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Kinetic energy of solid neon by Monte Carlo with improved Trotter and finite-size extrapolation
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The kinetic energy of solid neon is calculated by a path-integral Monte Carlo approach with a refined Trotter
and finite-size extrapolation. These accurate data present significant quantum effects up to temperature
T520 K. They confirm previous simulations and are consistent with recent experiments.
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In a previous work1 we reported theoretical results abo
the average kinetic energy of rare-gas solids~krypton, argon,
and neon!, modeled by a Lennard-Jones~LJ! interaction. For
heavier crystals the thermodynamics was approached
means of the effective-potential method.2,3 This approach al-
lows us the use of all classical methods through the const
tion of an approximate effective classical phase-space di
bution ~see, for details, Ref. 4!. Monte Carlo simulations5–8,1

with the effective potential were favorably compared w
path-integral Monte Carlo~PIMC! simulations, and also ap
plied to argon,6 reproducing very well the experimental de
sity and specific heat.9

In spite of their large mass, krypton and argon show r
evant quantum effects at easily accessible temperatures
instance, the average kinetic energy is much larger than
corresponding classical value. Our calculations of the av
age kinetic energy of argon suggested the realization of n
tron Compton scattering~NCS! experiments, whose out
comes have been later found in perfect agreement with
predictions.10 For increasing value of the quantum couplin
anharmonic second-order corrections arising from the
part of the potential were found relevant7 and have been
recently inserted in the effective potential formalism.11

For neon, where the strong anharmonicity shows up e
in the ground state,12 we preferred to resort to path-integr
Monte Carlo ~PIMC! simulations, with a refined Trotte
extrapolation;1 the procedure consists in adding to the PIM
data the contribution of the harmonic approximation after
subtraction of the corresponding finite-Trotter data.

The available experimental data for the kinetic energy
solid neon obtained by NCS experiments,13 were in evident
disagreement with our PIMC results; all theoretical d
were lower than the experimental ones. The reason was
clear at all. Since the experiments with argon10 were not yet
performed, we supposed that the LJ potential were an o
simplification of the true potential and that many-body int
actions could play an important role.

In a recent work Timmset al.14 report NCS measure
ments of the kinetic energy of solid neon, which differ fro
the previous ones.13 Both experiments were carried out an
analyzed in the regime of the so-calledimpulse approxima-
tion, which becomes exact when the energy and the mom
560163-1829/97/56~1!/51~4!/$10.00
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tum transferred to the sample are infinite. Timmset al.
reached higher momentum and energy transfers, and
claim that this improvement has made the final-state-ef
corrections to the observed longitudinal Compton profile
relevant: hence, the data analysis had less sources of u
tainty and was thus more reliable. They also did PIMC sim
lations, using different potentials~Aziz and LJ! in order to
definitively establish whether the original disagreement
tween theory and experiment was due to a too rough mo
potential: it turned out that the computed kinetic energy
pends very weakly on the model potential. Their experim
tal and PIMC data are consistent between themselves,
also confirm the validity of our previous simulations.

In a recent paper15 we have developed a systemat
method for improving the Trotter number extrapolation
PIMC data; in addition, we have recently extended this p
cedure in order to take into account also the effect of
finite size of the simulation box,16 so that we are now able to
obtain much more accurate results.

The PIMC method is based upon the semigroup prope
of the density matrix

r~q8,q;b!5E dqP21 . . .dq1r~q8,qP21 ;t! . . . r~q1 ,q;t!,

~1!

whereb51/T andt5b/P, P being the Trotter number. In
order to make the above formula of practical use, the den
matrix elementr(ql ,ql 21 ;t) is usually taken in the lowes
high-temperature approximation, giving rise to the so-cal
primitive action. The latter tends to the exact density mat
asP→`. This is the formalism we are dealing with here.
order to get values of the averages of physical observab
many simulations at different values ofP must be per-
formed, and then the data must be extrapolated asP→`.
The more ‘‘quantum’’ is the system, the larger must be t
maximum value ofP. The finiteP estimatesG(P) of the
averages can be expanded asG(P)5G(`)1g2 /P

2

1g4 /P
41•••,17 and frequently the term in 1/P2 is not suf-

ficient for a satisfactory fit.
The method we suggested15 overcomes this problem. Th

idea is to take advantage of the fact that the thermodynam
51 © 1997 The American Physical Society
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52 56BRIEF REPORTS
of a harmonic system can be obtained analytically, even
finite P ~see Ref. 18!; nevertheless, such a system show
very strong dependence onP, and the results obtained a
finite P will not be close to those atP5` unless the condi-
tion P@ f5b\v/2 is fulfilled for any system’s frequenc
v. However, at low temperatures, when quantum effects
most important~in the temperature region where one shou
use the highest values ofP), the harmonic approximation
~HA! of a solid system is surely meaningful, though roug
Indeed, asT→0, harmonic excitations play a very importa
role in the thermodynamics. As long as the ‘‘quantum ch
acter’’ of the system increases, this becomes less and
true, but the self-consistent19,20 HA ~SCHA! eventually al-
lows us to recover a simple harmoniclike system whose
havior is very similar to that of the real system.

