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Fractal analysis of the percolation network in epoxy-polypyrrole composites
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The macroscopic dc conductivity and structure of epoxy-polypyrrole composites are studied as a function of
the polypyrrole amount and interpreted with percolation concepts. The fractal dimensionD of the infinite
cluster is found to increase substantially from 1.25 to 1.88 with the conducting filler concentration. An original
representation of the conducting backbone is obtained using image analysis techniques and suggests a finitely
ramified structure. The Minkowski dimension of the backbone is determined to be an excellent approximation
of the fractal dimensionDB and it is seen to increase as the polypyrrole concentration increases while the
fractal dimension of the elastic backbone is found to keep the constant valueDE51.13. These results are
compared to scaling percolation theory.@S0163-1829~97!00933-8#
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I. INTRODUCTION

In recent years, considerable interest on conducting p
mer composites has developed1–3 due to many potential ap
plications in technology and especially due to the proc
ability and the electrical and mechanical properties of t
class of materials. Theoretical and applied research has
carried out in order to understand and to improve~i! the
synthesis of conducting polymers or conducting polym
composites,~ii ! the morphology of these materials and t
structure of the conducting polymer network in the comp
ites, and finally~iii ! the electrical transport mechanisms
such materials. Basically much of the recent investigati
can be summarized as the study of three key parame
which are the nature, structure, and conductivity of condu
ing polymers or composites. The nature of the conduct
polymer and the matrix influences the metallic state form
tion, the structure of the conducting network, and the c
duction mechanisms in the composite. The morpholo4

plays an important role in the electrical properties as it
been observed that quantum-mechanical tunneling oc
more or less efficiently as a function of the geometrical
rameters. While the structure or property relationships
such a class of material are not fully understood, it see
important to characterize clearly their morphology before
vestigating their optical or electrical behavior. The real m
phology of conducting polymers or composites appears to
a very complex arrangement5 of aggregates with differen
size and shape distributions. In many cases the aggreg
are extremely irregular and exhibit a self-similarity when t
observation scale is changed. These features correspon
sically to the fractal concepts6 and the conducting material
may be characterized by a fractal dimensionD. The fractal
geometry as well as the mathematical or experimental m
ods used to determine the corresponding fractal dimen
have to be examined carefully as the irregular structure of
polymer or the conducting composite would strongly affe
its properties.

In this paper, the topological one-dimensional clus
boundaries are characterized by a fractal dimensionD in
epoxy-polypyrrole composites. As the conducting fill
560163-1829/97/56~9!/5207~6!/$10.00
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amount increases and leads to changes in the finite and
nite cluster morphology, we discuss the evolution ofD,
which intuitively quantifies the irregularities and the degr
to which the boundaries ‘‘fill the planes’’ with 2>D>1. We
also propose an original representation of the backbon
different filler concentrations in the vicinity of the percola
tion threshold, extracted from direct microscopy imaging
the conducting network. These representations of the
backbone in the composites allow us to have a better c
prehension of the network structure and to determineDB .

II. THEORY

The static and dynamic properties of the percolation n
work have been the object of many studies in the past
years.7 Much of the current interest in the properties of d
ordered conductor-insulator composites such as carb
black–polymer composites,8,9 blends of polyaniline nanopar
ticles with conventional polymers,2 as well as Monte Carlo
simulations10 indicate that the infinite cluster acquires a fra
tal geometry6 over a wide range of length scales above
microscopic lattice distancea and below the percolation cor
relation length j. The morphology of the primary filler
aggregates,11 which influences the shape of the infinite clu
ter at the percolation threshold, presents, in general, a c
plex irregular geometry that cannot be described by Euc
ean geometry concepts. Therefore the incipient infin
cluster, whose formation in the host matrix depends on m
parameters,12 e.g., the nature of the filler, the filler shape, th
filler-matrix interactions, the mixing and the processing tec
niques, has an internal self-similar fractal geometry, qua
fied by D.

