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Transfer-matrix density-matrix renormalization-group theory for thermodynamics
of one-dimensional quantum systems
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The transfer-matrix density-matrix renormalization-group method for one-dimensional quantum lattice sys-
tems has been developed by considering the symmetry property of the transfer matrix and introducing the
asymmetric reduced density matrix. We have evaluated a number of thermodynamic quantities of the aniso-
tropic spin-1/2 Heisenberg model using this method and found that the results agree very accurately with the
exact ones. The relative errors for the spin susceptibility are less than 1023 down toT50.01J with 80 states
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The density-matrix renormalization group~DMRG!1 is a
powerful numerical method for studying the ground and lo
lying state properties of low-dimensional lattice models.
has been applied successfully to a number of strongly co
lated systems at zero temperature in one dimension~1D!2–6

as well as two dimensions~2D!.7–9 In 1995, Nishino pointed
out that as the partition function of a 2D classical system
determined only by the maximum eigenvalue of a trans
matrix in the thermodynamic limit, the DMRG idea can b
extended to find this extreme eigenvalue and the corresp
ing eigenstate. Subsequently one can study thermodyna
properties. He calculated the specific heat of the 2D Is
model using this so-called transfer-matrix DMRG meth
and found that the result agrees very accurately with
exact solution.10 Recently, Bursill, Xiang, and Gehring hav
developed a transfer-matrix DMRG algorithm for 1D qua
tum systems.11 They tested the method on the dimeriz
spin-1/2XY model and obtained encouraging results. Ho
ever, a proper implementation of the transfer-matrix DMR
for studying the thermodynamic properties of 1D quant
systems, especially at low temperature, remains challeng

In this paper, we report our recent progress on the de
opment of the transfer-matrix DMRG method for 1D qua
tum systems. We have considered the symmetry prope
of the quantum transfer matrix12,13 and introduced an asym
metric reduced density matrix which optimizes truncated
sis states. This study allows us to achieve significantly ac
rate results at low temperature and greatly enhances
applicability of the method. For theS51/2 Heisenberg anti-
ferromagnetic chain, we found that the relative error for
spin susceptibility is of the order of 1024 down to the tem-
peratureT50.01J (J is the exchange constant! with 80
states kept. This size of error and the value of the temp
ture are smaller than those for typical quantum Monte Ca
results as well as the thermodynamic DMRG results.14 The
thermodynamic DMRG method14 cannot treat accurately
physical system where the correlated length diverges~for
example the low-temperature region of theS51/2 Heisen-
berg model! because of the finite-size effect. However, the
is no such problem in the transfer-matrix DMRG meth
560163-1829/97/56~9!/5061~4!/$10.00
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since this method deals directly with an infinite lattice sy
tem.

We demonstrate our method using the 1D anisotro
spin-1/2 Heisenberg antiferromagnetic model

Ĥ5(
i

N

ĥi ; ĥi5J@Ŝi
xŜi 11

x 1Ŝi
yŜi 11

y 1DŜi
zŜi 11

z #. ~1!

We shall setJ51. To apply the DMRG idea, we use th
Trotter formula to decompose the partition function.Ĥ is
separated into two parts,Ĥo andĤe , containing those terms
with i being odd or even, respectively. The partition functi
is represented in terms of the quantum transfer ma
TM :12,13

Z5 lim
e→0

Tr@e2eĤoe2eĤe#M5 lim
e→0

TrTM
N/2 , ~2!

wheree5b/M , b51/T, andM is the Trotter number. The
elements of the asymmetric matrixTM are determined by the
product of 2M local transfer matrices

^s1
3
•••s2M

3 uTMus1
1
•••s2M

1 &

5 (
$sk

2%
)
k51

M

t~s2k21
3 s2k

3 us2k21
2 s2k

2 !

