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Phase diagram for a driven vortex lattice in layered superconductors
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The dynamic phase transitions in a driven vortex lattice subject to quenched disorder are investigated by
numerical simulations of the time-dependent Ginzburg-Landau-Lawrence-Doniach equations. We have con-
sidered a bilayered system as a prototype of multilayered current-carrying superconductors. Two transitions are
examined: a dynamic melting transition, similar to single-layer systems, and a decoupling transition, which
may occur only in a multilayered system. A universal structure of the phase-transition lines as functions of
renormalized interlayer coupling and ‘‘shaking temperature,’’ which measures the disorder-induced effective
Langevin force, is established.@S0163-1829~97!03134-2#
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The properties of driven periodic structures~including
charge-density waves, Wigner crystals, vortex lattices! sub-
ject to quenched disorder have become one of the ce
issues of the phenomenology of nonequilibrium statisti
mechanics.1–5 As it was proposed in Ref. 1 in the context
the vortex lattice, the driven system undergoes a dyna
phase transition at some threshold current between the fl
like and crystallike moving states. The transformations of
moving states~dynamic phase transitions! were detected by
anomalies in theI -V characteristics,6,7 and by changes in
correlation length8–10 reflecting ordering of a moving lattice
To describe the transition, the concept of the ‘‘shaking te
perature’’ Tsh}v21, wherev is the velocity of vortex mo-
tion, has been introduced. Shaking temperature measure
effective Langevin force exerted by the pinning centers
the moving vortices. Features of driven ordered state w
found in Refs. 3,4, which revealed that even for large velo
ties the effect of static disorder persists and the lattice mo
through elastically coupled highly correlated static chann
However most past numerical studies exploring the ab
ideas1,4,5were restricted to two-dimensional samples and t
range of small magnetic fields.

In this paper we investigate a bilayered system as a
totype of the multilayered superconductor. We examined
transitions:~i! dynamic melting, analogous to that in sing
layers, and~ii ! dynamic decoupling where coherence in vo
tex motion in different layers breaks down upon lowering t
driving force. We show the phenomenological description
the dynamic effects of disorder in terms of shaking tempe
ture to work fairly well in the vicinity of the dynamic melt
ing transition. We find a ‘‘sharp’’ dynamic melting transitio
as a function of applied current. We also find regimes
aligned and decoupled pancake motion. However, our si
lations do not provide strong evidence in favor of sha
alignment transition. We demonstrate that the nonequi
rium phase diagram can be effectively described by only
variables: shaking temperature and rescaled interlayer
pling constant. Using the Ginzburg-Landau approach, we
cover a scaling relation in the parameter space for the
560163-1829/97/56~9!/5136~4!/$10.00
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namic melting transition in pure two-dimensional sampl
We also obtain the explicit expression for the shaking te
perature in terms of relevant parameters of the tim
dependent Ginzburg-Landau equation~TDGLE!.

We describe the dynamics by TDGLE for layered sup
conductors which in its dimensionless form reads

~] t1 iEx!C l5~¹2 iA!2C l1z l~x,y!C l1~12uC l u2!C l

1h~C l 111C l 2122C l !, ~1!

where C l is the ~complex! order parameter in the layerl .
The unit of length is the coherence lengthj, the unit of time
is t05j2/D, D is the diffusion constant, the magnetic fieldH
is measured in units of the upper critical fieldHc2, and the
unit of the electric fieldE, generated by a moving vorte
lattice, is \/2et0j. We choose the gaugeA5(Hy,0,0) for
the magnetic vector potential, whereH is applied perpen-
dicular to the surface of superconductor. We will assum
pure Josephson coupling between the layers characterize
the parameterh5j2/d2g2, whered is the interlayer spacing
andg is the anisotropy parameter. The pinning is describ
by a random functionz l(x,y) with the statistical properties

^z l~r !&50, ^z l~r !zm~r 8!&5Dd~r 2r 8!d lm , ~2!

