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Elastic effects and phase segregation during the growth of thin alloy layers
by molecular-beam epitaxy

François Léonard and Rashmi C. Desai
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 12 March 1997!

We explore the effects of stress and strain on the composition modulations seen during the growth of thin
solid films by molecular-beam epitaxy when phase separation is the driving mechanism for the concentration
inhomogeneity. A top view of the growing thin film shows lamellar and hexagonal patterns of phase-separated
domains, the elastic effects being directly responsible for the appearance of the hexagonal order. We find that
in the lamellar regime, elastically deformed lamellae are separated by undeformed interfaces, while in the
droplet phase, the soft component is deformed and wraps the hard component. We also discuss the effects of
crystal anisotropy in our system.@S0163-1829~97!07532-2#
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I. INTRODUCTION

The role of elastic effects on the morphology of thin so
films has been shown to be of prime importance. In h
moepitaxy, the lattice mismatch between the substrate
the growing film can induce surface instabilities, leading
nonplanar growth fronts, while for heteroepitaxy, the diffe
ence in the lattice constants of the components can lead
stabilization of the surface.1 These considerations, howeve
neglect the fact that most of the experimental literature
scribes systems that are immiscible, leading to phase se
gation of the components. Recently, Weatherlyet al.2 have
studied the growth of pseudobinary semiconductor co
pounds under compressive and tensile strain, and foun
complicated interrelation between concentration modulati
and surface morphology. As is typical of thin films grown b
molecular-beam epitaxy~MBE!, the sign of the strain is cru
cial in determining the properties of the thin layer, and
some of their parameters, the flat surface is stable. P
separation during the simultaneous deposition of differ
atomic species has also been studied by Adamset al.3 in the
highly mismatched Al-Ge system.

Recently,4 we considered phase separation during MBE
the absence of elastic effects, and found that a lamellar
tern emerges from phase separation occurring at the sur
It was shown that the concentration modulation arises fro
competition between the phase separation and the con
deposition of material on the surface. Our work, howev
did not consider the important contributions originating fro
elastic fields. Such effects have been shown5 to alter drasti-
cally the morphology of domains inbulk phase-separating
systems, leading to very slow growth of the domain size w
time. In particular, even for equal volume fractions of t
two components, the soft phase was found to wrap aro
the hard phase, thereby creating hard droplets in a
matrix.

A similar approach to the one we propose here was in
duced by Ipatovaet al.6 and considered from anequilibrium
perspective. As we have shown in our recent work,4 the con-
centration modulations in the bulk of the thin film arenot
equilibrium morphologies, and the inherent dynamical
non-equilibrium nature of the problem is crucial in explai
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ing the morphologies that are seen experimentally. T
present paper considers the following idealized experime
situation: ~i! two atomic species are deposited simul
neously on a substrate held at a temperature within the
existence region of the binary alloy phase diagram;~ii ! the
diffusion proceeds along the surface only;~iii ! the volume
fraction of the two components are equal;~iv! surface fluc-
tuations and surface instabilities are neglected.

Our paper is divided as follows: In Sec. II, we introdu
our Ginzburg-Landau free-energy functional and dynami
equations that describe the time evolution of concentra
fluctuations. In Sec. III, we present results of numerical
tegrations of the dynamical equations while Sec. IV give
conclusion to our work.

II. MODEL

In this section, we start by deriving the free-energy fun
tional for a bulk binary mixture, taking into account the ela
tic effects. We then obtain dynamical equations that desc
the time evolution of a thin solid film grown by MBE.

A. Free-energy functional

Our derivation of the free-energy functional follows th
procedure of Onuki7 and is also presented for a more com
plex situation in Ref. 8. We introduce a continuous varia
c(r ), with r a two-dimensional vector in the~flat! plane of
the growing surface, that represents the extent of the ph
segregation. The order parameterc(r ) is proportional to the
concentration difference between the two species at local
sition r . A second variable u(r ), the displacement vector
represents the displacement from the local equilibrium po
tion due to elastic deformations. For single-component cu
crystals ind dimensions,9 the elastic free-energy functiona
can be written as

Fel@u#5E dr F1

2
K~¹•u!21M(

i , j
S m i j 2

d i j

d
¹•uD 2

1
1

2
B(

i
m i i

2 1ac¹•uG , ~1!
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with the last term added to describe the change of local
tice constanta with composition. The strain tensorm i j
5(¹ jui1¹ iuj )/2. TheconstantsK, M , andB are related to
the elastic moduli in the Voigt notation asM5C44,
K5C121(2/d)C44 andB5C112C1222C44. The degree of
anisotropy of the crystal is represented by the param
j5B/M , which is considered a small quantity in the prese
work.