3t~s2k
2 s2k11

2 us2k
1 s2k11

1 !, ~3!

with t(s2M
2 s2M11

2 us2M
1 s2M11

1 )5t(s2M
2 s1

2us2M
1 s1

1),
imposing periodic boundary conditions in the Trott
direction. The local transfer matrix is given b
t(sk

i 11sk11
i 11 usk

i sk11
i )5^sk11

i 11 ,sk11
i uexp(2eĥi)usk

i ,sk
i11& where

sk
i 5(21)i 1ksk

i and usk
i & is an eigenstate of Ŝi

z :

Ŝi
zusk

i &5sk
i usk

i &. The basisusk
i & ^ usk11

i & is used to representt
and to construct the corresponding Trotter space. The su
scripts and subscripts inTM andt represent the coordinate
of spins in the real and Trotter space, respectively.
5061 © 1997 The American Physical Society
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The local Hamiltonianĥi conserves the total spin at site
i and i 11, i.e.,sk

i 1sk
i 115sk11

i 1sk11
i 11 . In the Trotter space

this conservation law can be expressed
sk

i 1sk11
i 5sk

i 111sk11
i 11 . This means that

t(sk
i 11sk11

i 11 usk
i sk11

i ) is block diagonal for each value o
sk

i 1sk11
i . It turns out that the total sum ofsk

i at site i is
conserved inTM , i.e., (ksk

i 5(ksk
i 11 , andTM is block di-

agonal according to the value of(ksk
i . For Eq.~1!, it can be

further proved that the maximum eigenvalue ofTM occurs in
the (ksk

i 50 sub-block.15 Therefore only the(ksk
i 50 sub-

block inTM is considered in our DMRG iterations. This co
sideration allows us to keep more basis states in the tru
tion of the basis set and to save computer CPU time.

In the limit N→`, one can study the thermodynam

FIG. 1. Configurations of the superblocks:~a! M5odd and~b!
M5even. The left and right transfer matrices are connected, via
summation over statess19 and s29 , to form a periodic time-slice
chain forTM .
s

a-

properties using the maximum eigenvaluel and correspond-
ing left ^cLu and rightucR& eigenvectors of the transfer ma
trix TM . The free energy is determined purely byl,
F52(1/2b)lnl. From the derivatives ofF one can in prin-
ciple calculate the internal energyU, the magnetizationMz ,
the specific heatCv , the spin susceptibilityx, and other
quantities. However, as it is difficult to evaluate accuratel
derivative of a function in numerical calculations, we fin
that it is better to evaluateU andMz directly from ^cLu and
ucR&, and then calculateCv andx from the derivative ofU
and Mz , respectively. For instance, U5^Ĥ&T /N
5^ĥ1&T5^cLuTh1

ucR&/l, where^&T is the thermal average
with respect to the thermodynamic density mat
r th5exp(2bĤ)/Z and^cLucR&51 is assumed hereafter. Th
definition of Th1

is similar to that ofTM subject to the de-
composition. Its matrix elements can be obtained from
right-hand side of Eq.~3! by replacingt(s1

2s2
2us1

1s2
1) with

th1
(s1

2s2
2us1

1s2
1)5^s2

1s2
2uĥ1exp(2tĥ1)us1

1s1
2&. Similarly, one

can find out the relation between the magnetizat
Mz5^( i Ŝi

z&T /N and the maximum eigenvectors ofTM .
In our calculation, we fixe and increase the chain lengt

2M . For eachM , the temperatureT51/eM . As M is small,
one can findl, ^cLu and ucR& exactly. For largeM we
extend the DMRG idea to approximately but accurately fi
l, ^cLu and ucR& for a periodic time-slice chain. Figure
shows two configurations of the superblocks ofTM . The
superblock consists of two blocks, which we call renorm
ized blocks, in the dashed frames and two time slices.
system contains a renormalized block and one slice. The
is thus its environment. We usens andne to label the basis
states of the renormalized blocks in the system and the
vironment, respectively. The states of two time slices
represented bys1 ands2. The elements of the right transfe
matrix is denoted by To(s19 ,ns8,s29 ;s1 ,ns ,s2) or
Te(s18 ,ns8,s29 ;s19 ,ns ,s2) if M5odd or even. The left trans
fer matrix can be obtained by transposing the right o
Therefore the superblock’sTM is given by

e

-
rix
t-

-

FIG. 2. The specific heatCv(T) for both
D50 andD51. The solid curve is the exact re
sults. Circles and pluses are the transfer mat
DMRG results with the asymmetric and symme
ric density matrix, respectively.e50.05 and
m580 are used in the transfer-matrix DMRG
calculations. Inset: a polynomial fit for the low
temperatureCv .
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TM~ne8,s28 ,s18 ,ns8;ne ,s2 ,s1 ,ns!55 (
s19 ,s29