The infinite cluster may be decomposed into different c
egories, that do not present the same properties. The d
end branches or ‘‘danglings’’ represent the most import
part of the percolation cluster. They can be detached fr
the infinite cluster by cutting a single bond and do not ca
any current. The effective part of the infinite cluster whi
carries the current is known as the backbone.13 In disordered
conductor-insulator composites just above the percola
threshold, the vast majority of the conducting filler is sit
5207 © 1997 The American Physical Society
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5208 56FOURNIER, BOITEUX, AND SEYTRE
ated in finite-size clusters that coexist with the percolat
network and in the dangling bonds that are attached to
infinite cluster. Only a small part of the conducting fille
which forms the backbone, contributes to the conduction
the current through the composite.

The backbone exhibits a fractal character and provide
acceptable idea of the general structure of the percola
network. The study of the infinite cluster geometry and
pecially the backbone geometry is clearly the first step
understanding the properties of composites such as the
roscopic conductivity. The elastic backbone, introduced
Herrmannet al.14 as a fractal object, can be extracted fro
the backbone by the so-called burning method. The fra
dimension of the backbone and the elastic backbone
valuable information on the structure and irregularities of
effective conducting network and the main paths that
responsible for conduction in disordered media.

Near the percolation threshold, the network can be ch
acterized by many percolation parameters which obey s
ing laws, independently of the network structure and its m
croscopic details. Hence the fraction of bonds in the infin
cluster P(p), the backbone fractionPb(p), the correlation
length j(p), or the macroscopic conductivitys(p) can be
described by different statistical power laws with the cor
sponding universal exponentsb, bB , n, andt, respectively,
whose values depend only on the topological dimension
the system. The geometrical exponentsb, bB , andn have
been determined7 as exact results or through numerical es
mations for different dimensionalities (d52,3, . . . ,6) of
the system, and they were found to be dependent10 on the
fractal dimensions of the network as shown in Eqs.~1a! and
~1b!, whereD is the fractal dimension of the infinite cluste
DB is the fractal dimension of the backbone, andd is the
topological dimension of the system:

D5d2
b

n
, ~1a!

DB5d2
bB

n
. ~1b!

In an ordinary lattice, the transport exponentt can also be
related7 to the critical geometric exponents and the cond
tivity exponentj as follows:

t5~d22!n1z, ~2!

wherez satisfies the scaling laws}L2z between the con-
ductivity s and the size of the networkL. With the introduc-
tion of the fractal model and the Einstein diffusio
equation,15 a relation has been established betweent, the
geometric exponentsb andn, andDw , the fractal dimension
of the random walk~or ‘‘diffusion’’ exponent!:

t5~Dw22!n1b. ~3!

Alexander and Orbach15 proposed a simplified equatio
based on the assumption that the spectral dimen
Ds52D/Dw equals the constant value4

3. They then obtained
the ‘‘super-universality’’ relation
n
e
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2
@n~3d24!2b#. ~4!

In a more general manner and for a large number of co
posite samples the exponentt can be easily determine
through conductivity measurements and its values given
the literature seem to vary considerably as was recently s
marized and discussed by Heaney.16 It was found to be either
in good agreement with the percolation theory predict
t'2, obtained from Monte Carlo simulations as a critic
result, or much higher than this theoretical value (t.2) lead-
ing to a nonuniversal behavior of the electrical conductivi

It is rather difficult to determine experimentally suc
quantities asP(p), PB(p), or j(p) in order to discuss their
evolution whenp increases and to compare their values w
the statistical concept of the percolation. The conductiv
and the fractal dimension of the real percolating network
the two main experimental parameters which can be de
mined from conducting composites. Microscopy imagi
~transmission electronic microscopy, transmission opti
microscopy! and scattering techniques~small-angle neutrons
x-ray, light! allow the direct determination of the fractal d
mension of clusters or percolating networks. However,
fractal dimension of the backbone cannot easily be cha
terized through experimental techniques. The differ
values14 of DB proposed in the literature are generally calc
lated using Eq.~1b! or deduced from Monte Carlo,10 random,
or nonrandom17 fractal models as it is rather difficult to ob
serve the backbone in real disordered systems. We sh
notice that geometrical feature of discontinuous films,18 in-
cluding the infinite cluster as well as the backbone, ha
been analyzed through transmission electron microgra
This work which analyzed the structure of the percolati
network and the backbone in real materials led to the c
clusion that the metal-insulator transition in such films b
longs to the same universality class as the idealized perc
tion problem.

