# Structure and characteristics of $C_3N_4$ thin films prepared by rf plasma-enhanced chemical vapor deposition

Wu Dawei, Fu Dejun, Guo Huaixi, Zhang Zhihong, Meng Xianquan, and Fan Xiangjun

Ion Beam Physics Laboratory, Department of Physics, Wuhan University, Wuhan 430072, People's Republic of China

(Received 18 October 1996; revised manuscript received 15 January 1997)

 $C_3N_4$  films were prepared on Si(111) by rf plasma-enhanced chemical vapor deposition using Si<sub>3</sub>N<sub>4</sub>/TiN and Si<sub>3</sub>N<sub>4</sub>/ZrN as transition layers. X-ray diffraction and transmission electron diffraction revealed that the films deposited have a polycrystalline structure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy confirmed the presence of  $sp^3$  and  $sp^2$  hybridized C atoms tetrahedrally and hexagonally bonded with N atoms, respectively. The nitrogen concentration was calculated from the XPS spectra. Graphite-free C<sub>3</sub>N<sub>4</sub> films were obtained under optimal conditions. The Vickers hardness of the C<sub>3</sub>N<sub>4</sub> films falls in the range of 2950–5100 kgf/mm<sup>2</sup>. The C<sub>3</sub>N<sub>4</sub> films exhibit high resistance against acid and electrochemical etching. Thermal gravimetric and differential thermal analysis showed that the films are thermally stable at temperatures ranging from room temperature to 1200 °C.

 $[\$0163 \hbox{-} 1829(97)03232 \hbox{-} 3]$ 

### I. INTRODUCTION

C<sub>3</sub>N<sub>4</sub>, which may have hardness greater than that of diamond, shows immense potential for applications in the field of materials science and engineering and has become an extensively studied subject in the past few years. Liu and Cohen<sup>1,2</sup> first predicted that the bulk modulus of the  $\beta$ -C<sub>3</sub>N<sub>4</sub> should be 4.27 Mbar, comparable to that of diamond, which is calculated to be 4.35 Mbar and measured as 4.43 Mbar. In 1993, Niu, Lu, and Lieber<sup>3</sup> synthesized  $\beta$ -C<sub>3</sub>N<sub>4</sub> from laser vaporization of high-purity graphite using a N<sup>+</sup> beam simultaneously bombarding the substrate. C-N films were also prepared by reactive magnetron sputtering,<sup>4,5</sup> ion-beam deposition,<sup>6</sup> electron cyclotron resonance plasma-assisted chemical vapor deposition (ECR-CVD),<sup>7</sup> and hot filament CVD.<sup>8</sup> The resulting films were predominantly amorphous. Only a few authors obtained nanometer-sized  $\beta$ - C<sub>3</sub>N<sub>4</sub> crystallites, with a crystallization rate <5 vol. %, dispersed in the amorphous C<sub>3</sub>N<sub>4</sub> matrix. On the other hand, all the C-N films reported were carbon rich. It turned out to be difficult to prepare samples with nitrogen content satisfying the C<sub>3</sub>N<sub>4</sub> formula. To date, samples containing sufficient amounts of crystallized C<sub>3</sub>N<sub>4</sub> and with bulk modulus comparable to the predicted value have not been obtained.

Recently, Liu and Wentzcovitch,<sup>9</sup> in their *ab initio* variable-cell-shape molecular-dynamics study of the  $C_3N_4$  structure, pointed out that there exist three  $C_3N_4$  phases: the hexagonal  $\beta$ - $C_3N_4$  (space group  $P6_3/m$ ), the defect cubic zinc-blende ( $P\overline{43}m$ )  $C_3N_4$ , and the rhombohedral  $C_3N_4$  (R3m) phase, the bulk moduli of which, are 4.37, 4.25, and 0.51 Mbar, respectively. The cohesive energies of the three phases lie close to each other and are also close to those of both diamond and graphite. Hence, during the reaction process in  $C_3N_4$  synthesis, the five phases, including diamond and graphite, will grow competitively, none of which may easily grow large. Consequently, amorphous C-N films will usually be formed. As diamond and graphite are energetically a little lower than  $C_3N_4$ , amorphous carbon should grow faster than  $C_3N_4$ .<sup>10</sup>

Concerning the application of  $C_3N_4$  as coatings on cutting tools, graphite and rhombohedral  $C_3N_4$ , the two soft phases are harmful to attainment of useful mechanical properties. Restraining their growth is crucial to preparing hard C-N coatings.

