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Signatures for the second critical point in the phase diagram of a superconducting ring
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We study the Little-Parks effect for families of mesoscopic loops with highly nonuniform thickness, using
a recently developed formalism which predicts a phase diagram with two critical points at half-integer number
of magnetic flux quanta. The Euler-Lagrange equation can be integrated analytically, and this feature provides
an easy way to locate the second critical point and evaluate the derivative of the supercurrent. The derivative
of the supercurrerfac susceptibility has been recently measured. Our results and experiments share the same
qualitative featured.S0163-182¢07)00233-4

Wwe deal with alloop c;f superconducting mater_ial as in theshall denote the positions 6, by (\=\1,,|K|=12); like-
Little-Parks experimentt® We have recently predicted that, \ise, T, , denote the respective temperatures. The parameter
if the thickness of the loop is not exactly uniform, then there) ¢an pe translated into temperature uéing
exist situations for which superconductivity is broken at a
layer, so that the superconducting part is actually singly
connectetl and no supercurrent flows. When this happens, R? 1_(T/Tc)2
we say that the sample is in the “singly connected state” A= > >0 1)

(SO). This is an interesting possibility, since it would allow £(0)7 1+(T/Te)

for a new dimensionality of the regions where the order pa-

rameter may vanish. In the case of vortices, the order paranwhere £(0) is the coherence length @=0 and T, is the

eter vanishes along lines and there are cldithat it cannot  critical temperature in the absence of magnetic field.

vanish on surfaces. On the other hand, it has been suggestedA stationary state obeys the Euler-Lagrange equation.
that even for uniform thickness the SC state will appear as afhis is’
intermediate station in hysteretic path§ome support for

this possibility is provided by the energy barrier calculations b o2k 2
used to fit the results in Ref. 6. A systematic analytic study , P 22 204 o S[£TK
for the stability domain of the SC state in families of loops Dww’+D'ww 2 W)+ 2 DwH(1-w) D( A )
with thicknesses that deviate slightly from uniformity was

carried on in Ref. 7. Mathematical justification for some of =0, 2
the assumptions in our model was given in Ref. 8. A similar
situation in which the order parameter seems to vanish on a

layer was considered in Refs. 9 and 10. Ty 4
The phase diagram in the temperature—magnetic-field sc / T

plan€ is shown in Fig. 1. The axes are nondimensional %

quantities: A= (R/£)?, where R is the perimeter of the . N e

sample divided by z and¢ is the coherence length, akds * ar ) ) - - -

the deviation of the magnetic fluk from an integer, foxP
measured in units oby=2wAc/e*. N (normal statg DC
(doubly connected, in which the order parameter does not
vanish, and SC denote the three possible stateslgnd’, , ' I

andT'), are critical lines at which second-order phase tran- N .
sitions occur. The most prominent feature of this phase dia- M ;,‘- Az
gram is the existence of the poiRy. WhenI',, is approched A
from below, the minimum of the order parameter decreases

Lo . . . 1
until it finally vanishes. S'ncqlll IS Ioc?ted alongjk|—'%, the order parameter vanishes at some place in the loop and becomes
and the _most s_table State_ 1S neveﬁldt> 3, the SC Stab'l_'ty singly connected\ is a measure of the temperature beldwand
domain is restricted to a line segment. The ends of this sege jncreases with the deviation from an integer number of flux

ment are the critical point®; and P,. When the magnetic guanta.T,, T, andT,, are critical lines at which second-order
field is varied and the lingk|= 3 is crossed for small, the  transitions take placd?; and P, are critical points. FOh>\, and
currentl vanishes and changes sign continuously. Howeverk?> 1 the DC state is still locally stable untll,, is reached. Be-
beyond P, the current changes sign discontinuously. WeyondT',, there must be a decay to a situation with low&r

FIG. 1. Phase diagram. N\v=0; DC: w>0 everywhere; SC:

0163-1829/97/5®)/51244)/$10.00 56 5124 © 1997 The American Physical Society



56 BRIEF REPORTS 5125
wherew is the square of the normalized absolute value of the

order parameter, derivatives are with respect to the angular 0.2
coordinated, which is the arc length divided [dg, andD (0)
is the cross section of the loop ét A is defined by

[ :

. DW' ©)

The analysis of Ref. 7 assumed ttia¢6) is almost uni-
form and in this case the lengiy,—\, of the segment’;

turns out to be proportional to the deviation from uniformity + + . + T
(its first harmonig¢. On the other hand, for experimental pur- o*
poses one would like the SC state to exist in a significant wd

temperatu.re range. We are therefore intereste_d in. thg CaS€ rG. 2. Position ofP, for the shap&4). Thick line: asymptotic
that D(0) is strongly nonuniform. In general, this situation .oquit ford<1. Thin line:d=0.1.
requires numerical integration of E¢R), but analytic inte-

gration is possible in the case tha{ #) is piecewise con- 5 2

stant, as considered in the following. . A== 1+(2mi_1)v_')_ (6)
A piecewise constant thickness will be describedt{y) 3 A

of the form

The constant term in Eq2) becomes

DlEd 0<0*, 27k 2 A
= 1

D,=1 ¢*<b<m, @ (—Di A) = NAA-2)2- 40, @)
with 0<d=D,/D,<1 and 0< #* < constants, an® ()
symmetric aboutd=0 and aboutd= 7. [When evaluating
the order parameter we are free to §&f=1, since the