In the case of binary systems, the free-energy functio
has to be augmented to describe the miscible and immisc
regions of the phase diagram. For this purpose, the esse
characteristics of the system can be obtained from
Ginzburg-Landau free-energy functional,

FGL@c,u#5E dr F2r

2
c21

u

4
c41

c

2
~¹c!2G , ~2!

wherer is proportional to the temperature differenceTc2T,
with Tc the critical point without elastic fields. The tota
free-energy functionalF@c,u# is just the sum ofFGL and
Fel . To make a connection with real systems, we note tha
the homogeneous phase (c5 constant), the stress is
s i j 5acd i j , implying that the constanta can be obtained
from lna52(ac/dK). Thus, slow local variations inc andK
can lead to slow local variations in the lattice constanta.

To take into account the change in the elastic moduli w
composition, we expand the moduli to first order in the co
centration variablec:

M5M01M1c,

K5K01K1c, ~3!

B5B1 ,

and assume that the coefficientsM1, K1, andB1 are small,
implying j5B1 /M0. Because the time scale to reach po
tional order is much smaller than the diffusion time, w
make the assumption that mechanical equilibrium is inst
taneously achieved, in order to adjust to a given spatial
tribution of c. This provides a way to obtain the displac
ment variableu as a function ofc, leading to effective long-
range contributions to the free-energy functional. As sho
in the Appendix, substitution of the resulting expression
u in Fel yields an effective free-energy functional that is
function of c only:

Fel@c#5E drF2
a2

2C
c21

a2jM0

2C0
2

c21 f E1 f jG , ~4!

with the free-energy densitiesf E and f j given by

f E5
M1a2

C0
2

c(
i , j

S ¹ i¹ jW2
d i j

d
c D 2

~5!

and

f j52
a2jM0

2C0
2 (

iÞ j
~¹i¹ jW!2, ~6!
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and the constantC5K12M022M0 /d ~this definition for
C absorbs the contribution coming fromK1). Also, W is
related toc through the solution of Eq.~A8!, and gives the
nonlocal nature to the free-energy functional. We now d
cuss the different contributions to the free-energy function
The contributions proportional toc2 in Eq. ~ 4! simply
renormalize thec2 coefficient inFGL , which changes the
critical temperature by a constant factor~the critical point
occurs when the coefficient ofc2 is zero!. Hence, we rede-
fine r as r→r 1(a2/2C)2(a2jM0/2C0

2 . The contribution
f E corresponds to a long-ranged interaction leading to sh
deformations of precipitates in a matrix.5 f E is proportional
to M1 , which means that the difference in the shear mod
between the two components is essential to obtain this c
tribution. The cubic anisotropy termf j leads to spinodal de
composition along the soft directions@01# and@10#, creating
elongated domains10 in the absence of external stresses.

The free-energy functional may be rescaled to dimensi
less form using the transformationsx5(r /c)1/2r and
f(x,t)5(u/r )1/2c(r ,t). With this, we obtain

F@f#5E dxF2
f2

2
1

f4

4
1

~¹f!2

2
1gEfQE1gjQjG ,

~7!

FIG. 1. The left column shows the concentration field in t
near onset regime whengE5gj50 andv50.24. The right column
is for gE5gj50 andv50.001~far from onset!. Times from top to
bottom aret5100,1500, and 10 000. Black,f.0; white,f,0. In
this and other figures, systems are of size 1283128.
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56 4957ELASTIC EFFECTS AND PHASE SEGREGATION . . .
with gE5(M1a2)/(C0
2Aru), gj5 2(a2M0j/2C0

2u) and the
functionsQE andQj defined as

QE5(
i , j

F¹ i¹ jW2
d i j

d
fG2

~8!

and

Qj5(
iÞ j

~¹ i¹ jW!2. ~9!

The rescaled functionW satisfies¹x
2W5f. Note that the

elastic term destroys the symmetry between the two pha
implying that the equilibrium value off is no longer61.

