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Effect of disorder in specific realizations of multibarrier random systems
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A resonance formalism is used to study the effect of disorder in specific realizations of multibarrier random
systems. We solve the periodic case and introduce disorder by allowing random values for the well widths. We
analyze the motion of the complex poles of theS matrix on the energy plane and calculate the resonant states
for systems of fixed length as a function of the disorder strength. Our analysis of the eigenfunctions, the decay
widths, and the Thouless criterion allows us to distinguish in general three different types of states: quasilo-
calized, intermediate, and border states.@S0163-1829~97!08331-8#
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I. INTRODUCTION

Since the seminal work by Anderson,1 almost four de-
cades ago, localization in disordered systems has been
subject of numerous investigations.2 One-dimensional sys
tems have been convenient models for both theoretical
numerical investigations on the properties of localiz
states,3,4 as, for example, in studies on the localizati
length. In recent years technical improvements in the fa
cation of semiconductor heterostructures have allowed
possibility of designing multibarrier potential profiles almo
at will.5,6 This provides the opportunity to study the prope
ties of electron propagation in multibarrier systems.

Erdös and Herndon pointed out some time ago7 the con-
venience of having a link between the transmission am
tude, i.e., the scattering properties, and the one-elec
Green function that relates to the eigenfunctions and eig
values of the problem. Our approach establishes this l
Previous works on specific systems considered either
eigenfunction or the scattering approaches. Among
former, one finds works where the wave function vanishe
the boundaries of the system,8 implying that the system is
closed and hence that a connection to the transmission p
lem is not possible. On the other hand, one finds works ba
on the properties of resonant tunneling, where the transm
sion coefficient and wave function as functions of the ene
are studied.9 These approaches lacked a definition for t
resonance eigenfunctions and eigenvalues associated
the disordered potential. Here it is worth mentioning rec
work involving resonant tunneling in connection with qua
tum dots. In this case, however, Coulomb interaction effe
become relevant for an appropriate description of the pr
lem, and the corresponding treatment becomes m
involved.10 On the other hand, it is also appropriate to re
to a number of recent works that addressed the effec
correlated disorder on the properties of localization in o
dimension.11 These works showed that the prevalent not
that in one dimension all states are localized for any amo
of disorder does not hold in general.

The purpose of this work is to study the onset and pr
erties of localization in a specific realization of a multibarr
560163-1829/97/56~8!/4845~8!/$10.00
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potential profile generated in a random manner. Our
proach is based on a resonance formalism that consider
multibarrier system as an open system. This leads to a c
plex eigenvalue problem, and allows one to connect
problem of transmission scattering with the resonant sta
and eigenvalues of the system.

In our approach we consider a specific system of lengtL
to study it as a function of disorder. Hence the notion
localization length, that arises from statistical consideratio
involving an ensemble of systems, does not seem approp
to characterize the properties of a particular system. Tra
mission scattering probes the resonant states of a multiba
system. As is well known, this is exhibited as peaks in a p
of the transmission coefficient versus energy. These pe
reflect the existence of resonant states of the system,
their position in energy is related to the real part of the co
plex poles of the transmission amplitude. Since the sys
has a finite length, eventually an electron seated on on
these states decays out of the system with a time scale
portional to the inverse of the imaginary part of the comp
pole. Since the transmission amplitude is an element of thS
matrix, the above complex poles are precisely the comp
poles of theS matrix of the problem. A very important as
pect of our approach is that one may associate a reso
eigenfunction with each of the transmission levels. A con
nient way to do this is by exploiting the analytical properti
of the outgoing Green function of the problem. Our forma
ism establishes a connection between the wave solution
the outgoing Green function of the problem along the int
nal region of the system that includes, as a special cas
connection with the transmission amplitude. It is well know
that the effect of disorder on the transmission coeffici
causes irregular fluctuations as a function of energy.2 The
effect of disorder on theS-matrix poles in one-dimensiona
chains also modifies their distribution on the complex ene
plane.12 However to our knowledge no treatments have be
reported in the literature on the effect of disorder on reson
eigenfunctions and the connection of these functions with
complex poles.

