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Upper critical field in the extended saddle-point model

A. A. Abrikosov
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

~Received 10 April 1997!

The dependence of the upper critical field on temperature for all temperatures is calculated in the framework
of the extended saddle-point model. A discussion is given of the present experimental situation.
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I. Introduction. In the previous paper1 the Ginzburg-
Landau ~GL! equations for the model based on the dom
nance of extended saddle points in the electron spect
were derived and, as an example, the critical magnetic fi
Hc2 parallel to thec axis was calculated. Its temperatu
dependence had a positive curvature, which was attribute
the fact that in the model under consideration, the motion
Cooper pairs becomes increasingly one-dimensional with
parture fromTc . This feature reproduced the experimen
trend for different high-Tc cuprates, provided that their criti
cal temperature was sufficiently suppressed by underdop
overdoping, or strongly scattering impurities. It was believ
that Hc2 could be defined from the resistive transition, b
cause the latter was rather sharp even in magnetic fi
Since then measurements of specific heat in magnetic
were performed, and the curveHc2(T), defined from the step
in C(T), differed from the one obtained by the resistive tra
sition. Unfortunately, these data were available only for te
peratures in the vicinity ofTc .

In the paper1 we did not attempt to make a numeric
comparison with experiment, since the latter would requ
the knowledge of the curveHc2(T) at all temperatures, from
zero toTc , and the GL equations were applicable only in t
vicinity of Tc . From what was said it follows that the exis
ing experimental data are controversial, and hence, now
not the best time to perform such a comparison. Never
less, we believe that it is useful to derive the complete
pendenceHc2(T) and to discuss the existing situation t
gether with some additional options.

In the paper1 it was shown that, if the coefficienth, de-
fining the connection between different ‘‘one-dimensiona
momentum regions, is small enough,Hc2 becomes infinite
within the limits of applicability of the GL theory. This con
clusion did not take into account the paramagnetic mec
nism of the destruction of Cooper pairs; hence, in order
obtain meaningful results, this mechanism has also to
considered.

II. Quasiclassical Equations. We will base our calcula-
tion on the method developed by Gor’kov for isotrop
superconductors.2 The difference will be that we have t
consider two vicinities of singular regions,a and b. The
linear equations defining an infinitesimal nucleus of the
perconducting phase will be~see Refs. 1, 2!:

Fa* ~r!5T(
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E G2v11
a ~r8,r!Gv22
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1l2Fb* ~r8!#dr8, ~1a!

Fb* ~r!5T(
v

E G2v11
b ~r8,r!Gv22

b ~r8,r!@l1Fb* ~r8!

1l2Fa* ~r8!#dr8, ~1b!

whereG2v11
a (r8,r) means the normal-metal Green functio

for the vicinity a and spin projection 1/2, and similarly fo
Gb; r5(x,y); the definitions ofFa , Fb , l1 , and l2 are
given in Ref. 1. The functionsGa,b(r8,r) satisfy the equa-
tions

@ iv2v1~2 i ]/]x!1bHsz#Gv
a ~r,r8!5d~r2r8!, ~2a!

@ iv2v1~2 i ]/]y2eHx/c!1bHsz#Gv
b ~r,r8!5d~r2r8!,

~2b!

whereb is the Bohr magneton, and we introduced the vec
potentialAy5Hx. From these equations we see thatGa is
proportional tod(y2y8), andGb to d(x2x8). Now we will
use the transformation proposed in Ref. 2:

Ga,b~r,r8!5exp@ i ~eH/2c!~y2y8!~x1x8!#G̃a,b~r2r8!.
~3!

Taking into account the factorsd(x2x8) and d(y2y8) in
the correspondingG, we obtain

Ga~r,r8!5G̃a~x2x8!d~y2y8!, ~4a!

Gb~r,r8!5exp@ i ~eH/c!~y2y8!x#G̃b~y2y8!d~x2x8!.
~4b!

Substituting these expressions into Eqs.~2a!, ~2b! we get
‘‘free’’ one-dimensional equations forG̃a(x2x8) andG̃b(y
2y8), and hence we may conclude that they correspond
Green functions in the absence of magnetic field, except
the paramagnetic term.

