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Fractal analysis of the percolation network in epoxy-polypyrrole composites
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The macroscopic dc conductivity and structure of epoxy-polypyrrole composites are studied as a function of
the polypyrrole amount and interpreted with percolation concepts. The fractal dimebsadnthe infinite
cluster is found to increase substantially from 1.25 to 1.88 with the conducting filler concentration. An original
representation of the conducting backbone is obtained using image analysis techniques and suggests a finitely
ramified structure. The Minkowski dimension of the backbone is determined to be an excellent approximation
of the fractal dimensioDg and it is seen to increase as the polypyrrole concentration increases while the
fractal dimension of the elastic backbone is found to keep the constant Dgleel.13. These results are
compared to scaling percolation theof$0163-1827)00933-9

[. INTRODUCTION amount increases and leads to changes in the finite and infi-
nite cluster morphology, we discuss the evolution f
In recent years, considerable interest on conducting polywhich intuitively quantifies the irregularities and the degree
mer composites has developetidue to many potential ap- to which the boundaries “fill the planes” with2D=1. We
plications in technology and especially due to the procesglso propose an original representation of the backbone at
ability and the electrical and mechanical properties of thigdifferent filler concentrations in the vicinity of the percola-
class of materials. Theoretical and applied research has be#ian threshold, extracted from direct microscopy imaging of
carried out in order to understand and to imprdiethe  the conducting network. These representations of the real
synthesis of conducting polymers or conducting p0|yme[baCkb0ne in the composites allow us to have a better com-
composites(ii) the morphology of these materials and the prehension of the network structure and to deternidpe
structure of the conducting polymer network in the compos-
ites, and finally(iii) the electrical transport mechanisms in Il. THEORY
such materials. Basically much of the recent investigations
can be summarized as the study of three key parameters, The static and dynamic properties of the percolation net-
which are the nature, structure, and conductivity of conductwork have been the object of many studies in the past ten
ing polymers or composites. The nature of the conductingears! Much of the current interest in the properties of dis-
polymer and the matrix influences the metallic state formaordered conductor-insulator composites such as carbon-
tion, the structure of the conducting network, and the conblack—polymer composités, blends of polyaniline nanopar-
duction mechanisms in the composite. The morphdlogyticles with conventional polymersas well as Monte Carlo
plays an important role in the electrical properties as it hasimulation® indicate that the infinite cluster acquires a frac-
been observed that quantum-mechanical tunneling occutsal geometr§ over a wide range of length scales above a
more or less efficiently as a function of the geometrical paimicroscopic lattice distance and below the percolation cor-
rameters. While the structure or property relationships ofelation lengthé. The morphology of the primary filler
such a class of material are not fully understood, it seemaggregate&! which influences the shape of the infinite clus-
important to characterize clearly their morphology before in-ter at the percolation threshold, presents, in general, a com-
vestigating their optical or electrical behavior. The real mor-plex irregular geometry that cannot be described by Euclid-
phology of conducting polymers or composites appears to bean geometry concepts. Therefore the incipient infinite
a very complex arrangeménof aggregates with different cluster, whose formation in the host matrix depends on many
size and shape distributions. In many cases the aggregatparameters? e.g., the nature of the filler, the filler shape, the
are extremely irregular and exhibit a self-similarity when thefiller-matrix interactions, the mixing and the processing tech-
observation scale is changed. These features correspond baques, has an internal self-similar fractal geometry, quanti-
sically to the fractal concepts@and the conducting materials fied by D.
may be characterized by a fractal dimens@nThe fractal The infinite cluster may be decomposed into different cat-
geometry as well as the mathematical or experimental methegories, that do not present the same properties. The dead-
ods used to determine the corresponding fractal dimensioand branches or “danglings” represent the most important
have to be examined carefully as the irregular structure of thpart of the percolation cluster. They can be detached from
polymer or the conducting composite would strongly affectthe infinite cluster by cutting a single bond and do not carry
its properties. any current. The effective part of the infinite cluster which
In this paper, the topological one-dimensional clustercarries the current is known as the backb&hia disordered
boundaries are characterized by a fractal dimen&oim conductor-insulator composites just above the percolation
epoxy-polypyrrole composites. As the conducting filler threshold, the vast majority of the conducting filler is situ-
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ated in finite-size clusters that coexist with the percolation 1

