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Elastic effects and phase segregation during the growth of thin alloy layers
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We explore the effects of stress and strain on the composition modulations seen during the growth of thin
solid films by molecular-beam epitaxy when phase separation is the driving mechanism for the concentration
inhomogeneity. A top view of the growing thin film shows lamellar and hexagonal patterns of phase-separated
domains, the elastic effects being directly responsible for the appearance of the hexagonal order. We find that
in the lamellar regime, elastically deformed lamellae are separated by undeformed interfaces, while in the
droplet phase, the soft component is deformed and wraps the hard component. We also discuss the effects of
crystal anisotropy in our systerf50163-18207)07532-2

I. INTRODUCTION ing the morphologies that are seen experimentally. The
present paper considers the following idealized experimental
The role of elastic effects on the morphology of thin solid situation: (i) two atomic species are deposited simulta-
films has been shown to be of prime importance. In hoheously on a substrate held at a temperature within the co-
moepitaxy, the lattice mismatch between the substrate anexistence region of the binary alloy phase diagraim;the
the growing film can induce surface instabilities, leading todiffusion proceeds along the surface on(iji) the volume
nonplanar growth fronts, while for heteroepitaxy, the differ- fraction of the two components are equay;) surface fluc-
ence in the lattice constants of the components can lead totaations and surface instabilities are neglected.
stabilization of the surfackThese considerations, however,  Our paper is divided as follows: In Sec. Il, we introduce
neglect the fact that most of the experimental literature deeur Ginzburg-Landau free-energy functional and dynamical
scribes systems that are immiscible, leading to phase segrequations that describe the time evolution of concentration
gation of the components. Recently, Weathestyal? have fluctuations. In Sec. I, we present results of numerical in-
studied the growth of pseudobinary semiconductor comitegrations of the dynamical equations while Sec. IV gives a
pounds under compressive and tensile strain, and found @nclusion to our work.
complicated interrelation between concentration modulations
and surface morphology. As is typical of thin films grown by Il. MODEL
molecular-beam epitaxyMBE), the sign of the strain is cru-
cial in determining the properties of the thin layer, and for In this section, we start by deriving the free-energy func-
some of their parameters, the flat surface is stable. Phad@nal for a bulk binary mixture, taking into account the elas-
separation during the simultaneous deposition of differentiC effects. We then obtain dynamical equations that describe
atomic species has also been studied by Adetrad® in the  the time evolution of a thin solid film grown by MBE.
highly mismatched Al-Ge system.
Recently; we considered phase separation during MBE in A. Free-energy functional
the absence of elastic effects, and found that a lamellar pat- Our derivation of the free-enerav functional follows the
tern emerges from phase separation occurring at the surface, d f onukiand is al 9y ted f i
It was shown that the concentration modulation arises from & cccoudre ot nuxiand Is a'so presented for a more com

competition between the phase separation and the consta%lfx situation in Ref. 8. We introduce a continuous variable

deposition of material on the surface. Our work, however{ﬁé)'r\gxihnr 2J‘r’;’§c'g'n:ﬁ;ﬂ%”?é;’:ﬁ:grﬂ'%tgg:zgtp;?':ﬁe()fhase
did not consider the important contributions originating from growing ' P i . P
elastic fields. Such effects have been shownalter drasti- segregation. The order paramey#r) is proportional to the

cally the morphology of domains ibulk phase-separating concentration difference between the two species at local po-

systems, leading to very slow growth of the domain size withpoion r. A secoqd variable u(r), the d|sp|acem(_ant vector,
time. In particular, even for equal volume fractions of thergpresents the displacement from the local equilibrium posi-

two components, the soft phase was found to wrap arounﬁon due to elastic deformations. For single-component cubic

the hard phase, thereby creating hard droplets in a SOﬁrystals in_d dimensions, the elastic free-energy functional
' can be written as

matrix.