This paper presents the synthesis of  $C_3N_4$  by rf plasmaenhanced chemical vapor deposition (PECVD) and formation of large-area polycrystalline  $C_3N_4$  films using various transition layers. The structures of the films were analyzed by x-ray diffraction (XRD) and transmission electron diffraction (TED), the nature of the C-N bonding determined by x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The Vickers hardness of the C-N films were measured. Corrosion and thermal gravimetric and differential thermal analysis (TG-DTA) experiments were conducted to examine the chemical and thermal stability of the samples.

### **II. EXPERIMENTAL DETAILS**

Our rf PECVD apparatus for  $Si_3N_4$  and  $C_3N_4$  deposition is shown in Fig. 1. The cylindrical exciting electrode of the rf power source is fitted outside the quartz tube. The substrate



FIG. 1. A schematic diagram of the rf PECVD apparatus for the deposition of  $Si_3N_4$  and  $C_3N_4$ . 1, Electric heater; 2, quartz tube; 3, rf exciting electrode; 4, substrate; 5, booster bump; 6, motor bump; 7, temperature monitor; 8, rf power source; 9, ethylene; 10,  $N_2$ .

© 1997 The American Physical Society



FIG. 2. The XRD spectra for  $Si_3N_4/Si$  (a),  $C_3N_4/Si_3N_4/Si$  (b), and  $C_3N_4/Si_3N_4/Si$  after annealing at 800 °C in vacuum for 2 h (c). The wide band around 28° in (b) is attributed to a scattering modification to the diffraction of  $\beta$ -Si<sub>3</sub>N<sub>4</sub>.

is placed on the grounded plate in the tube. The machine works at 200 kHz, rather than the usually adopted 13.56 MHz, and under voltages controllable between 1500–2000 V.

Polished silicon wafers were boiled first in solution NH<sub>4</sub>OH:H<sub>2</sub>O<sub>2</sub>:H<sub>2</sub>O=1:1:8 for 3 min and then in solution HCl: H<sub>2</sub>O<sub>2</sub>:H<sub>2</sub>O=1:1:8 for 8 min. Then they were rinsed in hot and cold deionized water and dried up in an ir oven. A TiN or ZrN layer, 0.3–0.5  $\mu$ m thick, was deposited on each wafer by reactive magnetron sputtering, followed by Si<sub>3</sub>N<sub>4</sub> deposition in the PECVD chamber and then deposition of C<sub>3</sub>N<sub>4</sub> films, their thickness varied to meet the requirements of various measurements. The substrate temperature was adjusted between 400–600 °C. For Si<sub>3</sub>N<sub>4</sub> deposition we used SiH<sub>4</sub> and N<sub>2</sub> at fluxes of 1.3 and 3.5 liter/min, respectively, the rf voltage was controlled at 1500 V. C<sub>3</sub>N<sub>4</sub> deposition was conducted at 1800 V using C<sub>2</sub>H<sub>4</sub> and N<sub>2</sub> at 0.4 liter/min and up to 5.0 liter/min.

#### **III. RESULTS AND DISCUSSION**

# A. XRD and TED analysis

To make crystalline  $C_3N_4$ , we have studied the effects of the rf power frequencies as well as transition layers on the film qualities. We believe that a low frequency favors the increase in the kinetic energy of the reactants and crystallization during deposition. A higher density of power en-



FIG. 3. The transmission electron diffraction pattern of a  $C_3N_4$  film deposited on  $Si_3N_4$ . The sample was annealed at 800 °C in vacuum for 2 h before TED measurement.

hances ionization and decomposition of reactants and production of carbon nitrides. And,  $Si_3N_4$  is an ideal structural template to seed the growth of the metastable  $\beta$ -C<sub>3</sub>N<sub>4</sub>. Both compounds are in the hexagonal crystallization system. Their interface has the lowest lattice mismatch.