Euler-Lagrange equation is invariant under multiplication offor i=1,2 and continuity ofw and D’ at 6= #*. These

D(6) by a constant. . . . . .
A model similar to Eq(4) was used long adbto evalu- %qléc’(:\qtl(()g)sigrsesr%\r/rio(lagyntlriv(\a/:%;;lt;ratlons and the integration

ate the current through a Josephson junction in the frame ; . - , .
. : : In this way we obtain the curves in Fig. 2, which describe
work of the Ginzburg-Landau theory. Besides ma’[hematlca;\2 as a function of the length of the thin piece for given

simplicity, the piecewise constant thickness case turns out t?hese curves suggest that large domains of stability for the

give the largest length,—\, among the families of thick- SC state may be found, provided that the dimensions of the

Eess pmf'lfs dwtulcth t\;]"e hﬁv? dISrLUdf?A; f'lr‘;’t rsrlr?hlf :;CO#I\?vhi bhin piece are properly tuned. A simple interpolation formula
€ suspecte at the one ensional formalism o “for the length of the thin piece that maximizksg is

Eq. (2) and the phase diagram in Fig. 1 rely might not apply
to the piecewise constant case. The reason is that mathemati- *

e ) . 6*(d) 0.734
cal proofs for the justification of the one-dimensional formal- = ) (8)
ism assumiéthat D(6) is smooth; intuitively, it can be said 77 0.468+d
that near the region where the thickness changes the stream-

lines are strongly curved and the current density cannot be Weh clalml nmév tgat 5|gbnature§ t?f the smgfly connecte_otl)_l
nearly constant in the entire cross section. However, furtheptate have already been observed by means of ac susceptibil-

study shows that the phase diagram in Fig. 1 can still b&Y measurements:® This is surprising, since the phase dia-

obtained by means of a two-dimensional anaffsisd that gram in Fig. 1 is expecte'd'qnly for rings with nonuniform
the results obtained for the piecewise constant thickness afickness. These susceptibility measurements were intended

pear to be the limit of those obtained for families of smooth 0 be done on rings with uniform thickness, but sofue-
functions known) nonuniformity must have been present.

In the piecewise constant case we have found a solution AAccording to our predictions, above, the supercurrent

of Eq. (2) with the appropriate symmetry, with a minimum at vanishes whed/®,, is either integer or half-integer. There-
9=0 and a maximum af= 7. It has the form fore, we expect the area under the curve in a plad ldtid

againstd to vanish for each half-period above this tempera-

Equations(5)—(7) reduce the integrodifferential equation
(2) to the problem of determining the four constamtsand
m, . We are thus left with four algebraic equations: Ef).

2,}% ture, but not belowr,. Indeed, Fig. 4 of Ref. 15 is in com-
A;— —meri(v,60,my), 6<6*, plete qualitative agreement with this prediction and with the
w(6)= A phase diagram in Fig. 1. Neag, there is no hysteresis; hys-
21/% teresis appears only below some temperature which may be
Ap— = my(1-mp)sd(va(m—6).mp),  6>6*.  identified asT,.
(5) For the purpose of qualitative comparison with Fig. 4 in
Ref. 15 we arbitrarily consider now a piecewise constant
Here cn and sd are Jacobian elliptic functidfhs; and m, loop with d=6*/7=%. We do not attempt a quantitative

are constants, and treatment, since some of the relevant quantities have still not
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ratio between the values ofil/d® at &=dy2 and

at ®=0 is 4\N—A)/(N—Xhy) for A=\A<\, and
2(Ng—No)/(N—=N\5) for A>N, and A=\,. In spite of the
very different chosen shape, this is again in qualitative agree-
ment with the piecewise constant case and with the experi-
mental results.

The identification ofdl/d® in Fig. 3 with the measured
ac susceptibility corresponds to the ideal limit of small ac
amplitude and high frequency. In a real experiment, three
kinds of deviations are expected. Firsis not a linear func-
tion of ® in the range probed by the ac field; this difficulty is
most serious whed1/d® has a narrow peak or a disconti-
nuity, which will be smeared. In Ref. 15 the amplitude is
about 0.09,; this imperfection should be added to the fact
that the ring is very wide, so that different paths along it
enclose considerably different fluxes.