To~s19 ,ne ,s29 ;s18 ,ne8,s28!To~s19 ,ns8,s29 ;s1 ,ns ,s2! for M5odd,

(
s19 ,s29

Te~s2 ,ne ,s29 ;s19 ,ne8,s28!Te~s18 ,ns8,s29 ;s19 ,ns ,s2! for M5even.

~4!

To grow the chain, we have the following recursive relations:

Te~s18 , ñs8,s29 ;s19 , ñs ,s2!5(
s9

t~s18 ,s8us19 ,s9!To~s9,ns8,s29 ;s,ns ,s2!,

To~s19 , ñs8,s29 ;s1 , ñs ,s2!5(
s9

t~s19 ,s9us1 ,s!Te~s8,ns8,s29 ;s9,ns ,s2!, ~5!

which enlarge the renormalized blocks by one slice withu ñs&5us& ^ uns& as the corresponding Trotter space andus& as the
states of a spin added. Initially, for 2M54, Te(s18 ,s8,s29 ;s19 ,s,s2)5(s9t(s18 ,s8us19 ,s9)t(s9,s29us,

s2). As the number of states inu ñs& exceedsm, Te(s18 , ñs8,s29 ;s19 , ñs ,s2) andTo(s19 , ñs8,s29 ;s1 , ñs ,s2) are renormalized by

Te~s18 ,ns8,s29 ;s19 ,ns ,s2!5 (
ñs8 ñs

Ol~ns8, ñs8!Te~s18 , ñs8,s29 ;s19 , ñs ,s2!Or~ ñs ,ns!,

~6!

To~s19 ,ns8,s29 ;s1 ,ns ,s2!5 (
ñs8 ñs

Ol~ns8, ñs8!To~s19 , ñs8,s29 ;s1 , ñs ,s2!Or~ ñs ,ns!,
di

-
n

q
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where the transformation matricesOl ,r are constructed bym
truncated basis states from a reduced density matrix
cussed below. Other operators such asĥ1 can be renormal-
ized by Eq.~6! with th1

instead oft in Eq. ~5!.
We compute the maximum eigenvaluel and the corre-

sponding right eigenvectorucR& of TM using a projection
method. IteratingucK&5TMucK21&, we reachucR&5ucK&
andTMucR&5lucR& for sufficient largeK. uc0& is an arbi-
trary trial vector which is not orthogonal toucR&. In our
calculations, we find that the value ofK needed for produc-
ing an eigenvalue with a relative error less than 10216 is
generally less than 20, but it increases with increasingM .
The left eigenvectorucL& can be calculated similarly. How
ever, for the systems as we study here, the wave functio
^cLu can be directly read out from the wave function ofucR&:
cL(ns ,s2 ,s1 ,ne)5cR(ne ,s2 ,s1 ,ns) by constructing the
superblocks with a reflection symmetry as involved in E
~4!.

A density matrix for the whole system~i.e., superblock!
can be defined asr5TM

N/2/TrTM
N/2 . This is a generalization o

the thermodynamic density matrixr th in the Trotter space
We form the reduced density matrix for the augmen
renormalized block by performing a partial trace onr for the
states of the environment

rs5
Trnes2

TM
N/2

TrTM
N/2

. ~7!