A similar approach to the one we propose here was intro- 1 5 5
duced by Ipatovat al® and considered from aequilibrium fe|[U]:f dr| ZK(V-u)2+M> (Mij - JV-U)
perspective. As we have shown in our recent woilke con- 2 i d

centration modulations in the bulk of the thin film anet 1
equilibrium morphologies, and the inherent dynamical or +—BE ,u,?erpV-u
non-equilibrium nature of the problem is crucial in explain- 25
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with the last term added to describe the change of local lat- =
tice constanta with composition. The strain tensow;;
=(V;ui+V;u;)/2. TheconstantK, M, andB are related to
the elastic moduli in the Voigt notation aM=Cyy,,
K=C,+(2/d)C,sy andB=C;— C;,—2Cy4,. The degree of
anisotropy of the crystal is represented by the parameter
£=B/M, which is considered a small quantity in the present
work. ]
In the case of binary systems, the free-energy functional f?’
has to be augmented to describe the miscible and immiscible ~
regions of the phase diagram. For this purpose, the essential
characteristics of the system can be obtained from the
Ginzburg-Landau free-energy functional,

c

—r u
71112+ Z¢4+2(Vl/f)2 \ 2

fGL['ﬁ'U]zf dr

.

wherer is proportional to the temperature differentg-T,
with T, the critical pointwithout elastic fields. The total & ~

free-energy functionalF[ ,u] is just the sum ofFg and

Fe- To make a connection with real systems, we note that in N
the homogeneous phase/£€ constanj}, the stress is \
gij=aid;j, implying that the constant can be obtained
from Ina= —(ay/dK). Thus, slow local variations igk andK
can lead to slow local variations in the lattice constant

To take into account the change in the elastic moduli with
composition, we expand the moduli to first order in the con-
centration variable): \

M=Mg+M;, k \

FIG. 1. The left column shows the concentration field in the

K=Ko+ K, 3 near onset regime when:=g,=0 andv=0.24. The right column
is for ge=g,=0 andv =0.001(far from onsek Times from top to
B=B,, bottom arer=100,1500, and 10 000. Black>0; white, $<<0. In

this and other figures, systems are of size1228.
and assume that the coefficieMs, Kq, andB; are small,
implying £=B;/M,. Because the time scale to reach posi-and the constan€=K+2M,—2M,/d (this definition for
tional order is much smaller than the diffusion time, we C absorbs the contribution coming froi,). Also, W is
make the assumption that mechanical equilibrium is instanrelated toy through the solution of Eq(A8), and gives the
taneously achieved, in order to adjust to a given spatial disnonlocal nature to the free-energy functional. We now dis-
tribution of ¢. This provides a way to obtain the displace- cuss the different contributions to the free-energy functional.
ment variableu as a function ofy, leading to effective long- The contributions proportional t@/? in Eq. ( 4) simply
range contributions to the free-energy functional. As showrrenormalize they? coefficient in Fg,, which changes the
in the Appendix, substitution of the resulting expression forcritical temperature by a constant factdhe critical point
u in 7 yields an effective free-energy functional that is a occurs when the coefficient af? is zerg. Hence, we rede-
function of ¢ only: fine r asr—r+(a?2C)—(a?£My/2C5. The contribution

fg corresponds to a long-ranged interaction leading to shape

o, aPEMg deformations of precipitates in a matrixXg is proportional

fe'[‘/’]:J' dr} - c¥ T ?’r/’ Hletfe, @ g M1, which means that the difference in the shear moduli

0 between the two components is essential to obtain this con-

with the free-energy densitiefg and f, given by tribution. The cubic anisotropy terii: leads to spinodal de-

composition along the soft directiof81] and[10], creating
M. o2 5. \2 elongated domain8in the absence of external stresses.

fe= 1 (/,2 (ViVjW— J¢> (5) The free-energy functional may be rescaled to dimension-
Cé ] d less form using the transformationg=(r/c)¥% and

g d(x,t) = (u/r)Y2y(r,t). With this, we obtain
an

) (] # 8 (e
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with ge=(M;a?)/(C3ru), g.= —(a®M&/2C3u) and the  which is equivalent to the deposition of a symmetric 50-50

functionsQg andQ, defined as mixture). The time evolution ofy is
3 |° W A2y 10
Qe=3 | ViV;W- #4 ® F (10

whereA is a kinetic coefficient and’ is proportional to the
deposition rate. With the time rescaling=(Ar?/c)t, the
time evolution of the dimensionless variakjeis
Q=2 (ViVyW)2 (9) o
J —- =V~ ¢+ ¢~ V2t geQe)

and

The rescaled functioW satisfiesV2W=¢. Note that the
elastic term destroys the symmetry between the two phases, 42 VV.d[V.V.W—L15.
implying that the equilibrium value o is no longer+ 1. gEiE,j VidLViviW =295 ¢]