It is well known from numerical calculations of transmi
4845 © 1997 The American Physical Society
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4846 56GARCÍA-CALDERÓN, ROMO, AND RUBIO
sion scattering on periodic multibarrier systems that the re
nant levels group themselves in minibands, the numbe
levels in each miniband being equal to the number of w
in the system.13 A periodic multibarrier system may be spec
fied by the set of equal (N11) barrier heights$V0% with
barrier widths$b%, andN well widths $W%. Using the reso-
nance formalism discussed below, a given configurat
yields a set ofN resonant states$un(x)%, along the internal
region of the system, andN complex poles$en2 iGn/2%, with
n51,2, . . . ,N, for each miniband. Without a loss of gene
ality, we shall be concerned in this work with the first min
band of a multibarrier system.

It is of relevance to emphasize that the set of reson
states and the complex poles are analytical functions of
potential profile parameters. This means that a modifica
of the parameters of the potential modifies both the posi
of the poles in the complex energy plane and the way
resonant states vary with distance along the internal regio
the potential. Following the above considerations, in t
work we refer to specific realizations of the potential profi
parameters, generated in a random manner, to calculate
corresponding set of resonant states$un(x)% and complex
poles $en2 iGn/2%. Moreover we are able to calculate th
trajectory that each complex pole follows in the compl
plane as the potential profile varies from an ordered t
random configuration, and, similarly, how each reson
state is modified. In this way we are able to study the on
of localization in specific realizations of a multibarrier ra
dom system.

As we shall see below, the effect of disorder on the co
plex poles of the propagator is to diminish their width, s
though most of the states increase their lifetime considera
they still decay out of the system with time and hence do
satisfy Anderson criteria for localization,1 which impose an
absence of decay for localized states. On the other hand
shall find that most resonant states become confined with
region of the system due to the effect of disorder, and m
interestingly that they reasonably satisfy Thouless criteria
localization, for these states become insensitive to chan
on the boundaries of the system.3 Thus we shall see that
under disorder, the resonant states of finite-length multib
rier systems are not strictly localized, though they sh
some of their properties. For the above reasons we shall r
to them as quasilocalized states. In general, for a given
order strength we find states that have a decay width sm
than those of the periodic case but large compared to
quasilocalized states. As we shall encounter, they are se
tive to changes on the boundaries of the system. We s
refer to them as intermediate states. In addition, as will
found, the behavior of the decay widths of the system
a function of the disorder strength always shows the fo
tion of two states that acquire very large decay widths,
they are confined near the edges of the system. These s
are also very sensitive to changes in the boundaries of
system, and we shall call them border states.

The paper is organized as follows: in Sec. II we presen
account of the resonance formalism. Section III deals wit
number of numerical examples, and the discussion of
results of our investigation. Finally, concluding remarks a
given in Sec. IV.
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II. RESONANCE FORMALISM

Although this formalism has been presented elsewer13

for completness we will recount it here. Consider an elect
of massm and energyE approaching fromx,0 on a poten-
tial of arbitrary shapeV(x) defined in the region extendin
from x50 tox5L, and vanishing outside. The solutionc(x)
of the Schro¨dinger equation outside the interval (0,L) is of
the form c(x)5exp(ikx)1r(E)exp(2ikx) for x,0 and
c(x)5t(E)exp(ikx) for x.L, wheret(E) and r (E) are, re-
spectively, the transmission and the reflection amplitud
andk5@2mE#1/2/\ is the corresponding wave number. Th
wave functionc(x) can be written in terms of the outgoin
Green propagator in the form14

c~x!52ikG1~0,x;E!, 0<x<L. ~2.1!

Evaluating the above equation forx5L, leads to a useful
relationship between the transmission amplitude and
propagator, namely,

t~E!52ikG1~0,L;E!exp~2 ikL !. ~2.2!

