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Effect of disorder in specific realizations of multibarrier random systems
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A resonance formalism is used to study the effect of disorder in specific realizations of multibarrier random
systems. We solve the periodic case and introduce disorder by allowing random values for the well widths. We
analyze the motion of the complex poles of tBenatrix on the energy plane and calculate the resonant states
for systems of fixed length as a function of the disorder strength. Our analysis of the eigenfunctions, the decay
widths, and the Thouless criterion allows us to distinguish in general three different types of states: quasilo-
calized, intermediate, and border sta{&30163-18207)08331-9

[. INTRODUCTION potential profile generated in a random manner. Our ap-
proach is based on a resonance formalism that considers the
Since the seminal work by Andersbralmost four de- multibarrier system as an open system. This leads to a com-
cades ago, localization in disordered systems has been tipdex eigenvalue problem, and allows one to connect the
subject of numerous investigatioh®ne-dimensional sys- problem of transmission scattering with the resonant states
tems have been convenient models for both theoretical anand eigenvalues of the system.
numerical investigations on the properties of localized In our approach we consider a specific system of lehgth
states* as, for example, in studies on the localizationto study it as a function of disorder. Hence the notion of
length. In recent years technical improvements in the fabrifocalization length, that arises from statistical considerations
cation of semiconductor heterostructures have allowed thﬁ]volving an ensemble of systems, does not seem appropriate
possibility of designing multibarrier potential profiles almost to characterize the properties of a particular system. Trans-
at will.>° This provides the opportunity to study the proper- mission scattering probes the resonant states of a multibarrier
ties of electron propagation in multibarrier systems. system. As is well known, this is exhibited as peaks in a plot
Erdos and Herndon pointed out some time égme CON-  of the transmission coefficient versus energy. These peaks
venience of having a link between the transmission amplizefiect the existence of resonant states of the system, and

twde, ie., the scattering propertles, and the one-ele'ctrO{p]eir position in energy is related to the real part of the com-
Green function that relates to the eigenfunctions and eige Slex poles of the transmission amplitude. Since the system

values of the problem. Our approach establishes this lin has a finite length, eventually an electron seated on one of

Previous works on specific systems considered either th ese states decavs out of the svstem with a tim le or
eigenfunction or the scattering approaches. Among th y y a ime scale pro-

former, one finds works where the wave function vanishes aportional to the inverse of the imaginary part of the complex
the boundaries of the systéhimplying that the system is poIe.. Since the transmission amplitude is an element obthe
closed and hence that a connection to the transmission prof2atrix, the above complex poles are precisely the complex
lem is not possible. On the other hand, one finds works baseRples of theS matrix of the problem. A very important as-
on the properties of resonant tunneling, where the transmigect of our approach is that one may associate a resonant
sion coefficient and wave function as functions of the energyeigenfunction with each of the transmission levels. A conve-
are studied. These approaches lacked a definition for thenient way to do this is by exploiting the analytical properties
resonance eigenfunctions and eigenvalues associated witi the outgoing Green function of the problem. Our formal-
the disordered potential. Here it is worth mentioning recenism establishes a connection between the wave solution and
work involving resonant tunneling in connection with quan-the outgoing Green function of the problem along the inter-
tum dots. In this case, however, Coulomb interaction effectgal region of the system that includes, as a special case, a
become relevant for an appropriate description of the probeonnection with the transmission amplitude. It is well known
lem, and the corresponding treatment becomes morthat the effect of disorder on the transmission coefficient
involved® On the other hand, it is also appropriate to refercauses irregular fluctuations as a function of enérgje
to a number of recent works that addressed the effect oéffect of disorder on th&-matrix poles in one-dimensional
correlated disorder on the properties of localization in onechains also modifies their distribution on the complex energy
dimensiont! These works showed that the prevalent notionplane'? However to our knowledge no treatments have been
that in one dimension all states are localized for any amounteported in the literature on the effect of disorder on resonant
of disorder does not hold in general. eigenfunctions and the connection of these functions with the
The purpose of this work is to study the onset and propcomplex poles.
erties of localization in a specific realization of a multibarrier It is well known from numerical calculations of transmis-
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sion scattering on periodic multibarrier systems that the reso- Il. RESONANCE FORMALISM
nant levels group themselves in minibands, the number of
levels in each miniband being equal to the number of well
ip the systent?® A periodic multibarrier system may be speci— of massm and energyE approaching fronx<0 on a poten-
fied by the set of equalN+1) barrier heightsVo} With a1 of arbitrary shapev(x) defined in the region extending
barrier widths{b}, andN well widths {W}. Using the reso-  fom x=0 tox=L, and vanishing outside. The solutigix)
nance formalism discussed below, a given configurationy the Schrdinger equation outside the interval (9,is of
yields a set olN resonant statefli,(x)}, along the internal  the form y(x)=exp(kx)+r(E)exp(-ikx) for x<0 and
region of the system, arld complex polege,—il'y/2}, with  y(x) =t(E)exp(kx) for x>L, wheret(E) andr (E) are, re-
n=12,...,N, for each miniband. Without a loss of gener- spectively, the transmission and the reflection amplitudes,
ality, we shall be concerned in this work with the first mini- andk=[2m E]l/zlﬁ is the corresponding wave number. The
band of a multibarrier system. wave functiong(x) can be written in terms of the outgoing