As in Ref. 1, we assume thatFa,b depend only onx, and
introduce the notations

Q~x,x8!5E G2v11
a ~r8,r!Gv22

a ~r8,r!dy8, ~5a!

R~x,x8!5E G2v11
b ~r8,r!Gv22

b ~r8,r!dy8. ~5b!

We will consider for definiteness the more common ca
with an odd order parameter,l2,0 ~d wave!, and rewrite
Eqs.~1! in the form
5112 © 1997 The American Physical Society
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F E Q0~x2x8!dx82~l11ul2u!21GFa* ~x!2h@Fa* ~x!

1Fb* ~x!#1E Q1~x82x!Fa* ~x8!dx850, ~6a!

F E Q0~x2x8!dx82~l11ul2u!21GFb* ~x!2h@Fa* ~x!

1Fb* ~x!#1E R1~x82x!Fb* ~x8!dx850, ~6b!
t

lu

n
o

where Q0[R0 are the kernels in absence of the magne
field, Q15Q2Q0 , R15R2Q0 , h5ul2u/(l11ul2u)2. We
assumed thatul2u!(l11ul2u), and substituted in the secon
term of Eqs.~6! Q andR by Q0 , which to the first approxi-
mation is defined by neglecting the second and third term
Eqs.~6!. According to Ref. 1 and the previous papers on
same model quoted therein, the square bracket in the
term of Eqs.~6! can be replaced byt5 ln(Tc /T).

III. Variational Principle. Both Eqs.~6! can be obtained
from a variational principle by defining the minimum of
t5F2E Fa* ~x8!Q1~x82x!Fa~x!dx dx82E Fb* ~x8!R1~x82x!Fb~x!dx dx8

1hE uFa~x!1Fb~x!u2dxG Y E @ uFa~x!u21uFb~x!u2#dx. ~7!
ke

the
Now everything becomes rather similar to the caset!1,
considered in Ref. 1.

Let us first calculateQ1 andR1 . The Fourier componen
of Q1 is

Q1~k!5T (
2`,v,`

E
2`

`

dj

3F 1

~2 iv2j1bH1v1k!~ iv2j2bH !
2

1

v21j2G
5cS 1

2D2Re cS 1

2
1

iv1k

4pT
1

ibH

2pTD , ~8!

wherec(x) is the digamma function. Compared to the va
in the absence of the field the functionR contains a factor
exp@(2ieH/c)x(y82y)#, which can be considered as resulti
from the change in thepy momentum. Therefore, similarly t
Q1 , we obtain

R1~x!5cS 1

2D2Re cS 1

2
2

ieHv1x

2pTc
1

ibH

2pTD . ~9!
e

g

Since this case is more difficult thant!1, considered in
Ref. 1, we will use trial functions from the start and ta
them the same, as in Ref. 1:

Fa~x!5exp@2~2eHga /c!x2#, ~10a!

Fb~x!52q exp@2~2eHgb /c!x2#. ~10b!

The calculation of the term withQ1 in the functional~7! is
easier to perform in Fourier components, whereas for
term with R1 it is simpler to use formulas~10!. Thec func-
tions can be presented in the integral form:

c~z!5E
0

`S e2t

t
2

e2zt

12e2tDdt, ~11!

and hence,

cS 1

2D2cS 1

2
1xD5E

0

` e2xt21

2 sinh~ t/2!
dt. ~12!

After straightforward calculations we obtain from Eq.~7!
art.
t5h2
2&hqs

~11s2!1/2~11q2s!
1

1

2~11q2s!
E

0

` 12exp@2v1
2~eH/c!s2gbt2/~4pT!2#cos~bHt/2pT!

sinh~ t/2!
dt

1
q2s

2~11q2s!
E

0

` 12exp@2v1
2~eH/c!t2/~8pT!2gb#cos~bHt/2pT!

sinh~ t/2!
dt, ~13!

where we introduceds5(ga /gb)1/2 ~in Ref. 1 we used the notationb for this quantity but here we keepb as the standard
symbol for the Bohr magneton!.