Our idea is to improve the extrapolation asP→` in
PIMC simulations accounting for theP dependence of the
harmonic contributions to the PIMC estimates of physi
observables. The procedure consists of adding to the ro
PIMC dataG(P) the deviation from theP5` estimates
calculated for the SCHA of the system:

GSC~P!5G~P!1@GSC
~h!~`!2GSC

~h!~P!#. ~2!

In such a way, the improved estimatesGSC(P) will show a
much weaker dependence on the Trotter numberP, the scal-
ing behavior in 1/P2 is reached earlier, and the maximu
Trotter number necessary to get the correct asymptotic re
is lower. We remember that asP increases the compute
time grows both because of the larger simulation box and
the worse statistics.

Another important point which has not yet been dee
investigated in relation to quantum simulations is the dep
dence of the data on the simulation box size. It is well kno
that for systems undergoing a phase transition the finite
of the simulated sample has dramatic effects, because in
critical region the correlation length diverges, and in order
simulate such a system particular procedures known
‘‘finite-size scaling’’ must be used. In the classical case
the system is far from a phase transition, the problem of h
to reach the thermodynamic limit regime is in general ea
overcome, without using enormous samples~size effects,
with modern computer capability, are in general not a pr
lem!. However, dealing with quantum systems, subtle p
nomena can occur: for instance, ind-dimensional lattices the
discreteness of the Brillouin zone due to the finite parti
number introduces a nonphysical gap into the dispers
curve which gives rise, at low temperature, to an exponen
behavior of the specific heat, instead of the correctTd scaling
Bloch law, obtained for a linear dispersion of the soft mod
This effect can be observed in simulations.12

Following the idea of Eq.~2! we suggest16 to correct the
raw PIMC data, at the SCHA level, also with respect to th
dependence onN, the number of particles composing th
actually simulated sample,

GSC~P,N!5G~P,N!1@GSC
~h!~`,`!2GSC

~h!~P,N!#. ~3!

Preliminary tests16 made on 1D nonlinear systems confir
that even with a chain composed by very few particles i
possible to get the thermodynamic limit of the averages
at
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observables only adding to the raw simulation data this h
moniclike correction, practically making the extrapolation
N→` unnecessary.

To model solid neon, we considered a fcc lattice co
posed byN particles~labeled with 3D indicesi, j ! interacting
through a pairwise potential,

V~q!5
1

2(ij v~ uqi2qju!. ~4!

Several choices, as we know, are possible for the model
tential. Since Timmset al.14 showed that the dependence
the kinetic energy on the potential is not critical, we chose
model our system by the LJ 12-6 potenti
v(r )54«@(s/r )122(s/r )6# with the potential parameter
« and s taken from the literature21 («536.68 K and
s52.787 Å!. We neglect the dynamic effect of the intera
tions beyond nearest neighbors, whose contribution to
potential energy is taken into account by a static-lattice
proximation. We performed constant-density simulatio
evaluating the pressure within each run. The density w
adjusted in such a way to get a practically vanishing pr
sure,~the pressure is always less than 0.07p*'15 atm, being
p*[«/s3 the characteristic pressure! in order to best repro-
duce the experimental settings; the zero-pressure dens
turned out to be very close to the experimental ones. T
sample was an fcc lattice of 108 atoms with periodic bou
ary conditions; in order to test the above described finite-s
correction scheme we made test runs changing the box
up to 864 particles. We used the Metropolis algorithm, w
both single- and many-particle moves. The maximum Tro
numberP was 48. Each run consisted of 200 000 steps
particle for equilibration followed by 1 200 000 further step
during which the averages were accumulated every
steps. For each run we estimated the statistical uncerta
taking into account the MC correlation times; these vary w
P andN and never exceed 400 steps.

In order to make finite-Trotter and finite-size harmon
corrections in the spirit described above, we need the SC
potential,

V0~q!5
1

2
Nzw1

1

2
m(

ia
(
jb

V2
ij
ab

j i
aj j

b , ~5!

wherej i
a5qi

a2q0,i
a andq0,i is the equilibrium position of the

i th particle, which is fixed, being determined by the partic
density.z512 is the coordination number andw andV2

ij
ab

are adjustable parameters determined imposing that the
erage of the actual potentialV(q), and of its first and second
derivatives are equal to the corresponding averages obta
for V0(q): all averages are performed using the finite-P den-
sity distribution corresponding toV0(q), which is a Gauss-
ian. A shorthand way of expressing these Gaussian aver
as a formal power series turns out to be very useful in t
case, namelŷ f (j id)&0[exp(Dab]a]b/2) f (0) ~summation
over repeated indices! where j id[j i1d2j i ~d labels the
nearest-neighbor displacements! and Dab5^j id

a j id
b &0 is the

variance matrix of the Gaussian distribution.
Since v(r )→` as r approaches 0, averages lik

