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Upper critical field in the extended saddle-point model
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The dependence of the upper critical field on temperature for all temperatures is calculated in the framework
of the extended saddle-point model. A discussion is given of the present experimental situation.
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. Introduction. In the previous papérthe Ginzburg- + A, (p")]dp’, (1a)
Landau(GL) equations for the model based on the domi-
nance of extended saddle points in the electron spectrum . b ) b ) .
were derived and, as an example, the critical magnetic field q)b(P):Tg f G211l p)Go2ap” P[NPy (")
H., parallel to thec axis was calculated. Its temperature
dependence had a positive curvature, which was attributed to +N @3 (p")1dp’, (1b)
the fact that in the model under consideration, the motion of a , :
Cooper pairs becomes increasingly one-dimensional with deV—VhereG—_w_ll_(p P) means the_nor_mal-metal Green function
parture fromT_.. This feature reproduced the experimentalfo{,_the_v'cm't_y a and Spin projection 1/2, and similarly for
trend for different hight, cuprates, provided that their criti- G, p_—(x,y), the deflnlthns Oga’,(bb’ A, and\,, are

- ._given in Ref. 1. The function&*"(p’,p) satisfy the equa-

cal temperature was sufficiently suppressed by underdopin oS
overdoping, or strongly scattering impurities. It was believed
thatHc, could be defined from the resistive transition, t_’e'éiw—vl(—i<9/o7X)+,8HUZ]GZ(p,p’)=5(p—p’), (2a)
cause the latter was rather sharp even in magnetic field.
Since then measurements of specific h_eat in magnetic field o, —y ,(—ia/dy—eHx/c)+ BHa, ]G (p.p")=8(p—p'),
were performed, and the curt.,(T), defined from the step (2b)
in C(T), differed from the one obtained by the resistive tran where is the Bohr magneton, and we introduced the vector

sition. Unfortunately, these data were available only for tem- . B . .
peratures in the vicinity of,. potential Ay=Hx. From these equations we see ti&# is

In the papetr we did not attempt to make a numerical proportional to5(y —y'), andG” to 5(x—x"). Now we wil
. : . : . use the transformation proposed in Ref. 2:
comparison with experiment, since the latter would require

the knowledge of the curvIdC_Z(T) at all temperatures, fr_om Ga,b(p,p/):exn:i(eH/ZC)(y_y/)(x_’_xr)]aa,b(p_p/).
zero toT., and the GL equations were applicable only in the
vicinity of T.. From what was said it follows that the exist- o .
ing experimental data are controversial, and hence, now i$@King into account the factoré(x—x’) and 5(y—y’) in
not the best time to perform such a comparison. Nevertheln® correspondings, we obtain
less, we believe that it is useful to derive the complete de-
pendenceH,(T) and to discuss the existing situation to-
gether with some additional options. , . R , ,
In the papet it was shown that, if the coefficiens, de- GP(p,p") =exli(eH/c)(y—y")XIG(y —y") o(x=X").
- : . . . . Y (4b)
fining the connection between different “one-dimensional
momentum regions, is small enough,, becomes infinite Substituting these expressions into E¢&a), (2b) we get
within the limits of applicability of the GL theory. This con- “free” one-dimensional equations faB3(x—x') and GP(y
clusion did not take into account the paramagnetic mecha-y’), and hence we may conclude that they correspond to
nism of the destruction of Cooper pairs; hence, in order tdGreen functions in the absence of magnetic field, except for
obtain meaningful results, this mechanism has also to bthe paramagnetic term.
considered. As in Ref. 1, we assume thdt, ,, depend only orx, and
Il. Quasiclassical Equations. We will base our calcula- introduce the notations
tion on the method developed by Gorkov for isotropic
supe_rconductor_%._The difference will be that we have to Q(X,X’)=f G2 11(p".p)G2,p’ p)dy’, (58
consider two vicinities of singular regiong, and b. The
linear equations defining an infinitesimal nucleus of the su-

perconducting phase will besee Refs. 1,2 R(x,x’)=J Gliwn(P"P)Gazz(P’.P)dY'- (5b)