network and in the dangling bonds that are attached to the t=5[v(3d=4)—4]. (4)
infinite cluster. Only a small part of the conducting filler,

which forms the backbone, contributes to the conduction ofn 3 more general manner and for a large number of com-

the current through the composite. _ posite samples the exponehtcan be easily determined
The backbone exhibits a fractal character and provides athrough conductivity measurements and its values given in
acceptable idea of the general structure of the percolatiofhe Jiterature seem to vary considerably as was recently sum-
network. The study of the infinite cluster geometry and eSmarized and discussed by Heartéyt was found to be either
pecially the backbone geometry is clearly the first step tqn good agreement with the percolation theory prediction
understanding the properties of composites such as the mag<2 obtained from Monte Carlo simulations as a critical
roscopic condtigtlwty. The elast_|c backbone, introduced beesuIt, or much higher than this theoretical valtie 2) lead-
Herrmannet al™* as a fractal object, can be extracted froming to a nonuniversal behavior of the electrical conductivity.
the backbone by the so-called burning method. The fractal It s rather difficult to determine experimentally such
dlmenS|on of the' backbone and the elastlc bacl_<pone 9iVBuantities a(p), Pg(p), or &(p) in order to discuss their
valuable information on the structure and irregularities of theg,,o|ution wherp increases and to compare their values with
effective conducting network and the main paths that argne statistical concept of the percolation. The conductivity
responsible for conduction in disordered media. and the fractal dimension of the real percolating network are
Near the percolation threshold, the network can be charhe two main experimental parameters which can be deter-
acterized by many percolation parameters which obey scalyined from conducting composites. Microscopy imaging
ing Iawg, mdependently of the netlwork structUYE and 'ltS. Mi~transmission electronic microscopy, transmission optical
croscopic details. Hence the fraction of bonds in the '”f'”'temicroscopy and scattering techniquésmall-angle neutrons,
cluster P(p), the backbone fractiof,(p), the correlation  y_ray jighy allow the direct determination of the fractal di-
length £(p), or the macroscopic conductivity(p) can beé  mension of clusters or percolating networks. However, the
described by different statistical power laws with the corre-fractal dimension of the backbone cannot easily be charac-
sponding universal exponents Bg, v, andt, respectively, terized through experimental techniques. The different
whose values depend only on the topological dimension ofja1ued of Dy proposed in the literature are generally calcu-
the system. The geometrical exponeptspg, andv have |ated using Eq(1b) or deduced from Monte Carf@random,
been determinddas exact results or through numerical esti- o nonrandorff fractal models as it is rather difficult to ob-
mations for different dimensionalitiesd2,3,...,6) of  gerve the backbone in real disordered systems. We should
the system, and they were found to be deperflent the  notice that geometrical feature of discontinuous fiffhin-
fractal dimensions of the network as shown in Eds) and  ¢juding the infinite cluster as well as the backbone, have
(1b), whereD is the fractal dimension of the infinite cluster, peen analyzed through transmission electron micrograph.
Dg is the fractal dimension of the backbone, athds the  This work which analyzed the structure of the percolation

topological dimension of the system: network and the backbone in real materials led to the con-
clusion that the metal-insulator transition in such films be-
B longs to the same universality class as the idealized percola-
D=d- 7 18 {ion problem.
Bs Il EXPERIMENT
DBI d— 7 (lb)

In this study, the samples are composed of conducting
i i polypyrrole (PPy and epoxy resin. PPy was synthesiZed
In an ordinary lattice, the transport exponéntan also be  chemically in an aqueous solution of FeQlAldrich) with
related to the critical geometric exponents and the conduc-a intial molar ratio iron lli/pyrrole of 2.2 and 1.Naphtalene

tivity exponent¢ as follows: sulfonic acid(Aldrich) was used as a codopant. The grape-
like structure PPy macromolecules were mixed with the ep-
t=(d=2)v+{, (20  oxy polymer diglycidyl ether of bisphenol DGEBA, DER