B. Dynamical equations

The time evolution of the alloy thin film is initiated by th
simultaneous deposition of the two components on a flat s
strate. The interactions with the substrate are neglected
well as fluctuations in the free surface. Because the sur
diffusion coefficient is much larger than the bulk diffusio
coefficient, we assume that all of the atomic motions occu
the free surface. Also, the coupling between the surface la
and the bulk is neglected. Hence, the system is modelled
two-dimensional flat square, with periodic boundary con
tions, representing the top view of a three-dimensional t
film. Because the bulk diffusion is not included, a vertic
cross section of the thin film can be obtained through
history of the surface layer.

The diffusion4 in the surface plane is governed by inh
mogeneities in the chemical potential and by the requirem
that the average concentration must be fixed. The cons
deposition of material on the surface tends to draw the va
of f(x) towards the average concentration in the incom
beam ~we take this average to be zero in the followin
es,
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which is equivalent to the deposition of a symmetric 50-
mixture!. The time evolution ofc is

]c

]t
5L¹2

dF
dc

2Gc, ~10!

whereL is a kinetic coefficient andG is proportional to the
deposition rate. With the time rescalingt5(Lr 2/c)t, the
time evolution of the dimensionless variablef is

]f

]t
5¹2~2f1f32¹2f1gEQE!

12gE(
i , j

¹ i¹jf@¹ i¹ jW2 1
2 d i j f#

1gj(
iÞ j

¹ i
2¹ j

2W2vf, ~11!

with v5(cG)/(Lr 2). We will refer to the important param
eter v as the deposition rate. Note that a linear term li
2vf also occurs in the relaxational dynamics models
microphase separation kinetics in block copolymers.11 In this
equation, we have neglected fluctuations in the order par
eter coming from thermal and beam noise, which we inc
porate as initial conditions onf. In the absence of a depo
sition process (v50), various cases have been studied. F
gE5gj5 0, a quench from an initial homogeneous state t
point in the coexistence region of the phase diagram lead
spinodal decomposition and formation of domains that gr
in time ast1/3.12 When only the anisotropic contribution i
present (gE50, gjÞ0), the dispersion relation has a max
mum value along the@01# or @10# directions, leading to
needlelike domains13 with the longer direction oriented in
@01# or @10#. In the presence of the elastic interaction on
(gEÞ0, gj50),5 the elastic energy slows the doma
growth, with a saturation of the average domain size at
e
al

r

FIG. 2. The left~right! column
shows the structure factor and th
order parameter along a horizont
cut at t510 000 for the near-
onset ~far-from-onset! regime.
The times for the structure facto
correspond to those in Fig. 1.
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4958 56FRANÇOIS LÉONARD AND RASHMI C. DESAI
times. The system consists of ellipsoidal hard domains
soft percolated matrix~the saturated hard domain size sca
as 1/gE). Finally, the presence of both the elastic term a
the anisotropy creates saturated hard cuboidal domains in
soft matrix.14 In the case of alloy growth by MBE withou
elastic effects (gE50, gj50), the deposition ratev is a
crucial parameter in determining the stability of the alloy

FIG. 3. A vertical cross section of the thin film taken along t
x direction. The bottom configuration shows the appearance of
thin film at early times (0,t,100), while the top configuration
corresponds to the steady state (1400,t,1500). The lateral size o
the system is 128 and the vertical scale is chosen to show det

FIG. 4. The wave number as a function of time in the near-on
~open circles! and the far-from-onset regimes~solid circles!, corre-
sponding to Fig. 1. The scaled functiong(tv) is shown in the inset.
a
s
d
he

phase segregation: note that Eq.~11! simplifies to
]f/]t5¹2(2f1f32¹2f)2vf, which has been studied
previously in connection with microphase separation
block copolymers11 and the laser-induced melting phenom
ena in the limit of the large latent heat of the substrate15

From these studies we infer that for (gE50, gj50),
v51/4 is a critical value of the deposition rate. If the dep
sition rate v,1/4, lamellar patterns appear with
v-dependent modulation wavelength; ifv.1/4, the constant
burial of surface domains by the incoming beam suppres
the phase separation, and the thin film is homogeneo
mixed.4 The present work concentrates on the case wh
v,1/4 and studies the elastic and anisotropic effects on
time evolution and the steady state of the system.