XRD spectra were measured for C<sub>3</sub>N<sub>4</sub>/C<sub>3</sub>N<sub>4</sub>/Si samples at different stages of preparation. Typical results are presented in Fig. 2. For the  $Si_3N_4/Si$  sample, we see diffraction due to  $\beta$ -Si<sub>3</sub>N<sub>4</sub>(200), (221), and (322) at  $2\theta$ =26.8°, 58.9°, and 94.9°, respectively. After deposition of  $C_3N_4$ , these peaks disappear, leaving a contour around 28°, attributed to a scattering modification to the above diffraction by the freshly grown amorphous C<sub>3</sub>N<sub>4</sub>. For the same specimen, after annealing at 800 °C in a vacuum for 2 h, we see three peaks at 28.4°, 58.7°, and 94.9°, attributed, respectively, to  $\beta$ - $C_3N_4(110)$ , (211), and (330). The large intensity at 28.4° suggests a preferred growth of  $\beta$ -C<sub>3</sub>N<sub>4</sub>(110) with little lattice mismatch over  $\beta$ -Si<sub>3</sub>N<sub>4</sub>. In addition to the above three planes, there are also crystallites grown along the  $\beta$ - $Si_3N_4(221)$  and (322) textures, but they are not so intense. In the above experiment, no diffraction due to graphite was observed. This is because graphite and Si<sub>3</sub>N<sub>4</sub> have large mismatches, though they are in the same crystallization system. Based on the XRD spectra, the  $\beta$ -C<sub>3</sub>N<sub>4</sub> lattice constants were



FIG. 4. The transmission electron diffraction pattern typical of  $C_3N_4$  films deposited on  $Si_3N_4$ /TiN/Si.

| Theoretical |              | Experimental            |                         | Theoretical |       | Experimental            |                         |
|-------------|--------------|-------------------------|-------------------------|-------------|-------|-------------------------|-------------------------|
| (hkl)       | <i>d</i> (Å) | $C_3N_4/Si_3N_4/TiN/Si$ | $C_3N_4/Si_3N_4/ZrN/Si$ | (hkl)       | d (Å) | $C_3N_4/Si_3N_4/TiN/Si$ | $C_3N_4/Si_3N_4/ZrN/Si$ |
| 110         | 3.213        | 3.48                    | 3.25                    | 321         | 1.133 |                         | 1.13                    |
| 200         | 2.783        | 2.56                    |                         | 500         | 1.106 | 1.11                    |                         |
| 101         | 2.259        | 2.21                    |                         | 330         | 1.071 | 1.00                    |                         |
| 111         | 1.953        |                         | 1.95                    |             |       | 0.90                    |                         |
| 211         | 1.598        | 1.57                    | 1.57                    |             |       | 0.85                    |                         |
| 221         | 1.345        | 1.35                    |                         | 611         | 0.80  | 0.79                    |                         |
| 320         | 1.277        | 1.27                    | 1.27                    |             |       | 0.75                    |                         |

TABLE I. Crystal parameters of C<sub>3</sub>N<sub>4</sub> deposited on Si<sub>3</sub>N<sub>4</sub>/TiN/Si and Si<sub>3</sub>N<sub>4</sub>/ZrN/Si.

calculated as a = 6.28 Å and c = 2.34 Å, in good agreement with predictions of Yu *et al.*,<sup>11</sup> though with slight deviations of -2.5% and -1.6%, respectively, compared to those reported in Ref. 2, and of -2.0% and 1.3% compared to those in Ref. 9.

Free  $C_3N_4$  films were obtained by dissolution of Si, Si<sub>3</sub>N<sub>4</sub>, and TiN or ZrN in corrosive solution HF:HNO<sub>3</sub>=2:1. TEM observation revealed that  $C_3N_4$  films deposited on Si<sub>3</sub>N<sub>4</sub>/Si are amorphous. We annealed the  $C_3N_4/Si_3N_4/Si$ samples at 800 °C in a vacuum for 2 h before putting them into the corrosive solution to strip the  $C_3N_4$  films off the substrates. Then Laue's diffraction patterns were observed for the free  $C_3N_4$  specimens (Fig. 3), indicative again of an amorphous to crystalline  $C_3N_4$  transition during annealing.