332, Dow Chemica)swith isophorone diamin¢lPD, Hus)
where ¢ satisfies the scaling law =L ~¢ between the con- and 3,3,5-trimethylcyclohexylamine (TMCA, Janssen
ductivity o and the size of the netwoik. With the introduc-  Chemica. Different mixtures were prepared with PPy vol-
tion of the fractal model and the Einstein diffusion ume fractions ranging from 0 to 0.10. The compounds were
equation’® a relation has been established betwe¢ethe  degassed and curedrf@ h at 80°C and 4 h at 140 °C.
geometric exponent8 andv, andD,,, the fractal dimension Square samples of nominal length 40 nm and thickness 1.7

of the random walkor “diffusion” exponent: mm were obtained at each concentration. Both sides of the
sample were metallized with a 75 nm aluminum coating. The
t=(D,—2)v+ 8. (3)  contact resistance was determined by complex impedance

spectroscopy over a large frequency rafg@ MHz;0.1 HZ
Alexander and Orbach proposed a simplified equation and was found to be negligible& 10 O cm) compared to
based on the assumption that the spectral dimensiothe bulk resistivity of the samplep¢10* Q) cm). Due to the
D,=2D/D,, equals the constant valde They then obtained relatively high level of the sample resistivity, the perpendicu-
the “super-universality” relation lar conductivity measurement was made using two parallel
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FIG. 1. Evolution of the dc resistivity versus volume fraction
of polypyrrole in epoxy-PPy composites. The labels near six of the
experimental plots correspond to the samples whose conductin (a) .
network is presented in Fig. 2.

electrodes. Transmission optical micrographs were obtained

from about ten 2Qum thick samples at each filler concen-  FIG. 2. General image analysis of the PPy-epoxy composites
tration, giving a good view of the macroscopic network in including optical micrographs, binary PPy network pi_ctures, and the
two dimensions. The thickness is assumed to be negligiblékeleton and backbone of epoxy-PPy composites with volume frac-
with regards to the analyzed surface (¥4B0 um?), an  tions of polypyrrole(@ p=0.017,(b) p=0.029,(c) p=0.043,(d)
aspect which will be discussed in the next section. p=0.058,(¢) p=0.071, and(f) p=0.083, respectively.

technique provides valuable information on the structure and
IV. RESULTS AND DISCUSSION the geometry of the backbone in the experimental conductor-

The resistivity behavior of the epoxy-PPy composites ighsulator cqmposite. Below the pgrcolation threshold, at
shown in a decimal logarithmic scale in Fig. 1 as a functionP=0-017 [Fig. 2@] and p=0.029 [Fig. 2b)], the binary
of the filler volume fraction. The electrical resistivity pre- Pictures of the epoxy-PPy composite in Fig. 2 exhibit a large
sents a sharp insulator-to-conductor transitiorpat 0.035 Q|str|but|on of. f|n_|te clusters chare}ctenzed.t_)y fractal ou_t-
that obviously corresponds to the formation of the infinite"nes- In the vicinity pf the percolation transition as seen in
cluster in the three-dimension&8D) composite. The con- Fi9- 2C), @ conducting path occurs whose length of 720
ductivity critical exponent value was found to he=3.0, #M iS much greater than the correlation lendtlihat was
which is in perfect agreement with the theoretical mean-fielf@lculated to be around 1G@m. The backbone representa-
value® but this will not be discussed here. For six compos-iion nearp. presents a finitely ramified structure with inter-
ites that contain different volume concentrations of PPy bel@l quasi-one-dimensional links as was earlier suggested.
low and above the percolation threshold, we propose to studyhe backbone structure can be more or less reflected by the
the geometry of the macroscopic conducting network. Eacchematic “link-nodes-blobs” T"Odqu'” which dense re-
gray-leveled image corresponding to a transmission opticaions called blobs of diameter in the orderéoére linked by
micrograph was converted into a binary picture through gluasi-one-dimensional chains of lendth-£. However, the
careful thresholding transformation. The skeleton of the conduasi-one-dimensional links that play an important role in
ducting network was extracted from the binary picture usinghe elastic backbone geometry, seem not to extend self-
series of erosion transformations withC$ square structur- Similarity over a wide length scale range. The order of rami-
ing element. A representation of the backbone was drawn bfjcation R of the backbone satisfies<R<< reflecting a
smoothing out the danglings and the finite clusters in th initely ramified structureR was determined as the smallest
skeleton of the filler network. This image analysis was re-number of interactions that must be cut to isolate a pBint
peated for about ten different samples at each filler concerf@andomly chosen from the structure. The average order of
tration. As the samples exhibit a rather similar fractal struc+amificationR, which was calculated for 200 random points
ture, only part of the results are shown in Fig. 2 as achosen from ten different samples at each concentration, was
representative example. It should be noticed that the bacKeund to increase from 3.10 to 9.5 as the filler concentration
bone which is obtained with such a process cannot be corincreases from 0.043 to 0.083.
sidered as the real backbone of the percolating network, as it In order to quantify the structure of the polypyrrole net-
may change slightly depending on the thresholding level ofvork and its backbone, we determine the fractal dimension
the experimental picture or the structural element used in thef the composite binary pictures and the Minkowski dimen-
skeleton determination. Nevertheless this image analysision of the skeleton and the backbone. In the first case, the
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FIG. 3. A typical example of the decimal log-log average den-
sity plot p(L)=M(L)/L? versus the length scalefor the conduct- FIG. 4. Evolution of the fractal dimension of the conducting
ing network of the epoxy-PPy composite at the filler volume con-network (O) as a function of the filler volume and the Minkowski-
centrationp=0.058. fractal dimensions of the skeletoil( and the backbone<) ver-

