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Phase diagram for a driven vortex lattice in layered superconductors
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The dynamic phase transitions in a driven vortex lattice subject to quenched disorder are investigated by
numerical simulations of the time-dependent Ginzburg-Landau-Lawrence-Doniach equations. We have con-
sidered a bilayered system as a prototype of multilayered current-carrying superconductors. Two transitions are
examined: a dynamic melting transition, similar to single-layer systems, and a decoupling transition, which
may occur only in a multilayered system. A universal structure of the phase-transition lines as functions of
renormalized interlayer coupling and “shaking temperature,” which measures the disorder-induced effective
Langevin force, is establishep50163-18207)03134-2

The properties of driven periodic structur@ecluding  namic melting transition in pure two-dimensional samples.
charge-density waves, Wigner crystals, vortex latlices- We also obtain the explicit expression for the shaking tem-
ject to quenched disorder have become one of the centrgerature in terms of relevant parameters of the time-
issues of the phenomenology of nonequilibrium statisticadependent Ginzburg-Landau equati@GLE).
mechanics® As it was proposed in Ref. 1 in the context of ~ We describe the dynamics by TDGLE for layered super-
the vortex lattice, the driven system undergoes a dynamigonductors which in its dimensionless form reads
phase transition at some threshold current between the fluid-
like and crystallike moving states. The transformations of the (5 +iEx)¥,=(V—iA)2W,+ £,(x,y)¥,+(1—|¥, )V,
moving stategdynamic phase transitionsvere detected by
anomalies in thd-V characteristic§;” and by changes in + (V)W —2), (1)
correlation lengtfi'°reflecting ordering of a moving lattice.

To describe the transition, the concept of the “shaking temwhere ¥, is the (compley order parameter in the layér
perature” Tgcv 1, wherev is the velocity of vortex mo-  The unit of length is the coherence lengththe unit of time
tion, has been introduced. Shaking temperature measures thg,=¢2/D, D is the diffusion constant, the magnetic fi¢dd
effective Langevin force exerted by the pinning centers orls measured in units of the upper critical fiettl,, and the
the moving vortices. Features of driven ordered state wer@nit of the electric fieldE, generated by a moving vortex
found in Refs. 3,4, which revealed that even for large velociqattice, is7/2et,£&. We choose the gaugk=(Hy,0,0) for
ties the effect of static disorder persists and the lattice moveghe magnetic vector potential, wheke is applied perpen-
through elastically coupled highly correlated static channelsgicular to the surface of superconductor. We will assume a
However most past numerical studies exploring the abov@ure Josephson coupling between the layers characterized by
ideas*°were restricted to two-dimensional samples and to ahe parameter= £%/d2?, whered is the interlayer spacing
range of small magnetic fields. and vy is the anisotropy parameter. The pinning is described

In this paper we investigate a bilayered system as a pragy a random functiort|(x,y) with the statistical properties
totype of the multilayered superconductor. We examined two

transitions:(i) dynamic melting, analogous to that in single , ,

layers, andii) dynamic decoupling where coherence in vor- (G(r)=0, (LN Lm(r")=A8(r—1")8m, (2

tex motion in different layers breaks down upon lowering the

driving force. We show the phenomenological description ofwhereA is the pinning strength. The current within the lay-
the dynamic effects of disorder in terms of shaking temperaers isj,=|¥,|?(V ¢,— A) — ¢E. We consider the case of van-
ture to work fairly well in the vicinity of the dynamic melt- ishing normal conductivity. In this limit the contribution

ing transition. We find a “sharp” dynamic melting transition from the normal current can be omitted aBeF const. The

as a function of applied current. We also find regimes ofdetailed numerical investigation of the current-carrying state
aligned and decoupled pancake motion. However, our simun the presence of disorder is a serious computational chal-
lations do not provide strong evidence in favor of sharplenge because even in reduced units the system is still con-
alignment transition. We demonstrate that the nonequilibtrolled by four independent dimensionless parameters:
rium phase diagram can be effectively described by only twde, H, A, and#. However, the study of the phase diagram
variables: shaking temperature and rescaled interlayer cowan be significantly simplified: we will demonstrate soon the
pling constant. Using the Ginzburg-Landau approach, we unexistence of universal scaling in the parameter space. This
cover a scaling relation in the parameter space for the dyallows us to reduce the number of relevant parameters to
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FIG. 2. E,, (triangleg as function ofA at the transition point for
H=0.35.(b) The electric fieldg,, as a function of magnetic field
for A=0.0012. The symbols show numerical data, line shows the
theoretic scaling relatiofH/(1—H). (c) The shaking temperature
as a function oH. Symbols show numerical data, the line shows
the melting temperature for clean two-dimensional samples.