It is of relevance to emphasize that the set of resonanGreen propagator in the forth
states and the complex poles are analytical functions of the
potential profile parameters. This means that a modification $(x)=2ikG"(0X;E), O=x<L. (2.1

of the parameters of the potential modifies both the pOSitiorEvaluating the above equation far=L, leads to a useful

of the poles in the complex energy plane and the way theg|ationship between the transmission amplitude and the
resonant states vary with distance along the internal region CHropagator, namely,

the potential. Following the above considerations, in this

work we refer to specific realizations of the potential profile t(E)=2ikG*(0,L;E)exp(—ikL). (2.2
parameters, generated in a random manner, to calculate the . . .
corresponding set of resonant stafes(x)} and complex In general, for a miniband consisting & states it was

. shown in Ref. 13 that one may write the function
poles{e,—iI",/2}. Moreover we are able to calculate the . . . ;
. . G7(x,x";E) as an expansion that involves the corresponding
trajectory that each complex pole follows in the complex

. ; . N resonant states of the system plus a background contribu-
plane as the potential profile varies from an ordered to Fion B(E):1 moreover, it was showd that the background

random con_fi_guration,_ and, similarly, how each resonanb(E) is negligible for the energies within the miniband, that
state is modified. In this way we are able to study the onset

of localization in specific realizations of a multibarrier ran-

Although this formalism has been presented elsewere,
Sor completness we will recount it here. Consider an electron

dom system. N /
. Un(X)Un(X")
As we shall see below, the effect of disorder on the com-  G*(x,x';E)= >, — > 0<(xx)sL.
plex poles of the propagator is to diminish their width, so, n=1  k°—kj
though most of the states increase their lifetime considerably, 23

they still decay out of the system with time and hence do nofrhe quantitiesk? are the complex eigenvalues of the Sehro
satisfy Anderson criteria for localizatidnwhich impose an dinger equation

absence of decay for localized states. On the other hand, we

shall find that most resonant states become confined within a d?u,(x)
region of the system due to the effect of disorder, and more e
interestingly that they reasonably satisfy Thouless criteria for

localization, for these states become insensitive to changder the eigenfunctionsi,(x) andU(x)=2mV(x)/42. These

on the boundaries of the systénThus we shall see that, complex eigenvalues are related to the poles of the Green
under disorder, the resonant states of finite-length multibarfunction on the complex energy plane in the usual way,
rier systems are not strictly localized, though they sharmamely,EnzﬁZkﬁ/Zm: e,—iT /2. It is well known thate,
some of their properties. For the above reasons we shall refgihg I', describe, respectively, the position and the width of

to them as quasilocalized states. In general, for a given dishe resonance. The functiomn obey pure|y Outgoing
order strength we find states that have a decay width smallgjoundary conditions at the points=0 andx=L, i.e.,

than those of the periodic case but large compared to the

+[k2—U(x)Jus(x)=0, (2.4

quasilocalized states. As we shall encounter, they are sensi- dup(x) )

tive to changes on the boundaries of the system. We shall ( ax = —iknun(0), (2.59
refer to them as intermediate states. In addition, as will be x=0

