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Transfer-matrix density-matrix renormalization-group theory for thermodynamics
of one-dimensional quantum systems
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The transfer-matrix density-matrix renormalization-group method for one-dimensional quantum lattice sys-
tems has been developed by considering the symmetry property of the transfer matrix and introducing the
asymmetric reduced density matrix. We have evaluated a number of thermodynamic quantities of the aniso-
tropic spin-1/2 Heisenberg model using this method and found that the results agree very accurately with the
exact ones. The relative errors for the spin susceptibility are less thahdtvn to T=0.01) with 80 states
kept.[S0163-1827)02034-1

The density-matrix renormalization grodPMRG)! is a  since this method deals directly with an infinite lattice sys-
powerful numerical method for studying the ground and low-tem.
lying state properties of low-dimensional lattice models. It We demonstrate our method using the 1D anisotropic
has been applied successfully to a number of strongly correspin-1/2 Heisenberg antiferromagnetic model
lated systems at zero temperature in one dimengién®—®
as well as two dimension@D).”~® In 1995, Nishino pointed N . L
out that as the partition function of a 2D classical systemis  H =Z hi; h=JSS +99,,+ASS,;]. (D
determined only by the maximum eigenvalue of a transfer :
matrix in the thermodynamic limit, the DMRG idea can beé(ye shall setJ=1. To apply the DMRG idea, we use the

extended to find this extreme eigenvalue and the correspon . A
ing eigenstate. Subsequently one can study thermodynam-iUOtter formula to decompose the partition functidt.is

properties. He calculated the specific heat of the 2D Isingeparated into two partsi,, andl:le_, containing those terms
model using this so-called transfer-matrix DMRG methodwith i being odd or even, respectively. The partition function
and found that the result agrees very accurately with thés represented in terms of the quantum transfer matrix

exact solutiort® Recently, Bursill, Xiang, and Gehring have Ty :*#*3

developed a transfer-matrix DMRG algorithm for 1D quan-

tum systems! They tested the method on the dimerized Z=limTr{ e <Hog~He]M= [im Tr72, )
spin-1/2XY model and obtained encouraging results. How- €0 e—0

ever, a proper implementation of the transfer-matrix DMRG

for studying the thermodynamic properties of 1D quantumwheree=g/M, =1/T, andM is the Trotter number. The

systems, especially at low temperature, remains challenginglements of the asymmetric matrfy, are determined by the
In this paper, we report our recent progress on the deveproduct of 2V local transfer matrices

opment of the transfer-matrix DMRG method for 1D quan-

tum systems. We have considered the symmetry properti€sss. - - a3y | Tulot- - - ooy)

of the quantum transfer matf&'3 and introduced an asym-

metric reduced density matrix which optimizes truncated ba- 3 3 2 2

sis states. This study allows us to achieve significantly accu- 22 kll (02102 09k 10%4)

rate results at low temperature and greatly enhances the toid

applicability of the method. For th&=1/2 Heisenberg anti-

ferromagnetic chain, we found that the relative error for the

spin susceptibility is of the order of 16 down to the tem-  ith 2T+ 1| o Tom 1) = T(02m T2 ohy ),

peratureT=0.01J (J is the exchange constanwith 80  imposing periodic boundary conditions in the Trotter

ftates kept. -ﬁhlstrflzetﬁf errcf)r ind_ th? valutta of R?e iemé)erl%irection. The local transfer matrix is given by

ure are smaller than those for typical quantum Monte Carlo , i+1 i+1; i i \_ /ci+l i  D\|d dt1

results as well as the thermodynamic DMRG restflt§he Tiak Ukﬁﬂkgikcrk”)_<S}<+1'_S"+1|eXp( _eh‘)|§k’§"< >WhAlee

thermodynamic DMRG methd@ cannot treat accurately a ?kf(_l_) “sc and |Sk>A is an eigenstate of S

physical system where the correlated length diverles  Sf|si) =Si|S)- The basidoy)® |0y, ;) is used to represent

example the low-temperature region of tBe-1/2 Heisen- and to construct the corresponding Trotter space. The super-

berg model because of the finite-size effect. However, therescripts and subscripts iy, and 7 represent the coordinates

is no such problem in the transfer-matrix DMRG methodof spins in the real and Trotter space, respectively.
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properties using the maximum eigenvaluand correspond-
ing left (y*“| and right|4®) eigenvectors of the transfer ma-
trix 7y . The free energy is determined purely by,
F=—(1/2B)In\. From the derivatives df one can in prin-
ciple calculate the internal enerdy, the magnetizatiom,,

the specific heaC,, the spin susceptibilityy, and other
guantities. However, as it is difficult to evaluate accurately a
derivative of a function in numerical calculations, we find
that it is better to evaluate andM, directly from{*| and
|4R), and then calculat€, and y from the derivative olU