B. Dynamical equations +g§; ViZV]?W—vd), (12)

The time evolution of the alloy thin film is initiated by the
simultaneous deposition of the two components on a flat subwith v = (cI')/(Ar?). We will refer to the important param-
strate. The interactions with the substrate are neglected, &terv as the deposition rate. Note that a linear term like
well as fluctuations in the free surface. Because the surface v¢ also occurs in the relaxational dynamics models for
diffusion coefficient is much larger than the bulk diffusion microphase separation kinetics in block copolymtéis this
coefficient, we assume that all of the atomic motions occur agquation, we have neglected fluctuations in the order param-
the free surface. Also, the coupling between the surface layeater coming from thermal and beam noise, which we incor-
and the bulk is neglected. Hence, the system is modelled asprate as initial conditions ogh. In the absence of a depo-
two-dimensional flat square, with periodic boundary condi-sition process«{=0), various cases have been studied. For
tions, representing the top view of a three-dimensional thirge=g,= 0, a quench from an initial homogeneous state to a
film. Because the bulk diffusion is not included, a vertical point in the coexistence region of the phase diagram leads to
cross section of the thin film can be obtained through thespinodal decomposition and formation of domains that grow
history of the surface layer. in time as 7312 When only the anisotropic contribution is

The diffusiorf in the surface plane is governed by inho- present §z=0, g:#0), the dispersion relation has a maxi-
mogeneities in the chemical potential and by the requiremenhum value along thg01] or [10] directions, leading to
that the average concentration must be fixed. The constaneedlelike domairt$ with the longer direction oriented in
deposition of material on the surface tends to draw the valug01] or [10]. In the presence of the elastic interaction only
of ¢(x) towards the average concentration in the incoming(ge#0, g,= 0),° the elastic energy slows the domain
beam (we take this average to be zero in the following, growth, with a saturation of the average domain size at late
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FIG. 3. A vertical cross section of the thin film taken along the \
x direction. The bottom configuration shows the appearance of the N
thin film at early times (6 7<100), while the top configuration FIG. 5. The left column shows the concentration field in the

corresponds to the steady state (1406<1500). The lateral size of near-onset regime whagy. = 0.05 andv = 0.24. The right column is
the system is 128 and the vertical scale is chosen to show detailﬁ,Or 9e=05 and v=0.24 .Times fr0|;n .top to bottom are
E_ . - . .

7=100, 1500, and 10 00@.= 0 in this figure.
times. The system consists of ellipsoidal hard domains in a
soft percolated matrixthe saturated hard domain size scalesphase segregation: note that Eqll) simplifies to
as 1fg). Finally, the presence of both the elastic term andy¢/gr=V?(— ¢+ ¢°— V2¢) —v ¢, which has been studied
the anisotropy creates saturated hard cuboidal domains in thgeviously in connection with microphase separation in
soft matrix'* In the case of alloy growth by MBE without plock copolymers and the laser-induced melting phenom-
elastic effects §e=0, g,=0), the deposition rate is @  ena in the limit of the large latent heat of the substfate.
crucial parameter in determining the stability of the alloy toFrom these studies we infer that forgg=0, 9:=0),
v=1/4 is a critical value of the deposition rate. If the depo-

1.14 s ———— sition rate v<<1/4, lamellar patterns appear with a
r o o v=0.24 v-dependent modulation wavelengthypif>1/4, the constant
112 i e v=0.001 burial of surface domains by the incoming beam suppresses
110 - 13 i the phase separation, and the thin film is homogeneously
L . 12 1 mixed? The present work concentrates on the case where
_ 1.08 |- . E:*"‘ .. v<1/4 and studies the elastic and anisotropic effects on the
i 106 L . B e time evolution and the steady state of the system.
= 3 ®e 100 102 108 .
xT 104 - Tee., tv 1 lll. RESULTS
L [ ] ° b
102 ‘e, The Langevin equatiofEq. (11)] was discretized in space
I % ] and time using a finite-difference scheme, and integrated us-
1.00 - L ing the Euler method. The results reported here correspond
0 20000 40000 60000 80000 100000 to simulations on a 128128 square grid with periodic
time boundary conditions. We believe that finite-size effects were