In the thermodynamic limit,rs5Trnes2
ucR&^cLu, thus the

matrix element ofrs is given by

rs~ ñs8, ñs!5(
ñe

cL~ ñe , ñs8!cR~ ñe , ñs!, ~8!
s-

of

.

d

with u ñ&5us& ^ un&. rs is an asymmetric matrix since
^cLuÞ(ucR&)†. The eigenvalue ofrs gives the probability of
the corresponding eigenstates onto which the system is
jected as the response to its environment. (ucR&^cRu which is
used to define the density matrix for the augmented sys
block in Ref. 11 is not a true projection operator for th
maximum eigenvectors ofTM .) The transformation matrice
Ol ,r in Eq. ~6! are thus built up by usingm left or right
eigenvectors ofrs corresponding tom most probable eigen
values.

Systematic errors come from two sources. One is the
niteness ofe, and the other is the truncation of basis set
the DMRG iterations. The first type of error is generally ve
small and in principle it can be further reduced by doing
extrapolation with respect toe2.16,17 The error due to the
truncation is difficult to estimate. A lower bound for this typ
of error is given by the truncation errorpm512( i

mwi ,
wherewi ( i 51, . . . ,m) are them largest eigenvalues ofrs .
We found thatpm is generally less than 1025 when m516
and decreases rapidly with increasingm for the spin 1/2
system.

Figure 2 shows the results for the specific heatCv(T)
down toT50.02 withm580 ande50.05 forD50,1 cases.
Cv is obtained from the first derivative ofU. For theXY
model (D50!, we find that the relative errors are less th
1025 down to T50.02 for U and less than 1023 down to
T50.03 for Cv compared with the exact results.16 For the
isotropic antiferromagnetic Heisenberg model (D51!, the
precision of the results is similar. The maximum value ofCv
is 0.3515 atT50.47. At low temperatureCv varies linearly
with T. The coefficient of theT term is shown to be
2u/(3sinu) with u5cos21D.18 By fitting our results with a
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FIG. 3. The spin susceptibilityx(T) for both
D50 and D51. The solid curves and circles
respectively, are the exact results~Ref. 19! and
the transfer-matrix DMRG results withe50.05
and m580. Inset compares the transfer-matr
DMRG results for m532 ~diamonds! and 80
~circles! with the Bethe ansatz results in the low
temperature regime forD51.
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polynomial up to seventh order inT for 0.03&T<0.1, we
found that the coefficients of the linear terms are 1.041
0.665 forD50 and 1, respectively. The difference betwe
our results and the exact ones for the linear coefficient
less than 1%.

For comparison, we also calculatedU andCv with a sym-
metric density matrix as defined in Ref. 11. At high tempe
ture, the results obtained with a symmetric density ma
agree well with those obtained with an asymmetric den
matrix. However, at low temperature we found that the
sults obtained with an asymmetric density matrix are m
accurate than those obtained with a symmetric density ma
~Fig. 2!. The relative errors forU andCv obtained with the
symmetric density matrix are generally larger than 1022 at
low temperature.

Figure 3 shows our results for the spin susceptibilityx(T)
down toT50.01 withm580 ande50.05 forD50,1 cases.
x(T) is obtained from the first-order derivative ofMz ,
which is equal toMz(T,B)/B for sufficient small magnetic
field since Mz(T,0)50. In our calculations,B50.003 is
used. For both cases, the relative error is less than 123

down toT50.01. We note that the results of spin suscep
bility are generally more accurate than those of the spec
s
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e
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heat. In the inset, we compare numerical results forD51
with m532 and 80 to the exact results in the low
temperature regime. Form532 the relative error is of the
order of 1023 at T50.01. Our results are systematically be
ter than those obtained by Moukouri and Caron with t
thermodynamic DMRG method.14

Our computations were performed on DEC Alpha s
tions. It takes about 14 000 seconds on a 175 MHz statio
generate a superblock size of 2M54000 form532.

In conclusion, the quantum transfer-matrix DMR
method with asymmetric density matrices is developed.
have calculated a number of thermodynamic quantities
the anisotropic Heisenberg antiferromagnetic spin-1/2 mo
and found the results agree very accurately with exact o
Our investigation shows that the transfer-matrix DMRG is
very promising method for studying thermodynamic prop
ties of 1D quantum systems.
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