and M,, respectively. For instance, U=(H){/N
=(ﬁl>T=(¢'-|Thl|¢R>/)\, where()+ is the thermal average
with respect to the thermodynamic density matrix
pin=exp(—BH)/Z and(y*|4®) =1 is assumed hereafter. The
definition of 7, is similar to that ofZy subject to the de-
composition. Its matrix elements can be obtained from the
(b) right-hand side of Eq(3) by replacingr(o303|o1o3) with
o (0305 0103) = (s35|hiexp(~hy)sis)). Similarly, one
FIG. 1. Configurations of the superblock®) M=odd andb) o fing out the relation between the magnetization
M =even. The left and right transfer matrices are connected, via th ,
summation over states’, and o}, to form a periodic time-slice Mz= (=i §)7/N and the maximum eigenvectors %j
chain for 7y . In our calculation, we fixe and increase the chain length
2M. For eachM, th? temper%turé'z 1/eM. As M is small,
s . ..__one can find\, and exactly. For largeM we
__The local Hamiltoniarh; conserves the total spin at Sites oo the DMR<G¢i(|jea to |;ﬂpgroximat)ély but ac%urately find
I andi+1, i.e., St S =St S In the Trotter space ) vyl and |4R) for a periodic time-slice chain. Figure 1
th'S ‘consgrl/fltlorhl law can be expressed  asnows two configurations of the superblocks Bf. The
okt Oy = T oy This means that  syperblock consists of two blocks, which we call renormal-
7(0'|+10';<:ll|0'k0'k+1) is block diagonal for each value of jzed blocks, in the dashed frames and two time slices. The
oyt oy, . It turns out that the total sum aofy at sitei is  system contains a renormalized block and one slice. The rest
conserved iy, , i.e., S0 =30 *, and7y, is block di- s thus its environment. We usg andn, to label the basis
agonal according to the value EfkaL For Eq.(1), itcan be  states of the renormalized blocks in the system and the en-
further proved that the maximum eigenvalueZgf occurs in ~ vironment, respectively. The states of two time slices are
the 3,0, =0 sub- blockt® Therefore only the o, =0 sub- represented by, ando,. The elements of the right transfer
block in 7y, is considered in our DMRG iterations. This con- matrix is denoted by 7,(o7,ns’,0%;01,N5,05) or
sideration allows us to keep more basis states in the trunc&(o1,ns,0%; 07 ,ns,0,) if M=o0dd or even. The left trans-
tion of the basis set and to save computer CPU time. fer matrix can be obtained by transposing the right one.
In the limit N—oo, one can study the thermodynamic Therefore the superblock’®, is given by
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Ty(ng,05,071,Ng;Ne,02,01,Ng) =

To grow the chain, we have the following recursive relations:
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> Ty(0].ne,0%;01.n,0)To(0] ,nl,0%;01,n5,07)  for M=odd,
o
4
2 T ne oo IT ’ P
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o] .0y
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which enlarge the renormalized blocks by one slice wﬁg>=

states of a spin added. Initially, for M=4,

|o)®|ng) as the corresponding Trotter space ol as the
/]‘ ! ! n. " — E ! ! " " " "
(01,0 ,05,07,0,0)) =2 n7(0y,0'|d],0") (0" 0% 0,

0,). As the number of states mg) exceedsn, Zo(a;,n s, 0% ;0% Ns,0) andZy(o  NL,0%;01,Ns,05) are renormalized by

To(o}.ng, 007 .ng,02)= > Ol(n{,n{
!

ngng

%(Uz,né,og;ol,ns,og)ZNZ o'(nl,n

ngng

where the transformation matric€" are constructed bgn

)T( 0y, ns, 0500 Mg, 02)O"(Rg,ng),
(6)

)To(0,nL,0%;01,05,02)0"(Ng,Ny),

with [ny=|o)®|n). ps is an asymmetric matrix since

truncated basis states from a reduced density matrix diswL#(wR))*r_ The eigenvalue op; gives the probability of

cussed below. Other operators suchhascan be renormal-
ized by Eq.(6) with 7, instead ofr in Eq. (5).

We compute the maximum eigenvaldeand the corre-
sponding right eigenvectdrs®) of 7y, using a projection
method. Iterating| )= Ty| ¢k _1), we reach|yR)=|yy)
and 7y | ™) =\ |4F) for sufficient largeK. |#) is an arbi-
trary trial vector which is not orthogonal ths®). In our
calculations, we find that the value Kf needed for produc-
ing an eigenvalue with a relative error less than f0is
generally less than 20, but it increases with increasihg
The left eigenvectof*-) can be calculated similarly. How-

the corresponding eigenstates onto which the system is pro-
jected as the response to its environmefR§( | which is
used to define the density matrix for the augmented system
block in Ref. 11 is not a true projection operator for the
maximum eigenvectors ¢y, .) The transformation matrices
O"" in Eq. (6) are thus built up by usingn left or right
eigenvectors op¢ corresponding tan most probable eigen-
values.