minimal since the selected wavelength of the modulation in
FIG. 4. The wave number as a function of time in the near-onsethe SteQdy state i$ much smaller than the system size. The
(open circley and the far-from-onset regimésolid circles, corre-  mesh size and time step were chosenAas=1.25 and
sponding to Fig. 1. The scaled functigiitv) is shown in the inset. At=0.1. A discrete, isotropic form for the Laplacian was
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used®® while the fieldW was obtained using Fourier trans- saturated, the ordering proceeds through the elimination of
form methods. The initial state of the system consists of alefects. In the near-onset regime, the wavelength of the
random distribution of$ in the range ¢ 0.1,0.1). Due to the modulation can be calculatéth bex ~v ~ Y4, while far from
length and size of the simulations, averages were taken ovenset\ ~v ~ 3. Furthermore, the appearance of the lamellar
one to four runs with different initial conditions. For the patterns can be explained by appropriately constructing an
deposition ratev>1/4, the initial homogeneous state is effective free-energy functional such thav¢/dr=
stable. The onset of thermodynamic instability io1/4  V2(SF .4/ 8¢). The effective free-energy functional contri-
leads to phase segregation. Hence, in what follows, we takisution due tov is repulsively long range, which competes
v<1/4 and study the effects @g andg,. We start with  with the attractive short-range interaction. Near onset, the
results forge= g,=0, establishing basic results and a basisamplitude of the modulationgroportional to the concentra-
for comparison. tion difference in a real allgyis small and scales as

A. ge=0,9,=0, andv#0

This case corresponds to MBE growth at deposition rate
v with no elastic or anisotropic effects. Figure 1 shows con-
figurations for the fieldp at different times. On the left, the
parameterv =0.24, close to the onset of instability at
v=1/4, and the wavelength of the pattern is close to the
maximally unstable wavelength=2/27. This regime will
be referred to as the near-onset regime. The right column is
for v =0.001(far from onset regime There, the wavelength
of the modulation is much larger than in the near-onset re-
gime, and the value of the order parameter changes frdm
to —1. The differences between the two regimes is also
shown in Fig. 2, where the circularly averaged structure fac-
tor,

Stk =(l¢(k)[?), 12

and the profile of the order parameter along a horizontal
cross section are plotted. Initially, the order parameter grows
exponentially in time, with segregation in two phases. The
initial maximally unstable wave number ks~ 1/y2, which FIG. 7. Gray-scale plot of the degree of deformatiga for the
then decreases to attain its steady-state value. At the samgt lamellar configuration of Fig. 5. Black represe@s=0, while
time, stripes form and orient themselves locally. ORcis  white representQg=0.014.
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FIG. 8. Gray-scale plot of the degree of deformati@a for the
last hexagonal configuration of Fig. 5. Black represeQts=0,
while white represent®g=0.1.

Vv1/4—v; the single-mode approximation is excellent very
close to onset. For small values of the order parameter is
equal to+ 1 within the bulk of the domains, which are sepa-
rated by thin interfacial regions; the number of modes
needed to describe the profile increases aecreases.

A vertical cross section of the thin film can be considered
if one makes a correspondence between the time scale for FIG. 9. The left column shows the concentration field in the
diffusion and the velocity at which the free surface is grow-far-from-onset regime whegg=0.05 andv =0.001. The right col-
ing. Figure 3 shows a cross section corresponding to a horismn is for ge=0.5 andv=0.1. Times from top to bottom are
zontal cut in Fig. 1(the correspondence between the surfacer=100, 1500, and 100 00@,=0 in this figure.
height and time has been chosen to show detailste that

the appearance of the cross—se(;tiongl c'onfigurations depends B. ge#0, 0;=0, andv#0
on the direction chosen, which is in agreement with -
transmission-electron-microscopy experiméefitafter depo- Whenge#0, we expect that the competition between the