In general, for a miniband consisting ofN states it was
shown in Ref. 13 that one may write the functio
G1(x,x8;E) as an expansion that involves the correspond
N resonant states of the system plus a background contr
tion B(E);13 moreover, it was shown13 that the background
B(E) is negligible for the energies within the miniband, th
is,

G1~x,x8;E!5 (
n51

N
un~x!un~x8!

k22kn
2

, 0,~x,x8!<L.

~2.3!

The quantitieskn
2 are the complex eigenvalues of the Schr¨-

dinger equation,

d2un~x!

dx2 1@kn
22U~x!#un~x!50, ~2.4!

for the eigenfunctionsun(x) andU(x)52mV(x)/\2. These
complex eigenvalues are related to the poles of the Gr
function on the complex energy plane in the usual w
namely,En5\2kn

2/2m5en2 iGn/2. It is well known thaten

andGn describe, respectively, the position and the width
the resonance. The functionsun obey purely outgoing
boundary conditions at the pointsx50 andx5L, i.e.,

S dun~x!

dx D
x50

52 iknun~0!, ~2.5a!

S dun~x!

dx D
x5L

5 iknun~L !, ~2.5b!

and their normalization condition is,

E
0

L

un
2~x!dx1

i

2Fun
2~0!

kn
1

un
2~L !

kn
G51. ~2.6!

From Eqs.~2.2! and ~2.3!, and the definition of the trans
mission coefficientT(E), we obtain13
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56 4847EFFECT OF DISORDER IN SPECIFIC REALIZATIONS . . .
T~E!5ut~E!u25 (
n51

N

Tn1 (
n,m

N

Tnm , ~2.7!

whereTn(E) is a Breit-Wigner expression for the transmi
sion in the vicinity of thenth resonance, andTnm(E) repre-
sents the interference between thenth and themth reso-
nances. The expressions forTn(E) andTnm(E) are given by

Tn~E!5
k2

an
2

I n
2

Gn
0Gn

L

~E2en!21S 1

2
GnD 2 ~2.8!

and

Tnm~E!52Cnm~Gn
0Gn

LGm
0 Gm

L !1/2

3Re F exp~ ifnm!

~E2en1 iGn/2!~E2em2 iGm/2!G ,
~2.9!

where an5Rekn , Cnm5k2I nI m /(anam), and
I n5*0

Luun(x)u2dx, and the phasefnm is given by
fnm5@fn(0)1fn(L)2fm(0)2fm(L)#. The relevant
quantities Gn

0 and Gn
L are, respectively, the partial deca

widths through the boundaries of the system atx50 and
x5L, and are defined as13

Gn
05\

\an

m

uun~0!u2

I n
~2.10!

and

Gn
L5\

\an

m

uun~L !u2

I n
, ~2.11!

where an is the real part of the complex wave numb
kn5@2mEn#1/2/\5an2 ibn . The total decay widthGn and
the partial decay widthsGn

L and Gn
0 are related through the

equation

Gn5Gn
01Gn

L . ~2.12!

The decay widthGn yields the lifetimetn of the resonant
state,

tn5\/Gn . ~2.13!

The above follows from the well-known time dependence
resonant states, namely,

un~x,t !5un~x!e2 i ent/\e2Gnt/2\. ~2.14!

III. RESULTS AND THEIR DISCUSSION

A. Effect of disorder on systems with overlapping
or isolated levels

In this section we shall study the effects of disorder on
resonance parameters of small multibarrier systems. Our
is to investigate how the degree of disorder affects syst
characterized by overlapping or nonoverlapping~isolated!
resonance levels. As discussed below, the systems with
f

e
im
s

o-

lated resonance levels require much less disorder streng
show noticeable changes than the systems sustaining o
lapping resonances.