Expression~13! has to be minimized over three parameters:gb , q, ands. The task is easier than it seems from the st
If we denote the integrals in the two last terms byF(s2gb) andF(1/4gb) and look for extrema with respect togb andq, we
get very easily

gb51/~2s!, q2s51. ~14!

After that the functionalt acquires the form
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t5hF12S 2s

11s2D 1/2G1
1

2 E
0

` 12exp@2m1~eH/mxc!st2/~4pT!2#cos~bHt/2pT!

sinh~ t/2!
dt, ~15!
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and only minimization with respect tos remains~here we
introducedm15mxv1

2/2 as the chemical potential, calculate
with respect to the extended saddle-point energy!. Close to
Tc we can set cos(bHt/2pT)'1 and expand
exp@2m1(eH/mxc)st2/(4pT)2#. After that we obtain

t5hF12S 2s

11s2D 1/2G1
7z~3!

8

m1eH

mxc~pT!2 s. ~16!

If we put in the last termT5Tc , this coincides with Eq.~33!
in Ref. 1 from whichHc2(T) was obtained. Since the G
equations are derived under the assumptiont'(Tc2T)/Tc
!1, the conclusion about the positive curvature can be do
strictly speaking, only forh!1. It is rather evident that for
sufficiently largeh the problem will be two-dimensional u
to t50. This can be established by expansion of the integ
in Eq. ~15! up to second order and accurate calculation
Hc2(T) up to terms;t2. We will not reproduce here this
simple but cumbersome calculation; the curvature att→0
will be negative, ifh.7.25. Such large values are unreal
tic, and therefore we can conclude that for our model
curvature will always be positive in the vicinity ofTc .

In the general case we can denote

f 5
m1eH

mxc~4pT!2 , g5
bH

2pT
, r 5

g

Af s
. ~17!

Introducing in the integral term of Eq.~15! a new variable
u5tAf s, and differentiating with respect tor we obtain

t5hF12S 2s

11s2D 1/2G1
1

2 E
0

` 12e2 f st2

sinh~ t/2!
dt

1
1

2Af s
E

0

r

dr1E
0

` ue2u2
sin~r 1u!

sinh~u/2Af s!
du. ~18!

IV. Limiting Cases.Let us consider the case of low tem
peratures. We will see that in this case the parameters cor-
responding toHc2 will be small but finite, andf s@1. The
second term on the right-hand side of Eq.~18! up to terms of
the order 1/(f s) is then

~1/2!ln~16g f s!11/~48f s!, ~19!

whereg5eC51.78. The third term is in the same case a
with the same accuracy

E
0

r

QS r 1

2 Ddr11
1

48f s F S r 2

2
21DQS r

2D2
r

2G , ~20!

where

Q~x!5e2x2E
0

x

eu2
du. ~21!

This function can be expressed in terms of the error funct
namely,
e,

al
f

e

n,

Q~x!52 ~Ap/2! ie2x2
F~ ix !.

In order to find the necessary value ofs, we neglect first
the terms proportional to 1/(f s) and expresss in terms of
r , see Eq.~17!:

1

2
lnFgm1~eH/mxc!

~pTc!
2 G52h1 ln

Af

g
1 ln r

2E
0

r

dr1e2r 1
2/4E

0

r 1/2

eu2
du. ~22!

The maximum of the right-hand side is reached atr 51.86,
and at this value the sum of the last two terms on the righ
equal to20.0433. If we substitute the definitions off and
g into the term ln(Af /g) we get (1/2)ln@(m1/2bH)(m/
mx)#. This term does not depend explicitly on temperatu
Transferring it to the left-hand side of Eq.~22! and remem-
bering that the maximum value of ther -dependent term is
20.0433 we get the ‘‘paramagnetic’’ critical field at zer
temperature

bHc2~0!/Tc 51.127e2h. ~23!

One sees from here that in case the singularities in the e
tron spectrum are not connected, i.e.,h50, the only mecha-
nism of destruction of superconductivity is the paramagne
effect. With increasingh, however, the role of orbital motion
becomes rapidly very important.

The temperature dependence at low temperatures is
fined by the terms of the order 1/(f s) in formulas~19!, ~20!,
and we get

Hc2~T!2Hc2~0!

Hc2~0!
521.04e2hS T

Tc
D 2

. ~24!