sus the PPy concentration.

successive squares metfiotf was applied at 100 different
initial sites of three samples at each filler concentration. Th
density of the conductive netwog(L)=M(L)/L? was av-
eraged and plotted as a function of the square Isia¢ each
PPy volume fraction. In Fig. 3, the plot op(L) at
p=0.058 presents three typical regions separated by tw
characteristic quantities, i.e., the microscopic lergthat is
close to the image analysis resolution, and the correlatio
length & over which the network becomes macroscopically
homogeneous gi>p.. Fora<L<¢ the density of the net-
work was found to fit a fractal behavior characterized by the
power lawp(L)oLP~4.

It should be noticed that the thickness of our samgkes
um) is slightly lower than the microscopic lengén and
much lower than the correlation lengtfor all the filler
amounts. Therefore the calculation of the fractal dimension
is assumed not to be significantly influenced by the thickness
of the sampldbelow a certain valua), which is close to the
image analysis resolution. A larger thickness would obvi-
ously influence the fitted value of the slope presented in Fig.
3 for a<L<¢, but no reference exists in this field that
clearly analyzes the influence of the sample thickness or the
projected area for the two-dimensional characterization of
the three-dimensional structures. Below the microscopic
valuea the contribution of the sample thickness on the frac-
tal dimension calculation is believed to be negligible as is the
contribution of the thresholding procedijre.

The fractal dimensio® of the network was determined
at each PPy concentration in Fig. 4 and is seen not to keep a
constant value with the PPy amouf.increases from 1.25
to 1.70 in the vicinity of the percolation threshold, then it
reaches a constant value about 1.88. At a microscopic length
scale a constant value of the fractal dimendip# 1.80 was
calculated from transmission electron micrographs in differ-
ent areas of the infinite cluster of epoxy-PPy composites.
One of the transmission electron micrographs is given in Fig.
5 as an example and the fractal structure of the PPy network FIG. 5. Transmission electron micrograph of a part of the infi-
can be clearly seen. At this microscopic length scale, thaite cluster in an epoxy-PPy composite= 0.058).

