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Electronic friction forces on molecules moving near metals
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It is well known that molecules feel a long-ranged attractive force to metals which arises from the interaction
of various molecular charges with their metal-induced “image charges.” Here we caldiratieis image
charge modelthe friction force coefficients for molecules moving near a metal. We consider the cases of ions,
polar molecules, and spherical ator80163-182807)01732-3

I. INTRODUCTION heating model, if a particle with charge(say an iofis at a
height h above the metal, then the attractive energy
Frictional forces on moving molecules neighboring a me-Ue~ (€?h™ 1) does not depend on the conductivityof the
tallic conductor have been of considerable interest. The pioMetal. The variation of the charged particle friction coeffi-
neering work on long-ranged static forces was done byient vv_lth the heighh g\b(_)\l/e_tge metal and the conductivity
Casimir’ Lifshitz and co-workerg; and later by Dzialoshin- ¢ 1S given by 'e~(e“c"h™~). For an uncharged polar
skii, Lifshitz, and Pitaevskliwho used quantum electrody- molecull? (say water HO) with a net dipole moment
namic field theory propagator methods. Teodorovich and®™~ (@m-cmPesec?), the atiractive force does not depend
later Levitov extended the propagator methdsistual pho- 0" conductivity Up~(p®h *). The friction coefficient
ton exchangeto shed new light on the sliding friction prob- ['p~(p“e~"h""). In what follows, these classical results
lem. Theoretical friction studies of physisorbed atoms onWIII be computed_ In more detail, and the additional role of
metallic substrates include both molecular dynangfos the quantum fluctuations will be explored.

study of internal phonon frictioft and electronic friction In Sec. Il, the electric field fluctuation spectral functions
X . S . will m mploying th lom reen’s function
(due to particle hole pair heating in the métaf Experimen- be computed employing the Coulomb Green’s functio

; X solution to the point charge problem via the image charge. In
tal techniques(such as quality factor measurements on &maginary time, these fluctuations can be used to compute a
quartz crystal microbalangéiave measured tlhe sliding fric- gtatic attractive potentidl. For real time, these fluctuations
tion forces in submonolayer adsorbed filfhs! can be used to compute the friction coefficients. To illustrate
When a molecule is at a fixed position above a metal, thene method, the attractive potentidlis calculated in Sec. 11l
static forces on the molecule are due to the “image chargesty, the cases of a charged ion, a polar molecule, and a spheri-
within the metal, which describe the induced electric fields.5| atom. For the case of a charged ion, the friction coeffi-

above the metal. If a molecule is moving with velocdy  ¢ients are calculated in Sec. IV. For the case of a polar mol-
then the induced charges on the metal surface must also b@je the friction coefficients are calculated in Sec. V. The

moving. This motion of induced conductor charge must bespherical atom friction coefficient is discussed in Sec. VI.
accompanied by Ohm'’s law heating within the metal. Thus,

as the molecule moves, there exigitsaddition to the normal ||, ELECTRIC FIELD ELUCTUATIONS ABOVE A METAL
“image” attractive forcg an induced friction force opposing ) ) o o
the motion. To lowest order in the velocity, the friction force ~ Neglecting electromagnetic radiation and other relativistic
obeys Fyicion=—T'-V. The friction tensor coefficients’; effects, we consider here only the nonrelativistic Coulomb

depend on the properties of the molecule and on the conduc-

tivity properties of the metal. The friction is due to the con- dipole p moving dipole
duction electrons in the metal. The “image charges” must @4 g Vv
follow the moving molecule. The situation is pictured in Fig.
1. This requires electronic currents which give rise to Ohmic
heating in the metal. The heat generated inside the metal is %/ﬁ //@ 2y
the source of the friction force on the molecule outside the _ et
metal. image dipole p; moving image

