VS(B)

9 | 4

S(3B12)
L s(p)

Q(C1o—Cyy)=

(22

The collision radii for the above three Lennard-Jones-like

potentials are
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[ave@/ﬁ@]ll(a—ﬁ)Rle' [SS(B)IZS(SBIZ)]ZIBRle, TABLE I. I.nlput experimental dgta and suggested parameters for
the bec transition metals. The lattice constants are in A, the cohe-
and sive energies are in eV, the bulk modpvhich are obtained from
experimental data by usinB=(C,;+2C,,)/3] are in 13 N/m?,
[5S(B)/4S(58/2) 17 Ry, U,, U,, B are dimensionless, arid, are in e\2.
respectively. The problem of the anisotropy ratio for the bcogiement a, E. B g T, U, U,
transition metals lies in the fact that the difference between
the curvatures for the effective pair potential at the first- andv 3038 53F 159 65 150 35 9.1
second-nearest-neighbor distances should not be too largib 33¢ 757 17 62 300 29 81
From Eq.(22), one can see this can be reached because thea 33¢ 81¢ 198 57 300 35 100
negative third term plays the role of reducing the curvatureCr 288 41¢ 190 6.0 200 100 28.0
Within the framework of the TB-SMA(or the EAM), it is Mo 3158 682 263 80 100 115 30.0
rather difficult to use conventional functions like the expo-w 316 890 3.1 6.0 100 164 50.0
nential or power law to slow down the rapidly decaying be-Fe 28%F 428 109 6.0 100 3.7 8.5

havior of the curvature for the effective pair potential, be-
cause the decaying parameters determined from experimenﬁﬁefﬂence 24.
data are usually too large. Reference 17.

©

V. APPLICATIONS OF THE POTENTIALS 2 W V(poRy) =D (Ry), (25)
In this section, we shall apply the above model to study m=1
real materials. For real materials we have to determine th@here
potential parameters at first. Usually a least-squares fitting

procedure is used, but in this work we do not intend to spend (/2P (Ry)=E(R;) +VI'(Ry) —UJ(R)DIT'(Ry)

too much effort on obtaining the optimal parameters. We just

find some suitable parameters and demonstrate numerically +UZK(R)/TA(Ry). (26)
the model capability. And similiar to Ref. 18]'(R;) is assumed to be an exponen-
tial function:
A. Fitting procedure
In the above section we employ power-law functions to F(Rl)zl“eex;{ —ﬂ(:—l—l)}. (27
study the model capability in an analytical way. Numerically le

a disadvantage for the power-law functions is that they con-
verge too slowly (~*>e™ *"). We found that whatever the
other parameters and 8 should satisfy the equality3/2
=9B/E4, if one wants to obtain correct ground-state prop- o
erties(i.e., the lattice constard,, the cohesive energys, g(r)= > wml(Pul), (28
and the bulk modulu8). If the hopping integral converges m=1
faster (3 becomes greatgrthen the pair potential will con-
verge slower & smalley and vice versa. Therefore, the long-
range tails cannot be eliminated by increasiwagr B. Of
course, more long-range potentials will result in greater com- o ) o
putational effort because a larger neighbor list is needed. Where u are the Mius inversion coefficients for crystal

In this section, we use the lattice-inversion metifotf  lattices. The pair potential and_hopplng integral defined
(LIM) based on the Maius inversion transform in number @bove decay much fastézxponentially than the power-law
theony?22to simplify the fitting procedure for obtaining the functions. Compared with the conventional fitting procedure,
model paramters from the experimental data. We suppos@e inversion sc_:heme s_k|ps searching for the optimal param-
that the cohesive energy as a function of nearest-neighb(ﬁ’ters for the pair potential and correct ground-state properties
distance is given by the universal binding energy curve off@n be guaranteed.

By using the LIM,g(r) andV(r) can be inverted from
Eqgs.(24) and (25):

V<r)=mE=1 pn® (Pl ), (29)

Roseet al, 2 The input experimental data for the universal equation of
binding energy and suggested parameters are listed in Table
R, R, I. The inverted results for the square hopping integrals and
E(Ry)=—E41+alo—- 1) exp{ - a(R— - 1) } pair potentials for the bce transition metals are shown in Fig.
le le 23) 2. The pair potentials have attraction wekspecially for Cr,
Mo, and W.
where a= 9BQ/E,, B is the bulk modulus{) the atomic
volume, andE, the sublimation energy. We have the lattice B. Phase stabilities and elastic constants

summations of the square hopping integral and pair potential, Instead ofCy;, C1p, andCy,, we calculateC’, Cyy, and

x B by distorting the crystal lattice with the corresponding
E Wing(PmRy)=T'(Ry) (24) strain matrices. The cutoff is carefully placed at the distance
Moy e v where the contribution of the hopping integral and pair po-
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TABLE IlIl. Calculated elastic constants, vacancy formation en-