Consider two periodic structures, each with 20 barri
~19 wells!, such that the corresponding potential paramet
lead to different resonance widths. One of the system
formed by barriers thinner than the well widths, and as
consequence the resonances are broad and hence ov
with each other. The parameters of this potential profile
barrier heightsV050.25 eV, barrier widthsbn510 Å, and
well widths W0550 Å. Figure 1 shows a plot of transmis
sion coefficientT(E) vs the energyE for this system. Also
shown is the corresponding distribution of the complex po
of the propagator on the energy plane. As can be seen
poles distribute, forming a ‘‘necklace’’ shape. The other s
tem consists of thicker barriers. The corresponding para
eters of the potential for this case are barrier heig
V050.3 eV, barrier widthsbn550 Å, and well widths
W0550 Å. As illustrated by Fig. 2 the transmission coef

FIG. 1. Plot of the transmission coefficientT(E) vs energyE
for a symmetric multibarrier system of 19 wells, with parameters
discussed in the text, that leads to overlapping resonances.
shown are the corresponding complex poles of the propagator fo
ing the ‘‘necklace’’ distribution characteristic of a periodic case

FIG. 2. Plot of the transmission coefficientT(E) vs energyE
for a symmetric multibarrier system of 19 wells, with parameters
discussed in the text, that leads to nonoverlapping resonances.
shown are the corresponding complex poles of the propagator fo
ing the necklace distribution characteristic of a periodic case.



ing
in
ck
o
rg
er

o
ic

by

-
l
te
t
ll

e-
r
ru
m
2

wi
d
t

he
ro
re
c
d
re

tru
a

se
ng

re

1
a

tial

both
full
ig-
ces,
mer
own
ese
ht
n is
he
ri-
r

m
pe
rr

m-
peri-
rre-

rre-

4848 56GARCÍA-CALDERÓN, ROMO, AND RUBIO
cient shows resonances that are sharp and isolated, lead
a nonoverlapping situation. Also shown is the correspond
pole distribution on the energy plane, forming also a ne
lace as in the previous case. Notice that, although the n
overlapping resonance system has a total length much la
than the overlapping resonance system, the miniband en
width of the former is much narrower~by a factor of 10! than
that of the latter. The necklace-shaped pole distribution
the energy complex plane shown by Figs. 1 and 2 is typ
of periodic systems.

We now introduce disorder in the potential profiles
letting the well widths assume random valuesWk within an
interval centered atW0 of width 2DW, with DW the strength
of the disorder. That is, eachWk is generated randomly be
tween (W02DW) and (W01DW). As an example we shal
consider a disorder strength that guarantees that the sys
under study are not destroyed; that is, the changes on
values of the well widths are such that the number of we
remain the same. Hence we considerDW510% of W0, i.e.,
DW55 Å, consequently, the well widths vary at most b
tween 45 and 55 Å. Figure 3 shows the pole positions fo
set of 20 random systems generated from the periodic st
ture with overlapping resonances referred to in Fig. 1. Si
larily, Fig. 4 shows the corresponding poles for a set of
random systems generated from the periodic structure
sharp resonances displayed in Fig. 2. In both Figs. 3 an
we have included, as a reference, the pole positions of
corresponding periodic structures~full circles!. Note that the
pole distributions in Figs. 3 and 4 differ considerably. In t
case of overlapping resonances the poles are scattered a
the necklace of the periodic configuration, but they still
main close to it. Conversely, in the case of sharp resonan
a dramatic effect is observed. Here the same amount of
order has moved most of the poles upward, closer to the
energy axis, which implies a longer lifetimet5\/G for the
resonant states that is due to its confinement inside the s
ture. This behavior is quite interesting, since it implies
tendency to localization for such states, as will be discus
in Sec. III B. To see this kind of behavior for the overlappi
case would require a much higher disorder strength.