It is possible to determine the order of magnitude of static
attractive forces and friction coefficients feome caseby STATIC FORCE FRICTION EORCE

using only the analysis of physical dimensions. For example,
in the Gaussian c.g.s. units which will be employed in what £ 1 shown schematically is a stationary molecule with a
follows, the height of a F/)zart'cg?z above the conductorpermanent dipole momeptand its image dipole momenpt in the
h~(cm); The charge~ (gm*? cm®? sec’*); The conduc-  metal. When the moleculéwhich could be of arbitrary shape
tivity of the metal o~(sec'!); The attractive potential moves, the metallic surface chargtescribed by the imagdlows
U~(gmenfsec?), and the friction coefficient with the velocity of the molecule. The resulting Ohm'’s law elec-
I'~(gm seEl). tronic current heats the metal, which yields a “friction force” on
Thus, merely by dimensional analysis for an Ohm’s lawthe atom.
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interactions. Positions in space will be denoted by (p(r,—iN)d(r',0)),
r=(x,y,z), and the half space<0 will be presumed to be
filled with a material described by a dielectric response func- G(N) 10
tion £(¢) at complex frequency; i.e., for retarded response - 2+ (V—v2t(z122]’
functions Im@)>0. Forz>0 andz’'>0, the retarded Cou- V=X +(y=y)*+ (z+2)
lomb Green’s function is given by a vacuum term plus awhere
condensed matter “image” term. The usual solution to the
“image problem” is the Coulomb Green’s function “ e(ilog)—1)
G(N)=kgT (—” e 'ent, (11)
1 8(§)_1 1 ( B nzz_oc 8(||(Dn|)+1
G(rr',{)=5— :
R 1e({)+1)Rimage and where the subscript in Eq. (10) indicates imaginary

[z>0,2>0,Im({)>0], (1)

where

R=[r—r'|=J(x—x)?+(y—y)*+(z-2)% (2

and

Rimagezlr_ ri,mageJ: \/(x—x’)2+(y—y')2+(z+z’)2.

©)
For an Ohm’s law conductor we choose
Azio -
e({)=1+ ak (I¢|—i0™). (4)

Above any conductor, there will be fluctuations in the

Coulomb potentiak)(r,t); i.e., with

E(r.t)=—-Va(r,1), ©)

the spectral fluctuation function

» [ dt
S(r,r’,a))=f_m(z)cos{wt)Re(¢(r,t)¢(r’,0)>, (6)

is given by the fluctuation-dissipation theorem

h hw .
S(r,r’,w):—(ﬁ COW(H IMG(r,r’,w+i0").
(7
Thus Eqgs.(1), (3), and(7) imply
o) ( ficoth( i w/2kgT)
r,r =
Snre 2 (x=x") 2+ (y—y")+(z+2')?
< e(w+i0")—1 ®
m e(w+i0")+1)

Equation (8) will be central to our calculation of friction

time ordering. The relationship between the real time re-
tarded fluctuation-dissipation theorem, as in E@sand(8),

and the imaginary time fluctuation theorem, as in E3§)
and(11), is discussed in the literatufe.

Having obtained the potential fluctuations, one may also
obtain the electric field fluctuations using E&). For ex-
ample, Eqs(10) and(11) imply for electric field noise that at
heighth, i.e.,r=(0,0h), the nonzero correlations

lim (Ex(r,—iN)E(r’,0)) .= lim (E,(r,—iN)Ey(r',0)) +

r’—r r’—r

g(\)
= 2
@)
. . G(N)

I - ' +=| 7= |

r,ITr<EZ(r! |)\)Ez(r 10)> ( 4h3 ) (13)
and for the potential itself
G(\

Iim<¢<r,—ix>¢<r',0>>+=(%). (14

r’—r

Equations(12), (13), and(14) will be required for our com-
putations of static forces.

For the friction coefficient, we shall need the spectral
function for electric field fluctuations above the metal; i.e.,

o

(;—:T) coq wt) Rg(E;(r,t)E;(r’,0)).
(15

Sj(r,r’,w)=f

—o0

From Egs.(5) and (6),

Si(r.r',w)=6;9/S(r,r',w).