20 ergies, and surface tensions for the bcc transition metals with the
present model. The first row is the calculated results; the second is
151 the experimental data. The elastic constants are A M2, the
. anisotropic ratio=2C,,/(C4,— C1,) are dimensionlessgy,qqare
3 10+ in mJ/n?, andE, are in eV. The data in parentheses are the relax-
§ ation_energies for vacancy formation. Source of experimental data:
T o5l Elastic constants are from Ref. 17; vacancy-formation energy of V
g is from Ref. 14; those for the others are from Ref. 10; surface
g energy for V is the theoretical result of Ref. 10, those for the others
E 0.0 are experimental values from Ref. 10.
05 Element  Cy; Cyi Cus Q Y100 E,
\% 2141 1256 0.427 0.96 4554 2@®)
-1.01.0 210 3i0 410 5.'0 ejo 70 2279 1.187 0.426 0.78 2600 2.10
@) Interatomic distance r (A) Nb 2243 1442 0.261 0.65 3830 3@
2466 1332 0.281 0.50 2300 2.04
60 ' ' ' ' Ta 2508 1687 0.849 207 5109 4(4@)
‘| ' 2660 1.612 0.824 1.57 2780 2.90
40 | \‘ Cr 3.919 0.881 1.042 0.69 16960 1@
. \ 391 0.89% 1032 0.69 2200 1.20
5 \ Mo 4318 1788 1157 092 11968 1@2%)
§ 20 - 4647 1615 1.089 0.72 2200 2.24
= W 5.179 2.067 1.630 1.05 21376 2610
% 00 5.224 2.044 1606 1.01 2800 3.15
o Fe 1558 0.845 0.783 220 6030 228)
< B 1519 0.862 0.762 2.32 2200 1.79
20| \ e —_cr
N ---- Mo
W E, (periodic boundary condition applied fgy,z directions
-4.0 : ' : : : and (100 surface tensiong g (periodic boundary condition
1.0 2.0 3.0 4.0 5.0 6.0 7.0 ; ; ; i i
(b) Interatomic distance r (A) applied tox,y directions. The vacancy-formation energy is

defined as the energy needed to move an atom from bulk to

FIG. 2. Inverted pair potentials and square hopping integraléurface{ rather than infinity. The unrela>.(ed results are pre-
g(r) (inse as a function of interatomic distance. The unit for sented in Table Ill. The relaxation energies for vacancy for-

g(r) is eV (a) For V, Nb, Ta, and Fetb) for Cr, Mo, and W. mation (computed by minimizing the energy with respect to
atom positions; only the nearest neighbors around the va-
tential to the cohesive energy has been small enough to egancy are allowed to reldare given in parentheses. The
sure the reliablity of the calculated results for the phase stacalculated results o, for V, Nb, Ta, and Fe are in reason-
bilities. The re_sults_ for the phase stabilities and elasti_cab|e agreement with the experimental data while those of
constants are listed in Tables Il and Ill. The bcc structure iRinrelaxed surface tensions are higher than the experimental
calculated to be the most stable one over a range of coordiata (considering relaxation will surely help reduce the er-
nation number from 4diamond to 12 (fcc or hcp. rors). Unfortunately, the calculated vacancy-formation ener-
A simulation box of size 18 10X 10 (2000 atomsis em-  gies and surface tensions for Cr, Mo, and W are much higher
ployed in the calculation of the vacancy-formation energieghan the experimental data. It seems that there is some de-
TABLE II. Calculated energy differences for the bce transition Pendence related to bond breaking that correlates the elastic

metals with the present model. The energies are in eV. The equfonstantswithout bond breakingand the defect properties
librium nearest-neighbor distances for the corresponding structuredVith bond breaking We failed in getting parameters which

(in A) are also given. are able to reproduce both. While the defect properties may
be reproduced with appropriate parameters, the results for
Element V. Nb Ta Cr Mo W Fe the elastic constants may be as poor as those produced by the

EAM. This severe disagreement seems to imply that the con-

AE(sc-beg 0.854 0.831 1.195 1.947 3.720 2.980 0.74Yiphytions from higher moments.e., directional bonding
r1e(SO 2.500 2.700 2.720 2.450 2.730 2.660 2.330should be considered.