C<sub>3</sub>N<sub>4</sub> films deposited on Si<sub>3</sub>N<sub>4</sub>/TiN/Si and Si<sub>3</sub>N<sub>4</sub>/ZrN/Si are polycrystalline, as shown in Fig. 4 for the TED pattern of a C<sub>3</sub>N<sub>4</sub>/Si<sub>3</sub>N<sub>4</sub>/TiN/Si specimen. Crystal parameters calculated from the TED patterns are summarized in Table I from which we see that the C<sub>3</sub>N<sub>4</sub> films deposited on both Si<sub>3</sub>N<sub>4</sub>/TiN/Si and Si<sub>3</sub>N<sub>4</sub>/ZrN/Si are structurally analogous to  $\beta$ -C<sub>3</sub>N<sub>4</sub>, with C<sub>3</sub>N<sub>4</sub>/Si<sub>3</sub>N<sub>4</sub>/ZrN/Si even closer to it. And we observed Laue's patterns also for as-prepared  $C_3N_4/Si_3N_4/ZrN/Si$  under appropriate deposition conditions, revealing that large C<sub>3</sub>N<sub>4</sub> crystallites have been formed when ZrN intermediate layers were used.

The consistency between our XRD and TED spectra have verified the existence of crystalline  $C_3N_4$ . The TED results suggest that TiN and ZrN layers enhance  $C_3N_4$  growth over  $Si_3N_4$ . But its explanation remains a question. Our previous study showed that TiN and ZrN layers deposited on Si are crystalline.<sup>12</sup> Since the synthesized  $\beta$ -Si<sub>3</sub>N<sub>4</sub> is hexagonal, the forced crystallization mechanism suggesting that the cubic TiN or ZrN layer forces its seeded layer to adopt the same cubic structure is not applicable here.<sup>13</sup> It may be reasonable to take account of the hexagonal symmetry nature of some TiN or ZrN planes.<sup>14</sup> That symmetry should result in better crystallized  $\beta$ -Si<sub>3</sub>N<sub>4</sub> which then would better seed growth of  $\beta$ -C<sub>3</sub>N<sub>4</sub>. Further research is still under way.

# **B. XPS and FTIR analysis**

XPS spectra of C(1s) and N(1s) electrons were measured and simulated, and two groups of peaks (Table II) were obtained. One is the group of carbon peaks:  $C^1=286.2-287.1 \text{ eV}$ ,  $C^2=284.6-284.8 \text{ eV}$ ; the other is the nitrogen group: N<sup>1</sup>=398.0-398.7 eV, N<sup>2</sup>=400.3-400.9 eV. The values were found influenced by the N<sub>2</sub> flux.

The results show that both  $sp^3$  and  $sp^2$  hybridization exist in the C-N films. In either cubic or  $\beta$  phase C<sub>3</sub>N<sub>4</sub>, each C atom is  $sp^3$  hybridized and  $\sigma$ -bonded with four N atoms, forming a tetrahedral configuration. As nitrogen has a greater electronic affinity, the electron cloud of the C-N covalent bond tends to move near the N atom. This transfer of negative charge increases the binding energy of the C(1s) and reduces the binding energy of the N(1s) electron (compared with that of the  $N_2$  molecule). In rhombohedral  $C_3N_4$ , each carbon atom is  $sp^2$  hybridized and  $\sigma$ -bonded with three nitrogen atoms, making up a hexagonal structure. In the planar network of the hexagonal lattice, each atom, carbon or nitrogen, has a solitary electron, which forms the  $\pi$  bonding between the interplanar C and N atoms (C=N bonds), making the structure a stable one similar to the benzene structure frequently found in organic compounds. Owing to the presence of the C=N bonds, the rhombohedral C3N4 has the greatest chemical bond energy and therefore is chemically most stable among the three  $C_3N_4$  phases. In actual C-N films, the binding-energy variation results from variation in bond forms and lengths. The nitrogen concentration, obtained from XPS, increases with the N<sub>2</sub> flux. Up to 53.7 at. % concentration was obtained for films deposited at the N2 flux of 5.0 liter/min.