Second, if the probed region corresponds to a metastable
state and if the ac cycle is not fast compared to the lifetime,
then decays and hysteresis will occur and the experimental
results will deviate from the adiabatic ac susceptibility de-
scribed by Fig. 3. As the ac frequency is lowered, the results
approach isothermal susceptibility. And third, no matter how
high the frequency is, decays and hysteresis must occur if the
ac amplitude extends the probed region in Fig. 1 beyond

&/, IV
If the temperature is lower than but very closeTig then

FIG. 3. Derivative of the induced supercurrent with respect tothe energy barrier and the distance betwHdr-3 and T\,
the enclosed magnetic flux. The curves are shown as functions efre very small. Therefore, decays will occur in this region.
the flux, with\ as a parameter. These curves were calculated for Fhese decays produce a discontinuityl jrwhich is experi-
piecewise constant cross section, withe 0*/m=3. For this ex-  mentally similar to the divergence ofi/d®. It follows that
ample, the critical pointsP,, are located at\;=0.105 and  the results in this region may appear similar to those imme-
A;=1.35. The values oh were taken as\=A1+n(A,~M)/3,  giately aboveT,. In order to approach the theoretical situa-
where I_the dlnttr?gen r']s j.h.o".vn nsnttk? eaclh Cu&(ﬁ' dg]e Ct“gesoweretion, measurements ought to be repeated at various ac ampli-
normalized through division by the value at =0, - ;
which is ©\D,)/(147%x2R%). (3) A=\,. As \ approaches.,, the ;[iL:r?ifs and frequencies and then extrapolated to the ideal
peak at®=dy/2 becomes higher and narrower. A&\, it di- ) Qo L
verges.(b) A>N\,. Here hysteresis is possible. Asincreases be- ha\tge:fsl:)rebn;ggt;g:fg;?ngg sbus%e;\};gg "LYC'QI g“ ?ﬁgzgoﬂgaﬂngs
yond \,, the cusp atb=®,/2 becomes less pronounced. y ) . .

surements were performed at much lower frequencies than in
ilégf. 15, but this has no qualitative influence on the results
considered here. In this case the system was a large array of

rlngA;hgi;(r:i(l:ggsba t%/\;grc]iém: n”;'gp%' al garlgzsé nse to ideal rings with magnetic interaction, but the authors conclude that
y the paramagnetic peaks dt,/2 are a single-ring effect.

ac susceptibility measurements is proportional to the denvaAgain, the height of this peak goes through a maximum at

Ell_\;]e of the supercurrent with respect to the magnetic ﬂux'some temperatur®,, which we may identify as, aver-
e supercurrent is . L
aged over the rings. Moreover, it is found thBt corre-
sponds roughly to a “freezing temperature.” This is pre-
_ cPor E 9) cisely what is expected from our interpretation: beldw
AnkPRE A’ there is an energy barrier for changing the direction of the
supercurrent, whereas aboVe there is no barrier. Further
wherex is the ratio between the penetration depthand the  agreement with our interpretation is provided by their Fig. 8:
coherence lengtl, and the fractiork/ A appears in Eq(7).  the susceptibility depends on the frequency belgwbut not
The derivative ofl can now be obtained by differentiating aboveT,. Our explanation is that at low frequencies rings
Egs.(9), (3), and(5)—(7). have time to decay to the state with reversed current, but
The result is shown in Fig. 3. The resemblance with theaboveT, there is nowhere to decay.
experimental results is encouraging. Agreement is found not As discussed in the previous paragraphs, hysteresis in the
only in the presence or absence of hysteresis, but also in thgobing cycle is present only in a limited region, immedi-
trend of the temperature dependence of the height and widthtely belowT,. Since an experimental signature for hyster-
of the peaks, both above and beldw. esis is an imaginary component in the ac susceptibility,
A complementary case which can be studied is that of aould be characterized by the onset of this component as the
ring with nearly uniform cross section. We obtain that thetemperature is lowered. The maximum value of this imagi-

101

ar/dd

been measured and, besides, the experiment used a very w
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nary component and the temperature at which it is locategerconducting state. As a consequence, the available data are

depend on the amplitude and frequency of the ac field.  insufficient for a quantitative fit and we cannot rule out other
The intermediate state used in Ref. 6 to calculate the erpossible explanations for the paramagnetic peak. However,

ergy barrier, which is needed for their fit, is the continuationfor a purposely designed experiméftac susceptibility of-

of our SC state, taken to the limit of a uniform ring and fers a sensitive tool for revealing the critical point at

corrected for nonzero self inductance. Ror \, this state is P=®d¢/2 andT=T,.

a saddle point and fok<X, it is stable. However, for a  we wish to thank John Price for sending us the experi-
strictly uniform ring,\; and\, coalesce and the SC state is mental data of Ref. 15 and Daniel Reich for sending us the
never stable. unpublished results of Ref. 6. This research was supported

The experiments in Refs. 15 and 6 were not planned foby the U.S.-Israel Binational Science Foundation. J.B. was
verifying the range of existence of the singly connected sualso supported by the Israel Science Foundation.
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