Systematic errors come from two sources. One is the fi-
niteness ofe, and the other is the truncation of basis set in

ever, for the systems as we study here, the wave function dhe DMRG iterations. The first type of error is generally very
(y*| can be directly read out from the wave functior| ¢f): small and in principle it can be further reduced by doing an
JH(Ng,05,01,Ne) = ¥R(Ng,05,07,Ny) by constructing the extrapolation with respect te2.!*'’ The error due to the

superblocks with a reflection symmetry as involved in Eq.truncation is difficult to estimate. A lower bound for this type

4).

A density matrix for the whole systelti.e., superblock
can be defined gs=7\/%/ Tr7)?. This is a generalization of
the thermodynamic density matrpx, in the Trotter space.
We form the reduced density matrix for the augmente
renormalized block by performing a partial tracemfor the
states of the environment

/2
T, T
pS Trm/z '

In the thermodynamic limitps=Tr, . [¢F)(4*, thus the
matrix element ofpg is given by

@)

ps(nLn9=2 (e, nHyR(ne,ny), (8)

Ne

of error is given by the truncation errgr,,=1—3,"w;,
wherew; (i=1, ... m) are them largest eigenvalues @f;.
We found thatp,, is generally less than 16 whenm=16
and decreases rapidly with increasing for the spin 1/2

Aystem.

Figure 2 shows the results for the specific h€a(T)
down toT=0.02 withm=80 ande=0.05 forA=0,1 cases.
C, is obtained from the first derivative df. For the XY
model (A=0), we find that the relative errors are less than
107° down to T=0.02 for U and less than IC® down to
T=0.03 for C, compared with the exact resulfsFor the
isotropic antiferromagnetic Heisenberg modd 1), the
precision of the results is similar. The maximum valueCgf
is 0.3515 afT=0.47. At low temperatur€,, varies linearly
with T. The coefficient of theT term is shown to be
26/(3sind) with §=cos *A.!8 By fitting our results with a
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FIG. 3. The spin susceptibility(T) for both
A=0 andA=1. The solid curves and circles,
respectively, are the exact resu(Ref. 19 and
the transfer-matrix DMRG results witk=0.05
and m=280. Inset compares the transfer-matrix
DMRG results form=32 (diamond$ and 80
(circles with the Bethe ansatz results in the low-
temperature regime fak=1.

0.08 ! ! ;
0.0 0.4 0.8 1.2 1.6 20

polynomial up to seventh order in for 0.03<T=<0.1, we heat. In the inset, we compare numerical results Xer 1
found that the coefficients of the linear terms are 1.041 andvith m=32 and 80 to the exact results in the low-
0.665 forA=0 and 1, respectively. The difference betweentemperature regime. Fan=232 the relative error is of the
our results and the exact ones for the linear coefficients igrder of 10°° at T=0.01. Our results are systematically bet-
less than 1%. ter than those obtained by Moukouri and Caron with the
For comparison, we also calculatddandC, with a sym- thermodynamic DMRG methot.
metric density matrix as defined in Ref. 11. At high tempera- oy computations were performed on DEC Alpha sta-
ture, the results obtained with a symmetric density matrixjons. |t takes about 14 000 seconds on a 175 MHz station to

agree well with those obtained with an asymmetric densitygenerate a superblock size off2=4000 form=32.
matrix. However, at low temperature we found that the re-" | " .onclusion. the quantum transfer-matrix DMRG

sults obtained with an asymmetric density matrix are Mornethod with asymmetric density matrices is developed. We

accurate than those obtained with a symmetric density matrif%a\/e calculated a number of thermodynamic quantities for
(Fig. 2). The relative errors folJ andC, obtained with the

symmetric density matrix are generally larger thar 3@t the anisotropic Heisenberg antiferromagnetic §p|n-1/2 model
| and found the results agree very accurately with exact ones.
ow temperature. Our investigation shows that the transfer-matrix DMRG is a
Figure 3 shows our results for the spin susceptibji(y) ver romigin method for studying thermodynamic proper-
down toT=0.01 withm=280 ande=0.05 forA=0,1 cases. yp 9 ying y brop

x(T) is obtained from the first-order derivative ofl,, ties of 1D quantum systems.

which is equal toM,(T,B)/B for sufficient small magnetic We are very grateful to R.J. Bursill, P. Fulde, G.A.
field since M,(T,0)=0. In our calculationsB=0.003 is Gehring, T. Nishino, I. Peschel, and X. Zotos for stimulating
used. For both cases, the relative error is less thar® 10 discussions, and S. Eggert and S. Moukouri for helpful cor-
down toT=0.01. We note that the results of spin suscepti-respondence. X.W. is supported by the Swiss National Fond
bility are generally more accurate than those of the specifi€ésrant No. 933.62.186.153.
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