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Kinetic energy of solid neon by Monte Carlo with improved Trotter and finite-size extrapolation
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The kinetic energy of solid neon is calculated by a path-integral Monte Carlo approach with a refined Trotter
and finite-size extrapolation. These accurate data present significant quantum effects up to temperature
T=20 K. They confirm previous simulations and are consistent with recent experiments.
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In a previous work we reported theoretical results about tum transferred to the sample are infinite. Timrasal.
the average kinetic energy of rare-gas solktypton, argon, reached higher momentum and energy transfers, and they
and neoi, modeled by a Lennard-Jon@s)) interaction. For  claim that this improvement has made the final-state-effect
heavier crystals the thermodynamics was approached bgorrections to the observed longitudinal Compton profile ir-
means of the effective-potential methddThis approach al- relevant: hence, the data analysis had less sources of uncer-
lows us the use of all classical methods through the construdainty and was thus more reliable. They also did PIMC simu-
tion of an approximate effective classical phase-space distrfations, using different potentialg\ziz and LJ in order to
bution (see, for details, Ref.)4Monte Carlo simulatioris®? definitively establish wh_ether the original disagreement be-
with the effective potential were favorably compared with tween theory and experiment was due to a too rough model
path-integral Monte CarléPIMC) simulations, and also ap- potential: it turned out that the compute_d klnetl_c energy de-
plied to argorf reproducing very well the experimental den- pends very weakly on the mo_del potential. Their experimen-
sity and specific hedt. tal and PIMC data are consistent petwegn the_mselves, and

In spite of their large mass, krypton and argon show rel-&lso confirm the validity of our previous simulations. .
evant quantum effects at easily accessible temperatures; for In @ recent papé’f‘ we have developed a systematic
instance, the average kinetic energy is much larger than igethod for improving the Trotter number extrapolation of
corresponding classical value. Our calculations of the averPIMC data; in addition, we have recently extended this pro-
age kinetic energy of argon suggested the realization of nelzedure in order to take into account also the effect of the
tron Compton scatteringNCS) experiments, whose out- f|n|te_ size of the simulation bo¥ so that we are now able to
comes have been later found in perfect agreement with oupbtain much more accurate results. _
predictions'® For increasing value of the quantum coupling, _ 'he PIMC method is based upon the semigroup property
anharmonic second-order corrections arising from the od@f the density matrix
part of the potential were found relevarand have been
recently inserted in the effective potential formalis. . , _ )

For neon, where the strong anharmonicity shows up everfd ,q,,8)=f dop-1 ... daip(d,0p-1:7) - .. (01,05 7),
in the ground stat& we preferred to resort to path-integral D
Monte Carlo (PIMC) simulations, with a refined Trotter
extrapolationt the procedure consists in adding to the PIMCwhere 3=1/T and 7= B/P, P being the Trotter number. In
data the contribution of the harmonic approximation after theorder to make the above formula of practical use, the density
subtraction of the corresponding finite-Trotter data. matrix elemenip(g,,q,_;;7) is usually taken in the lowest

The available experimental data for the kinetic energy ofhigh-temperature approximation, giving rise to the so-called
solid neon obtained by NCS experimefitsyere in evident primitive action. The latter tends to the exact density matrix
disagreement with our PIMC results; all theoretical dataasP—o. This is the formalism we are dealing with here. In
were lower than the experimental ones. The reason was norder to get values of the averages of physical observables,
clear at all. Since the experiments with arfowere not yet many simulations at different values & must be per-
performed, we supposed that the LJ potential were an oveformed, and then the data must be extrapolated asx=.
simplification of the true potential and that many-body inter-The more “quantum” is the system, the larger must be the
actions could play an important role. maximum value ofP. The finite P estimatesG(P) of the

In a recent work Timmset al* report NCS measure- averages can be expanded a3(P)=G(x)+g,/P?
ments of the kinetic energy of solid neon, which differ from +g,/P*+ - - - }” and frequently the term in B? is not suf-
the previous ones Both experiments were carried out and ficient for a satisfactory fit.
analyzed in the regime of the so-calledpulse approxima- The method we suggest@dvercomes this problem. The
tion, which becomes exact when the energy and the momeridea is to take advantage of the fact that the thermodynamics
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of a harmonic system can be obtained analytically, even atbservables only adding to the raw simulation data this har-
finite P (see Ref. 18 nevertheless, such a system shows amoniclike correction, practically making the extrapolation as
very strong dependence dd, and the results obtained at N—o unnecessary.

finite P will not be close to those @& = unless the condi- To model solid neon, we considered a fcc lattice com-
tion P>f=Bhw/2 is fulfilled for any system’s frequency posed byN particles(labeled with 3D indices§ j) interacting

. However, at low temperatures, when guantum effects arthrough a pairwise potential,

most importan{in the temperature region where one should
use the highest values &), the harmonic approximation
(HA) of a solid system is surely meaningful, though rough.