G(p,p') =G x—x)d(y-y'), (48

We will consider for definiteness the more common case

D*(p)=T J G2 ' )G "N D (o' with an odd order parametex,<0 (d wave, and rewrite
2(p) % 011(P 1 P) G2 p" ) [N P (") Egs. (1) in the form
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where Qo=R, are the kernels in absence of the magnetic

U Qo(x—X’)dX’—(AﬁIRzI)‘l}q);(X)—77[<I>§(X) field, Q;=Q—Qp, Ri=R—Qq, 7=|\s|/(A1+|\5])2 We
assumed thah,|<(\;+|\,|), and substituted in the second

* r * o\ Ay term of Egs.(6) Q andR by Qg, which to the first approxi-
TP 00]F f QuX" =) 5 (x)dx’=0, (63 mation is defined by neglecting the second and third terms in
Egs.(6). According to Ref. 1 and the previous papers on the
{f Qo(X—X')dX'—(MH?\zDl}q)ﬁ(x)—ﬂ[q);(x) same model quoted therein, the square bracket in the first

term of Eqs.(6) can be replaced by=In(T./T).
[ll. Variational Principle. Both Egs.(6) can be obtained
+CI>;(X)]+J Ry(X" =x)®F (x")dx =0, (6b)  from a variational principle by defining the minimum of

T=

—j ®F (X" )Q1(X' —Xx)D4(x)dx dx’—f DF (X" )Ry (X' =x)Pp(x)dx dX

[ 1400+ 0 P0x / [ a0+ @ y00/210x ™

Now everything becomes rather similar to the casel,
considered in Ref. 1.
Let us first calculat&), andR;. The Fourier component

of Qq is

Since this case is more difficult thar<€ 1, considered in
Ref. 1, we will use trial functions from the start and take
them the same, as in Ref. 1:

®,(x)=exd — (2eHy,/c)x?], (103

Q=T 3 [ a
! ) d(x)=—q exq — (2eHy, /c)X?]. (10b)

The calculation of the term witkQ, in the functional(7) is

easier to perform in Fourier components, whereas for the

term with R, it is simpler to use formulagl0). The ¢ func-

1 1
X[(—iw—§+,8H+v1k)(iw—§—,8H)_w2+§2

1 1 vk iBH tions can be presented in the integral form:
””’(E)_Re‘/’ 2" agT 27TT)’ @® et gt
wherey(x) is the digamma function. Compared to the value W(z)= fo (T— 1_—et)dt1 (11)

in the absence of the field the functiéhcontains a factor
exd (2ieH/c)x(y' —y)], which can be considered as resulting and hence,
from the change in thp, momentum. Therefore, similarly to
Q1, we obtain

¥

1) (1 (e er-1
2] ¥ g tX ‘fo 2sinfu 9t 12

After straightforward calculations we obtain from E@)

3 (l 1 ieHvix iBH
RibO=¢| 3| ~Red| 5= 5 76 +m)-

o 2v27Qs . 1 F 1—exd —vi(eH/c)s?y,t?/(4wT)?]cog BH/27T) ot
T A+ T(1+g%)  2(1+6%) Jo sinh(t/2)

a’s » 1—exd —v2(eH/c)t?/ (87 T)?y,]cog BHt/27T) it

i 2(1+9°s) Jo sinh(t/2) ’ (13

where we introduced= (y,/7y,)"? (in Ref. 1 we used the notatiof for this quantity but here we keep as the standard
symbol for the Bohr magneton

Expression13) has to be minimized over three parameters; g, ands. The task is easier than it seems from the start.
If we denote the integrals in the two last termsm{s?y,) andF (1/4y,) and look for extrema with respect tg, andq, we
get very easily

vo=1/2s), g’s=1. (14)