III. RESULTS

The Langevin equation@Eq. ~11!# was discretized in spac
and time using a finite-difference scheme, and integrated
ing the Euler method. The results reported here corresp
to simulations on a 1283128 square grid with periodic
boundary conditions. We believe that finite-size effects w
minimal since the selected wavelength of the modulation
the steady state is much smaller than the system size.
mesh size and time step were chosen asDx51.25 and
Dt50.1. A discrete, isotropic form for the Laplacian wa

e

ls.

et

FIG. 5. The left column shows the concentration field in t
near-onset regime whengE50.05 andv50.24. The right column is
for gE50.5 and v50.24. Times from top to bottom are
t5100, 1500, and 10 000.gj50 in this figure.
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FIG. 6. The structure factor
and the order parameter along
horizontal cut att510 000 in the
near-onset regime. Left column
gE50.05. Right column:
gE50.5. The times for the struc
ture factor correspond to those i
Fig. 5.
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used,15 while the fieldW was obtained using Fourier tran
form methods. The initial state of the system consists o
random distribution off in the range (20.1,0.1). Due to the
length and size of the simulations, averages were taken
one to four runs with different initial conditions. For th
deposition ratev.1/4, the initial homogeneous state
stable. The onset of thermodynamic instability forv,1/4
leads to phase segregation. Hence, in what follows, we
v,1/4 and study the effects ofgE and gj . We start with
results forgE5 gj50, establishing basic results and a ba
for comparison.

A. gE50, gj50, and vÞ0

This case corresponds to MBE growth at deposition r
v with no elastic or anisotropic effects. Figure 1 shows co
figurations for the fieldf at different times. On the left, the
parameterv50.24, close to the onset of instability a
v51/4, and the wavelength of the pattern is close to
maximally unstable wavelength,l52A2p. This regime will
be referred to as the near-onset regime. The right colum
for v50.001~far from onset regime!. There, the wavelength
of the modulation is much larger than in the near-onset
gime, and the value of the order parameter changes from11
to 21. The differences between the two regimes is a
shown in Fig. 2, where the circularly averaged structure f
tor,

S~k!5^uf~k!u2&, ~12!

and the profile of the order parameter along a horizon
cross section are plotted. Initially, the order parameter gro
exponentially in time, with segregation in two phases. T
initial maximally unstable wave number isk'1/A2, which
then decreases to attain its steady-state value. At the s
time, stripes form and orient themselves locally. Oncek is
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saturated, the ordering proceeds through the elimination
defects. In the near-onset regime, the wavelength of
modulation can be calculated4 to bel;v21/4, while far from
onset,l;v21/3. Furthermore, the appearance of the lame
patterns can be explained by appropriately constructing
effective free-energy functional such that]f/]t5
¹2(dFeff /df). The effective free-energy functional contr
bution due tov is repulsively long range, which compete
with the attractive short-range interaction. Near onset,
amplitude of the modulations~proportional to the concentra
tion difference in a real alloy! is small and scales a

FIG. 7. Gray-scale plot of the degree of deformationQE for the
last lamellar configuration of Fig. 5. Black representsQE50, while
white representsQE50.014.
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A1/42v; the single-mode approximation is excellent ve
close to onset. For small values ofv, the order parameter i
equal to61 within the bulk of the domains, which are sep
rated by thin interfacial regions; the number of mod
needed to describe the profile increases asv decreases.

A vertical cross section of the thin film can be consider
if one makes a correspondence between the time scale
diffusion and the velocity at which the free surface is gro
ing. Figure 3 shows a cross section corresponding to a h
zontal cut in Fig. 1~the correspondence between the surfa
height and time has been chosen to show details!. Note that
the appearance of the cross-sectional configurations dep
on the direction chosen, which is in agreement w
transmission-electron-microscopy experiments.16 After depo-
sition of a few monolayers~bottom configuration! clear ver-
tical structures appear in the thin film. At late times, t
wavelength of the modulation is saturated, and the top lay
of the alloy film consists of vertical columns of alternatin
concentration. To better characterize the appearance o
cross section, we calculated the average wave number
function of time~or film thickness! from the first moment of
the structure factor

k15
*0

`kS~k!dk

*0
`S~k!dk

. ~13!

Figure 4 showsk1 as a function of time for the near-ons
and the far-from-onset regimes. Near onset,k1 saturates rap-
idly to a value'0.7, while for smallv, the wave number
decreases over a wide time scale. In fact, Yeung and De15

have shown that not too close to onset, the wave num
satisfies the scaling formk(t,v)5k`(v)g(tv), with k`(v)
the steady-state wave number. The functiong(x);x21/3 for
smallx, andg(x); constantfor largex. The insert in Fig. 4
shows the scaled functiong(tv). It also shows that the dat
shown in this figure correspond to the crossover regime
the functiong(x).