found, the behavior of the decay widths of the system as

a function of the disorder strength always shows the forma- (dun(x) =ik,u(L) (2.5b
tion of two states that acquire very large decay widths, yet dx K=l e

they are confined near the edges of the system. These states ) o o

are also very sensitive to changes in the boundaries of th@d their normalization condition is,

system, and we shall call them border states. . 200 201
The paper is organized as follows: in Sec. Il we present an J' u2(x)dx+ us(0) n un(L)

account of the resonance formalism. Section Il deals with a n Kn Kn

number of numerical examples, and the discussion of the

results of our investigation. Finally, concluding remarks are From Egs(2.2) and (2.3), and the definition of the trans-

given in Sec. IV. mission coefficientl (E), we obtairt®

2

—1. (2.6
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N N 1.0
TE=HEP=Z T+ 3 Ton, (27 V\/\/v
n=1 n<m
whereT,(E) is a Breit-Wigner expression for the transmis- ,'1'} 05L
sion in the vicinity of thenth resonance, and,,(E) repre-
sents the interference between th#h and themth reso-
nances. The expressions fBf(E) andT,(E) are given by 0.0
. O .
k? rors e .
To(B)= 13 12 28 330 I
n (E—en)2+(§1“n) E
g 635 55 90 125 160
an
Re(E,)
Tam(E)=2Cn(TOrLrork )12
m( E) o Eala L) FIG. 1. Plot of the transmission coefficieN{E) vs energyE
exp(i dnm) for a symmetric multibarrier system of 19 wells, with parameters as
XRe — p — , discussed in the text, that leads to overlapping resonances. Also
(E—entiT/2)(E—€y—iT /2) .
shown are the corresponding complex poles of the propagator form-
(2.9 ing the “necklace” distribution characteristic of a periodic case.
where  a,=Rek,, Crm= K21l m/(anam), and

In=f'5|un(x)|2dx and the phased,, is given by lated resonance levels require much less disorder strength to
_ e _ how noticeable changes than the systems sustaining over-
$om=[ba(0)+ $n(L) — n(0)— ¢n(L)].  The relevant >

o - . lapping resonances.
quantitiesT'® and I'- are, respectively, the partial decay . . . .
widths through the boundaries of the systemxat0 and Consider two periodic structures, each with 20 barriers

_ ! (19 wellg, such that the corresponding potential parameters
x=L, and are defined &5 lead to different resonance widths. One of the systems is
fa, |ua(0)|2 formed by barriers thinner than the well widths, and as a

ré=# (2.10  consequence the resonances are broad and hence overlap
m Iy with each other. The parameters of this potential profile are
and barrier heightsV,=0.25 eV, barrier width®,=10 A, and
well widths W,=50 A. Figure 1 shows a plot of transmis-
L ha, [un(L)[? sion coefficientT(E) vs the energ)E for this system. Also
Ip= m T (2.1 shown is the corresponding distribution of the complex poles

of the propagator on the energy plane. As can be seen, the
where a, is the real part of the complex wave number poles distribute, forming a “necklace” shape. The other sys-
k,=[2mE,]Y¥%h=a,—ib,. The total decay widtH", and tem consists of thicker barriers. The corresponding param-
the partial decay width§'; andI'? are related through the eters of the potential for this case are barrier heights
equation V,=0.3 eV, barrier widthsb,=50 A, and well widths
W,=50 A. As illustrated by Fig. 2 the transmission coeffi-

[=T%+Tk. (2.12
The decay widthl’,, yields the lifetimer, of the resonant 10
state,
w
T=hIT,. (2.13 = 0.5
The above follows from the well-known time dependence of U
resonant states, namely, 0.0 U b UU
Up(X,t) =u,(x)e " nt/hg=Tnt/2h (2.14 ~ et
w .0.05
E
Ill. RESULTS AND THEIR DISCUSSION 010
A. Effect of disorder on systems with overlapping 82 86 90 94 98
or isolated levels Re(E,)

In this section we shall study the effects of disorder on the FiG. 2. Plot of the transmission coefficieM(E) vs energyE
resonance parameters of small multibarrier systems. Our aifdr a symmetric multibarrier system of 19 wells, with parameters as
is to investigate how the degree of disorder affects systemgiscussed in the text, that leads to nonoverlapping resonances. Also
characterized by overlapping or nonoverlappifigsplated  shown are the corresponding complex poles of the propagator form-
resonance levels. As discussed below, the systems with isirg the necklace distribution characteristic of a periodic case.
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FIG. 4. Distribution of the poles of the propagator on the com-
FIG. 3. Distribution of the poles of the propagator on the com-plex energy plane for 20 random systems generated from the peri-
plex energy plane for 20 random systems generated from the perpdic system with nonoverlapping resonances. The black dots corre-
odic system with overlapping resonances. The black dots correspond to the periodic case.
spond to the periodic case.