To further study the C-N bonding, we performed FTIR spectroscopy on a NICOLET FTIR spectrometer. Figure 5 illustrates the FTIR spectrum for a C-N film directly deposited on Si(111). The 1260 cm<sup>-1</sup> peak is attributed to the stretch vibration of C-N single bonds, the frequency of which has shifted a little towards the high frequency owing to the presence of other bonds with higher frequencies and the influence of neighbor radicals. The FTIR analysis of a variety of samples prepared by the present method showed that the wave number of C-N bond vibration falls in the

TABLE II. The binding energies of C(1s) and N(1s) electrons and N concentrations determined from XPS spectra of the  $C_3N_4$ films. The sample labeled *a* through *e* were prepared at N<sub>2</sub> fluxes 5.0, 4.5, 4.0, 3.5, and 2.5 liter/min, respectively.

| Sample            | а     | b     | С     | d     | е     |
|-------------------|-------|-------|-------|-------|-------|
| $C^1$ (eV)        | 287.1 | 286.9 | 286.8 | 286.5 | 286.2 |
| $N^1$ (eV)        | 398.6 | 398.5 | 398.7 | 398.7 | 398.5 |
| $C^2$ (eV)        | 284.7 | 284.8 | 284.7 | 284.7 | 284.6 |
| $N^2$ (eV)        | 400.8 | 400.5 | 400.8 | 400.9 | 400.3 |
| N content (at. %) | 53.7  | 47.6  | 46.7  | 44.4  | 12.0  |



FIG. 5. The FTIR spectrum of a  $C_3N_4$  film directly deposited on Si(111) substrate.

912–1062 cm<sup>-1</sup> range. The 1436 cm<sup>-1</sup> peak is attributed to amorphous  $sp^3$  C-C bonds, the strong peak at 1576 cm<sup>-1</sup> to the absorption of graphite, and the 1687 cm<sup>-1</sup> peak to the vibration of C=N bonds, indicative of the presence of rhombohedral C<sub>3</sub>N<sub>4</sub>. The wide band around 2054 cm<sup>-1</sup> is assigned to the C=C bonds.

Using transition layers, we have obtained pure  $C_3N_4$  films under optimal conditions. An FTIR spectrum typical of such films on Si<sub>3</sub>N<sub>4</sub>/ZrN/Si is illustrated in Fig. 6. One sees only a broad and strong absorption band around 974 cm<sup>-1</sup> attributed to C-N bonds, which is much different from the spectrum shown in Fig. 5, and a peak at 614 cm<sup>-1</sup> caused by lattice vibration of the Si substrate. No evidence for the presence of absorption due to graphite, expected around 1550 cm<sup>-1</sup>, or any other bonds or radicals, was found.



FIG. 6. The FTIR spectrum of a  $C_3N_4$  film deposited on  $Si_3N_4/ZrN/Si.$ 



FIG. 7. The TG-DTA curves of a C-N film deposited on Si(111) substrate (sample A).

### C. Hardness, chemical and thermal stability

The hardness of  $C_3N_4$  is a key parameter as far as its practical application is concerned. Our hardness measurement, conducted with a Vickers hardness tester under loads of 5 and 10 g, shows that the hardness of the  $C_3N_4/Si_3N_4/TiN/Si$  falls in the range of 3000–5100 kgf/mm<sup>2</sup>.  $C_3N_4$  films deposited on TiN/metal have comparatively lower hardness (3000–3300 kgf/mm<sup>2</sup>). Here, the metal is an oil pipe alloy steel. We see that the adoption of  $Si_3N_4/TiN$  transition layers to restrain graphitic growth is successful and results in attainment of  $C_3N_4$  films with expected high hardness.