FIG. 8. Gray-scale plot of the degree of deformationQE for the
last hexagonal configuration of Fig. 5. Black representsQE50,
while white representsQE50.1.
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B. gEÞ0, gj50, and vÞ0

WhengEÞ0, we expect that the competition between t
long-range interaction and the saturation of the domain s
due to the elastic effects will lead to new ordered structur
Figure 5 shows the time evolution of the concentration fi
near the onset of instability (v50.24) forgE50.05~left col-
umn! andgE50.5 ~right column!. In these figures, the loca
tions of the grid points were corrected for the displacem
u. For the smallest value ofgE , the system orders in a lame
lar phase very similar to the casegE50. Differences between
Fig. 1 and Fig. 5 can be seen where crystalline defects
present. ForgE50.5, droplets of the hard phase form in
soft matrix and order themselves to create an hexagonal
tern ~the distribution of droplet sizes is sharp!. The appear-
ance of the hexagonal phase here is special because
gE50, the lamellar phase is always seen if the volume fr
tion of the two components is the same. Because of con
vation of material, there is a relation between the value of
order parameter in the phases and the area occupied b
droplets. For the hexagonal and the lamellar order, the f
tion of the area occupied by the hard droplets is2fs /Df ,
with fs the order parameter in the soft phase a
Df5fh2fs . Further characterization of the film surfac
can be found in Fig. 6, where the structure factor and
order parameter are plotted. The order parameter pro

FIG. 9. The left column shows the concentration field in t
far-from-onset regime whengE50.05 andv50.001. The right col-
umn is for gE50.5 andv50.1. Times from top to bottom are
t5100, 1500, and 100 000.gj50 in this figure.
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FIG. 10. The left column
shows the structure factor and th
order parameter along a horizont
cut att510 0000 for the left col-
umn, and att510 000 for the
right column, in the far-from-
onset regime. Left column:
gE50.05. Right column:
gE50.5. The times for the struc
ture factor correspond to those i
Fig. 9.
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shows clearly the difference in the saturation value of
concentration field in the hard and the soft phases. Peak
the scattering intensities describe the crystalline order
with the position of the first peak atk52p/l for the lamel-
lar phase (l is the wavelength of the order parameter mod
lation! and atk54p/(A3D) for the hexagonal phase (D is
the distance between the center of neighboring droplets!.

To describe the elastic deformation of the system,
computed the functionQE . The gray-scale contour plot o
Fig. 7 corresponds to the last configuration for the lame
phase in Fig. 5. Both the hard phase (f.0) and the soft
phase (f,0) show elastic deformations, while the inte
faces between the two phases are not deformed. In this
gime Df is small and the elastic interactions do not al
drastically the final configurations. In fact, if we assume t
the order parameter is given byf(x)5f0cos(kx), then

QE5 1
2 f0

2cos2(kx), which is in excellent agreement with Fig
7. For larger values ofgE , the functionQE ~Fig. 8! shows
that the soft phase wraps the hard phase in such a way
minimize the deformation of the hard phase, thereby crea
droplets. The long-range effect of the deposition rate th
orders the droplets in the hexagonal array.QE takes its maxi-
mum value in the thinner regions of the soft phase, wh
appear six times around a droplet. We note that transmiss
electron-microscopy measurements are sensitive to fluc
tions of the local lattice parameter.17 Hence, our pictures can
give a correspondence with such measurements.

Far from the onset of instability~i.e., for a slow deposi-
tion process!, Df is at its maximum, and domains of the tw
phases are separated by sharp interfaces. Becausef E is pro-
portional toDf, it becomes more important in this regim
As Fig. 9 illustrates, the final state of the deposition proc
consists of deformed droplets, even forgE50.05. For this
smallergE value, the time evolution of the system procee
e
in
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through the formation of an interconnected network wh
then breaks up. Long stripes become unstable and p
away to form droplets. In Fig. 10, we show the structu
factor and the order parameter profile.