sition of a few monolayergbottom configurationclear ver-  long-range interaction and the saturation of the domain size
tical structures appear in the thin film. At late times, thedue to the elastic effects will lead to new ordered structures.
Wa\/e|ength of the modulation is saturated, and the top |ayerEigure 5 shows the time evolution of the concentration field
of the alloy film consists of vertical columns of alternating near the onset of instability( 0.24) forge=0.05(left col-
concentration. To better characterize the appearance of th#nn andgg=0.5 (right column. In these figures, the loca-
cross section, we calculated the average wave number astigns of the grid points were corrected for the displacement
function of time(or film thicknes$ from the first moment of  u. For the smallest value @f, the system orders in a lamel-

the structure factor lar phase very similar to the cage=0. Differences between
Fig. 1 and Fig. 5 can be seen where crystalline defects are
JokS(k)dk present. Foige=0.5, droplets of the hard phase form in a
1=W- 13 soft matrix and order themselves to create an hexagonal pat-

tern (the distribution of droplet sizes is shar@he appear-
Figure 4 shows; as a function of time for the near-onset ance of the hexagonal phase here is special because for
and the far-from-onset regimes. Near ongetsaturates rap- gg=0, the lamellar phase is always seen if the volume frac-
idly to a value~0.7, while for smallv, the wave number tion of the two components is the same. Because of conser-
decreases over a wide time scale. In fact, Yeung and Besaivation of material, there is a relation between the value of the
have shown that not too close to onset, the wave numbeasrder parameter in the phases and the area occupied by the
satisfies the scaling forrk(t,v)=Kk.(v)g(tv), with k.. (v) droplets. For the hexagonal and the lamellar order, the frac-
the steady-state wave number. The funciigr) ~x~®for  tion of the area occupied by the hard droplets-igs/A ¢ ,
smallx, andg(x)~ constanffor largex. The insertin Fig. 4 with ¢, the order parameter in the soft phase and
shows the scaled functiag(tv). It also shows that the data A¢= ¢,— ¢s. Further characterization of the film surface
shown in this figure correspond to the crossover regime ofan be found in Fig. 6, where the structure factor and the
the functiong(x). order parameter are plotted. The order parameter profile
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shows clearly the difference in the saturation value of thehrough the formation of an interconnected network which
concentration field in the hard and the soft phases. Peaks then breaks up. Long stripes become unstable and pinch
the scattering intensities describe the crystalline orderingaway to form droplets. In Fig. 10, we show the structure
with the position of the first peak &&=2/\ for the lamel-  factor and the order parameter profile.
lar phase X is the wavelength of the order parameter modu- Forgg=0.5, droplets form quickly, due to the larger elas-
lation) and atk=41/(~/3D) for the hexagonal phas®(is  tic energy. The far from onset steady state consists of de-
the distance between the center of neighboring droplets formed droplets with flattened interfaces between neighbor
To describe the elastic deformation of the system, wedroplets. Also, the size distribution is not as sharply peaked
computed the functio®g. The gray-scale contour plot of as compared to the near-onset results. Figure 10 shows that
Fig. 7 corresponds to the last configuration for the lamellaithe structure factor possesses a strong peak arker@55
phase in Fig. 5. Both the hard phas¢>*0) and the soft and a secondary peak lat 1, still representative of the un-
phase ¢<0) show elastic deformations, while the inter- derlying hexagonal structure. However, the two peaks are
faces between the two phases are not deformed. In this réroadened by the distortions in the lattice order and the size
gime A¢ is small and the elastic interactions do not alterof the droplets. The flattening of the sides of droplets is due
drastically the final configurations. In fact, if we assume thatto shape changes of the hard domains from spheres to plates
the order parameter is given bg(x)= ¢ocoskx), then in order to minimize the elastic energy. This is shown in Fig.

Q= %¢§co§(kx), which is in excellent agreement with Fig.
7. For larger values of, the functionQg (Fig. 8 shows
that the soft phase wraps the hard phase in such a way as tc
minimize the deformation of the hard phase, thereby creating
droplets. The long-range effect of the deposition rate then
orders the droplets in the hexagonal ari@y.takes its maxi-
mum value in the thinner regions of the soft phase, which 160
appear six times around a droplet. We note that transmission-
electron-microscopy measurements are sensitive to fluctua-
tions of the local lattice paramet&rHence, our pictures can
give a correspondence with such measurements.