III. EXPERIMENT

In this study, the samples are composed of conduc
polypyrrole ~PPy! and epoxy resin. PPy was synthesized19

chemically in an aqueous solution of FeCl3 ~Aldrich! with
an initial molar ratio iron III/pyrrole of 2.2 and 1.Naphtalen
sulfonic acid~Aldrich! was used as a codopant. The grap
like structure PPy macromolecules were mixed with the
oxy polymer diglycidyl ether of bisphenol A~DGEBA, DER
332, Dow Chemicals! with isophorone diamine~IPD, Hüls!
and 3,3,5-trimethylcyclohexylamine ~TMCA, Janssen
Chemica!. Different mixtures were prepared with PPy vo
ume fractions ranging from 0 to 0.10. The compounds w
degassed and cured for 2 h at 80 °C and 4 h at 140 °C
Square samples of nominal length 40 nm and thickness
mm were obtained at each concentration. Both sides of
sample were metallized with a 75 nm aluminum coating. T
contact resistance was determined by complex impeda
spectroscopy over a large frequency range@30 MHz;0.1 Hz#
and was found to be negligible (r,10 V cm! compared to
the bulk resistivity of the sample (r.104 V cm!. Due to the
relatively high level of the sample resistivity, the perpendic
lar conductivity measurement was made using two para
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56 5209FRACTAL ANALYSIS OF THE PERCOLATION NETWORK . . .
electrodes. Transmission optical micrographs were obta
from about ten 20mm thick samples at each filler conce
tration, giving a good view of the macroscopic network
two dimensions. The thickness is assumed to be neglig
with regards to the analyzed surface (7203480 mm2), an
aspect which will be discussed in the next section.

IV. RESULTS AND DISCUSSION

The resistivity behavior of the epoxy-PPy composites
shown in a decimal logarithmic scale in Fig. 1 as a funct
of the filler volume fraction. The electrical resistivity pre
sents a sharp insulator-to-conductor transition atpc'0.035
that obviously corresponds to the formation of the infin
cluster in the three-dimensional~3D! composite. The con-
ductivity critical exponent value was found to bet53.0,
which is in perfect agreement with the theoretical mean-fi
value,16 but this will not be discussed here. For six compo
ites that contain different volume concentrations of PPy
low and above the percolation threshold, we propose to st
the geometry of the macroscopic conducting network. E
gray-leveled image corresponding to a transmission opt
micrograph was converted into a binary picture through
careful thresholding transformation. The skeleton of the c
ducting network was extracted from the binary picture us
series of erosion transformations with aC8 square structur-
ing element. A representation of the backbone was drawn
smoothing out the danglings and the finite clusters in
skeleton of the filler network. This image analysis was
peated for about ten different samples at each filler conc
tration. As the samples exhibit a rather similar fractal str
ture, only part of the results are shown in Fig. 2 as
representative example. It should be noticed that the ba
bone which is obtained with such a process cannot be c
sidered as the real backbone of the percolating network,
may change slightly depending on the thresholding leve
the experimental picture or the structural element used in
skeleton determination. Nevertheless this image anal

FIG. 1. Evolution of the dc resistivityr versus volume fraction
of polypyrrole in epoxy-PPy composites. The labels near six of
experimental plots correspond to the samples whose condu
network is presented in Fig. 2.
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technique provides valuable information on the structure
the geometry of the backbone in the experimental conduc
insulator composite. Below the percolation threshold,
p50.017 @Fig. 2~a!# and p50.029 @Fig. 2~b!#, the binary
pictures of the epoxy-PPy composite in Fig. 2 exhibit a lar
distribution of finite clusters characterized by fractal ou
lines. In the vicinity of the percolation transition as seen
Fig. 2~c!, a conducting path occurs whose length of 7
mm is much greater than the correlation lengthj that was
calculated to be around 100mm. The backbone representa
tion nearpc presents a finitely ramified structure with inte
nal quasi-one-dimensional links as was earlier suggeste17