For gE50.5, droplets form quickly, due to the larger ela
tic energy. The far from onset steady state consists of
formed droplets with flattened interfaces between neigh
droplets. Also, the size distribution is not as sharply pea
as compared to the near-onset results. Figure 10 shows
the structure factor possesses a strong peak aroundk50.55
and a secondary peak atk51, still representative of the un
derlying hexagonal structure. However, the two peaks
broadened by the distortions in the lattice order and the
of the droplets. The flattening of the sides of droplets is d
to shape changes of the hard domains from spheres to p
in order to minimize the elastic energy. This is shown in F

FIG. 11. The elastic deformation,QE , for a portion of the last
droplet configuration in Fig. 9.
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11, where it can be seen thatQE is zero inside of the hard
domains, while the soft phase has its maximum elastic
ergy in the thin regions separating the hard domains. S
shape adjustments of the hard domains have been studie
Onuki and Nishimori18 where they showed that for bul
phase separation in the presence of elastic misfits, hard
cipitates are deformed in order to cancel the elastic fi
produced by nearby precipitates.

It is very instructive to consider the time evolution t
wards the droplet phase by looking at the functionQE . As
can be seen in Fig. 12, the initial elastic deformation is si
lar to the near-onset regime: deformed stripes separate
undeformed interfaces. As time proceeds, the value of
order parameter difference increases and the elastic cont
tion becomes more important. The contribution to the ene
coming from deformations inside of hard domains beco
too costly, leading to a bending of straight interfaces to p
duce droplets. The instability of straight interfaces~and of
the lamellar phase! can be understood as follows:13 in the
far-from-onset regime, we suppose that we have a stra
interface separating two uniaxially deformed regions. T
interface is located atx50, and the order parameter goes
f6 far from the interface. We allow for fluctuations in th
order parameter around the interface profi
f5f0(x)1f08(x)(kdk(t)e

iky and calculate the change i
the free energy toO(dk

2). We find that

dFel}(
k

Fsk21
1

2
gE~Df!2lk2

gv
k G udku2, ~14!

wherel is the average of the strain in the two phases a
s andg are constants that depend on the form off0(x). The
time dependence ofdk is given by the equation

]dk

]t
52Dk2Fsk1

1

2
gE~Df!2l1

gv

k2 Gdk , ~15!

implying that the interface is unstable whe
sk11/2gE(Df)2l1gv/k2,0. This last result means tha
the lamellar phase becomes unstable when

v,S gE~Df!2l

4g1/3s2/3 D 3

, ~16!

i.e., the threshold value forv;gE
3 . For values ofv close to

onset, the above analysis is no longer valid, and a sin
mode approximation shows that the critical line has nega
second derivative, and eventually meets with the far-fro
onset line. To appropriately calculate the ‘‘nonequilibriu
steady-state phase diagram,’’ consideration of more than
mode is essential, as well as the possibility of phase coe
ence. Such calculations have not been carried out.

The wavelength of the concentration modulation in t
steady state as a function of the deposition rate is plotte
Fig. 13. In the absence of elastic interactions,kss;v1/4 near
v51/4, whilekss;v1/3 for smallv. When elastic interactions
are present, the near-onset relation still holds, but the
from-onset behavior is different. For smallv, the elastic ef-
fects are responsible for the appearance of droplets, w
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FIG. 12. Time evolution ofQE in the far-from-onset regime for
gE50.05. The straight lamellar interfaces become unstable
bend to form droplets. Panels from top to bottom correspond
time5100, 500, 1500, and 100 000.
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decreases the wavelength and increases the wave num
Thus, at fixed deposition rate, the wave number increa
with gE .

C. gEÞ0, gjÞ0, and vÞ0

In this section, we discuss how the cubic anisotro
which is present in many III-V alloys, alters the findings
the previous sections. Figure 14 shows order parameter
QE configurations forv50.24, gE50.05 andgj50.1 ~see
Figs. 1 and 5 for comparison!. The phase segregation occu
preferentially along the@01# and @10# directions, leading
eventually to a perfectly ordered lamellar structure~not
shown in the figure!. Interestingly, the stripes have bubbl
and necks, which are mostly found at the boundaries
tween different stripe orientations for the latest time show
These bubbles are due to the elastic energy, as can be se
the gray-scale plots ofQE . Within the ordered lamellar re
gions, the deformation is inside of the stripes, which
separated by undeformed interfaces. The competition
tween stripe orientations at boundaries createsdeformed
elastic droplets, thereby creating the bulges seen in the
centration field. Far from the onset of instability~Fig. 15! the
droplets are now cuboids with their flat sides oriented alo
@01# or @10# ~compare with Fig. 9!.