Far from the onset of instabilit{i.e., for a slow deposi-
tion procesk A ¢ is at its maximum, and domains of the two
phases are separated by sharp interfaces. Bedausepro-
portional toA ¢, it becomes more important in this regime.
As Fig. 9 illustrates, the final state of the deposition process
consists of deformed droplets, even fpe=0.05. For this FIG. 11. The elastic deformatioQg, for a portion of the last
smallergg value, the time evolution of the system proceedsdroplet configuration in Fig. 9.

14070 80
140°¢

120 49
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11, where it can be seen th@i is zero inside of the hard
domains, while the soft phase has its maximum elastic en-
ergy in the thin regions separating the hard domains. Such
shape adjustments of the hard domains have been studied by
Onuki and Nishimori® where they showed that for bulk
phase separation in the presence of elastic misfits, hard pre-
cipitates are deformed in order to cancel the elastic field
produced by nearby precipitates.

It is very instructive to consider the time evolution to-
wards the droplet phase by looking at the functipp. As
can be seen in Fig. 12, the initial elastic deformation is simi-
lar to the near-onset regime: deformed stripes separated by
undeformed interfaces. As time proceeds, the value of the
order parameter difference increases and the elastic contribu-
tion becomes more important. The contribution to the energy
coming from deformations inside of hard domains become
too costly, leading to a bending of straight interfaces to pro-
duce droplets. The instability of straight interfadesd of
the lamellar phasecan be understood as follow&in the
far-from-onset regime, we suppose that we have a straight
interface separating two uniaxially deformed regions. The
interface is located at=0, and the order parameter goes to
¢ far from the interface. We allow for fluctuations in the
order parameter around the interface  profile
b= do(X) + PH(X) =S (1)€Y and calculate the change in
the free energy t®(52). We find that

1
SFa Y | oK+ SOe(8 )Nk 22|57 (14
k

where\ is the average of the strain in the two phases and
o andy are constants that depend on the formpg{x). The
time dependence afy is given by the equation

a_(s":_DkZ

ot Ok (15

1 YU
2

implying that the interface is unstable when
ok+ 1/2ge(A ¢)?\ + yv/k?<0. This last result means that
the lamellar phase becomes unstable when

2 3

4 '}’1/30'2/3

i.e., the threshold value far~g2 . For values ob close to
onset, the above analysis is no longer valid, and a single
mode approximation shows that the critical line has negative
second derivative, and eventually meets with the far-from-
onset line. To appropriately calculate the “nonequilibrium
steady-state phase diagram,” consideration of more than one
mode is essential, as well as the possibility of phase coexist-
ence. Such calculations have not been carried out.

The wavelength of the concentration modulation in the
steady state as a function of the deposition rate is plotted in
Fig. 13. In the absence of elastic interactiokg,~ v near _ _ _ _
v =1/4, whilekse~ v for smallv. When elastic interactions ~ FIG: 12. Time evolution o in the far-from-onset regime for
are present, the near-onset relation still holds, but the fa9e=0.05. The straight lamellar interfaces become unstable and
from-onset behavior is different. For small the elastic ef- pend to form droplets. Panels from top to bottom correspond to
fects are responsible for the appearance of droplets, whicl"€=100. 500, 1500, and 100000.
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FIG. 13. Steady-state wave number as a function of the deposi-
tion rate. The lines are the near onset expanssmiid) and the
far-from-onset expansiofdashed for ge=0.0.

il
.4."-_.

decreases the wavelength and increases the wave number.
Thus, at fixed deposition rate, the wave number increases
with gg.

C.ge#0,9,#0, andv+#0

In this section, we discuss how the cubic anisotropy,
which is present in many llI-V alloys, alters the findings of
the previous sections. Figure 14 shows order parameter and
Qe configurations forv =0.24, ge=0.05 andg,=0.1 (see
Figs. 1 and 5 for comparis@nThe phase segregation occurs
preferentially along thg01] and [10] directions, leading

eventua.‘”y to .a perfectly c_)rdered lam?”ar structuret right column isQg for the system with cubic anisotropy, in the
shown in the figure Interestingly, the stripes have bubbles ... onset regime. = 0.24,g¢ = 0.05, andg,=0.1. Times from top
and necks, which are mostly found at the boundaries beg yottom are 50. 500. and 2000.

tween different stripe orientations for the latest time shown.

