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Electronic friction forces on molecules moving near metals

M. S. Tomassone and A. Widom
Department of Physics, Northeastern University, Boston, Massachusetts 02215

~Received 3 December 1996; revised manuscript received 10 March 1997!

It is well known that molecules feel a long-ranged attractive force to metals which arises from the interaction
of various molecular charges with their metal-induced ‘‘image charges.’’ Here we calculate~in this image
charge model! the friction force coefficients for molecules moving near a metal. We consider the cases of ions,
polar molecules, and spherical atoms.@S0163-1829~97!01732-3#
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I. INTRODUCTION

Frictional forces on moving molecules neighboring a m
tallic conductor have been of considerable interest. The
neering work on long-ranged static forces was done
Casimir,1 Lifshitz and co-workers,2,3 and later by Dzialoshin-
skii, Lifshitz, and Pitaevskii4 who used quantum electrody
namic field theory propagator methods. Teodorovich a
later Levitov5 extended the propagator methods~virtual pho-
ton exchange! to shed new light on the sliding friction prob
lem. Theoretical friction studies of physisorbed atoms
metallic substrates include both molecular dynamics~for the
study of internal phonon friction!6 and electronic friction
~due to particle hole pair heating in the metal!.7,8 Experimen-
tal techniques~such as quality factor measurements on
quartz crystal microbalance! have measured the sliding fric
tion forces in submonolayer adsorbed films.9–11

When a molecule is at a fixed position above a metal,
static forces on the molecule are due to the ‘‘image charg
within the metal, which describe the induced electric fie
above the metal. If a molecule is moving with velocityV,
then the induced charges on the metal surface must als
moving. This motion of induced conductor charge must
accompanied by Ohm’s law heating within the metal. Th
as the molecule moves, there exists~in addition to the normal
‘‘image’’ attractive force! an induced friction force opposin
the motion. To lowest order in the velocity, the friction forc
obeys Ffriction52G•V. The friction tensor coefficientsG i j
depend on the properties of the molecule and on the con
tivity properties of the metal. The friction is due to the co
duction electrons in the metal. The ‘‘image charges’’ mu
follow the moving molecule. The situation is pictured in Fi
1. This requires electronic currents which give rise to Ohm
heating in the metal. The heat generated inside the met
the source of the friction force on the molecule outside
metal.

It is possible to determine the order of magnitude of sta
attractive forces and friction coefficients forsome casesby
using only the analysis of physical dimensions. For exam
in the Gaussian c.g.s. units which will be employed in wh
follows, the height of a particle above the conduc
h;(cm); The chargee;(gm1/2 cm3/2 sec21); The conduc-
tivity of the metal s;(sec21); The attractive potentia
U;(gm cm2 sec22), and the friction coefficient
G;(gm sec21).

Thus, merely by dimensional analysis for an Ohm’s la
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heating model, if a particle with chargee ~say an ion! is at a
height h above the metal, then the attractive ener
Ue;(e2h21) does not depend on the conductivitys of the
metal. The variation of the charged particle friction coef
cient with the heighth above the metal and the conductivi
s is given by Ge;(e2s21h23). For an uncharged pola
molecule ~say water H2O) with a net dipole momen
p;(gm1/2cm5/2sec21), the attractive force does not depen
on conductivity Up;(p2h23). The friction coefficient
Gp;(p2s21h25). In what follows, these classical resul
will be computed in more detail, and the additional role
quantum fluctuations will be explored.