IV. DISCUSSION

Our results show a number of interesting competing
fects during the growth of the heteroepitaxial film. Fir
there is a competition between the phase separation an
constant deposition of material on the surface, leading to
formation of lamellar structures in the absence of elastic
These lamellar structures appear below a certain thres
deposition rate, while above this threshold the film is hom
geneously mixed. The deposition of material can be view
as a nonlocal repulsive interaction of the form
2v*drdr 8f(r )G(r ,r 8)f(r 8) with ¹2G(r ,r 8)5d(r2r 8).
Because this contribution is quadratic inf , it changes the
linear dispersion relation. When elastic fields are introdu
with first-order dependence of the elastic moduli on conc
tration, there appears another long-range interaction du

FIG. 13. Steady-state wave number as a function of the dep
tion rate. The lines are the near onset expansion~solid! and the
far-from-onset expansion~dashed! for gE50.0.
er.
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the difference in the shear modulus between the two pha
( f E). This interaction is cubic inf and is of the form
gE( i , j***drdr 8dr 8f(r )Gi j (r ,r 8)f(r 8)Gi j (r 8,r 9)f(r 9). It
does not contribute to the linear dispersion relation; its
fects are purely nonlinear. This can be seen in Fig. 9, wh
upon entering the nonlinear regime the stripes pinch aw
fold, and form droplets. Calculations have shown that
interaction between two hard spherical precipitates in a
matrix is repulsively long rangeand is mediated by the elas
tic fields.19 However,18 other authors have argued that th

si-

FIG. 14. The left column shows the concentration field and
right column isQE for the system with cubic anisotropy, in th
near-onset regime.v50.24,gE50.05, andgj50.1. Times from top
to bottom are 50, 500, and 2000.

FIG. 15. The left panel shows the concentration field and
right panel isQE for the system with cubic anisotropy, in the fa
from-onset regime.v50.001, gE50.05, andgj50.1. The snap-
shots were taken at time510 000.
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interaction vanishes when the hard precipitates unde
shape changes from spheres to ellipsoids. As seen in
simulations, the hard precipitates do have a vanishing s
energy. This is not to say that the long-range elastic inte
tion vanishes in general, because deformations of the
phase to accommodate the shape changes must also be
into account. Although nothing can be said aboutf E in terms
of the full free-energy expression, we believe thatf E leads to
long-range repulsive interactions between the precipitate

For film growth, the presence off E is in competition with
both the phase separation and the deposition process
seen in our simulation results, this leads to a competit
between steady-state lamellar phases and steady-state d
phases. For deposition rates near the threshold for instab
the long-range elastic interaction creates the droplets;
long-range interaction due to the deposition then orders th
droplets in an hexagonal array. Hence, the well-ordered h
agonal state is due toboth long-range interactions. Thi
means that if predictions for the selected wave number of
patterns are to be made, they should depend on the two
rametersv andgE .

V. CONCLUSION

To summarize, we have studied the growth by MBE o
thin solid layer composed of two different atomic types. T
constant deposition of material competes with the phase
regation to produce modulated structures. Elastic effects
to a difference between the elastic moduli of the two co
ponents and crystal anisotropy were shown to modify
dynamical evolution and the steady state reached by the
tem. The elastic effects were directly responsible for the
pearance of droplets of the hard phase in a soft matrix, w
the crystal anisotropy favored spinodal decomposition al
the soft directions, aligning the stripes or forming cuboid
droplets.

ACKNOWLEDGMENTS

This work was supported by the NSERC of Canada. F
also acknowledges support from the Walter C. Sumner fu

APPENDIX A: DERIVATION OF THE EFFECTIVE FREE
ENERGY FUNCTIONAL

In this appendix, we show how the displacement vec
can be obtained in terms of the order parameter using
mechanical equilibrium condition, and derive the effecti
free-energy functional as a function ofc only. We start with
the expression for the stress tensor

s i j 5
dF

dm i j
5@ac1K¹•u1Bm i i #d i j 12M S m i j 2

d i j

d
¹•uD .

~A1!

~Note that repeated indices do not imply summations
that in the anisotropy termBm i i , the repeated indexi is not
summed!. The mechanical equilibrium condition is

(
j

¹ js i j 5¹ i@ac1K¹•u#1B¹ im i i
o
ur
ar
c-
ft
ken

As
n
plet
ty,
e

se
x-

e
a-

g-
ue
-
e
ys-
-

le
g
l

.
d.

r
e

d

12M(
j

¹j S m i j 2
d i j

d
¹•uD50, ~A2!

which can be written as

~K1M22M /d!¹ i¹•u1B¹ i
2ui1M¹2ui1a¹ ic50.