After that the functionalr acquires the form
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2s \? 1 (= 1—exgd— pi(eH/mc)st?/(47T)?]cod BHt/27T)
=nl1-|—= +—f - dt, (15
1+s 2 Jo sinh(t/2)
|
and only minimization with respect te remains(here we Q(x)=— (V7/2) ie’XZ(ID(ix).
introduced,ulzmxvf/2 as the chemical potential, calculated
with respect to the extended saddle-point ener@ose to In order to find the necessary value sfwe neglect first
T. we can set cogHt/2nT)~1 and expand the terms proportional to 1f§) and express in terms of
exd — uy(eHm,c)st/(47T)?]. After that we obtain r, see Eq(17):
2s \Y¥2 7£3) w.eH 1
1 yra(eHm,e) Vi
=71 1+<2 } 3 me(WT)ZS. (16) EI’]WZ—’I]‘HHE'HHF
If we put in the last ternT=T,, this coincides with Eq(33) r 2 (T2 ,
in Ref. 1 from whichH,(T) was obtained. Since the GL - fodrle’rl"1 fo e'du (22)

equations are derived under the assumptien(T.—T)/T,

<1, the conclusion about the positive curvature can be doneghe maximum of the right-hand side is reached =t1.86,
strictly speaking, only forp<1. It is rather evident that for and at this value the sum of the last two terms on the right is
sufficiently larges the problem will be two-dimensional up equal to—0.0433. If we substitute the definitions éfand

to 7=0. This can be established by expansion of the integraé into the term Ing/f/g) we get (1/2)If(uy/28H)(m/

in Eq. (15 up to second order and accurate calculation Ofmx)]. This term does not depend explicitly on temperature.
Hco(T) up to terms~ 7% We will not reproduce here this Transferring it to the left-hand side of E22) and remem.-
simple but cumbersome calculation; the curvature&t0  pering that the maximum value of thedependent term is

will be negative, if»>7.25. Such large values are unrealis- — 0433 we get the “paramagnetic” critical field at zero
tic, and therefore we can conclude that for our model theemperature

curvature will always be positive in the vicinity df .

In the general case we can denote BH(0)/T,=1.12%"". (23
One sees from here that in case the singularities in the elec-
p1€H BH g o
= 5, 0= , r=—. (17)  tron spectrum are not connected, =0, the only mecha-
myc(4mT) 2T Vis nism of destruction of superconductivity is the paramagnetic

effect. With increasingy, however, the role of orbital motion
becomes rapidly very important.
The temperature dependence at low temperatures is de-

Introducing in the integral term of Eq15) a new variable
u=t\/fs, and differentiating with respect towe obtain

0s \12] 1 (= 1—e TSP fin(ejd by the terms of the order 1£) in formulas(19), (20),
= == hl - and we get
A e %2[0 sinh2) ! ?
Hea(T) —Hc2(0) T\?
2 e ] e 10427 —| 24
ue sm(rlu)d Hep(0) T, (24)

1 fr o
+— drlf —Fdu. (18
N 2fs Jo ° Smr(U/Z\/E) The conditions of applicability of this approximation ase
IV. Limiting Cz:;\ses.Let us_con_S|der the case of low tem- <1 andfs>1. Sinces~g?f, we getT<gBH<u,, or T
peratures. We will see that in this case the paranetr- <Te .
responding taH;, will be small but finite, andfs>1. The
second term on the right-hand side of Eg) up to terms of

the order 1/{s) is then H'o.e L
(1/2)In(16yfs) + 1/(48fs), (19) 0.5+~
where y=e©=1.78. The third term is in the same case and 0.4
with the same accuracy L \exp
0.3-1%
ror 1 r2 r\or : =
fQ—ldrﬁ— >-1]Ql5|-5. (0 0.2 \3 o
0\ 2 48fs |\ 2 2] 2 “T ‘\ \ ]
where 014 n=1.5is =~ ]
) 0 r — . S T
Q(X):e—XZJ e’du. (21) 0 02 04 06 0.8 1
0