In Sec. II, the electric field fluctuation spectral functio
will be computed employing the Coulomb Green’s functi
solution to the point charge problem via the image charge
imaginary time, these fluctuations can be used to compu
static attractive potentialU. For real time, these fluctuation
can be used to compute the friction coefficients. To illustr
the method, the attractive potentialU is calculated in Sec. III
for the cases of a charged ion, a polar molecule, and a sp
cal atom. For the case of a charged ion, the friction coe
cients are calculated in Sec. IV. For the case of a polar m
ecule the friction coefficients are calculated in Sec. V. T
spherical atom friction coefficient is discussed in Sec. VI

II. ELECTRIC FIELD FLUCTUATIONS ABOVE A METAL

Neglecting electromagnetic radiation and other relativis
effects, we consider here only the nonrelativistic Coulom

FIG. 1. Shown schematically is a stationary molecule with
permanent dipole momentp and its image dipole momentpi in the
metal. When the molecule~which could be of arbitrary shape!
moves, the metallic surface charge~described by the image! flows
with the velocity of the molecule. The resulting Ohm’s law ele
tronic current heats the metal, which yields a ‘‘friction force’’ o
the atom.
4938 © 1997 The American Physical Society
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56 4939ELECTRONIC FRICTION FORCES ON MOLECULES . . .
interactions. Positions in space will be denoted
r5(x,y,z), and the half spacez,0 will be presumed to be
filled with a material described by a dielectric response fu
tion «(z) at complex frequencyz; i.e., for retarded respons
functions Im(z).0. For z.0 andz8.0, the retarded Cou
lomb Green’s function is given by a vacuum term plus
condensed matter ‘‘image’’ term. The usual solution to t
‘‘image problem’’ is the Coulomb Green’s function

G~r ,r 8,z!5
1

R
2S «~z!21

«~z!11D 1

Rimage
,

@z.0,z8.0,Im~z!.0#, ~1!

where

R5ur2r 8u5A~x2x8!21~y2y8!21~z2z8!2, ~2!

and

Rimage5ur2r image8 u5A~x2x8!21~y2y8!21~z1z8!2.
~3!

For an Ohm’s law conductor we choose

«~z!511S 4p is

z D , ~ uzu→ i01!. ~4!

Above any conductor, there will be fluctuations in th
Coulomb potentialf(r ,t); i.e., with

E~r ,t !52¹f~r ,t !, ~5!

the spectral fluctuation function

S~r ,r 8,v!5E
2`

` S dt

2p D cos~vt !Rê f~r ,t !f~r 8,0!&, ~6!

is given by the fluctuation-dissipation theorem

S~r ,r 8,v!52S \

2p D cothS \v

2kBTD ImG~r ,r 8,v1 i01!.

~7!

Thus Eqs.~1!, ~3!, and~7! imply

S~r ,r 8,v!5S \coth~\v/2kBT!

2pA~x2x8!21~y2y8!21~z1z8!2D
3ImS «~v1 i01!21

«~v1 i01!11
D . ~8!

Equation ~8! will be central to our calculation of friction
coefficients for molecules above the metal.

For calculating static forces we shall require the Mats
ara frequencies

vn5S 2pkBT

\ Dn, n50,61,62,63, . . . , ~9!

and the imaginary time propagator; i.e.,
y

-

e

-

^f~r ,2 il!f~r 8,0!&1

5S G~l!

A~x2x8!21~y2y8!21~z1z8!2D , ~10!

where

G~l!5kBT (
n52`

` S «~ i uvnu!21

«~ i uvnu!11De2 ivnl, ~11!

and where the subscript1 in Eq. ~10! indicates imaginary
time ordering. The relationship between the real time
tarded fluctuation-dissipation theorem, as in Eqs.~7! and~8!,
and the imaginary time fluctuation theorem, as in Eqs.~10!
and ~11!, is discussed in the literature.4

Having obtained the potential fluctuations, one may a
obtain the electric field fluctuations using Eq.~5!. For ex-
ample, Eqs.~10! and~11! imply for electric field noise that a
heighth, i.e., r5(0,0,h), the nonzero correlations

lim
r8→r

^Ex~r ,2 il!Ex~r 8,0!&15 lim
r8→r

^Ey~r ,2 il!Ey~r 8,0!&1

5S G~l!

8h3 D , ~12!

lim
r8→r

^Ez~r ,2 il!Ez~r 8,0!&15S G~l!

