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Signatures for the second critical point in the phase diagram of a superconducting ring
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We study the Little-Parks effect for families of mesoscopic loops with highly nonuniform thickness, using
a recently developed formalism which predicts a phase diagram with two critical points at half-integer number
of magnetic flux quanta. The Euler-Lagrange equation can be integrated analytically, and this feature provides
an easy way to locate the second critical point and evaluate the derivative of the supercurrent. The derivative
of the supercurrent~ac susceptibility! has been recently measured. Our results and experiments share the same
qualitative features.@S0163-1829~97!00233-6#
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We deal with a loop of superconducting material as in
Little-Parks experiment.1,2 We have recently predicted tha
if the thickness of the loop is not exactly uniform, then the
exist situations for which superconductivity is broken a
layer, so that the superconducting part is actually sin
connected3 and no supercurrent flows. When this happe
we say that the sample is in the ‘‘singly connected sta
~SC!. This is an interesting possibility, since it would allo
for a new dimensionality of the regions where the order
rameter may vanish. In the case of vortices, the order par
eter vanishes along lines and there are claims4 that it cannot
vanish on surfaces. On the other hand, it has been sugg
that even for uniform thickness the SC state will appear as
intermediate station in hysteretic paths.5 Some support for
this possibility is provided by the energy barrier calculatio
used to fit the results in Ref. 6. A systematic analytic stu
for the stability domain of the SC state in families of loo
with thicknesses that deviate slightly from uniformity w
carried on in Ref. 7. Mathematical justification for some
the assumptions in our model was given in Ref. 8. A sim
situation in which the order parameter seems to vanish o
layer was considered in Refs. 9 and 10.

The phase diagram in the temperature–magnetic-fi
plane7 is shown in Fig. 1. The axes are nondimensio
quantities: l5(R/j)2, where R is the perimeter of the
sample divided by 2p andj is the coherence length, andk is
the deviation of the magnetic fluxF from an integer, forF
measured in units ofF052p\c/e* . N ~normal state!, DC
~doubly connected, in which the order parameter does
vanish!, and SC denote the three possible states andG I , G II ,
and G III are critical lines at which second-order phase tr
sitions occur. The most prominent feature of this phase
gram is the existence of the pointP2. WhenG III is approched
from below, the minimum of the order parameter decrea
until it finally vanishes. SinceG III is located alonguku5 1

2,
and the most stable state is never atuku. 1

2, the SC stability
domain is restricted to a line segment. The ends of this s
ment are the critical pointsP1 and P2. When the magnetic
field is varied and the lineuku5 1

2 is crossed for smalll, the
currentI vanishes and changes sign continuously. Howe
beyond P2 the current changes sign discontinuously. W
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shall denote the positions ofP1,2 by (l5l1,2,uku5 1
2 ); like-

wise,T1,2 denote the respective temperatures. The param
l can be translated into temperature using2

l5
R2

j~0!2

12~T/Tc!
2

11~T/Tc!
2

, ~1!

where j(0) is the coherence length atT50 andTc is the
critical temperature in the absence of magnetic field.

A stationary state obeys the Euler-Lagrange equat
This is7

Dww91D8ww82
D

2
~w8!212lDw2~12w!2

2

DS 2pk

L D 2

50, ~2!

FIG. 1. Phase diagram. N:w[0; DC: w.0 everywhere; SC:
the order parameter vanishes at some place in the loop and bec
singly connected.l is a measure of the temperature belowTc and
k2 increases with the deviation from an integer number of fl
quanta.G I , G II , and G III are critical lines at which second-orde
transitions take place.P1 andP2 are critical points. Forl.l2 and
k2.

1
4 the DC state is still locally stable untilG IV is reached. Be-

yond G IV there must be a decay to a situation with lowerk2.
5124 © 1997 The American Physical Society
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56 5125BRIEF REPORTS
wherew is the square of the normalized absolute value of
order parameter, derivatives are with respect to the ang
coordinateu, which is the arc length divided byR, andD(u)
is the cross section of the loop atu; L is defined by

L5E
0

2p du

Dw
. ~3!

The analysis of Ref. 7 assumed thatD(u) is almost uni-
form and in this case the lengthl22l1 of the segmentG III
turns out to be proportional to the deviation from uniform
~its first harmonic!. On the other hand, for experimental pu
poses one would like the SC state to exist in a signific
temperature range. We are therefore interested in the
that D(u) is strongly nonuniform. In general, this situatio
requires numerical integration of Eq.~2!, but analytic inte-
gration is possible in the case thatD(u) is piecewise con-
stant, as considered in the following.