The backbone structure can be more or less reflected by
schematic ‘‘link-nodes-blobs’’ models20 in which dense re-
gions called blobs of diameter in the order ofj are linked by
quasi-one-dimensional chains of lengthL'j. However, the
quasi-one-dimensional links that play an important role
the elastic backbone geometry, seem not to extend s
similarity over a wide length scale range. The order of ram
fication R of the backbone satisfies 2,R,` reflecting a
finitely ramified structure.R was determined as the smalle
number of interactions that must be cut to isolate a poinP
randomly chosen from the structure. The average orde
ramificationR̄, which was calculated for 200 random poin
chosen from ten different samples at each concentration,
found to increase from 3.10 to 9.5 as the filler concentrat
increases from 0.043 to 0.083.

In order to quantify the structure of the polypyrrole ne
work and its backbone, we determine the fractal dimens
of the composite binary pictures and the Minkowski dime
sion of the skeleton and the backbone. In the first case,

e
ng

FIG. 2. General image analysis of the PPy-epoxy compos
including optical micrographs, binary PPy network pictures, and
skeleton and backbone of epoxy-PPy composites with volume f
tions of polypyrrole~a! p50.017,~b! p50.029,~c! p50.043,~d!
p50.058,~e! p50.071, and~f! p50.083, respectively.
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5210 56FOURNIER, BOITEUX, AND SEYTRE
successive squares method8–10 was applied at 100 differen
initial sites of three samples at each filler concentration. T
density of the conductive networkr(L)5M (L)/L2 was av-
eraged and plotted as a function of the square sizeL at each
PPy volume fraction. In Fig. 3, the plot ofr(L) at
p50.058 presents three typical regions separated by
characteristic quantities, i.e., the microscopic lengtha that is
close to the image analysis resolution, and the correla
length j over which the network becomes macroscopica
homogeneous atp.pc . For a,L,j the density of the net-
work was found to fit a fractal behavior characterized by
power lawr(L)}LD2d.

It should be noticed that the thickness of our samples~20
mm! is slightly lower than the microscopic lengtha and
much lower than the correlation lengthj for all the filler
amounts. Therefore the calculation of the fractal dimens
is assumed not to be significantly influenced by the thickn
of the sample~below a certain valuea), which is close to the
image analysis resolution. A larger thickness would ob
ously influence the fitted value of the slope presented in F
3 for a,L,j, but no reference exists in this field th
clearly analyzes the influence of the sample thickness or
projected area for the two-dimensional characterization
the three-dimensional structures. Below the microsco
valuea the contribution of the sample thickness on the fra
tal dimension calculation is believed to be negligible as is
contribution of the thresholding procedure.8

The fractal dimensionD of the network was determine
at each PPy concentration in Fig. 4 and is seen not to ke
constant value with the PPy amount.D increases from 1.25
to 1.70 in the vicinity of the percolation threshold, then
reaches a constant value about 1.88. At a microscopic le
scale a constant value of the fractal dimensionD'1.80 was
calculated from transmission electron micrographs in diff
ent areas of the infinite cluster of epoxy-PPy composi
One of the transmission electron micrographs is given in F
5 as an example and the fractal structure of the PPy netw
can be clearly seen. At this microscopic length scale,

FIG. 3. A typical example of the decimal log-log average de
sity plot r(L)5M (L)/L2 versus the length scaleL for the conduct-
ing network of the epoxy-PPy composite at the filler volume co
centrationp50.058.
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fractal dimension of the PPy infinite cluster does not chan
significantly when the filler volume concentration increas
Hence the fractal aspect of the infinite cluster has to be
considered as different values ofD can be determined de
pending on the observation length scale and filler amou
When the infinite cluster mass increases, from a macrosc
point of view, its geometry changes slightly, becoming mo
irregular and leading to an increase of its fractal dimens
although its microscopic structure seems to stay more or

-

-
FIG. 4. Evolution of the fractal dimension of the conductin

network (s) as a function of the filler volume and the Minkowsk
fractal dimensions of the skeleton (h) and the backbone (L) ver-
sus the PPy concentration.