Equationg4), (8), and(15) imply the nonzero classical elec-
tric field noise

- - kgT
lim lim S, (r,r',w)= lim lim Syy(r,r’,w)=(

coefficients for molecules above the metal. O O 16m20h3/’
For calculating static forces we shall require the Matsub- " ' rot (16)
ara frequencies
and
27TkBT
wn= n, n=0*+1+2+3,..., 9

h o kgT
lim lim S, Ar,r',w)= — | (17)

and the imaginary time propagator; i.e., =07y 8m°oh
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lll. STATIC ATTRACTIVE POTENTIALS

1 B
Caonr— | == d\x G(\ —iN 0)+ —i\ 0
If H,, denotes any perturbation Hamiltonian with an un- ™" (1%) Jo GONPA=IMPAO)+ Py (= M)py(0)

perturbed vanishing mean val(;,;) =0, then second order _
thermal perturbation theory yields tiifsee) energy change +2p—iN)pA0))atom- (27)

With «({) denoting the polarizability tensor of a spherical
atom,

B 1 B h
U=- <2ﬁ)J d)\<H|nt( I)\)Him(O)>+, '8_(|(B_T

18 . —_— .
o B0 B NP(O)aoms =ke Ty S alilwg)e o,
For an ion with charg& e above the metal n=-e 28
Hix =Zeg(r), (19  so that Eqs(11) and(28) yield
g;seﬁog(;ntlal implied by Eqs(11), (14), (18), and (19) is . kB_T % o) o(ilwg))—1 20
atom— | 74~ | & AV CiTo D +1)
Z%e? ilw])—1
U,=— ( an l'ino ZE::Z:;+1 , (20) In the limit of low temperature Eqg9) and (29) imply
_ . _ : i\ (= . [ellw)—1
which is a well known classical result. For a metal obeying lim Caom= yp. f a(iw) dw. (30
T—0 T (I w)+1

Eq. (4),
72 Uatom= — (Caom/N®) is the well known energy for the
U,= _(_) (conductoy, (21)  asymptotic van der Waals interaction between a spherical
4h atom and a solid. It has been derived previously by Lifshitz
which is a classical result usually derived in a much more? and co-workers Similar expressions have been used by Har-
simple wa tis and Feibelmalf to get the asymmetry of the van der
For a di);)ole interaction Waals interaction between a molecule and a surface. Later,
Rauber, Klein, and Colté have used Eq(30) to numerically
H.(r?t) —p-E(n), (22) compute the value of -
with a polar molecule wherp may be regarded as a con- IV. FRICTION ON A MOVING ION

stant, Eqs(11), (12), (13), (18), and(22) imply that e - . )
as(1D, (12), (13), (18 (22) imply The friction coefficient tensoF in the case of a linear

friction force Fyiciion VErsus velocityV law,

o [Pirpytape) fe(iloh—1 23
P 16h3 w—0 8(i|w|)+1 . I:friction:_l_“vu (31)
Hence, for a polar molecule near a metal obeys a Kubo formula
1 0
2 — . .
Up=-— (|8p| (1+cog6), p,=|plcos® (conductoy, Tij= KgT fo dtRe(Fi(1)F;(0)), (32)

(24)  whereF(t) is a random(in general quantuinforce exerted
on the molecule by the metal.

To see what is involved, consider a charged ion with a
random force

which can also be understood in classical image charge
terms. The interactiot), is such that the dipole momept
finds the lowest energyif it is oriented pointing away,
6=0, or pointing towardg= 7, the conducting surface. F(t)=ZeE(r,t), (33

If the dipole moment undergoes quantum fluctuations,
e.g., as for a spherical atom, then E¢l), (12), (13), (18), due to the electric field fluctuations above the metal. Equa-

and (22) imply tions (15), (32), and(33) imply
1) (e P (T2 ’ 34
Uatom:_(ﬁ)j dN(p(—iN)P(0))atom: i kT Imo /Im Sij(r,r', ). (34)
0 @=Yr Sy
X (E(r,—iN)E(r',0)), (25  Equations(16), (17), and(34) imply that the nonzero friction
coefficients for a charged ion moving above the metal are
or equivalently given by
Catom o_po_po_| €
U atom= — h3 ) (26) I‘| =Fxx :ryy = 16moh? ) (35

where and
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7202 From Eqs(31), (37), and(38) we find the friction coefficient
r@=r@= . (36)  tensor for a dipole moment; i.e.,
8mah®
These friction coefficients for a moving charge above a P = (k T) lim lim E PiP;Sikj(r.r',w),  (47)
metal could have been derived on a purely classical basis B

from Coulomb’s law and Ohm'’s law. Equati@85) has been
previously discussed in the literatutThe derivation given
above relies on the Kubo formalisin.