éractal dimension of the PPy infinite cluster does not change
significantly when the filler volume concentration increases.
Hence the fractal aspect of the infinite cluster has to be re-
considered as different values Df can be determined de-
ending on the observation length scale and filler amount.
hen the infinite cluster mass increases, from a macroscopic
Roint of view, its geometry changes slightly, becoming more
irregular and leading to an increase of its fractal dimension
although its microscopic structure seems to stay more or less
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the same. These results show the limit of the self-similarityof view.?! The square side can be writtelr= 5n where§ is
in real random fractal materials. They also suggest a continuthe pixel width andn is an entire number corresponding to
ous increase of the fractal dimension with the filler concenthe dilation step. The plots ¢fn[.A(X,)]—In(n)} as a func-
tration. That is not in contradiction with the theoretical tion of |n(n) present a linear section of S|ope for every
studie$® which generally predict three distinct values cor- hackbone and skeleton which allows the Minkowski dimen-
responding to the three percolation regimes, i®51.56  gjon to be calculated aB’'=2—a and plotted in Fig. 4
below p;, D=1.89 atp=p., andD=2 abovep.. HOW-  yersys the PPy filler amour®.’ is seen to increase abope
ever, the results in Fig. 4 suggest a significative evolution of,om about 1.30 to 1.55-1.6. This behavior of the
D as the material is filled with the conducting polymer. minkowski-fractal dimension corresponds to the decrease of
Wiswanathan and Hearféyroposed thaD=2.6-0.6 in  the quasi-linear paths in the backbone structure as the PPy
three-dimensional ~ disordered ~carbon-black—polyethylengoncentration increases. This result depends obviously on the
composites at intermediate length scales. It seems very difnethods used to obtain the skeleton and the backbone repre-
ficult to compare this result to the scaling theory predictionsentation, however, it must be pointed out that it describes an
D=2.53 ([d=3) as the experimental value can vary from 2 experimental material structure, whereas most of the previ-
to 3.2 (we note thatb>3 would not be consistent for a oys results are calculated from Hab) or arise from math-
dimensionalityd=3). We could analyze the experimental ematical simulations. Herrmaret al}* have summarized the
results in Fig. 4 from a statistical point of view, and proposegifferent values proposed in the literature for the backbone
a mean valu®=1.67+0.26 as the fractal dimension of the fractal dimension that was found to vary from 1.55 in the
epoxy-PPy composites for different percolation regimescase of Monte Carlo simulations or PSGR to 1.80 in the case
However, our observations and calculations seem to indicatgf Serie’s expansion for the dimensionalily=2. The mean
that the fractal dimension of the system does not keep galueDg= 1.6 is commonly accepted for the backbone at the
constant value as the infinite cluster grows. Andratiel®  percolation threshold. However, it has not been established
recently proposed a percolation model for a conducting polythat D, should keep a constant value when the filler concen-
mer in terms of a random resistor network. The plot of thetration increases and we attempt to demonstrate that this is
conducting backbone which is extracted from the network ahot the case. Indeed the Minkowski dimension of the back-
the percolation threshold, is very similar to our representapone increases slightly in the range32—1.4 as a function
tion in real conducting polymer composites, exhibiting a fi-of the PPy amount, above the percolation threshold. This
nitely ramified structure with quasi-one-dimensional internalresyit may be related to the evolution of the backbone which
links. The critical exponent for the conductivitywas stud-  hecomes more and more ramified as the mass of the infinite
ied, corresponding to the scaling lawL ~¢, wheres andL  cluster increases, as seen in Fig. 2. On the other hand, the
are the conductivity and the size of the system, respectivelyinkowski or fractal dimension of the backbone increases
Andradeet al. showed that’ can change significantly as a with an increase of the order of ramification, resulting from
function of the specified polymer length chain and the conthe formation of new blobs and nodes in the percolating
ductivity mode in the polymer. Quantitatively a deviation of cluster. Hence, we have to reexamine the definition of the
13% between a calculated valge-1.10+0.02 and the the- packbone which seems not to exhibit a constant structure but
oretical prediction/=0.9745 can be observed. The variation whose arrangement changes with the filler concentration, be-
in the critical exponent and the fact that the fractal dimen-coming more and more irregular. In such physical fractals it
sions of the conducting network do not equal the discretghould be noticed that the self-similarity seems limited or
values predicted by the percolation theory suggest that alfery difficult to investigate.
conducting polymer materials cannot be fully described by The elastic backbone which is defined as the most direct
the percolation scaling theory. path for the current through the network, may be easily de-
In the case of the skeleton and backbone picture, we catermined and extracted from the backbone representations
culated the Minkowski dimensiéhwhich can be considered using a very simple algorithm. We calculated the fractal di-
as a morphological parameter and gives a good estimation @hension of many elastic backbones that were obtained as
the fractal dimension. An excellent correlation was foundmentioned above and we found a constant value
between the Minkowski dimensidd’ and the fractal dimen- Deg=1.127+0.006. This value is in good agreement with the
sion D for many deterministic fractal curves. For example, theory !4 which proposesDg=1.10-1.13. Therefore, we
we calculatedD’=1.49 for the well-known Von Koch may consider that the structure of the shortest path in the
curvé whose fractal dimension i®=1.5. The Minkowski infinite cluster does not change significantly when the filler
dimensionD’(X) of a set of linesX can be calculated using amount is increased. At the percolation threshmld a set of
successive dilations of the set with balls of fixed radius conducting paths occurs in the materials, in which one or
The area of the dilated set is labelet] and the Minkowski  many shortest paths called the elastic backbone can be
dimension is given by found. As the infinite cluster grows fqr>p., its external
structure and its backbone change, becoming more irregular
In[AXd)] and complicated, but the shortest path keeps roughly the
In(d) |’ ® i i
same geometry that can be represented by an irregular line
whose fractal dimension is about 1.13. One possible interpre-
Each digitalized picture can be considered as a squargation is that the fractal dimension of the finite-size clusters
grid of pixels, so we choose the squ&® as the structuring does not equal the fractal dimension of the percolating infi-
element rather than the ball, which is very convenient for oumnite cluster. Hence, during the aggregation process, finite-
calculation and fairly acceptable from a mathematical pointize clusters contribute to the formation of the infinite cluster