FIG. 5. Transmission electron micrograph of a part of the in
nite cluster in an epoxy-PPy composite (p50.058).
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56 5211FRACTAL ANALYSIS OF THE PERCOLATION NETWORK . . .
the same. These results show the limit of the self-simila
in real random fractal materials. They also suggest a cont
ous increase of the fractal dimension with the filler conc
tration. That is not in contradiction with the theoretic
studies7,10 which generally predict three distinct values co
responding to the three percolation regimes, i.e.,D51.56
below pc , D51.89 atp5pc , and D52 abovepc . How-
ever, the results in Fig. 4 suggest a significative evolution
D as the material is filled with the conducting polyme
Wiswanathan and Heaney8 proposed thatD52.660.6 in
three-dimensional disordered carbon-black–polyethyl
composites at intermediate length scales. It seems very
ficult to compare this result to the scaling theory predict
D52.53 (d53) as the experimental value can vary from
to 3.2 ~we note thatD.3 would not be consistent for
dimensionalityd53). We could analyze the experiment
results in Fig. 4 from a statistical point of view, and propo
a mean valueD51.6760.26 as the fractal dimension of th
epoxy-PPy composites for different percolation regim
However, our observations and calculations seem to indi
that the fractal dimension of the system does not kee
constant value as the infinite cluster grows. Andradeet al.3

recently proposed a percolation model for a conducting po
mer in terms of a random resistor network. The plot of t
conducting backbone which is extracted from the network
the percolation threshold, is very similar to our represen
tion in real conducting polymer composites, exhibiting a
nitely ramified structure with quasi-one-dimensional inter
links. The critical exponent for the conductivityz was stud-
ied, corresponding to the scaling laws}L2z, wheres andL
are the conductivity and the size of the system, respectiv
Andradeet al. showed thatz can change significantly as
function of the specified polymer length chain and the c
ductivity mode in the polymer. Quantitatively a deviation
13% between a calculated valuez51.1060.02 and the the-
oretical predictionz50.9745 can be observed. The variati
in the critical exponent and the fact that the fractal dime
sions of the conducting network do not equal the discr
values predicted by the percolation theory suggest tha
conducting polymer materials cannot be fully described
the percolation scaling theory.

In the case of the skeleton and backbone picture, we
culated the Minkowski dimension21 which can be considere
as a morphological parameter and gives a good estimatio
the fractal dimension. An excellent correlation was fou
between the Minkowski dimensionD8 and the fractal dimen-
sion D for many deterministic fractal curves. For examp
we calculatedD851.49 for the well-known Von Koch
curve6 whose fractal dimension isD51.5. The Minkowski
dimensionD8(X) of a set of linesX can be calculated usin
successive dilations of the set with balls of fixed radiusd.
The area of the dilated set is labeled (Xd) and the Minkowski
dimension is given by

D8~X!5 lim
d→0

F22
ln @A~Xd!#

ln~d! G . ~5!

Each digitalized picture can be considered as a squ
grid of pixels, so we choose the squareC8 as the structuring
element rather than the ball, which is very convenient for
calculation and fairly acceptable from a mathematical po
y
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of view.21 The square side can be writtend5dn whered is
the pixel width andn is an entire number corresponding
the dilation step. The plots of$ ln@A(Xn)#2 ln(n)% as a func-
tion of ln(n) present a linear section of slopea for every
backbone and skeleton which allows the Minkowski dime
sion to be calculated asD8522a and plotted in Fig. 4
versus the PPy filler amount.D8 is seen to increase abovepc
from about 1.30 to 1.55–1.6. This behavior of th
Minkowski-fractal dimension corresponds to the decrease
the quasi-linear paths in the backbone structure as the
concentration increases. This result depends obviously on
methods used to obtain the skeleton and the backbone re
sentation, however, it must be pointed out that it describes
experimental material structure, whereas most of the pr
ous results are calculated from Eq.~1b! or arise from math-
ematical simulations. Herrmannet al.14 have summarized the
different values proposed in the literature for the backbo
fractal dimension that was found to vary from 1.55 in t
case of Monte Carlo simulations or PSGR to 1.80 in the c
of Serie’s expansion for the dimensionalityd52. The mean
valueDB51.6 is commonly accepted for the backbone at
percolation threshold. However, it has not been establis
thatDB should keep a constant value when the filler conc
tration increases and we attempt to demonstrate that th
not the case. Indeed the Minkowski dimension of the ba
bone increases slightly in the range@1.32–1.6# as a function
of the PPy amount, above the percolation threshold. T
result may be related to the evolution of the backbone wh
becomes more and more ramified as the mass of the infi
cluster increases, as seen in Fig. 2. On the other hand
Minkowski or fractal dimension of the backbone increas
with an increase of the order of ramification, resulting fro
the formation of new blobs and nodes in the percolat
cluster. Hence, we have to reexamine the definition of
backbone which seems not to exhibit a constant structure
whose arrangement changes with the filler concentration,
coming more and more irregular. In such physical fractal
should be noticed that the self-similarity seems limited
very difficult to investigate.