V. DIPOLAR FRICTION

w—0p/_,

is then given by

rw—( )2 oy (FE)—F2 + ). (48

64moh®

For a dipole moment, the random force exerted on therhe dimensional arguments discussed in Sec. |, L&)

molecule is given by

F()=(p(t)- V)E(r,1). (37

From Eqs(32) and(36), it is evident that the gradient of the
electric field correlations can be defined

Sikji(r,r', )= f )coiwt)Re{ﬁ Ex(r t)& E\(r",0)),
(39)
where Egs(5), (7), and(38) imply
Sik“(r,r’,w)=&i&k&j'&|'8(r,r’,w). (39)

From Eq.(3), it follows from straightforward(but tediou$
differentiation that

1
lim (7, aka]’ 07|, (R—e)
’ Imag

r—r

<3m5)[ﬁkl| le ]:(kjl

(40)
where
f'(kn 39 m( Sk Sit + 65 Sik + Jji Ol), (41
f(ku 157 (8NN + 8iNjN; + 5; NN + 5 Ni N,
+ 8NN + 5 NiN;), (42
Fiieh =1057; 7NN NNy, (43
m=—1 if I=xy;, n=+1 |if I=z (44

~(p?/oh®) is verified in Eq.(48) along with the detailed
values of the friction coefficient tensor elements in Ed4),
(42), and (43). Particular values of the friction coefficients
are evaluated and discussed in the Appendix.

VI. QUANTUM DIPOLE FLUCTUATIONS

For a spherical atom with polarizability({), the quan-
tum dipole moment fluctuation spectral function

andN is a unit vector normal to the conductor surface. From

Egs.(8), (39), and(40)
lim Sik“(l’,r’,w)

r'—r
h tl’( hw )I
= CcO m
64mh® 2kgT

X[f(ku k1|+7'—<k1|

For a fixed dipole moment, we have

e(w+i0")—
e(w+i0")+

]

(49)

lim lim 2 PiP;Sikji (1,1, )

0—0p' ~>r |

( kT

R (46)

)E plpj(f(kjl f(kjl_l_]:(kjl

« [ dt
S(jatom)(w): ) (E coq wt)Re(p;(t)p;(0)), (49
is given by
f hw
S (w)= 5,1( cot)-( ZkBT)Ima(aH—IO ). (50)
From Eq.(32), it follows, for example, that
h
= — P. ..
XX kBT)ir;tial |n|t|a|ﬁ%II
X 8(Einai— Einigar) [(finall FJinitial)| %, (51)
where Piiia=Z ~ *eXp(—Einigiat /Ks T),
Fx=(p- 0y, O=VEy. (52
In lowest order perturbation theory |state
=|atom|meta), i.e.,
linitialy=i)[1), [final)y=|f)|F), (53
so that
o= i T)Z PP 2, 8(Ertei—E —e)
B
X|(Flpli)(Flgd DI, (54)

where [1),|F) represent metal states atig,|f) represent
spherical atom states.
To evaluate Eq(54), let us define for the spherical atom

Shionf ©) = ( )2. Z Pi|(fp|i)|?6(hwFei*e;),
(55

and for the metal
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T _ 3h +i0")—1

Shetal @) =12 2 P(Flg)|?8(ho* EcFE)). lim D,,(quantum= —) lim Im u

IF (56 T—0 27/, o g(w+i0")+1
XIma(w+i07)=0. (67)

Equation(54) then reads

- . The approach to zero a6—0 is exponential in character;
N (+) (-) (-) (+) i.e., Dyyxexp(A/kgT), whereA is the energy of the first
P (kBT> fo Aol Saonf @) Smetal @)+ Satonf @) Sieraf @) - excited state of the atom relative to the ground state. Thus, it
(57 is required to go to higher order perturbation théorfpr
friction on the spherical atom at temperatukgd <A.
On the other hand, in the “classical limit” for, e.g., for
rotating polar molecules with large(w)>1,