whereD is the pinning strength. The current within the la
ers isj l5uC l u2(¹w l2A)2sE. We consider the case of van
ishing normal conductivitys. In this limit the contribution
from the normal current can be omitted andE5 const. The
detailed numerical investigation of the current-carrying st
in the presence of disorder is a serious computational c
lenge because even in reduced units the system is still
trolled by four independent dimensionless paramete
E, H, D, andh. However, the study of the phase diagra
can be significantly simplified: we will demonstrate soon t
existence of universal scaling in the parameter space. T
allows us to reduce the number of relevant parameters
5136 © 1997 The American Physical Society
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only two: the shaking temperature, which is a combination
E, H, andD, and rescaled coupling, depending onh andH.

The explicit dependence on magnetic field can be sca
away in two limiting cases,H→0 andH→Hc251. In the
limit H→0, changing variablesx̃5AHx, ỹ5AHy, and
t̃ 5Ht, reduces Eq.~1! to

~] t̃ 1 i Ẽ x̃ !C l5~¹2 ixW0 ỹ !2C l1 z̃ C

1m~C l 111C l 2122C l !

1
1

H
~12uC l u2!C l , ~3!

where Ẽ5E/H3/2, m5h/H, and z̃ 5(1/H)z(x/AH,y/AH).
Note that for H→0 the amplitude of order paramete
uC l u'1 almost everywhere~except the vortex core!, and,
therefore, the last term in Eq.~3! can be neglected~this maps
the TDGL to the frustratedXY model!.11 Then the explicitH
dependence disappears and the number of controlling pa
eters reduces to three. The next parameter to be scaled
is the amplitude of the electric fieldẼ which is proportional
to the mean vortex velocity,v5E/H. By going into a co-

FIG. 1. Delauney triangulation of the vortex lattice. Direction
vortex motion is upwards. The parameters are: magnetic fi
H50.35 the sample sizeLx3Ly5 55.20363.740 97, number
of mesh points Nx3Ny5983114, the pinning strengthD5
0.0005384. Thenumber of vortices is 196. The transition occu
at E'0.002. ~a! Vortex configuration before the transition
E50.001. The number of lattice defects is 70.~b! The defect-free
vortex lattice after the transition,E50.004.
f

d

m-
ay

moving frame one can eliminate anexplicit dependence onE
~to first order inv): in a homogeneous systemE would have
vanished completely, whereas in the inhomogeneous sys
the random potential fluctuates in the moving frame with
typical time scalet}1/E. The pinning force, thus, resemble
the thermal Langevin force, and therefore the effect of p
ning fluctuations with time can be conveniently described
the concept of shaking temperature. The shaking tempera
measures the average magnitude of the effective pinning
can be estimated from comparison of the correlation funct
zC: x5^ z̃ z̃ 8CC8& with the true thermal fluctuations
correlator.12 Going in a comoving frame and assuming that
large timesC(r 2vt) andC(r 2vt8) are uncorrelated, one
arrives at

x'^ z̃ z̃ 8&^C~r 2vt !C~r 2vt8!&52Tshd~r 2r 8!d~ t2t8!,
~4!

where the shaking temperature is defined asTsh5C1D̃/ ṽ , C1
is the universal~for this model! constant, which will be cal-
culated numerically. Substituting D̃5D/H and

ṽ 5Ẽ5E/H3/2, we obtain

Tsh5C1AHD/E. ~5!

We see now that at small magnetic fields the dependenc
the electric field is also scaled out and the system is
scribed by only two relevant parameters: the reduced c
pling m5h/H and the shaking temperatureTsh.