In symmetrical structures the partial decay widths are

cient shows resonances that are sharp and isolated, IeadingéauaL thus from Eq2.12 they satisfy the relationshiﬁﬂ _

a nonoverlapping situation. Also shown is the correspondingL_ 1 /» Hence a plot of"t vs T'° for such a structure
n " n n

S ; n
pole dlst_r|but|on on the energy plgne, forming also a rka'\NouId be a set of points lying on a straight line with slope 1
lace as in the previous case. Notice that, although the no

. Nhat passes through the origin. Any deviation from such a
overlapping resonance system has a total length much largﬁﬁe implies that there is some asymmetry in the potential

than the overlapping resonance system, the miniband ener . . . 0
bpIng Y Pofile. In Figs. 5 and 6 we illustrate the plotsIgf vsT'® for

m:ttho?ft:\geI];:ger'ljﬁemr?gskrl];g;?g]é:ye?j fa((:)tlgr gifstlr(i»btgggn o the two sets of 20 random systems considered above. In both
: ped p igures the symmetrical situation is represented by full

the energy complex plane shown by Figs. 1 and 2 is typica ircles that fall in the previously described straight line. Fig-

of Wé'or?ésvsﬁtrigjée disorder in the potential profiles by Y€ 5 corresponds to the case with overlapping resonances,
P b Y and Fig. 6 to that of sharp isolated resonances. In the former

:ﬁ:t'?\? Ithe r\ﬁc/ell \(;VISS\S ?S\;\zg?]ezgavr\]/dm:hvzwtﬁhw't?nna':h case one sees some deviation from the straight line, as shown
erval centere 00 ’ € streng by the cloud of empty circles. One sees, however, that these

g;:/the diso_rdAer. Thagis, e?_dANk is generated ra?domlyhthl— circles are still located in the neighborhood of the straight
een Wo—AW) and W, +AW). As an example we shall |ing | the |atter case, for isolated resonances, the situation is
consider a disorder strength that guarantees that the systems.. . jitterent. The points are now uncorrelated with the

under study are not. destroyed; that is, the changes on t raight line, and most of them have moved toward the ori-
values of the well widths are such that the number of wells

remain the same. Hence we conside/—10% of Wy, i.c., gin, implying thatFﬂ and F,'; tend to zero as the disorder
AW=5 A, consequently, the well widths vary at most be-

tween 45 and 55 A. Figure 3 shows the pole positions fora  10.0
set of 20 random systems generated from the periodic struc- o
ture with overlapping resonances referred to in Fig. 1. Simi- ]
larily, Fig. 4 shows the corresponding poles for a set of 20 7.5
random systems generated from the periodic structure with ©%
sharp resonances displayed in Fig. 2. In both Figs. 3 and 4 T .
we have included, as a reference, the pole positions of the, 54| - © %,

corresponding periodic structurdsill circles). Note that the [ To e, T i

pole distributions in Figs. 3 and 4 differ considerably. In the " e 85%.‘, o oo

case of overlapping resonances the poles are scattered arour 8s o%}ff’%‘?; %%j;f’ﬁé ’ o e

the necklace of the periodic configuration, but they still re- 2‘5'80 o 205 °9.%3:D 0%255‘53 o .