AE(fee-beo 0.063 0.083 0.072 0.214 0.108 0.276 0.037

r1e(fco) 2.710 2.943 2.943 2.575 2.815 2.823 2.561 T

AE(hcp-bcg 0.063 0.083 0.072 0.214 0.105 0.276 0.037 C. Epitaxial Bain path

ro(hcp 2.710 2.940 2.950 2.570 2.820 2.820 2.560 The martensitic transformation is a first-order displacive

AE(diamond-bck 1.189 0.980 1.894 1.452 4.570 3.226 1.54750lid-solid phase transformation observed in a variety of ma-

r 1o(diamond 2.377 2.559 2.663 2.503 2.754 2.693 2.22derials. The Bain path refers to the path of intermediate te-
tragonal states between two phases connected to a martensi-
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tic transformation, like the bcc and fcc. It has been pointed 0.10 ;
out in Ref. 25 that the study of Bain paths is instructive to ".
the physics of crystal growth and thin filriSwhere we need \
‘l\
\
L}

to understand the structures and properties of the epitaxial 0.08 -
film or strained superlattice. The epitaxial Bain path, pro-
duced by isotropic stress or strain in tfE00) plane of te-
tragonal phases accompanied by zero stress perpendicular to
the plane, may help to predict which structure will form on a
given substrate.

The martensitic transformation has a tie with both the
phase stabilities andthe nonlinearity of the elastic con-
stants. Therefore, the calculation of the Bain path provides a
comprehensive test for the validity of the present model.
There are many paths to go from fcc to bcc or conversely. 0.00 , . , LN
These paths are called Bain paths if the geometries along 075 080 08 090 095 100 105
such a path have tetragonal symmetry. To calculate the Bain @ Relative lattice constant
path means calculating the cohesive energy as a function of 0.50
two lattice parametera andc, E(c,a), and finding the en-
ergy minimum for each givena, wherea is the length of a
face-centered orthorhombic cell in thgy directions and is 0.40 |
that in thez direction.c/a=1 corresponds to the fcc struc-
ture while c/a=\/2/2 corresponds to the bcc structure. The
Bain paths for some transition metals including vanadium
have been calculated by using the full-potential linearized
augmented plane wavé-P-LAPW) method based on the
density functional theor$® For vanadium, it is reported that
for both the epitaxial Bain patti.e., a is fixed andc adjusts
to minimize the binding energyand the uniaxial Bain path
(i.e.,c is fixed anda adjusts to minimize the binding enengy
the fcc phase is a saddle point, while there exists a meta- 0.00 . - . A
stable body-centered-tetragondict phase. In Fig. 3 we OO el o M0 1S
show that the present model also predicts a similar epitaxial
Bain path for vanadium, though the path shape and the mag-
hitude of the energy difference are different. The S’addk-:‘relative lattice constant is defined a&,, wherea, is the equilib-

point predicted by the present model for vanadiln06 eV/ rium lattice constant for the bcc structuta) V, Nb, Ta, and Fe(b
atom is about one-fifth of that by thab initio method(0.29 = Mo and W. @ V. Nb. Ta, b)

eV/aton). The lattice constant and energy difference for the

tastabl t ph i th t I . _— .
21:e 26155??;(0?;: f 6E;S)ear?évgno5gyew§t0%esiﬁncoggsr?sosrgre. The model just indicates the role of electron correlations

with the ab initio resulta=2.41 A (c/a=1.83) and 0.1 on interatomic interaction and physical properties of materi-

eV/atom. Although the potentials for Cr, Mo, and W presentaIS with half-filled or nearly-hali-filled bands.

poor defect properties, the results for the elastic properties

and pha}se s;abilities are quite good; therefqre. we also qalcu— ACKNOWLEDGMENTS

late their Bain paths. For Nb, Cr, and W similar behaviors
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FIG. 3. Epitaxial Bain paths for the bcc transition metals. The

VI. CONCLUDING REMARKS

Based on the perturbation method for the Hubbard model
and the BOP, we have derived a semiempirical tight-binding
model for the interatomic interaction. It is shown that the For cubic crystals, the formulas f#iC,, and 5ZC,W can
present model can be used to reproduce very well the elastige written as
properties and phase stabilities of the bcc transition metals.
However, the results of vacancy-formation energies and sur-
face tensions for Cr, Mo, and W calculated with the sug-
gested parameters are wrong.

Albeit the model is directly parametrized and used to
simulate real metals, it does not necessarily mean that elec- 23/ oT \2
tron correlations are responsible for all the success and fail- + ﬁ( )
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