These bubbles are due to the elastic energy, as can be seeni i ance in the shear modulus between the two phases
the gray-scale plots aQe . Within the ordered lamellar re- (fg). This interaction is cubic ing and is of the form
gions, the deformation is inside of the stripes, which arig EE [Irdrde’dr’ ¢(r)Gyi(r,r') b(r)Gii(r',r") b(r"). It
; - JE2i,] ijr, ij(r, .
isgzrr]atset? i Zy our?ednet]:aotiromnesd altn tEgSﬁgZ}i;hech;ng:ng b does not contribute to the linear dispersion relation; its ef-
. P . ; fects are purely nonlinear. This can be seen in Fig. 9, where
elastic droplets, thereby creating the bulges seen in the con-

e ; o upon entering the nonlinear regime the stripes pinch away,
centration field. Far from thg onset. of mstgbll(l*}ﬂg'. 15 the foﬁd and for% droplets. Calcul%tions have pshovF\)/n that th>e/
Ej(;i]ploert?la(l)ae(cngnqu (;l:govl\,?tshvl\g;{h t;;ew flat sides oriented allonginteraction between two hard spherical precipitates in a soft

P 9 matrix is repulsively long rangand is mediated by the elas-
tic fields!® However!® other authors have argued that this

FIG. 14. The left column shows the concentration field and the

IV. DISCUSSION

Our results show a number of interesting competing ef- Ya®
fects during the growth of the heteroepitaxial film. First, . @ . ‘
there is a competition between the phase separation and the . . .

constant deposition of material on the surface, leading to the . . ‘

formation of lamellar structures in the absence of elasticity. - . ‘

These lamellar structures appear below a certain threshold

deposition rate, while above this threshold the film is homo-  {§f§ . . [ ]
geneously mixed. The deposition of material can be viewed .
as a nonlocal repulsive interaction of the form . ‘
. s
—vfdrdr’ ¢(r)G(r,r")p(r') with V2G(r,r')=48(r—r"). -
Because this contribution is quadratic ¢n, it changes the FIG. 15. The left panel shows the concentration field and the

linear dispersion relation. When elastic fields are introducedight panel isQg for the system with cubic anisotropy, in the far-
with first-order dependence of the elastic moduli on concenfrom-onset regimev =0.001, gg=0.05, andg,=0.1. The snap-
tration, there appears another long-range interaction due thots were taken at tinel0 000.
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interaction vanishes when the hard precipitates undergo 8

shape changes from spheres to ellipsoids. As seen in our +2M > Vj(:“«ij_FV'u>:Ou (A2)

simulations, the hard precipitates do have a vanishing shear !

energy. This is not to say that the long-range elastic interaoyhich can be written as

tion vanishes in general, because deformations of the soft

phase to accommodate the shape changes must also be taken K+M —-2M/d)V,;V - u+BVi2ui +MV2u;+aV,y=0.

into account. Although nothing can be said abfyutn terms (A3)

of the full free-energy expression, we believe thateads to

Iong-range repulsive interactions bgtvyeen the prgmpnates. first order in Ky, M;, and B,. To do so, we write
For film growth, the presence 6t is in competition with 01 1

both the phase separation and the deposition process. AS .- +u’, whereu®is of O(K;,My,By). To zeroth order

seen in our simulation results, this leads to a competitior{n the coefficientsVl,, K, andB,, we have

between steady—stat_e lamellar phases and steady-s_tate drqplet (Ko+Mg—2Mq/d)VV- U0+ MoV2U0+ aV =0,

phases. For deposition rates near the threshold for instability, (A4)

the long-range elastic interaction creates the droplets; the

long-range interaction due to the deposition then orders thegihich can be solved fo¥ - u® by taking an extra divergence:

droplets in an hexagonal array. Hence, the well-ordered hex-

agonal state is due tboth long-range interactions. This VZV-UOZ—iVZI// (A5)

means that if predictions for the selected wave number of the Co '

E;r:i;grsa;araen?gze made, they should depend on the two p\‘r7l\/_ith the definitionCy=Ky+2My(1—1/d). The general so-

lution of this Poisson equation consists of a linear combina-
tion of the particular solution and the solution to the Laplace
V. CONCLUSION equation. Because of the periodic boundary conditions, the