To study the resistance of  $C_3N_4$  against acids, we put  $C_3N_4$ /TiN/Si samples in 49 % HF acid. As TiN and  $Si_3N_4$  dissolve easily in HF acid, the  $C_3N_4$  film was stripped off the substrate. It was not decomposed or damaged by the acid.  $C_3N_4$ /Si samples were put in a mixture of HF and nitric acids with HF:HNO<sub>3</sub>=2:1. The Si wafer reacted swiftly with the mixture, dissolved, and completely vanished, but the  $C_3N_4$  films remained intact.

The resistance of  $C_3N_4$  against electrochemical etching was studied using a solution of 10%  $H_2SO_4$  and 10% NaCl.



FIG. 8. The TG-DTA curves for the  $C_3N_4$  film deposited on  $Si_3N_4$  (sample *B*).

| Working voltage (mV) | Sample                               | Etching current (mA/cm <sup>2</sup> ) | Current ratio |     |
|----------------------|--------------------------------------|---------------------------------------|---------------|-----|
|                      | metal                                | 50.0                                  | 769           | 3.3 |
| -600                 | Cr/metal                             | 15.0                                  | 231           | 1   |
|                      | C <sub>3</sub> N <sub>4</sub> /metal | $6.5 \times 10^{-2}$                  | 1             |     |
|                      | metal                                | 70.0                                  | 212           | 4.4 |
| 0                    | Cr/metal                             | 16.0                                  | 49            | 1   |
|                      | C <sub>3</sub> N <sub>4</sub> /metal | $33.0 \times 10^{-2}$                 | 1             |     |
|                      | metal                                | 77.5                                  | 258           | 2.6 |
| +300                 | Cr/metal                             | 30.0                                  | 100           | 1   |
|                      | C <sub>3</sub> N <sub>4</sub> /metal | $30.0 \times 10^{-2}$                 | 1             |     |
|                      | metal                                | 210.0                                 | 575           | 6.7 |
| +600                 | Cr/metal                             | 31.5                                  | 86            | 1   |
|                      | C <sub>3</sub> N <sub>4</sub> /metal | $36.5 \times 10^{-2}$                 | 1             |     |
|                      | metal                                | 237.5                                 | 617           | 7.4 |
| +800                 | Cr/metal                             | 32.0                                  | 83            | 1   |
|                      | $C_3N_4$ /metal                      | $38.5 \times 10^{-2}$                 | 1             |     |
|                      | metal                                | 235.0                                 | 573           | 7.2 |
| +1000                | Cr/metal                             | 32.5                                  | 79            | 1   |
|                      | C <sub>3</sub> N <sub>4</sub> /metal | $41.0 \times 10^{-2}$                 | 1             |     |

TABLE III. The electrochemical etching current and current ratio of specific electrodes under various voltages.

Plates of oil pipe alloy steel, Cr/metal, and  $C_3N_4$ /metal, each with a conducting area of 1 cm<sup>2</sup>, were used as working electrode. Platinum was used as pair electrode and standard calomel electrode saturated mercurous chloride as reference electrode. The results are listed in Table III and analyzed as follows.

In electrochemical etching of metals, atoms of the metal, the anode, lose their electrons and become ions dissolving in the corrosive medium. When an insulating  $C_3N_4$  film is deposited on the surface of the metallic anode, the reaction process in which the anode is involved is greatly slowed down and the etching rate of the anode is remarkably reduced. From Table III one sees that, when  $C_3N_4$ /metal is used as an anode, the etching current decreases by 258 to 617 times compared to the case with a bare alloy metal plate as an anode and decreases by 79 to 100 times from the case where the alloy is coated with Cr.

TG-DTA was conducted for samples (designated *A* and *B*) prepared under different conditions. Sample *A* is a C-N film directly deposited on Si(111) and electrically conducting for the existence of graphite in it. On its TG curve in Fig. 7, we see a peak with a weight losing rate of 4.611% in the 316.8–337.9 °C range. Correspondingly, a heat releasing peak manifests itself on the DTA curve. It is suggested that, when heated, the graphite in the C–N film reacts with oxygen in the air, producing CO<sub>2</sub> gas and releasing heat, and the film loses its weight.