A piecewise constant thickness will be described byD(u)
of the form

D5H D1[d u,u* ,

D2[1 u* ,u,p,
~4!

with 0,d5D1 /D2,1 and 0,u* ,p constants, andD(u)
symmetric aboutu50 and aboutu5p. @When evaluating
the order parameter we are free to setD251, since the
Euler-Lagrange equation is invariant under multiplication
D(u) by a constant.#

A model similar to Eq.~4! was used long ago11 to evalu-
ate the current through a Josephson junction in the fra
work of the Ginzburg-Landau theory. Besides mathemat
simplicity, the piecewise constant thickness case turns ou
give the largest lengthl22l1 among the families of thick-
ness profiles which we have studied.12 At first sight, it could
be suspected that the one-dimensional formalism on wh
Eq. ~2! and the phase diagram in Fig. 1 rely might not app
to the piecewise constant case. The reason is that mathe
cal proofs for the justification of the one-dimensional form
ism assume8 that D(u) is smooth; intuitively, it can be said
that near the region where the thickness changes the str
lines are strongly curved and the current density canno
nearly constant in the entire cross section. However, fur
study shows that the phase diagram in Fig. 1 can still
obtained by means of a two-dimensional analysis13 and that
the results obtained for the piecewise constant thickness
pear to be the limit of those obtained for families of smoo
functions.

In the piecewise constant case we have found a solu
of Eq. ~2! with the appropriate symmetry, with a minimum
u50 and a maximum atu5p. It has the form

w~u!55 A12
2n1

2

l
m1cn2~n1u,m1!, u,u* ,

A22
2n2

2

l
m2~12m2!sd2

„n2~p2u!,m2…, u.u* .

~5!

Here cn and sd are Jacobian elliptic functions,14 n i and mi
are constants, and
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Ai5
2

3S 11~2mi21!
n i

2

l D . ~6!

The constant term in Eq.~2! becomes

S 2pk

DiL
D 2

5
Ai

8l
@l2~Ai22!224n i

4#. ~7!

Equations~5!–~7! reduce the integrodifferential equatio
~2! to the problem of determining the four constantsn i and
mi . We are thus left with four algebraic equations: Eq.~7!
for i 51,2 and continuity ofw and Dw8 at u5u* . These
equations are solved by Newton iterations and the integra
in Eq. ~3! is performed numerically.

In this way we obtain the curves in Fig. 2, which descri
l2 as a function of the length of the thin piece for givend.
These curves suggest that large domains of stability for
SC state may be found, provided that the dimensions of
thin piece are properly tuned. A simple interpolation formu
for the length of the thin piece that maximizesl2 is

u* ~d!

p
5

0.734d

0.4681d
. ~8!

We claim now that signatures of the singly connect
state have already been observed by means of ac suscep
ity measurements.15,6 This is surprising, since the phase di
gram in Fig. 1 is expected only for rings with nonunifor
thickness. These susceptibility measurements were inten
to be done on rings with uniform thickness, but some~un-
known! nonuniformity must have been present.

According to our predictions, aboveT2 the supercurrent
vanishes whenF/F0 is either integer or half-integer. There
fore, we expect the area under the curve in a plot ofdI/dF
againstF to vanish for each half-period above this tempe
ture, but not belowT2. Indeed, Fig. 4 of Ref. 15 is in com
plete qualitative agreement with this prediction and with t
phase diagram in Fig. 1. NearTc there is no hysteresis; hys
teresis appears only below some temperature which ma
identified asT2.

For the purpose of qualitative comparison with Fig. 4
Ref. 15 we arbitrarily consider now a piecewise const
loop with d5u* /p5 1

4. We do not attempt a quantitativ
treatment, since some of the relevant quantities have still

FIG. 2. Position ofP2 for the shape~4!. Thick line: asymptotic
result ford!1. Thin line:d50.1.
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5126 56BRIEF REPORTS
been measured and, besides, the experiment used a very
ring that requires a two-dimensional analysis.

As discussed by Zhang and Price,15 the response to idea
ac susceptibility measurements is proportional to the der
tive of the supercurrent with respect to the magnetic fl
The supercurrent is7

I 5
cF0l

4pk2R3

k

L
, ~9!

wherek is the ratio between the penetration depthlL and the
coherence lengthj, and the fractionk/L appears in Eq.~7!.
The derivative ofI can now be obtained by differentiatin
Eqs.~9!, ~3!, and~5!–~7!.

The result is shown in Fig. 3. The resemblance with
experimental results is encouraging. Agreement is found
only in the presence or absence of hysteresis, but also in
trend of the temperature dependence of the height and w
of the peaks, both above and belowT2.