A separate scaling can be obtained in the case
H'Hc251 within the lowest Landau levels~LLL ! approxi-
mation. The explicit dependence on magnetic field is elim
nated by substitutionst̃ 5(12H)t,C̃5C/A12H. Then the
rest of parameters are rescaled as follows:Ẽ5E/(12H),
m5h/(12H), and z̃ (x,y)5z(x,y)/(12H). For the shak-
ing temperature we find

ld

FIG. 2. Em ~triangles! as function ofD at the transition point for
H50.35.~b! The electric fieldEm as a function of magnetic fieldH
for D50.0012. The symbols show numerical data, line shows
theoretic scaling relationAH/(12H). ~c! The shaking temperature
as a function ofH. Symbols show numerical data, the line show
the melting temperature for clean two-dimensional samples.
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Tsh5C2

D

~12H !E
, ~6!

where C2 is a constant. It is plausible to assume that
H→0 expansion matches theH→Hc2 expansion at an inter
mediate region. That is possible only ifC15 C25C0. Com-
bining Eqs.~5! and ~6!, we obtain an interpolation formula
for the entire range of the magnetic fields

Tsh5C0

AHD

~12H !E
, m5

h

H~12H !
. ~7!

One concludes from Eq.~7! that the phase diagram of th
current-carrying superconductors is universal if plotted in
m,AHD/(12H)E plane. Moreover, following the analog
between melting of the static vortex lattice in clean samp
due to thermal fluctuations and the dynamic transition,
expect thatTsh at the transition point will coincide with the
static melting temperatureTm . In the chosen scaling
Tsh5Tm'0.09 for the two-dimensional~2D! case and for
H!1. This allows us to extract the constantC0 from nu-
merical simulations for two-dimensional samples.

To support the qualitative arguments we have stud
TDGLE ~1! numerically. We apply an implicit schem
~Crank-Nicholson! for a periodic system. The vector pote
tial is introduced by link variables~see, e.g., Ref. 13!. We
study a system of 196 and 256 vortices per layer.14

We start with single layers. The crystallization transiti
line Em is identified by an abrupt drop in the number
lattice defects which were located by Delauney triangulat
applied to the set of vortex core coordinates. Shown in Fig
is the change in the vortex configuration~a! before and~b!
after the transition: note the total annihilation of defects

FIG. 3. Gray-coded images of cos(f12f2) ~top! and C1 ~bot-
tom!. Dark and white shades correspond to min and max, res
tively, H50.35,h50.001 andD50.00215. The number of vortice
in each layer 196. For this set of parameters the alignment occu
E50.0085, and the melting atE50.0079.~a! The decoupled vortex
liquid for E50.0025. The number of defects 80,Wc50.26. ~b!
Aligned vortex crystal after the transitions,E50.01, number of
defects 6,Wc50.64.
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the ‘‘crystalline’’ high velocity phase. The shaking temper
ture is extracted from relation~4!. Averaging x over the
entire sample and using thatz is d correlated, we end up
with the following expression for the shaking temperature

Tsh5
D

2SES
d2r E

2`

`

dt^C~x,y,0!C* ~x,y,t !&, ~8!

whereS denotes the area of the sample. The results of
simulations are comprised in Fig. 2. The dependence of
field Em on the amplitude of pinning is shown in Fig. 2~a!.
The plot confirms the relationEm;D predicted by the scal-
ing relation~7!. Shown in Fig. 2~b! is the dependence ofEm
on the magnetic field for the fixed amplitude of pinnin
Filled circles show the results of numerical simulations, t
dashed line shows the best fit to the curveAH/(12H). As it
follows from Fig. 2~b!, Eq. ~7! describes the behavior ofTsh
over the whole range of the magnetic fields fairly well. T
computations give the constantC050.326.

In Fig. 2~c! we present the shaking temperature at
transition point measured according to Eq.~8! ~diamonds! as
a function of H. The dashed line shows the static meltin
temperature for vortex lattice in clean samples as a func
of H: Tm'0.09(12H)2(120.3H).15 This closeness of
shaking temperature to the static melting line supports
entire concept of the shaking temperature and its releva
for the description of the dynamic phase transition.