main close to it. Conversely, in the case of sharp resonances oo R T 0", s e o0

a dramatic effect is observed. Here the same amount of dis- 00 YA fw‘% o e

order has moved most of the poles upward, closer to the real 00 25 50 75 10.0

energy axis, which implies a longer lifetime=#/T" for the
resonant states that is due to its confinement inside the struc re
ture. This behavior is quite interesting, since it implies a

tendency to localization for such states, as will be discussed FIG. 5. Plot of partial decay widthg vs ' for the 20 random

in Sec. Il B. To see this kind of behavior for the overlapping generated from the overlapping periodic case. The full dots corre-
case would require a much higher disorder strength. spond to the periodic case.
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0.075 to the symmetric cas@ull circles), and the set of trajectories
J 0.0005 that each pole followed from the symmetric to the final ran-
; * dom configuration. The specific final random configuration is
L P characterized by the set of positive or negative values
0.050 ;; {6W,}, which represent, for eadh(k=1,2,...,19), the full
T deviation that the width of thith well experiences in going
0.0000 imm S on o e a from the symmetric to the final configuration. Then the tra-

0.0000 0.0005 jectories are generated using the  expression
Wy (@) =Wp+ adW,, with a varying from 0 to 1, and the
unity value corresponds to the final configuration. Note that
the trajectories joining the symmetric with the chosen final
configuration are not unique.

. ' ' * Figure 7 reveals that most of the poles move close to the
0.000 0.025 00'050 0.075 real axis, which implies thal',, becomes very small. How-
L, ever, two of the poles move away from the axis=6 and

FIG. 6. Plot of partial decay widthE}; vs I' for the 20 random 15), which implies thal", increases.

systems generated from the nonoverlapping periodic case. The ful Figure 8 shows the plots ¢ﬂn(x)|? vs x for a_subset (.)f
dots correspond to the periodic case. The inset shows the regiotll?Ie states of the SYStem corresponding to the final configura-
very close to the origin to emphasize the large number of states witHon- The states displayed are=4, 6, 7, 15, and 17. We
partial widths very close to zero. choose these states because they are representative of the
different types of states that arise in the system due to disor-
fer. As discussed below, we distinguish three different types
of states based on the behavior of the poles, particularly the
values of the total decay widths, and the Thouless criterion
well, and hence its lifetime-=#/T",, increases substantially on the insensitivity to a change in the bou_ndarles of the
’ ith th mmetric sitJation However the artialsystem. Figure @) correspon_ds to the p_er|0d|c case, where
compared with the sy : P all states are extended, while Figb8 displays the corre-

decay widths do not in ge_neral tend to S"?a”e.r values n th%ponding states for the disordered case. As discussed below,
same way. As we shall discuss below, this difference is re-

flected in the values of the transmission coefficient peak statesn=4 and 17 are confined in a short region in the mid-
PEAX.  section of the system, and we will refer to them as quasilo-

calized states. They are characterized by partial decay widths
B. Study of a specific random potential profile that are both very small. Statas=6 and 15 that concentrate,
{espectively, on the left and right edges of the system, will be

Let us consider the 20-barrier symmetrical system tha d bord T h 2ed by havi
produces isolated sharp resonances like that depicted by Fig‘?mte as border states. They are characterized Dy having

2. Let us choose a specific realization of the 20-barrier po;l_':fa ?cf)tg;e dgzg;/alw(ijgt%a)é fwégtchhs Sg)tr‘ggrlzgg Tzargutcr:]ﬁ gg;
tential profile generated previously in a random fashion, . O ;
P g P y an the corresponding one for the periodic case Fig. 7

namely, one of those whose poles are shown in Fig. 4. Th . i
corresponding distribution of complex poles of the propaga—The, third typ_e of s.tate., exemplified by=7, corresponds .to
an intermediate situation between extended and quasilocal-

tor on the ener lanéempty circle$ is shown in Fig. 7. . . .
That figure alsoggh%wsé:hepnyecklacz of poles corregpondinged states, and will be called an intermediate state. Here the

artial decay widths are smaller than the corresponding val-

increases. Note in the inset of Fig. 6 the great accumulatio
of points around the origin. The diminution of bofl'ﬂ and
I} for the staten means that its total width, diminishes as

ues for the periodic case, but larger than those of the quasilo-

0.00 calized case. These states are still sensitive to a variation on
the boundaries of the system.