Sample *B* is a C-N film deposited on  $Si_3N_4/Si$ . Containing no graphite, the sample is electrically insulating. In this case (Fig. 8), no TG peak can be observed in the temperature range from room temperature (RT) to 1200 °C. Nor does one

see apparent heat releasing or gaining on the DTA curve. The  $C_3N_4$  films prepared using  $Si_3N_4$  buffer layers are therefore thermally stable.

#### **IV. CONCLUSION**

Polycrystalline  $C_3N_4$  films were prepared by rf PECVD under an ethylene and nitrogen ambient using Si as substrate and Si<sub>3</sub>N<sub>4</sub>/TiN and Si<sub>3</sub>N<sub>4</sub>/ZrN as transition layers. Laue's spots were observed for  $C_3N_4/Si_3N_4/ZrN/Si$  and annealed  $C_3N_4/Si_3N_4/Si$  samples. Both  $sp^3$  and  $sp^2$  hybridization exist in the films. The Si<sub>3</sub>N<sub>4</sub> layer is indispensable for making graphite-free  $C_3N_4$  films. Intermediate TiN and ZrN layers enhance growth of polycrystalline  $C_3N_4$  films over Si<sub>3</sub>N<sub>4</sub> buffer layers. The nitrogen concentration of the films falls in the range of 12.0–53.7 at. %.

The Vickers hardness of the  $C_3N_4$  films falls between 3000–5100 kgf/mm<sup>2</sup>. The  $C_3N_4$  films remain intact in HF acid, in mixture of HF and nitric acids, and are resistant to electrochemical etching. TG-DTA studies showed that the films are thermally stable at temperatures ranging from RT to 1200 °C.

### ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China. The authors thank Professor Shi Weidong of the China National Laboratory of Ion, Electron, and Photon Beams, Dalian University, for his kind help in the Vickers hardness measurement.

- <sup>1</sup>A. Y. Liu and M. L. ohen, Science **245**, 841 (1989).
- <sup>2</sup>A. Y. Liu and M. L. Cohen, Phys. Rev. B 41, 10727 (1990).
- <sup>3</sup>C. Niu, Y. Z. Lu, and C. M. Lieber, Science **261**, 334 (1993).
- <sup>4</sup>C. J. Torng, J. M. Sivertsen, J. H. Judy, and C. Chang, J. Mater. Res. 5, 2490 (1990).
- <sup>5</sup>M. Y. Chen, D. Li, X. Lin, V. P. Dravid, Y. W. Chung, and M. S. Wong, J. Vac. Sci. Technol. A **11**, 521 (1993).
- <sup>6</sup>F. Fujimoto and K. Ogata, Jpn. J. Appl. Phys. **32**, L420 (1993).
- <sup>7</sup>A. Bouseta, M. Lu, and A. Bensaoula, Appl. Phys. Lett. **65**, 696 (1994).
- <sup>8</sup>Z. F. Zhang, Z. H. Zhou, and H. L. Li, Appl. Phys. Lett. **68**, 1 (1996).
- <sup>9</sup>A. Y. Liu and R. M. Wentzcovitch, Phys. Rev. B 50, 10362

(1994).

- <sup>10</sup>K. J. Boyd, D. Marton, S. Todorov, A. H. Al-Bayati, J. Kulik, R. A. Zuhr, and J. W. Rabalais, J. Vac. Sci. Technol. A **13**, 2110 (1995).
- <sup>11</sup>K. M. Yu, M. L. Cohen, E. E. Haller, W. L. Hansen, A. Y. Liu, and I. C. Wu, Phys. Rev. B **49**, 5034 (1994).
- <sup>12</sup>D. Wu, Z. Zhang, D. Fu, W. Fan, and H. Guo, Appl. Phys. A (to be published).
- <sup>13</sup>X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, and S. A. Barnett, J. Vac. Sci. Technol. A **10**, 1604 (1992).
- <sup>14</sup>D. Li, X. Chu, S. C. Cheng, X. W. Lin, V. P. Dravid, Y. W. Chung, M. S. Wong, and D. Sproul, Appl. Phys. Lett. **67**, 10 203 (1995).