moving frame one can eliminate anplicit dependence ol
(to first order inv): in a homogeneous systewould have
vanished completely, whereas in the inhomogeneous system
the random potential fluctuates in the moving frame with the
typical time scalero 1/E. The pinning force, thus, resembles
the thermal Langevin force, and therefore the effect of pin-
FIG. 1. Delauney triangulation of the vortex lattice. Direction of NiNg fluctuations with time can be conveniently described by
vortex motion is upwards. The parameters are: magnetic fieldN€ concept of shaking temperature. The shaking temperature
H=0.35 the sample sizd xL,= 55.20<63.740 97, number Measures .the average magnltgde of the effectlve_ pinning _and
of mesh pointsN,xN,=98x114, the pinning strengthA = can be eslnlated from comparison of the correlation function
0.0005384. Thewumber of vortices is 196. The transition occurs (W: y=(¢'WW¥') with the true thermal fluctuations
at E~0.002. (@ Vortex configuration before the transition, correlator® Going in a comoving frame and assuming that at
E=0.001. The number of lattice defects is 1B) The defect-free large times¥ (r —vt) and¥(r—vt’) are uncorrelated, one
vortex lattice after the transitiors=0.004. arrives at
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only two: the shaking temperature, which is a combination of
E, H, andA, and rescaled coupling, depending pandH.

The explicit dependence on magnetic field can be scaled
away in two limiting casesH—0 andH—H=1. In the
limit H—0, changing variablesx=Hx, y=Hy, and
T =Ht, reduces Eq(1) to

x~(TT WU (r—ot)¥(r—vt'))=2Tgs(r—r")d(t—t"),
(4)

where the shaking temperature is definedas- C;A/v, C;
is the universalfor this mode) constant, which will be cal-

culated  numerically.  Substituting A=A/H and

—~— > o~ ~ T_TE_ 3/2 H
(¢9T+iEX)\P|:(V_iXOy)2‘I’|+ g”\I’ v=E=E/H , We obtain

T (Wt —2¥) Te=C,VHA/E. )

1
+g1- w5 ¥y, (3  We see now that at small magnetic fields the dependence on
the electric field is also scaled out and the system is de-
scribed by only two relevant parameters: the reduced cou-
pling w= 7/H and the shaking temperatufg,,.

A separate scaling can be obtained in the case of

whereE=E/H¥2 u=»/H, and 7 =(1MH)(x/VH,y/VH).
Note that for H—0 the amplitude of order parameter
|¥,|~1 almost everywheréexcept the vortex coje and,

therefore, the last term in E(B) can be neglectetthis maps H%_H 2= 1 within_ t_he lowest Landau Ieve[$L_L) _appr_oxi-_ .
the TDGL to the frustrate® Y mode).* Then the explicit mation. The explicit dependence on magnetic field is elimi-

dependence disappears and the number of controlling pararfiated by substitutions = (1— H)t,‘T’=‘I’/v1: H. Then the
eters reduces to three. The next parameter to be scaled awagst of parameters are rescaled as follo&s: E/(1—H),

is the amplitude of the electric field which is proportional = 5/(1—H), and Z(x,y) = ¢(x,y)/(1—H). For the shak-
to the mean vortex velocityy =E/H. By going into a co- ing temperature we find
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plane, whereT¢=0.326 VHA/(1—H)E], u=75/H(1—H), for
H=0.35 andA =0.00215. The symbols show numerical data. The
solid line depicts the “dynamic melting transition,” lines with sym-
%ols show contours ofVW,=const. The numbers indicate four dif-
‘fﬁrent states of the moving vortex lattice: 1 indicate the aligned
vortex crystal, 2 indicates the aligned vortex liquid, 3 indicates the
decoupled vortex liquid, 4 indicates the decoupled vortex crystal.
Inset: W, as function ofE for =0.0005(circles, »=0.001(dia-
monds, and »=0.0015(triangles.

FIG. 3. Gray-coded images of c@s( ¢,) (top) and¥; (bot-
tom). Dark and white shades correspond to min and max, respe
tively, H=0.35,7=0.001 andA = 0.00215. The number of vortices
in each layer 196. For this set of parameters the alignment occurs
E=0.0085, and the melting &= 0.0079.(a) The decoupled vortex
liquid for E=0.0025. The number of defects 8@/.=0.26. (b)
Aligned vortex crystal after the transitiong=0.01, number of
defects 6 W.=0.64.

the “crystalline” high velocity phase. The shaking tempera-
T.=C ©6) ture is extracted from relatiofd). Averaging y over the
sh™>2(1-H)E’ entire sample and using thdtis § correlated, we end up

_ ) ) with the following expression for the shaking temperature:
where C, is a constant. It is plausible to assume that the

H—0 expansion matches th&—H_., expansion at an inter- A . [ .
mediate region. That is possible onlyGf= C,=C,. Com- Tsh=5g Sd rf_mdt(\P(x,y,O)\If xy.n), (8
bining Egs.(5) and (6), we obtain an interpolation formula
for the entire range of the magnetic fields where S denotes the area of the sample. The results of the
simulations are comprised in Fig. 2. The dependence of the
JVHA 7 field E,;, on the amplitude of pinning is shown in Fig(a2
Ton= Com, = H(1-H) ™ The plot confirms the relatiok,,~ A predicted by the scal-