The above considerations are consistent with the qualita-
tive criterion given by Thouless that characterizes localized
states by their independence of a variation on the boundaries
0.07 of the systent. Indeed, as discussed below, the quasilocal-
) ized statem=4 and 17 are characterized by their indepen-
dence on the particulars of the boundaries of the system. On
the other hand, border states are very sensitive to small
changes on the edges of the system, namely, statésand
15 are sensitive to changes on the left and right edges, re-
-0.14 . s . spectively. According to the Thouless criterion, this fact im-
77.0 89.5 102.0 plies that border states, though confined to one of the edges

Re(E.) of the system, cannot be considered quasilocalized states.
" Finally, intermediate states are characterized in a precise way

FIG. 7. Plot of the motion of the complex poles for a specific because they are in fact sensitive to variations in the bound-
configuration of 20 barriers as a function of the disorder strength’ﬂrieS of the system.

AW=5 A. Full circles represent the periodic case, while open In order to illustrate the Thouless criterion, we proceed to
circles refer to the final configuratiam= 1, as discussed in the text. modify the potential profile in the left- and right-hand ex-

Im(E,)
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FIG. 9. (a) Plot of the resonance positiorg=Re(En) as the
height VV, of the last barrier is varied from 0.2 to 0.4 eV for the
statesn=4, 6, 7, 15, and 17(b) Plot of the positions of the reso-
nance poles on the complex energy plane for the same states.

of the resonance positiong,=Re(E,) vs V, for the states
n=4, 6, 7, 15, and 17; the full circles represent the initial
values of the energy. Figurdl® displays the corresponding
resonance poles in the complex energy plane for the same
states; the full circles show the initial positions of the poles.
We note that the intermediate state7 and the border state
n=15 exhibit a dependence on this perturbation, while the
other states remain insensitive to it. A modification of the
height of the last barrier leads to similar results. There, in-
stead, the other border state=6 is altered strongly. The
relevant point here is that the states4 and 17, those that
were identified as quasilocalized, were insensitive to both
perturbations, as stated by the Thouless criterion. Similar
results were obtained with modifications of the barrier
widthsb; andb,y, as well as with modifications of the well
widthsw, andw.g, or combinations of them.

FIG. 8. Plot of|u,(x)|? along the internal interaction region for It is worth mentioning that the resonant phagg(x)
different values ofn, as discussed in the texta) refers to the gssociated with  the stateun(x), namely, ¢,(x)
periodic case, whilé¢b) corresponds to the disordered situation.  _ig1 1[Im(un(x))/Re(un(x))] does not display any relevant

feature due to the effect of disorder. We analyzg@x) as a
trema of the final random structure whose polesnpty  function of x along the internal region of the system, and
circles are shown in Fig. 7. We modify the height of the first obtained that it does not allow one to distinguish among the
barrierV, from 0.2 to 0.4 eV. The result of such a variation extended, quasilocalized, border and intermediate states.
is shown in Figs. @) and 9b). Figure 9a) illustrates a plot This seems to indicate that the phase coherence of resonant
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FIG. 10. Plot of the peak value of the transmission coefficient FIG. 11. Plot of the total decay widti,, vs twice the disorder
Tpeak VS the incident energi for disorder strengthd W=2.5 A strengthAW for the set of states of the specific configuration dis-
(full circles) andA =5 (open circles The arrows point to the trans- cussed in the text. One sees that most resonant widths tend to zero.
mission peaks of states=4, 6, 7, 15, and 17. However, two statea=6 and 15 have increasing widths with dis-

order. They correspond to the border states of the system.
states is not destroyed by the effect of disorder, a result con-
sistent with studies of the phase correlations of the wavéore, from Eq.(3.1), the transmission peaks for both border
solution ¢(k,x) at resonance enerdy. states are always negligible, as exhibited by Fig. 10 for the

Let us now examine the transmission coefficient peaks fofwo disordered strengths considered. This is in contrast with
the different states of the system. It may be shown, from Eqthe behavior ofT,., for quasilocalized and intermediate
(2.9), that for an isolated resonance the fadkdt?/a2 be-  states wherd ., can acquire any value.
comes unity, and hence the transmission peak depends only The resonance widths, for the quasilocalized states are
on the partial decay widthE? andT':, namely, much smaller than those corresponding to the periodic case.