4h3 D , ~13!

and for the potential itself

lim
r8→r

^f~r ,2 il!f~r 8,0!&15S G~l!

2h D . ~14!

Equations~12!, ~13!, and~14! will be required for our com-
putations of static forces.

For the friction coefficient, we shall need the spect
function for electric field fluctuations above the metal; i.e

Si j ~r ,r 8,v!5E
2`

` S dt

2p D cos~vt !Rê Ei~r ,t !Ej~r 8,0!&.

~15!

From Eqs.~5! and ~6!,

Si j ~r ,r 8,v!5] i] j8S~r ,r 8,v!.

Equations~4!, ~8!, and~15! imply the nonzero classical elec
tric field noise

lim
v→0

lim
r8→r

Sxx~r ,r 8,v!5 lim
v→0

lim
r8→r

Syy~r ,r 8,v!5S kBT

16p2sh3D ,

~16!

and

lim
v→0

lim
r8→r

Szz~r ,r 8,v!5S kBT

8p2sh3D . ~17!
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III. STATIC ATTRACTIVE POTENTIALS

If H int denotes any perturbation Hamiltonian with an u
perturbed vanishing mean value^H int&50, then second orde
thermal perturbation theory yields the~free! energy change

U52S 1

2\ D E
0

b

dl^H int~2 il!H int~0!&1 , b5S \

kBTD .

~18!

For an ion with chargeZe above the metal

H int
~Z!5Zef~r !, ~19!

the potential implied by Eqs.~11!, ~14!, ~18!, and ~19! is
given by

UZ52S Z2e2

4h D lim
v→0

S «~ i uvu!21

«~ i uvu!11D , ~20!

which is a well known classical result. For a metal obeyi
Eq. ~4!,

UZ52S Z2e2

4h D ~conductor!, ~21!

which is a classical result usually derived in a much m
simple way.

For a dipole interaction

H int
~p!52p–E~r !, ~22!

with a polar molecule wherep may be regarded as a con
stant, Eqs.~11!, ~12!, ~13!, ~18!, and~22! imply that

Up52S px
21py

212pz
2

16h3 D lim
v→0

S «~ i uvu!21

«~ i uvu!11D . ~23!

Hence, for a polar molecule near a metal

Up52S upu2

8h3D ~11cos2u!, pz5upucosu ~conductor!,

~24!

which can also be understood in classical image cha
terms. The interactionUp is such that the dipole momentp
finds the lowest energyif it is oriented pointing away,
u50, or pointing toward,u5p, the conducting surface.

If the dipole moment undergoes quantum fluctuatio
e.g., as for a spherical atom, then Eqs.~11!, ~12!, ~13!, ~18!,
and ~22! imply

Uatom52S 1

2\ D E
0

b

dl^p~2 il!p~0!&atom:

3^E~r ,2 il!E~r 8,0!&, ~25!

or equivalently

Uatom52S Catom

h3 D , ~26!

where
-

e

e

,

Catom5S 1

16\ D E
0

b

dl G~l!^px~2 il!px~0!1py~2 il!py~0!

12pz~2 il!pz~0!&atom. ~27!

With a(z) denoting the polarizability tensor of a spheric
atom,

^pi~2 il!pj~0!&atom,15kBTd i j (
n52`

`

a~ i uvnu!e2 ivnl,

~28!

so that Eqs.~11! and ~28! yield

Catom5S kBT

4 D (
n52`

`

a~ i uvnu!S «~ i uvnu!21

«~ i uvnu!11D . ~29!

In the limit of low temperature Eqs.~9! and ~29! imply

lim
T→0

Catom5S \

4p D E
0

`

a~ iv!S «~ iv!21

«~ iv!11Ddv. ~30!