ing relation(7). Shown in Fig. 2b) is the dependence &,

One concludes from EqZ7) that the phase diagram of the on the magnetic field for the fixed amplitude of pinning.
current-carrying superconductors is universal if plotted in theFilled circles show the results of numerical simulations, the
w,JHA/(1—H)E plane. Moreover, following the analogy dashed line shows the best fit to the curlte/(1—H). As it
between melting of the static vortex lattice in clean samplesollows from Fig. 2b), Eq. (7) describes the behavior a%y,
due to thermal fluctuations and the dynamic transition, weover the whole range of the magnetic fields fairly well. The
expect thafTg, at the transition point will coincide with the computations give the consta@f=0.326.
static melting temperaturel,,. In the chosen scaling In Fig. 2(c) we present the shaking temperature at the
Ts=T,~0.09 for the two-dimensional2D) case and for transition point measured according to E8). (diamond$ as
H<1. This allows us to extract the constaDg from nu-  a function ofH. The dashed line shows the static melting
merical simulations for two-dimensional samples. temperature for vortex lattice in clean samples as a function

To support the qualitative arguments we have studiedf H: T,,~0.09(1-H)?(1—0.3H).}® This closeness of
TDGLE (1) numerically. We apply an implicit scheme shaking temperature to the static melting line supports the
(Crank-Nicholsoh for a periodic system. The vector poten- entire concept of the shaking temperature and its relevance
tial is introduced by link variable¢see, e.g., Ref. 13We  for the description of the dynamic phase transition.
study a system of 196 and 256 vortices per |dyer. Now we turn to layered systems. Since properties of the

We start with single layers. The crystallization transition multilayers related to interlayer coupling can be captured by
line E,, is identified by an abrupt drop in the number of the simplest model of a two-layer superconductor, we restrict
lattice defects which were located by Delauney triangulatiorourselves to the discussion of the phase diagram for bilayers.
applied to the set of vortex core coordinates. Shown in Fig. The most important effect expected to appear in multilayers
is the change in the vortex configuratié® before and(b) is the alignment or entanglemefdr decoupling transition.
after the transition: note the total annihilation of defects inAs a measure of the coherent behavior of the vortices in
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different layers we choose the phase-correlation function®V, has a minimum at some value of the electric field, espe-
W, =(cos(p,— ¢»)) , where ¢, , are the phases of the order cially pronounced at small values of the coupling constant
parameter in layers 1 and 2, respectively. The gray-codetkee inset to Fig. 4 As we see, the degree of alignment first
images of cosf,—¢,) and ¥, for two different states are decreases with the increase Bf passes through the mini-
shown in Fig. 3. As we can see from FigaB for smallE ~ mum, and then grows. The initial decreasé/\gf shows that
vortices are not aligned, there exist extended regions witle Josephson coupling is suppressed for the slowly moving
$1— ¢p~m. Thus, in the latter state vortices are effectively yortex lattice as compared to a static lattice. Such a suppres-
decoupled. Simulations show four apparently different dy-sion has been indeed observed experimentally. It was found
namic states: aligned/misaligned crystals and aligneda¢ in the current-carrying Bean stdtec-axis dissipation is
misaligned liquids. enhancetf!” and (ii) the Josephson plasma frequeripyo-

For strong coupling the liquid phase close to the meltin : TRl .
point is stro%gly gligr?ed Ft?rtherpdecreaseli)ﬂeads to a gportlonal to \W) is reduced® as compared to static state
: (%btained by field cooling.

smooth increase of the pancake misalignment. Our numeric : . . .
In conclusion, we have examined the dynamic freezing

simulations do not allow us to distinguish between the shar, tallizati dd ic ali t related to t .
alignment transition and smooth crossover. The transition, iT.CWS allization and dynamic alignment, related to transi-

it exists, must be continuous and can be found only by ex.1ons from plas'gic to _elastic dynamics of vortex configura-
’ ons in three dimensions, and the four dynamic states: de-

tensive size scaling analysis, which is beyond the scope dt ) o
the present paper. coupled and aligned vortex liquids, and decoupled and

; ; : _ : aligned vortex crystals. A description of the combined effect
sh;—v?/g i%hlifg gla_?_:]aempg;tli)cl)lr?y;rsthg rLZ%t?ngM Iir?lear;idlsthe of drive and disorder in terms of the shaking temperature

contours ofW,=const, characterizing degree of alignment, :;deatr?w i‘fetggrz/?)rrqupsﬁgf:s(,jl;?)gergtn:(,)Ifﬁg:%gr}llzé?ug%ﬁgauc
are shown in the figurgin the perfectly aligned state 9 J '

W,.=1). We see that the melting temperature grows with the We are grateful to L. Krusin-Elbaum and T. Peterson for
increase ofy . For largen we reproduce the obvious result a critical reading of the manuscript. This work was supported
Tsi—2T,,, WhereT,, correspond to the shaking temperatureby Argonne National Laboratory through the U.S. Depart-
for a single layer. ment of Energy, BES-Material Sciences, under Contract No.

A related comment is in order. First, we would like to W-31-109-ENG-38 and by the NSF-Office of Science and
draw attention to the behavior of the alignment paraméter Technology Centers under Contract No. DMR91-20000 Sci-
as a function of vortex velocity<E/H. We have found that ence and Technology Center for Superconductivity.
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