Indeed, ad'— 0, harmonic excitations play a very important ) )

role in the thermodynamics. As long as the “quantum char-Several choices, as we leOW’ are possible for the model po-
acter” of the system increases, this becomes less and led@ntial. Since Timmst al.™ showed that the dependence of
true, but the self-consistéi?® HA (SCHA) eventually al- the kinetic energy on the potential is not critical, we chose to
lows us to recover a simple harmoniclike system whose beiodel —our system by the LJ 12-6 potential
havior is very similar to that of the real system. v(r)=4e[(a/r)*?=(o/r)°] with the potential parameters

Our idea is to improve the extrapolation & in ¢ and o taken from the literatu®® (¢=36.68 K and

PIMC simulations accounting for the dependence of the o=2.787 A. We neglect the dynamic effect of the interac-
harmonic contributions to the PIMC estimates of physicaltions beyond nearest neighbors, whose contribution to the
observables. The procedure consists of adding to the rougpPtential energy is taken into account by a static-lattice ap-
PIMC dataG(P) the deviation from theP=c estimates Proximation. We performed constant-density simulations

1
via)=32 vla-a. @

calculated for the SCHA of the system: evaluating the pressure within each run. The density was
adjusted in such a way to get a practically vanishing pres-
Gsd(P)=G(P)+[GN ()~ GL(P)]. 7)) sure,(the pressure is always less than @9% 15 atm, being

p* =&/ o the characteristic pressyria order to best repro-
In such a way, the improved estima@gdP) will show a duce the experimental settings; the zero-pressure densities
much weaker dependence on the Trotter nunfhethe scal- turned out to be very_close to the expeflmentgl ones. The
ing behavior in 1P? is reached earlier, and the maximum sample was an fcc lattice of 108 atoms with periodic bound-

Trotter number necessary to get the correct asymptotic resu®y con_ditions; in order to test the above desc_ribed finite—siz_e
is lower. We remember that a8 increases the computer correction scheme we made test runs changing the box size

time grows both because of the larger simulation box and ofP {0 864 particles. We used the Metropolis algorithm, with
the worse statistics. both single- and many-particle moves. The maximum Trotter

Another important point which has not yet been deep|ynum_berP was 48 E_ach run consisted of 200 000 steps per
investigated in relation to quantum simulations is the depenParticle for equilibration followed by 1 200 000 further steps,
dence of the data on the simulation box size. It is well knowrduring which the averages were accumulated every five
that for systems undergoing a phase transition the finite sizeteps. _For each run we estlmated_the_statlstlcal uncertainty,
of the simulated sample has dramatic effects, because in t{@king into account the MC correlation times; these vary with
critical region the correlation length diverges, and in order to” @ndN and never exceed 400 steps. .
simulate such a system particular procedures known as In order 'to make' flmte-Trptter and finite-size harmonic
“finite-size scaling” must be used. In the classical case, jfcorrections in the spirit described above, we need the SCHA
the system is far from a phase transition, the problem of hovpotential,
to reach the thermodynamic limit regime is in general easily
overcome, without using enormous _samp(eize effects, VO(Q):ENZW'F EmE Z Qz_{*ﬁg_ag_ﬁ, (5)
with modern computer capability, are in general not a prob- 2 2 993 V7
lem). However, dealing with quantum systems, subtle phe- . a w ) o .
nomena can occur: for instance,drdimensional lattices the WNere&'=ai"— do; andqp, is the equilibrium position of the
discreteness of the Brillouin zone due to the finite particlg th particle, which is fixed, being determined by the pa;tlcle
number introduces a nonphysical gap into the dispersionlensity.z=12 is the coordination number awd and Q%
curve which gives rise, at low temperature, to an exponentiaire adjustable parameters determined imposing that the av-
behavior of the specific heat, instead of the corfiétscaling  erage of the actual potentisl(q), and of its first and second
Bloch law, obtained for a linear dispersion of the soft modesderivatives are equal to the corresponding averages obtained
This effect can be observed in simulatidfs. for Vo(q): all averages are performed using the firftelen-

Following the idea of Eq(2) we suggesf to correct the  sity distribution corresponding t¥,(q), which is a Gauss-
raw PIMC data, at the SCHA level, also with respect to theirian. A shorthand way of expressing these Gaussian averages
dependence olN, the number of particles composing the as a formal power series turns out to be very useful in this
actually simulated sample, case, namely(f(&q))o=exp(D*#3,5/2)f(0) (summation

over repeated indicgswhere &g=&;,4— & (d labels the
Gsd P.N)=G(P,N)+[G(,0)~GI(P,N)]. (38)  nearest-neighbor displacementnd D*P=(£8EB), is the
variance matrix of the Gaussian distribution.
Preliminary test® made on 1D nonlinear systems confirm  Since v(r)—o as r approaches 0, averages like
that even with a chain composed by very few particles it is(v (|d+ &q4|))o Would diverge. This is an artifact of the har-
possible to get the thermodynamic limit of the averages ofmonic approximation: the Gaussian is small but nonzero at
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FIG. 1. Reduced kinetic enerdy/ e vs particle numbeN. The
Trotter number isP=8, the temperature i$=20 K, and the re-
duced density ig/p* =0.945. p* =m/¢3=1.5479 gcm 3 is the
characteristic density. The triangles are raw PIMC data, the squar
are PIMC data plus finite-Trotter correctio® and the circles are finite-Trotter and finite-size correction®). Error bars, when not

PIMC data plus flnlte-Tr_ott_er _and finite-size corr_ectlc(8$ Err_or shown, lie inside the symbols. The lines are fits of corresponding
bars, when not shown, lie inside the symbols. Lines are guides for,

the eye. data.