Now we turn to layered systems. Since properties of
multilayers related to interlayer coupling can be captured
the simplest model of a two-layer superconductor, we rest
ourselves to the discussion of the phase diagram for bilay
The most important effect expected to appear in multilay
is the alignment or entanglement~or decoupling! transition.
As a measure of the coherent behavior of the vortices

c-

at

FIG. 4. ~a! The phase diagram for bilayered system inTsh2m
plane, whereTsh50.326@AHD/(12H)E#, m5h/H(12H), for
H50.35 andD50.00215. The symbols show numerical data. T
solid line depicts the ‘‘dynamic melting transition,’’ lines with sym
bols show contours ofWc5const. The numbers indicate four dif
ferent states of the moving vortex lattice: 1 indicate the align
vortex crystal, 2 indicates the aligned vortex liquid, 3 indicates
decoupled vortex liquid, 4 indicates the decoupled vortex crys
Inset:Wc as function ofE for h50.0005~circles!, h50.001~dia-
monds!, andh50.0015~triangles!.
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different layers we choose the phase-correlation functi
Wc5^cos(f12f2)& , wheref1,2 are the phases of the orde
parameter in layers 1 and 2, respectively. The gray-co
images of cos(f12f2) and C1 for two different states are
shown in Fig. 3. As we can see from Fig. 3~a!, for small E
vortices are not aligned, there exist extended regions w
f12f2'p. Thus, in the latter state vortices are effective
decoupled. Simulations show four apparently different d
namic states: aligned/misaligned crystals and align
misaligned liquids.

For strong coupling the liquid phase close to the melt
point is strongly aligned. Further decrease ofE leads to a
smooth increase of the pancake misalignment. Our nume
simulations do not allow us to distinguish between the sh
alignment transition and smooth crossover. The transition
it exists, must be continuous and can be found only by
tensive size scaling analysis, which is beyond the scop
the present paper.

The phase diagram of bilayers in theTsh2m plane is
shown in Fig. 4. The position of the melting line and t
contours ofWc5const, characterizing degree of alignme
are shown in the figure~in the perfectly aligned state
Wc51). We see that the melting temperature grows with
increase ofh . For largeh we reproduce the obvious resu
Tsh→2Tm , whereTm correspond to the shaking temperatu
for a single layer.

A related comment is in order. First, we would like
draw attention to the behavior of the alignment parameterWc
as a function of vortex velocityv}E/H. We have found that
Th
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Wc has a minimum at some value of the electric field, es
cially pronounced at small values of the coupling const
~see inset to Fig. 4!. As we see, the degree of alignment fir
decreases with the increase ofE, passes through the mini
mum, and then grows. The initial decrease ofWc shows that
the Josephson coupling is suppressed for the slowly mov
vortex lattice as compared to a static lattice. Such a supp
sion has been indeed observed experimentally. It was fo
that in the current-carrying Bean state~i! c-axis dissipation is
enhanced16,17 and ~ii ! the Josephson plasma frequency~pro-
portional toAWc) is reduced18 as compared to static stat
obtained by field cooling.

In conclusion, we have examined the dynamic freez
~crystallization! and dynamic alignment, related to trans
tions from plastic to elastic dynamics of vortex configur
tions in three dimensions, and the four dynamic states:
coupled and aligned vortex liquids, and decoupled a
aligned vortex crystals. A description of the combined effe
of drive and disorder in terms of the shaking temperat
leads to the dynamic phase diagram, isomorphic to the s
diagram of the vortex state subject to thermal fluctuation19
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2729 ~1991!; Y. Kato and N. Nagaosa, Phys. Rev. B47, 2932
~1993!; J. Hu and A. H. MacDonald, Phys. Rev. Lett.71, 432
~1993! ~LLL melting!.

16E. Rodriguezet al., Physica B194-196, 2151~1994!.
17J. H. Choet al., Phys. Rev. B50, 6493~1994!.
18Y. Matsudaet al., Phys. Rev. Lett.78, 1972~1997!.
19A. Koshelev~unpublished!.