~A3!

The goal of our scheme is to calculateui in terms ofc to
first order in K1 , M1, and B1 . To do so, we write
u5u01u1, whereu1 is of O(K1 ,M1 ,B1). To zeroth order
in the coefficientsM1, K1 andB1 , we have

~K01M022M0 /d!¹¹•u01M0¹2u01a¹c50,
~A4!

which can be solved for¹•u0 by taking an extra divergence

¹2¹•u052
a

C0
¹2c, ~A5!

with the definitionC05K012M0(121/d). The general so-
lution of this Poisson equation consists of a linear combi
tion of the particular solution and the solution to the Lapla
equation. Because of the periodic boundary conditions,
compression¹•u0 and its first derivative are continuous
the boundaries, implying that the solution to the Lapla
equation is zero everywhere. Hence, the solution for¹•u0 is

¹•u052
a

C0
c. ~A6!

Substitution of this expression for¹•u0 in Eq. ~A4! gives

ui
052

a

C0
¹ iW, ~A7!

whereW is obtained from

¹2W5c. ~A8!

To this lowest order, substitution into Eq.~1! leads to
Fel@c#5*dxf 0 with

f 052
a2

2C0
c2 ~A9!

~integration by parts is necessary to obtain this result!. We
now proceed to calculate the correctionsu1 due to the an-
isotropy and the difference in elastic moduli between the t
phases. We separately calculate these corrections in ord
make the derivations more transparent.

1. Corrections due to the anisotropy

To first order inB1 , u1 satisfies the equation

~K01M022M0 /d!¹ i¹•u11B1¹ i
2ui

01M0¹2ui
150,

~A10!

with a solution

¹•u15
ajM0

C0
2

c2
ajM0

C0
2

1

¹2(iÞ j
¹ i

2¹ j
2 1

¹2
c. ~A11!
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In this last equation, the operator 1/¹2 represents the invers
laplacian. Substitution of Eq.~A11! in Eq. ~A10! leads to

ui
15

ajM0

C0
2

¹ i

1

¹2
c2

ajM0

C0
2

¹ i

1

¹4(iÞ j
¹ i

2¹ j
2 1

¹2
c,

~A12!

which is clearly first order in the anisotropyj. With the
displacement vector determined as a function ofc, we can
substitute it back in the elastic free-energy functional a
obtain an effective free-energy functional in terms ofc only.
We write the free-energy density asf el5 f 01 f j , with f j of
O(j). To calculatef j , notice that mechanical equilibrium
requiresdF/dui50, implying that

f j5
1

2
B1(

i
m i i

2 5
a2jM0

2C0
2

c22
a2jM0

2C0
2 (

iÞ j
~¹ i¹ jW!2.

~A13!

2. Corrections due to the difference in the bulk moduli

In this case,u1 is of O(K1) and is a solution of

~K01M022M0 /d!¹ i¹•u11M0¹2ui
11K1c¹ i¹•u050.

~A14!

Again, taking the divergence of this equation yields

¹•u15
aK1

C0
2

c2 ~A15!

and

ui
15

aK1

C0
2

¹ i

1

¹2
c2. ~A16!
ys

J.

l.
d

The correction to the elastic energy is

f K1
5

1

2
K1c~¹•u0!25

1

2

a2K1

C0
2

c3. ~A17!

In the main text, we combinef 0 and f K1
, and use the qua

dratic form2ac2/2C with C5K12M0(121/d).

3. Corrections due to the difference in the shear moduli

Here,u1;O(M1) satisfies

~K01M022M0 /d!¹ i¹•u11M0¹2ui
11M1c¹2ui

0

1M1¹ i¹•u050, ~A18!

which gives

¹•u15
2aM1

C0
2

1

¹2
¹ i¹ jFcS ¹ i¹ jW2

d i j

d
c D G ~A19!

and

ui
15

2aM1

C0
2

¹ i

1

¹4
¹i¹ jFcS ¹ i¹ jW2

d i j

d
c D G . ~A20!

The contribution to the elastic energy of orderM1 is

f M1
5M1c(

i , j
S m i j

0 2
d i j

d
¹•u0D 2

5
M1a2

C0
2

c(
i , j

S ¹ i¹ jW2
d i j

d
c D 2

. ~A21!
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