The conditions of applicability of this approximation ares
!1 and f s@1. Sinces;g2/ f , we getT!bH!m1 , or T
!Tce

2h.

FIG. 1. The theoretical dependences ofH85bHc2 /Tc on T85T/Tc for
h50.8 andh51.5 together with the experimental curve obtained from t
resistive transition~Ref. 3!.
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In order to trace the crossover from the regime close
Tc , whereHc2 is defined by the orbital motion, to the par
magnetic regime, it will be more convenient to consider
case of smallh, despite the fact that it, most likely, does n
describe the true substances. As we know from Ref. 1, in
case the rapid increase ofHc2(T) happens in the vicinity of
Tc , and we can suppose that the most important region is
far from this point. Both coefficients,f and g, can be as-
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sumed to be small, and we expand the last term in Eq.~15!.
We get

t5hF12S 2s

11s2D 1/2G1
7z~3!

4~pTc!
2 @m1bxHs1~bH !2#, ~25!

where bx5e/(2mxc)5b(m/mx). Minimizing over s and
considering limiting cases we obtain
bHc2~T!55
2~pTc!

2~mx /m!

7z~3!m1

h2

h2t
h2t.0, h2t@~Tc /m1!2/3h4/3

2p

A7z~3!
Tc~t2h!1/2 t2h.0, uh2tu@~Tc /m1!2/3h4/3

~26a!

~26b!
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bHc2~T!52S ~pTc!
4h2~mx /m!

@7z~3!#2m1
D 1/3

3F11
1

3 S m1
2@7z~3!#

~pTc!
2~mx /m!2h4D 1/3

~t2h!G ,
uh2tu!~Tc /m1!2/3h4/3 ~27!

~m is the free-electron mass!. From this example we see tha
the crossover between the two regimes~26a! and~26b!, hap-
pens smoothly.

V. Discussion.If we introduce the variablesT85T/Tc

and H85bH/Tc , then Eq.~15! depends on two fitting pa
rameters. They can be established from the behavior ofH8 at
T8→0 @h can be found from Eqs.~23! or ~24!# and at
T8→1; the slope at this point is

2S dH8

dT8 D
T851

5
4p2Tc~mx /m!

7z~3!m1
. ~28!

The comparison with experiment, until recently, was ea
since there existed numerous experimental data onHc2(T),
and the best of them were the data by Mackenzieet al.3 for
Tl2Ba2CuO61d, whereHc2(T) was measured down to les
than 20 mK. Unfortunately, these data, withHc2(T) defined
from the resistive transition, were not confirmed by sub
quent measurements of specific heat for the same substa4

and that caused suspicions that the resistive transition m
sures the melting field of the vortex array rather than the
Hc2 . Moreover, measurements of the specific heat on
,

-
ce,
a-

al
x-

tremely pure samples of YBa2Cu3O7 in a magnetic field5

clearly showed two features: a step at a higher tempera
and a peak at a lower one; the latter depended on the
similarly to the resistive transition. The step, which could
interpreted as evidence of the trueHc2 , corresponded to sig
nificantly higher fields at a given temperature. Unfortunate
this step is smeared out and reduced at low temperatu
and, therefore, it cannot be used for a detailed compariso
theory with experiment. In Fig. 1 we placed two theoretic
curves, forh50.8 ~upper curve! and h51.5 ~lower curve!
and experimental data for the resistive transition from Re
~dashed curve!. The slope atT851 was adjusted to the ex
perimental curve. Nevertheless, the trends are quite differ

Even without experimental data on the specific heat o
could become suspicious, because in the low-temperatur
gion the critical field obtained in Ref. 3 was of the order
the paramagnetic limit (H8;1), and in this case the curv
must become flat close toT50.

Therefore it is very desirable to find a reliable method
measureHc2(T). In this connection the experiments on J
sephson plasmons in high-Tc cuprates~see Refs. 6–8! may
be of considerable interest due to the fact that such plasm
exist only in the superconducting state, and they do not
appear even in the melted vortex regime. The latter w
shown theoretically and confirmed by experiment. One c
hope that the disappearance of such plasmons happe
Hc2 , or somewhere close to this field.
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