One may employ Eq50) in the form

W w)=(%)[n(w)+1]lma(w+i0+), (58)

kBT) hw<kgT 68
and n(w)~ 7o) (fo<ks )s (68)
A Eq. (65) yields
Sgto)m(w)Z(—)n(w)lma(w+i0+), (59)
where the Planck distribution is defined as Dy(classical= 2w fo w?
g(w+i0t)—1 ]
N(w)=———. (60) ml =2 ima(w+i07),
eBo_ 1 e(w+i0")+1
Similarly, one may employ Eq$38), (45), (52), and(56) in (69)
the form which in the additional limitw<o yields
3% e(w+i0")—1
+) — hi St 3kgT | (*/dw
470) Jo \ @
(61)
3kgT
and :( B!ar (70)
8mo
oy
S(‘{ (0)= sh )n(w)lm M . (62 wherea is the classical polarizability of a tumblingotat-
metd 47h® e(w+i0T)+1 ing) dipole moment. With
Equationg57), (58)1_(59), (6_1)1 E_md(62) imply the central <p>2<>classical:<p32/>classica1:<p§>classica1: keTar, (71
power law result of this section, i.e., one finds, either from Eq470) and (71) or from Eq. (48),
that
I —| 2 (63
xx— | 5 | 2 )
h D,(classical= (Mdassm) . (72
8o
where
, The friction coefficient is then
3% o
DXX=(—>f don(w)[n(w)+1] 2 .
27TkBT 0 FXX(C|assica]: M"_ (73)
8moh®
e(w+i0")—1 .
xIm| ——————|Ima(w+i0%),  (64)
g(w+i0")+1 VII. DISCUSSION
or equivalently We have calculated the electronic contribution to the fric-
tion coefficients for ions, polar molecules, and spherical at-
3n)\ (= n(w) e(w+i0")—1 oms moving near a metal in a regime where an image charge
Dy=—|5—|| dw Im _ - : , L
2] Jo e e(w+i07)+1 argument is physically valid. For an ionic chargée,

I'~(Z%e?/ oh®). For a polar molecule with a dipole moment
XIma(w+i0"). (65  p, I'(classical)~ ({p?)gassical 7N°)-
For the case of a spherical atom, the zero-point dipole
moment fluctuation:#(pz)quantum contribute to the attraction
- _ energy in Egs(26) and (30), but do not contribute to the
N(w)—exp—fiw/keT) as T-0, (66 friction coefficient at low temperatudes; T<<A in the lowest
it follows from Egs.(65) and (66) order perturbation theory of Eq53). The required higher

Note that in the quantum limit
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glrs:\,r\lhgfégurbation theory results have been discussed FO =-3, 72 =-15 7F4 =0 (A3)

For a nobel gas atom above the metal at a helight, Hence,
wherea is the metallic interatomic spacing, the mean dipole

moment in the ground stat€0|p|0)=0. However, for an Fﬁp): 3p? "»
atom in the first adsorbed monolayer, there exists a net di- \ 16moh®]
pole momem(p);éo.16 Thus, for sliding friction in the first o _
adsorbed layer, dipole images and Ohm’s law induced fricSimilarly, for motion normal to the plane
tion play a role which is not present whem=>a and )
(0|p|0)=0. _ p
rf=rP= Py (Fyi Fooit Fyhd, (A5)
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APPENDIX Hence
In this appendix we shall explicitly evaluate the friction ) 3p?
coefficient for a dipole moment oriented normal to the plane = 8mwohs|” (A7)

of the metal surface,
Equations(A4) and (A7) for a static dipole momeni=pN

p=pN, p=[p|. (A1) hointing normal to the surface should be compared to Egs.

For motion parallel to the plane, Eqgi8) and (A1) read (35 and(36) for a static chargee.
The case of a dipole moment pointing normal to the metal
2 surface, i.e.p=pN is of potential importance for the case of
F&?()Erﬁp):(ﬁ)(ﬁ?()zx_f(zi)zx—'—f(zi)mg' (A2)  nobel gas atoms adsorbed on metals. It appears to be true
i that such atoméat least in the first monolayedo grow a net

From Egs.(41), (42), and(43) dipole moment normal to the metal surface.
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