^v(ud1j idu)&0 would diverge. This is an artifact of the ha
monic approximation: the Gaussian is small but nonzero
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r50, where the true distribution would vanish; the form
power series exp(Dab]a]b/2)V(q) is then only asymptotic.
However, the nonphysical contributions from the poten
core can be simply eliminated by truncating the seri
Hence we can expand the averaged potential and its de
tives up to second order in theD’s, finally obtaining the
following SCHA equations:

mV2
k
n

2
5 ṽ 9~nk

21Ak
n!1

ṽ 8

d
~nk

22Ak
n!, ~6!

w5v1
1

4
F ~v91 ṽ 9!Di1S v8

d
1
ṽ 8

d
DD'G2

1

Nz(kn
mV2

k
n
ak

n ,

~7!

wherev[v(d), v8[v8(d) and so on;d[udu is the nearest-
neighbor distance. The indicesk ~wave vector! andn ~polar-
ization! label the normal modes, obtained by diagonalizi

V2
ij
ab

to the eigenfrequenciesV2
k
n
. In particular, 4nk

2

5(d@12cos(k•d)# andAk
n results from the polarization di

agonalization. The quantity15,18

ak
n5^jk

njk
n&05

\

2mVk
n

coth~Pmk
n!

coshmk
n ~8!

is the normal coordinate mean-square fluctuation at fi
P, with sinh(mk

n)[b\Vk
n/(2P); the corresponding limit for

P→` is easily recovered. Moreover,

ṽ 95v91
v ~4!

2
Di1S v-

2d
2
v9

d2
1
v8

d3DD' , ~9!

ṽ 85v81S v-
2

2
v9

d
1
v8

d2DDi1S v9

d
2
v8

d2DD' . ~10!

Di andD' are the mean-square fluctuations of the com
nents ofjid , parallel and orthogonal tod, respectively. Due

FIG. 1. Reduced kinetic energyK/e vs particle numberN. The
Trotter number isP58, the temperature isT520 K, and the re-
duced density isr/r*50.945.r*[m/s351.5479 g cm23 is the
characteristic density. The triangles are raw PIMC data, the squ
are PIMC data plus finite-Trotter corrections~2! and the circles are
PIMC data plus finite-Trotter and finite-size corrections~3!. Error
bars, when not shown, lie inside the symbols. Lines are guides
the eye.
l
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to the symmetry properties of the fcc lattice, the 108D’s
reduce indeed to three only, and making a further isotro
approximation we assume that the two transverse com
nents are equal,D',1.D',2.D'/2:

Di ,'5
1

3N(
kn

~nk
26Ak

n!ak
n . ~11!

The SCHA finite-P estimates can be obtained as logarithm
derivatives of the partition function

Z0~P,N!5e2bNzw/2)
kn

@2sinh~Pmk
n!#21. ~12!

The well-known partition function for a system of quantu
harmonic oscillators is recovered asP→`. In order to get
the finite-N values we use the discrete mesh in the Brillou

es

or

FIG. 2. Reduced kinetic energyK/e vs the inverse square of th
Trotter numberP. The simulation box contains 108 particles, th
temperature isT55 K and the reduced density isr/r*50.968. The
triangles are raw PIMC data, and the circles are PIMC data p
finite-Trotter and finite-size corrections~3!. Error bars, when not
shown, lie inside the symbols. The lines are fits of correspond
data.

FIG. 3. Kinetic energyK of solid neon vs temperatureT. The
crosses are experimental data from Ref. 14, the open square
PIMC simulations data from Ref. 14 and the triangles are our PIM
data with refined Trotter extrapolation. Error bars, when not sho
lie inside the symbols. The line is a guide for the eye.
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zone corresponding to that value ofN; the thermodynamic
limit is obtained by the special points method. The SCH
kinetic energy is K5(2N)21(knmV2

k
n
ak

n where
ak

n5ak
n(P,N). In this way, we are able to get both finite-P

and finite-N corrections.
Through this analysis we have concluded that for the

netic energy of neon a simulation box with 108 atoms a
periodic boundary conditions is barely large enough
mimic the thermodynamic limit behavior~i.e., the finite-size
corrections are of the order of the statistical error!, as it can
be seen in Fig. 1 where it is shown how the finite-size c
rection scheme works. The relative effect of finite-size a
finite-Trotter corrections is well seen also in Fig. 2, where
is shown how the finite-Trotter corrections work. The sm
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difference between the extrapolations atP5` represents the
size effect. The results of our simulations are shown in F
3: they are consistent with the experimental data1 and con-
firm the validity of other PIMC simulations.1,14

In conclusion, the SCHA correction scheme gives an
timate on how large both the finite-size and the finite-Trott
effects are. It is indeed important to control how much t
data are affected by the finiteness of the simulation b
especially for observables which possibly show a strong
N dependence than the kinetic energy, such as the spe
heat or the frequency moments, or for systems with larg
quantum coupling.
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