2_

D'(X)=lim
d—0
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leading to a change in the fractal dimension of the latter andange of length scales. This behavior has been frequently
that of the backbone, however, the elastic backbone geonobserved in various experimental sampfe¥ whose electri-
etry is not affected. Wiswanathan and Hedhlestve explic-  cal or geometrical properties, such as the correlation length
itly shown the presence of two fractal structures in conductor the fractal dimension, are perfectly described with perco-
ing polymers composites. Recently Andriaamsel®? have  lation models and critical exponents. In our conducting poly-
demonstrated the existence of two scaling regimes in similamer composites, the fractal dimensions of the network and
materials, dominated by the infinite percolating cluster andhe backbone were found to increase with the conducting
the finite-size cluster, respectively. Another possible interfiller amount. The conducting network arrangement depends
pretation is the universal feature of the elastic backbone impon many experimental parameters that are usually not con-
such conducting polymer composites. This would suggessidered in theoretical models and the infinite cluster structure
that the fractal dimension of the elastic backbone would be & clearly seen to change when the filler concentration in-
critical value although the geometric or the transport properereases. It seems that a continuous change in the fractal di-
ties of the percolating network are not fully described by themension value of the infinite cluster results from the continu-
percolation models. ous change in its structure as the filler amount is increased.
This behavior suggests that the fractal dimension of the infi-
V. CONCLUSION nite clusterD and the fractal dimension of the backbone
) ) ] . Dg may not be considered as universal values as minor
In this article we have shown a fundamental difference inchanges in the filler concentratignaround the percolation
the properties of the percolation r_letwor_ks resulting from the’[hresholdpc would lead to major changes in the fractal di-
oretical models or Monte Carlo simulations and the percolagension value. However the fractal dimension of the elastic
tion networks observed in random hett_arogeneogs material$; ckbone seems to keep a constant valge= 1.13 in good
such as the epoxy—polypyrrole composnes of thIS. study. "hgreement with the scaling percolation theory.
the standard discrete lattice percolation model, an increase o
p above the percolation threshold does not lead to an in-
crease of the irregularity of the network, which is composed
of elementary defined objects, such as squares, cubes, andWe are pleased to acknowledge Ferraz Corporation and
balls. In this case, the infinite cluster and the backbone exthe “Region Rhae-Alpes” for their financial support and to
hibit a fractal structure quantified by a constant fractal di-thank N. Vincent, J. Fornazero, and P. Jensen for their help-
mension and characterized by a self-similarity over a wideful discussions.
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