Uatom52(Catom/h3) is the well known energy for the
asymptotic van der Waals interaction between a spher
atom and a solid. It has been derived previously by Lifsh
and co-workers.3 Similar expressions have been used by H
ris and Feibelman12 to get the asymmetry of the van de
Waals interaction between a molecule and a surface. La
Rauber, Klein, and Cole13 have used Eq.~30! to numerically
compute the value ofCatom.

IV. FRICTION ON A MOVING ION

The friction coefficient tensorG in the case of a linear
friction force Ffriction versus velocityV law,

Ffriction52G•V, ~31!

obeys a Kubo formula

G i j 5S 1

kBTD E
0

`

dt Rê Fi~ t !F j~0!&, ~32!

whereF(t) is a random~in general quantum! force exerted
on the molecule by the metal.

To see what is involved, consider a charged ion with
random force

F~ t !5ZeE~r ,t !, ~33!

due to the electric field fluctuations above the metal. Eq
tions ~15!, ~32!, and~33! imply

G i j
~Z!5S pZ2e2

kBT D lim
v→0

lim
r8→r

Si j ~r ,r 8,v!. ~34!

Equations~16!, ~17!, and~34! imply that the nonzero friction
coefficients for a charged ion moving above the metal
given by

G i
~Z![Gxx

~Z!5Gyy
~Z!5S Z2e2

16psh3D , ~35!

and
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G'
~Z![Gzz

~Z!5S Z2e2

8psh3D . ~36!

These friction coefficients for a moving charge above
metal could have been derived on a purely classical b
from Coulomb’s law and Ohm’s law. Equation~35! has been
previously discussed in the literature.14 The derivation given
above relies on the Kubo formalism.3

V. DIPOLAR FRICTION

For a dipole moment, the random force exerted on
molecule is given by

F~ t !5„p~ t !•¹…E~r ,t !. ~37!

From Eqs.~32! and~36!, it is evident that the gradient of th
electric field correlations can be defined

Sik jl ~r ,r 8,v!5E
2`

` S dt

2p D cos~vt !Rê ] iEk~r ,t !] j8El~r 8,0!&,

~38!

where Eqs.~5!, ~7!, and~38! imply

Sik jl ~r ,r 8,v!5] i]k] j8] l8S~r ,r 8,v!. ~39!

From Eq.~3!, it follows from straightforward~but tedious!
differentiation that

lim
r8→r

] i]k] j8] l8S 1

Rimage
D5S 1

32h5D @Fik j l
~0! 2Fik j l

~2! 1Fik j l
~4! #,

~40!

where

Fik j l
~0! 53h jh l~d jkd i l 1d j l d ik1d j i dkl!, ~41!

Fik j l
~2! 515h jh l~d i j NkNl1d ikNjNl1d i l NkNj1d jkNiNl

1d l j NkNi1dklNiNj !, ~42!

Fik j l
~4! 5105h jh lNiNkNjNl , ~43!

h l521 if l 5x,y; h l511 if l 5z; ~44!

andN is a unit vector normal to the conductor surface. Fro
Eqs.~8!, ~39!, and~40!

lim
r8→r

Sik jl ~r ,r 8,v!

5S \

64ph5D cothS \v

2kBTD ImS «~v1 i01!21

«~v1 i01!11
D

3@Fik j l
~0! 2Fik j l

~2! 1Fik j l
~4! #. ~45!

For a fixed dipole momentp, we have

lim
v→0

lim
r8→r

(
i , j

pipjSik j l ~r ,r 8,v!

5S kBT

64p2sh5D(i , j pipj~Fik j l
~0! 2Fik j l

~2! 1Fik j l
~4! !. ~46!
a
is

e

From Eqs.~31!, ~37!, and~38! we find the friction coefficient
tensor for a dipole momentp; i.e.,

Gkl
~p!5S p

kBTD lim
v→0

lim
r8→r

(
i , j

pipjSik j l ~r ,r 8,v!, ~47!

is then given by

Gkl
~p!5S 1

64psh5D(i , j pipj~Fik j l
~0! 2Fik j l

~2! 1Fik j l
~4! !. ~48!