The elastic backbone which is defined as the most di
path for the current through the network, may be easily
termined and extracted from the backbone representat
using a very simple algorithm. We calculated the fractal
mension of many elastic backbones that were obtained
mentioned above and we found a constant va
DE51.12760.006. This value is in good agreement with t
theory7,14 which proposesDE51.10–1.13. Therefore, we
may consider that the structure of the shortest path in
infinite cluster does not change significantly when the fil
amount is increased. At the percolation thresholdpc , a set of
conducting paths occurs in the materials, in which one
many shortest paths called the elastic backbone can
found. As the infinite cluster grows forp.pc , its external
structure and its backbone change, becoming more irreg
and complicated, but the shortest path keeps roughly
same geometry that can be represented by an irregular
whose fractal dimension is about 1.13. One possible inter
tation is that the fractal dimension of the finite-size clust
does not equal the fractal dimension of the percolating i
nite cluster. Hence, during the aggregation process, fin
size clusters contribute to the formation of the infinite clus
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5212 56FOURNIER, BOITEUX, AND SEYTRE
leading to a change in the fractal dimension of the latter
that of the backbone, however, the elastic backbone ge
etry is not affected. Wiswanathan and Heaney8 have explic-
itly shown the presence of two fractal structures in condu
ing polymers composites. Recently Andriaanseet al.22 have
demonstrated the existence of two scaling regimes in sim
materials, dominated by the infinite percolating cluster a
the finite-size cluster, respectively. Another possible int
pretation is the universal feature of the elastic backbone
such conducting polymer composites. This would sugg
that the fractal dimension of the elastic backbone would b
critical value although the geometric or the transport prop
ties of the percolating network are not fully described by
percolation models.

V. CONCLUSION

In this article we have shown a fundamental difference
the properties of the percolation networks resulting from t
oretical models or Monte Carlo simulations and the perco
tion networks observed in random heterogeneous mate
such as the epoxy-polypyrrole composites of this study
the standard discrete lattice percolation model, an increas
p above the percolation threshold does not lead to an
crease of the irregularity of the network, which is compos
of elementary defined objects, such as squares, cubes
balls. In this case, the infinite cluster and the backbone
hibit a fractal structure quantified by a constant fractal
mension and characterized by a self-similarity over a w
J.
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range of length scales. This behavior has been freque
observed in various experimental samples2,8,17whose electri-
cal or geometrical properties, such as the correlation len
or the fractal dimension, are perfectly described with per
lation models and critical exponents. In our conducting po
mer composites, the fractal dimensions of the network a
the backbone were found to increase with the conduc
filler amount. The conducting network arrangement depe
upon many experimental parameters that are usually not
sidered in theoretical models and the infinite cluster struct
is clearly seen to change when the filler concentration
creases. It seems that a continuous change in the fracta
mension value of the infinite cluster results from the contin
ous change in its structure as the filler amount is increas
This behavior suggests that the fractal dimension of the i
nite clusterD and the fractal dimension of the backbon
DB may not be considered as universal values as m
changes in the filler concentrationp around the percolation
thresholdpc would lead to major changes in the fractal d
mension value. However the fractal dimension of the ela
backbone seems to keep a constant valueDE51.13 in good
agreement with the scaling percolation theory.
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