Therefore the lifetimes of the quasilocalized states are much
oL longer. This means that a particle incident on the system with
T (E=e)=T :4Fnrn (3.1) an energy close te,, for one o_f these states, v_V|II be trapped
n n peak™ 2 : inside the structure for a relatively long-time interval, of the
" orderr,~#/T",. On the other hand, since border states have
a very large value of the total decay width, they have an

wherel’,, is given by Eq.(2.12. g . :
extremely short lifetime. The peculiar behavior of the border
It follows from Eq. (3.1) that the peak value depends on states is a consequence of the finite length of the system.

the relative values of the corresponding two partial decay To complete our discussion, we consider the effect on the

widths, and is independent of the value of the full decay . .
width T',. When the partial decay widths are equal, thepropertles of the resonant states when the strength of disor

maximum value of the transmission peak is achieved. i eder is varied. Figure 11 shows the variation of the total de-
P T '%ay width as a function of the disorder strength: The value of

Tpea=1, and as they become d|ﬁer_ent the transmission peal AW is increased from zero to 10.0. It can be seen how most
may tend to a very small value. Figure 10 shows the pea

values of the transmission coefficient for the 19 states of th<1=,f the states tend to localize as the disorder increases except

system for two values of the disordered strength. The full ., two of them. In effect, we know that a signature of lo-
y i gtn. calization is a small value of the total width. Figure 11 dem-
circles correspond taW= 2.5 A, while the open circles

o . . onstrates quite clearly which states tend to localize, namely,
refer toAW=5 A. Notice that, for a given strength, the Ia}rge those for whicH", diminishes as the disorder is increased. In
§he same manner the graph reveals the states that will not
localize, namely, the border states 6 and 15. Note that for
very slight disorder most of the states remain extended, and
that, as the disorder increases, border and quasilocalized
states arise.

ones up to the maximuni=1. For example, for strength
AW=5 A (open circley, for the quasilocalized state=4,
we obtain a peak value close to 1, while for the quasilocal
ized staten=17 we obtain a value of the order of 10 We
see also in Fig. 10 that for a given stateghe value of the
transmission peak is also affected by the disorder strength.

For example, for the state=4, the value ofT . for disor- IV. CONCLUDING REMARKS

der strengtrAW=2.5 A is less than 0.5. The partial decay A main result of this work is that in a system of finite
widths for the border states are very different. For examplejength in general one finds quasilocalized, border, and inter-
for staten=6 I'§<I'g and staten=15, I')s >I'js. The re-  mediate states. This is contrary to the prevalent view that in
sulting high value of'g is an effect of the right edge of the one dimension all states are localized independently of the
structure, in whicHu,(L)|? is relatively high compared with degree of disorder. We indeed observe a tendency toward
|un(0)|2. Similarly, the high value ol"‘f5 is due to the left localization in most states. However, the fact that the system
edge, wherdu,(0)|? is much larger thanu,(L)|?. There- is open implies that the decay widths remain finite, and



4852 GARC,IA-CALDER(,:)N, ROMO, AND RUBIO 56

therefore it is not surprising that the Anderson criterion ofthe properties of the states and the motion of the complex
localization is not fulfilled. Nevertheless we find, in poles. By increasing the disorder strength, one eventually
agreement with the Thouless criterion for localization,reaches situations where the number of wells of the system
that quasilocalized states are insensitive to changes imay change. For example, for a disorder strengjfi=>50,

the boundaries of the system, while intermediate andne or several wells may disappear, leading to a different
border states are not. Border states seem to have no countsgstem. We have left these “breakup” systems out of the
part in infinite or cyclic systems. Our approach associatepresent study. However, for disorder strengths before that
with each state a resonant function whose complexreakup limit we still found, in general, the three types of
eigenvalue corresponds toSmatrix pole of the problem, states mentioned above. It is of interest to stress that partial
and allows us to relate the scattering properties, i.e., tranglecay widths play a relevant role in characterizing the dif-
mission, with the eigenvalue problem. We found that theferent types of states as well as the values of the transmission
distribution of the complex poles on the energy plane ispeaks. Finally, we expect that the properties of the different
very sensitive to the strength of the disorder, and allows us ttypes of states discussed here might be accessible in experi-
discern among the different types of states. We foundnents involving short-period superlattices, where controlled
that a disorder strength of only 10% of the value of the welldisorder can be introduced by variations of the growth
width for the periodic case already has dramatic effects oparameters.
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