The dimensional arguments discussed in Sec. I, i.e.,G (p)

;(p2/sh5) is verified in Eq.~48! along with the detailed
values of the friction coefficient tensor elements in Eqs.~41!,
~42!, and ~43!. Particular values of the friction coefficient
are evaluated and discussed in the Appendix.

VI. QUANTUM DIPOLE FLUCTUATIONS

For a spherical atom with polarizabilitya(z), the quan-
tum dipole moment fluctuation spectral function

Si j
~atom!~v!5E

2`

` S dt

2p D cos~vt !Rê pi~ t !pj~0!&, ~49!

is given by

Si j
~atom!~v!5d i j S \

2p D cothS \v

2kBTD Ima~v1 i01!. ~50!

From Eq.~32!, it follows, for example, that

Gxx5S p\

kBTD (
initial

Pinitial(
final

3d~Efinal2Einitial!u^finaluFxu initial&u2, ~51!

wherePinitial5Z21exp(2Einitial /kBT),

Fx5~p•gx!, gx5¹Ex . ~52!

In lowest order perturbation theory ustate&
5uatom&umetal&, i.e.,

u initial&5u i &uI &, ufinal&5u f &uF&, ~53!

so that

Gxx5S p\

kBTD(
i ,I

PI Pi(
f ,F

d~EF1« f2EI2« i !

3z^ f upu i &^FugxuI &z2, ~54!

where uI &,uF& represent metal states andu i &,u f & represent
spherical atom states.

To evaluate Eq.~54!, let us define for the spherical atom

Satom
~6 ! ~v!5S \

3D(
i

(
f

Pi z^ f upu i &z2d~\v7« f6« i !,

~55!

and for the metal
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Smetal
~7 ! ~v!5\(

I
(
F

PI z^FugxuI &z2d~\v6EF7EI !.

~56!

Equation~54! then reads

Gxx5S p

kBTD E
0

`

dv@Satom
~1 ! ~v!Smetal

~2 ! ~v!1Satom
~2 ! ~v!Smetal

~1 ! ~v!#.

~57!

One may employ Eq.~50! in the form

Satom
~1 ! ~v!5S \

p D @n~v!11#Ima~v1 i01!, ~58!

and

Satom
~2 ! ~v!5S \

p Dn~v!Ima~v1 i01!, ~59!

where the Planck distribution is defined as

n~v!5
1

ebv21
. ~60!

Similarly, one may employ Eqs.~38!, ~45!, ~52!, and~56! in
the form

Smetal
~1 ! ~v!5S 3\

4ph5D @n~v!11#ImS «~v1 i01!21

«~v1 i01!11
D ,

~61!

and

Smetal
~2 ! ~v!5S 3\

4ph5D n~v!ImS «~v1 i01!21

«~v1 i01!11
D . ~62!

Equations~57!, ~58!, ~59!, ~61!, and~62! imply the central
power law result of this section, i.e.,

Gxx5S Dxx

h5 D , ~63!

where

Dxx5S 3\2

2pkBTD E
0

`

dv n~v!@n~v!11#

3ImS «~v1 i01!21

«~v1 i01!11
D Ima~v1 i01!, ~64!

or equivalently

Dxx52S 3\

2p D E
0

`

dvS ]n~v!

]v D ImS «~v1 i01!21

«~v1 i01!11
D

3Ima~v1 i01!. ~65!

Note that in the quantum limit

n~v!→exp~2\v/kBT! as T→0, ~66!

it follows from Eqs.~65! and ~66!
lim
T→0

Dxx~quantum!5S 3\

2p D lim
v→0

ImS «~v1 i01!21

«~v1 i01!11
D

3Ima~v1 i01!50. ~67!

The approach to zero asT→0 is exponential in character
i.e., Dxx}exp(2D/kBT), whereD is the energy of the first
excited state of the atom relative to the ground state. Thu
is required to go to higher order perturbation theory15 for
friction on the spherical atom at temperatureskBT!D.