FIG. 2. Reduced kinetic enerdy/ e vs the inverse square of the
Trotter numberP. The simulation box contains 108 particles, the
temperature i =5 K and the reduced density jgp* =0.968. The
eiﬁangles are raw PIMC data, and the circles are PIMC data plus

r=0, where the true distribution would vanish; the formal 0 the symmetry properties of the fcc lattice, the ID&
power series ex@“ﬁaaaﬁ/Z)V(q) is then only asymptotic. reduce. mdged to three only, and making a further isotropy
However, the nonphysical contributions from the potential@Pproximation we assume that the two transverse compo-
core can be simply eliminated by truncating the seriesnents are equal, ;=D, ,=D, /2:

Hence we can expand the averaged potential and its deriva- 1

tives up to second order in thE's, finally obtaining the _ - 20 A\ Y

following SCHA equations: DH*l_E’.N%" (ViAW a (1)

mQ?, _ 2’ The SCHA finiteP estimates can be obtained as logarithmic
5 U’,(V§+AE)+F(VE_AI]</)! (6)  derivatives of the partition function
1 - v’ o , Zo(P,N)=e NI T [2sinh(Puy)]™t. (12
— - " " o — v kv
w v+4 (v"+v")Dj+ J + g D, Nz mQO -, ay,

(7)  The well-known partition function for a system of quantum
harmonic oscillators is recovered Bs—. In order to get

wherev=uv(d), v'=v'(d) and so ong=|d| is the nearest- the finiteN values we use the discrete mesh in the Brillouin

neighbor distance. The indic&s(wave vectoy and v (polar-
ization) label the normal modes, obtained by diagonalizing

sz}ﬁ to the eigenfrequencie)?,. In particular, 47
=34 1—cosk-d)] and A results from the polarization di-
agonalization. The quantity®

|
: | ‘

f coth(Puy) Q T
ay= (&&= 5—7 ; ® 2 ER
2mQy  coshuy N[ b :
is the normal coordinate mean-square fluctuation at finite 451 T y. ¥ 1
P, with sinh(uy)=BaQ/(2P); the corresponding limit for I T % [Pt
P—o is easily recovered. Moreover, 3 Dg---m-" J
(4) "m " ’ 40 S T T Y N ST S |
~ v v vov 0 5 10 15 20
"_— ”+—'D+———+—D
v=v 2 “l (Zd PR Rt ) T
~ UM v" v’ FIG. 3. Kinetic energyk of solid neon vs temperature. The
voEut o E’L a2 D+ d d? D,. (10 crosses are experimental data from Ref. 14, the open squares are

) PIMC simulations data from Ref. 14 and the triangles are our PIMC
Dy andD, are the mean-square fluctuations of the compodata with refined Trotter extrapolation. Error bars, when not shown,
nents of§y, parallel and orthogonal td, respectively. Due lie inside the symbols. The line is a guide for the eye.
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zone corresponding to that value Nf the thermodynamic difference between the extrapolationsPat « represents the
limit is obtained by the special points method. The SCHAsize effect. The results of our simulations are shown in Fig.
kinetic energy is K=(2N)"13,,m0%a} where 3:they are consistent with the experimen}gl datad con-
ai= i(P,N). In this way, we are able to get both finife- f|rnrntr;(camvcellﬂ(g:gynoir?éhgrcﬁlg/l gorsrlgl;ilglgosnc%eme ives an es-
and finiteN corrections. ' g

Through this analysis we have concluded that for the ki_tlmate on how large both the finite-size and the finite-Trotter

netic energy of neon a simulation box with 108 atoms anqeffects are. It is indeed important to control how much the

periodic boundary conditions is barely large enough todata are affected by the finiteness of the simulation box,

mimic the thermodynamic limit behavidr.e., the finite-size especially for observables which possibly show a stronger

corrections are of the order of the statistical exras it can N dependence than the kinetic energy, such as the specific

be seen in Fig. 1 where it is shown how the finite-size cor-heat or the frequency moments, or for systems with larger

rection scheme works. The relative effect of finite-size anqquantum coupling.

finite-Trotter corrections is well seen also in Fig. 2, where it We gratefully acknowledge useful discussions with P.
is shown how the finite-Trotter corrections work. The smallNielaba.
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