A complementary case which can be studied is that o
ring with nearly uniform cross section. We obtain that t

FIG. 3. Derivative of the induced supercurrent with respect
the enclosed magnetic flux. The curves are shown as function
the flux, withl as a parameter. These curves were calculated f
piecewise constant cross section, withd5u* /p5

1
4. For this ex-

ample, the critical pointsP1,2 are located atl150.105 and
l251.35. The values ofl were taken asl5l11n(l22l1)/3,
where the integern is shown next to each curve. The curves we
normalized through division by the value ofudI/dFu at F50,
which is (clD2)/(14p2k2R3). ~a! l<l2. As l approachesl2, the
peak atF5F0/2 becomes higher and narrower. Atl5l2, it di-
verges.~b! l.l2. Here hysteresis is possible. Asl increases be-
yond l2, the cusp atF5F0/2 becomes less pronounced.
ide

a-
.

e
ot
he
th

a

ratio between the values ofdI/dF at F5F0/2 and
at F50 is 4(l2l1)/(l2l2) for l1<l,l2 and
2(l12l2)/(l2l2) for l.l2 and l'l2. In spite of the
very different chosen shape, this is again in qualitative agr
ment with the piecewise constant case and with the exp
mental results.

The identification ofdI/dF in Fig. 3 with the measured
ac susceptibility corresponds to the ideal limit of small
amplitude and high frequency. In a real experiment, th
kinds of deviations are expected. First,I is not a linear func-
tion of F in the range probed by the ac field; this difficulty
most serious whendI/dF has a narrow peak or a discont
nuity, which will be smeared. In Ref. 15 the amplitude
about 0.05F0; this imperfection should be added to the fa
that the ring is very wide, so that different paths along
enclose considerably different fluxes.

Second, if the probed region corresponds to a metast
state and if the ac cycle is not fast compared to the lifetim
then decays and hysteresis will occur and the experime
results will deviate from the adiabatic ac susceptibility d
scribed by Fig. 3. As the ac frequency is lowered, the res
approach isothermal susceptibility. And third, no matter h
high the frequency is, decays and hysteresis must occur i
ac amplitude extends the probed region in Fig. 1 beyo
G IV .

If the temperature is lower than but very close toT2, then
the energy barrier and the distance betweenuku5 1

2 and G IV
are very small. Therefore, decays will occur in this regio
These decays produce a discontinuity inI , which is experi-
mentally similar to the divergence ofdI/dF. It follows that
the results in this region may appear similar to those imm
diately aboveT2. In order to approach the theoretical situ
tion, measurements ought to be repeated at various ac am
tudes and frequencies and then extrapolated to the i
limit.

Measurements of the ac susceptibility in mesoscopic ri
have also been performed by Davidovic´ et al.6 These mea-
surements were performed at much lower frequencies tha
Ref. 15, but this has no qualitative influence on the res
considered here. In this case the system was a large arra
rings with magnetic interaction, but the authors conclude t
the paramagnetic peaks atF0/2 are a single-ring effect
Again, the height of this peak goes through a maximum
some temperatureTP , which we may identify asT2 aver-
aged over the rings. Moreover, it is found thatTP corre-
sponds roughly to a ‘‘freezing temperature.’’ This is pr
cisely what is expected from our interpretation: belowT2
there is an energy barrier for changing the direction of
supercurrent, whereas aboveT2 there is no barrier. Furthe
agreement with our interpretation is provided by their Fig.
the susceptibility depends on the frequency belowT2, but not
aboveT2. Our explanation is that at low frequencies rin
have time to decay to the state with reversed current,
aboveT2 there is nowhere to decay.

As discussed in the previous paragraphs, hysteresis in
probing cycle is present only in a limited region, immed
ately belowT2. Since an experimental signature for hyste
esis is an imaginary component in the ac susceptibility,T2
could be characterized by the onset of this component as
temperature is lowered. The maximum value of this ima
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nary component and the temperature at which it is loca
depend on the amplitude and frequency of the ac field.

The intermediate state used in Ref. 6 to calculate the
ergy barrier, which is needed for their fit, is the continuati
of our SC state, taken to the limit of a uniform ring an
corrected for nonzero self inductance. Forl.l2 this state is
a saddle point and forl,l2 it is stable. However, for a
strictly uniform ring,l1 andl2 coalesce and the SC state
never stable.

The experiments in Refs. 15 and 6 were not planned
verifying the range of existence of the singly connected
d

n-

r
-

perconducting state. As a consequence, the available dat
insufficient for a quantitative fit and we cannot rule out oth
possible explanations for the paramagnetic peak. Howe
for a purposely designed experiment,12 ac susceptibility of-
fers a sensitive tool for revealing the critical point
F5F0/2 andT5T2.

We wish to thank John Price for sending us the expe
mental data of Ref. 15 and Daniel Reich for sending us
unpublished results of Ref. 6. This research was suppo
by the U.S.-Israel Binational Science Foundation. J.B. w
also supported by the Israel Science Foundation.
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