On the other hand, in the ‘‘classical limit’’ for, e.g., fo
rotating polar molecules with largen(v)@1,

n~v!'S kBT

\v D ~\v!kBT!, ~68!

Eq. ~65! yields

Dxx~classical!5S 3kBT

2p D E
0

`S dv

v2 D
3ImS «~v1 i01!21

«~v1 i01!11
D Ima~v1 i01!,

~69!

which in the additional limitv!s yields

Dxx~classical!5S 3kBT

4p2s
D E

0

`S dv

v D Ima~v1 i01!

5S 3kBTaT

8ps D , ~70!

whereaT is the classical polarizability of a tumbling~rotat-
ing! dipole moment. With

^px
2&classical5^py

2&classical5^pz
2&classical5kBTaT , ~71!

one finds, either from Eqs.~70! and ~71! or from Eq. ~48!,
that

Dxx~classical!5S ^up2u&classical

8ps D . ~72!

The friction coefficient is then

Gxx~classical!5S ^up2u&classical

8psh5 D . ~73!

VII. DISCUSSION

We have calculated the electronic contribution to the fr
tion coefficients for ions, polar molecules, and spherical
oms moving near a metal in a regime where an image cha
argument is physically valid. For an ionic chargeZe,
G;(Z2e2/sh3). For a polar molecule with a dipole momen
p, G(classical);(^p2&classical/sh5).

For the case of a spherical atom, the zero-point dip
moment fluctuationŝp2&quantum contribute to the attraction
energy in Eqs.~26! and ~30!, but do not contribute to the
friction coefficient at low temperaturekBT!D in the lowest
order perturbation theory of Eq.~53!. The required higher
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56 4943ELECTRONIC FRICTION FORCES ON MOLECULES . . .
order perturbation theory results have been discus
elsewhere.15

For a nobel gas atom above the metal at a heighth@a,
wherea is the metallic interatomic spacing, the mean dipo
moment in the ground statê0upu0&50. However, for an
atom in the first adsorbed monolayer, there exists a net
pole moment̂ p&Þ0.16 Thus, for sliding friction in the first
adsorbed layer, dipole images and Ohm’s law induced f
tion play a role which is not present whenh@a and
^0upu0&50.
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APPENDIX

In this appendix we shall explicitly evaluate the frictio
coefficient for a dipole moment oriented normal to the pla
of the metal surface,

p5pN, p5upu. ~A1!

For motion parallel to the plane, Eqs.~48! and ~A1! read

Gxx
~p![G i

~p!5S p2

64psh5D ~Fzxzx
~0! 2Fzxzx

~2! 1Fzxzx
~4! !. ~A2!

From Eqs.~41!, ~42!, and~43!
s
,

v.
ed

i-

-

e

Fzxzx
~0! 523, Fzxzx

~2! 5215, Fzxzx
~4! 50. ~A3!

Hence,

G i
~p!5S 3p2

16psh5D . ~A4!

Similarly, for motion normal to the plane

Gzz
~p![G'

~p!5S p2

64psh5D ~Fzzzz
~0! 2Fzzzz

~2! 1Fzzzz
~4! !, ~A5!

we have from Eqs.~41!, ~42!, and~43!,

Fzzzz
~0! 59, Fzzzz

~2! 590, Fzzzz
~4! 5105. ~A6!

Hence

G'
~p!5S 3p2

8psh5D . ~A7!

Equations~A4! and ~A7! for a static dipole momentp5pN
pointing normal to the surface should be compared to E
~35! and ~36! for a static chargeZe.

The case of a dipole moment pointing normal to the me
surface, i.e.,p5pN is of potential importance for the case o
nobel gas atoms adsorbed on metals. It appears to be
that such atoms~at least in the first monolayer! do grow a net
dipole moment normal to the metal surface.
try
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