To summarize, we have studied the growth by MBE of acompressioer-u0 and its first derivative are continuous at
thin solid layer composed of two different atomic types. Thethe b?“”da“es' |mply|nr? that the SOLUt'OnI to :;; %"’?p'ace
constant deposition of material competes with the phase se§duation is zero everywhere. Hence, the solutiorMou™ is
regation to produce modulated structures. Elastic effects due
to a difference between the elastic moduli of the two com- V.ul=
ponents and crystal anisotropy were shown to modify the
dynamical evo!utlon and the stgady state reac_hed by the sy pstitution of this expression faF-u® in Eq. (Ad) gives
tem. The elastic effects were directly responsible for the ap-
pearance of droplets of the hard phase in a soft matrix, while

The goal of our scheme is to calculaiein terms of ¢ to

a

" Co . (A6)

(44
the crystal anisotropy favored spinodal decomposition along ui°= - C—ViW, (A7)
the soft directions, aligning the stripes or forming cuboidal 0
droplets. whereW is obtained from
2\\/—
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APPENDIX A: DERIVATION OF THE EFFECTIVE FREE fo=— LToN 1,02 (A9)
ENERGY FUNCTIONAL 0

r(integration by parts is necessary to obtain this resulte

aow proceed to calculate the correctioms due to the an-

ISotropy and the difference in elastic moduli between the two

phases. We separately calculate these corrections in order to

make the derivations more transparent.

In this appendix, we show how the displacement vecto
can be obtained in terms of the order parameter using th
mechanical equilibrium condition, and derive the effective
free-energy functional as a function gfonly. We start with
the expression for the stress tensor

SF S 1. Corrections due to the anisotropy
Tij :_“:[al/I‘FKV'U"‘B,LL”](sij +2M(/.L|J — _JV U) .

Suij d To first order inB,, u! satisfies the equation
(A1)
(Ko+Mg—2Mq/d)V;V-ut+B,VZu’+ MyV2ul=0,
(Note that repeated indices do not imply summations and (A10)
that in the anisotropy terB u;; , the repeated indexis not

summed. The mechanical equilibrium condition is with a solution

aéM aéM,y 1 1
> Vo =Vi[ay+KV-ul+BV,u; V'Ul=%¢— 520—2 Vi y. (ALY
; iTij i i Mii Co C; VAiF \%
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In this last equation, the operatoiVE represents the inverse The correction to the elastic energy is

laplacian. Substitution of EqA11) in Eq. (A10) leads to

agMo
v2' o2

1
i

afl\/lo 1
i

= —V; —E V2V2 S,
ly2
(A12)
which is clearly first order in the anisotropy. With the

displacement vector determined as a functionjpfwe can

1 1 a%K,
fK1=§K1¢//(V~uO)2=§ o2 ¥,
0

(A17)

In the main text, we combiné&, andel, and use the qua-
dratic form — a¢?/2C with C=K+2My(1— 1/d).

substitute it back in the elastic free-energy functional and 3. Corrections due to the difference in the shear moduli

obtain an effective free-energy functional in termsajodnly.
We write the free-energy density &g=fo+f,, with f, of

O(¢). To calculatef,, notice that mechanical equilibrium

requiressF/ 6u; =0, implying that

a’EMg 2 a®tMg
:—B ViV,w
12 /*Lu ZCS ‘/’ ZCO IZ] ( )
(A13)

2. Corrections due to the difference in the bulk moduli
In this casep? is of O(K;) and is a solution of
(Ko+Mo—2Mq/d)V,V-ut+MoV2ul+ K 4V;V-u’=0.
(A14)
Again, taking the divergence of this equation yields

aK
Voul=—t g2 (A15)
CO
and
K 1
1_ %M 2
Ui—C—gViﬁ . (Alﬁ)

Here,u'~0O(M,) satisfies

(Ko+Mg—2Mq/d)V;V-ut+MoV2ul+ M, 4V2u?

+M,V,V-u’=0 (A18)
which gives
1 ZC(MJ_ 1 5”
V.u :C—§$Vivj l// ViVjW_F‘// (Alg)
and
1 ZaMl 1 5”
ui= CS Viavivj ¥ ViVjW—Fz// . (A20)

The contribution to the elastic energy of orddy is

S 2
Mﬂ—#v.uo)

fMl:MﬂﬂiEj

_M1a/2

- 2
v (vivjw— %zﬁ) . (A21)
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