FIG. 3. Distribution of the poles of the propagator on the co
plex energy plane for 20 random systems generated from the
odic system with overlapping resonances. The black dots co
spond to the periodic case.
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In symmetrical structures the partial decay widths a
equal, thus from Eq.~2.12! they satisfy the relationshipGn

0 5

Gn
L5 Gn/2. Hence a plot ofGn

L vs Gn
0 for such a structure

would be a set of points lying on a straight line with slope
that passes through the origin. Any deviation from such
line implies that there is some asymmetry in the poten
profile. In Figs. 5 and 6 we illustrate the plots ofGn

L vs Gn
0 for

the two sets of 20 random systems considered above. In
figures the symmetrical situation is represented by
circles that fall in the previously described straight line. F
ure 5 corresponds to the case with overlapping resonan
and Fig. 6 to that of sharp isolated resonances. In the for
case one sees some deviation from the straight line, as sh
by the cloud of empty circles. One sees, however, that th
circles are still located in the neighborhood of the straig
line. In the latter case, for isolated resonances, the situatio
quite different. The points are now uncorrelated with t
straight line, and most of them have moved toward the o
gin, implying thatGn

0 and Gn
L tend to zero as the disorde

-
ri-
e-

FIG. 4. Distribution of the poles of the propagator on the co
plex energy plane for 20 random systems generated from the
odic system with nonoverlapping resonances. The black dots co
spond to the periodic case.

FIG. 5. Plot of partial decay widthsGn
L vs Gn

0 for the 20 random
generated from the overlapping periodic case. The full dots co
spond to the periodic case.
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56 4849EFFECT OF DISORDER IN SPECIFIC REALIZATIONS . . .
increases. Note in the inset of Fig. 6 the great accumula
of points around the origin. The diminution of bothGn

0 and
Gn

L for the staten means that its total widthGn diminishes as
well, and hence its lifetimet5\/Gn increases substantiall
compared with the symmetric situation. However the par
decay widths do not in general tend to smaller values in
same way. As we shall discuss below, this difference is
flected in the values of the transmission coefficient peak

B. Study of a specific random potential profile

Let us consider the 20-barrier symmetrical system t
produces isolated sharp resonances like that depicted by
2. Let us choose a specific realization of the 20-barrier
tential profile generated previously in a random fashi
namely, one of those whose poles are shown in Fig. 4.
corresponding distribution of complex poles of the propa
tor on the energy plane~empty circles! is shown in Fig. 7.
That figure also shows the necklace of poles correspon

FIG. 6. Plot of partial decay widthsGn
L vs Gn

0 for the 20 random
systems generated from the nonoverlapping periodic case. The
dots correspond to the periodic case. The inset shows the re
very close to the origin to emphasize the large number of states
partial widths very close to zero.

FIG. 7. Plot of the motion of the complex poles for a speci
configuration of 20 barriers as a function of the disorder stren
DW55 Å. Full circles represent the periodic case, while op
circles refer to the final configurationa51, as discussed in the tex
n

l
e
-

t
ig.
-
,
e
-

ng

to the symmetric case~full circles!, and the set of trajectorie
that each pole followed from the symmetric to the final ra
dom configuration. The specific final random configuration
characterized by the set of positive or negative valu
$dWk%, which represent, for eachk (k51,2, . . . ,19), the full
deviation that the width of thekth well experiences in going
from the symmetric to the final configuration. Then the tr
jectories are generated using the express
Wk(a)5W01adWk , with a varying from 0 to 1, and the
unity value corresponds to the final configuration. Note t
the trajectories joining the symmetric with the chosen fin
configuration are not unique.

Figure 7 reveals that most of the poles move close to
real axis, which implies thatGn becomes very small. How
ever, two of the poles move away from the axis (n56 and
15!, which implies thatGn increases.