. . . . FIG. 1. The theoretical dependenceddf=BH, /T, onT'=T/T, for
This function can be expressed in terms of the error function, — o g and,=1.5 together with the experimental curve obtained from the

namely, resistive transitior(Ref. 3.
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In order to trace the crossover from the regime close tsumed to be small, and we expand the last term in(Eg).
T., whereH,, is defined by the orbital motion, to the para- We get
magnetic regime, it will be more convenient to consider the
case of smally, despite the fact that it, most likely, does not
describe the true substances. As we know from Ref. 1, in thi$~ 7
case the rapid increase Hf.,(T) happens in the vicinity of
T., and we can suppose that the most important region is nathere B,=e/(2m,c)=B(m/m,). Minimizing over s and
far from this point. Both coefficients, and g, can be as- considering limiting cases we obtain

2s
1+¢°

1/2 7§(3) )
+4(7T—-|-C)2[M1,3><H3+(,3H) 1, (25

2( 77Tc)2( m, /m) 772

7§(3)1U’ n—1 n— >0, n— T>(TC/M1)2/3774/3 (263)
1
BHe(T)= o
EE— (7._ 7])1/2 F— 7’>0’ |77_ T|>(TC/M1)2/37]4/3 (26b)
V7(3) °
|
and . L
tremely pure samples of YBE&u;O; in a magnetic field
(7T *7?(m,/m)| /3 clearly showed two features: a step at a higher temperature
BH(T)=2 [7203) s ) and a peak at a lower one; the latter depended on the field

similarly to the resistive transition. The step, which could be

1 Mi[7§(3)] 3 in_tgerpreted. as ev@dence of the trdeg,, corresponded to sig-

3\ (7 To)2m TR ™), nificantly higher fields at a given temperature. Unfortunately,
Cc X

this step is smeared out and reduced at low temperatures,
i 23413 and, therefore, it cannot be used for a detailed comparison of
7=l <(Te/n)™n @7 theory with experiment. In Fig. 1 we placed two theoretical
(m is the free-electron massFrom this example we see that curves, for,»=0.8 (upper curvg¢ and »=1.5 (lower curve
the crossover between the two regini26a and(26b), hap-  and experimental data for the resistive transition from Ref. 3

X| 1+

pens smoothly. (dashed curve The slope aff’ =1 was adjusted to the ex-
V. Discussion.If we introduce the variable§'=T/T.  perimental curve. Nevertheless, the trends are quite different.
andH’=pBH/T., then Eq.(15) depends on two fitting pa- Even without experimental data on the specific heat one

rameters. They can be established from the behavibr’'ait ~ could become suspicious, because in the low-temperature re-
T'—0 [ can be found from Eqs(23) or (24)] and at gion the critical field obtained in Ref. 3 was of the order of

T'—1; the slope at this point is the paramagnetic limitH'~1), and in this case the curve
must become flat close = 0.
dH’ 47T (my/m) Therefore it is very desirable to find a reliable method to
|57 = (29 | | i i
dT - 70(3) g measureH ,(T). In this connection the experiments on Jo

sephson plasmons in high:- cuprates(see Refs. 6-8may
The comparison with experiment, until recently, was easybe of considerable interest due to the fact that such plasmons
since there existed numerous experimental datéigs§T),  exist only in the superconducting state, and they do not dis-
and the best of them were the data by Mackemtial® for  appear even in the melted vortex regime. The latter was
TI,Ba,CuGs, 5, WhereH,(T) was measured down to less shown theoretically and confirmed by experiment. One can
than 20 mK. Unfortunately, these data, wil,(T) defined hope that the disappearance of such plasmons happens at
from the resistive transition, were not confirmed by subseH_,, or somewhere close to this field.
quent measurements of specific heat for the same substance, | would like to express my gratitude to Dr. A. P. Mcken-
and that caused suspicions that the resistive transition meaie and Dr. A. Carrington for useful discussions. This work
sures the melting field of the vortex array rather than the realvas supported by the U.S. Department of Energy under Con-
H.,. Moreover, measurements of the specific heat on extract No. W-31-109-ENG-38.
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