Figure 8 shows the plots ofuun(x)u2 vs x for a subset of
the states of the system corresponding to the final config
tion. The states displayed aren54, 6, 7, 15, and 17. We
choose these states because they are representative o
different types of states that arise in the system due to di
der. As discussed below, we distinguish three different ty
of states based on the behavior of the poles, particularly
values of the total decay widths, and the Thouless criter
on the insensitivity to a change in the boundaries of
system. Figure 8~a! corresponds to the periodic case, whe
all states are extended, while Fig. 8~b! displays the corre-
sponding states for the disordered case. As discussed be
statesn54 and 17 are confined in a short region in the m
section of the system, and we will refer to them as quas
calized states. They are characterized by partial decay wi
that are both very small. Statesn56 and 15 that concentrate
respectively, on the left and right edges of the system, will
denoted as border states. They are characterized by ha
one of the partial decay widths much larger than the oth
The total decay width of each border state is much lar
than the corresponding one for the periodic case~see Fig. 7!
The third type of state, exemplified byn57, corresponds to
an intermediate situation between extended and quasilo
ized states, and will be called an intermediate state. Here
partial decay widths are smaller than the corresponding
ues for the periodic case, but larger than those of the qua
calized case. These states are still sensitive to a variatio
the boundaries of the system.

The above considerations are consistent with the qua
tive criterion given by Thouless that characterizes localiz
states by their independence of a variation on the bounda
of the system.3 Indeed, as discussed below, the quasiloc
ized statesn54 and 17 are characterized by their indepe
dence on the particulars of the boundaries of the system
the other hand, border states are very sensitive to sm
changes on the edges of the system, namely, statesn56 and
15 are sensitive to changes on the left and right edges
spectively. According to the Thouless criterion, this fact im
plies that border states, though confined to one of the ed
of the system, cannot be considered quasilocalized sta
Finally, intermediate states are characterized in a precise
because they are in fact sensitive to variations in the bou
aries of the system.

In order to illustrate the Thouless criterion, we proceed
modify the potential profile in the left- and right-hand e

ull
on
ith

h
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4850 56GARCÍA-CALDERÓN, ROMO, AND RUBIO
trema of the final random structure whose poles~empty
circles! are shown in Fig. 7. We modify the height of the fir
barrierV1 from 0.2 to 0.4 eV. The result of such a variatio
is shown in Figs. 9~a! and 9~b!. Figure 9~a! illustrates a plot

FIG. 8. Plot ofuun(x)u2 along the internal interaction region fo
different values ofn, as discussed in the text.~a! refers to the
periodic case, while~b! corresponds to the disordered situation.
of the resonance positionsen5Re(En) vs V1 for the states
n54, 6, 7, 15, and 17; the full circles represent the init
values of the energy. Figure 9~b! displays the correspondin
resonance poles in the complex energy plane for the s
states; the full circles show the initial positions of the pole
We note that the intermediate staten57 and the border state
n515 exhibit a dependence on this perturbation, while
other states remain insensitive to it. A modification of t
height of the last barrier leads to similar results. There,
stead, the other border staten56 is altered strongly. The
relevant point here is that the statesn54 and 17, those tha
were identified as quasilocalized, were insensitive to b
perturbations, as stated by the Thouless criterion. Sim
results were obtained with modifications of the barr
widthsb1 andb20, as well as with modifications of the we
widths w1 andw19, or combinations of them.

It is worth mentioning that the resonant phasefn(x)
associated with the stateun(x), namely, fn(x)
5tan21@ Im„un(x)…/Re„un(x)…# does not display any relevan
feature due to the effect of disorder. We analyzedfn(x) as a
function of x along the internal region of the system, an
obtained that it does not allow one to distinguish among
extended, quasilocalized, border and intermediate sta
This seems to indicate that the phase coherence of reso

FIG. 9. ~a! Plot of the resonance positionsen5Re(En) as the
height V2 of the last barrier is varied from 0.2 to 0.4 eV for th
statesn54, 6, 7, 15, and 17.~b! Plot of the positions of the reso
nance poles on the complex energy plane for the same states.
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56 4851EFFECT OF DISORDER IN SPECIFIC REALIZATIONS . . .
states is not destroyed by the effect of disorder, a result c
sistent with studies of the phase correlations of the w
solutionc(k,x) at resonance energy.15

Let us now examine the transmission coefficient peaks
the different states of the system. It may be shown, from
~2.8!, that for an isolated resonance the factork2I n

2/an
2 be-

comes unity, and hence the transmission peak depends
on the partial decay widthsGn

0 andGn
L , namely,

Tn~E5en!5Tpeak5
4Gn

0Gn
L

Gn
2

, ~3.1!

whereGn is given by Eq.~2.12!.
It follows from Eq. ~3.1! that the peak value depends o

the relative values of the corresponding two partial de
widths, and is independent of the value of the full dec
width Gn . When the partial decay widths are equal, t
maximum value of the transmission peak is achieved,
Tpeak51, and as they become different the transmission p
may tend to a very small value. Figure 10 shows the p
values of the transmission coefficient for the 19 states of
system for two values of the disordered strength. The
circles correspond toDW5 2.5 Å, while the open circles
refer toDW55 Å. Notice that, for a given strength, the larg
differences among the peak values ranging from neglig
ones up to the maximumT51. For example, for strength
DW55 Å ~open circles!, for the quasilocalized staten54,
we obtain a peak value close to 1, while for the quasiloc
ized staten517 we obtain a value of the order of 1025. We
see also in Fig. 10 that for a given staten the value of the
transmission peak is also affected by the disorder stren
For example, for the staten54, the value ofTpeak for disor-
der strengthDW52.5 Å is less than 0.5. The partial deca
widths for the border states are very different. For exam
for staten56 G6

0!G6
L and staten515, G15

0 @G15
L . The re-

sulting high value ofG6
L is an effect of the right edge of th

structure, in whichuun(L)u2 is relatively high compared with
uun(0)u2. Similarly, the high value ofG15

0 is due to the left
edge, whereuun(0)u2 is much larger thanuun(L)u2. There-

FIG. 10. Plot of the peak value of the transmission coeffici
Tpeak vs the incident energyE for disorder strengthsDW52.5 Å
~full circles! andD55 ~open circles!. The arrows point to the trans
mission peaks of statesn54, 6, 7, 15, and 17.
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fore, from Eq.~3.1!, the transmission peaks for both bord
states are always negligible, as exhibited by Fig. 10 for
two disordered strengths considered. This is in contrast w
the behavior ofTpeak for quasilocalized and intermediat
states whereTpeak can acquire any value.

The resonance widthsGn for the quasilocalized states ar
much smaller than those corresponding to the periodic c
Therefore the lifetimes of the quasilocalized states are m
longer. This means that a particle incident on the system w
an energy close toen , for one of these states, will be trappe
inside the structure for a relatively long-time interval, of th
ordertn'\/Gn . On the other hand, since border states ha
a very large value of the total decay width, they have
extremely short lifetime. The peculiar behavior of the bord
states is a consequence of the finite length of the system

To complete our discussion, we consider the effect on
properties of the resonant states when the strength of d
der is varied. Figure 11 shows the variation of the total d
cay width as a function of the disorder strength: The value
2DW is increased from zero to 10.0. It can be seen how m
of the states tend to localize as the disorder increases ex
for two of them. In effect, we know that a signature of l
calization is a small value of the total width. Figure 11 de
onstrates quite clearly which states tend to localize, nam
those for whichGn diminishes as the disorder is increased.
the same manner the graph reveals the states that will
localize, namely, the border statesn56 and 15. Note that for
very slight disorder most of the states remain extended,
that, as the disorder increases, border and quasiloca
states arise.

IV. CONCLUDING REMARKS

A main result of this work is that in a system of finit
length in general one finds quasilocalized, border, and in
mediate states. This is contrary to the prevalent view tha
one dimension all states are localized independently of
degree of disorder. We indeed observe a tendency tow
localization in most states. However, the fact that the sys
is open implies that the decay widths remain finite, a

t FIG. 11. Plot of the total decay widthGm vs twice the disorder
strengthDW for the set of states of the specific configuration d
cussed in the text. One sees that most resonant widths tend to
However, two statesn56 and 15 have increasing widths with dis
order. They correspond to the border states of the system.
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therefore it is not surprising that the Anderson criterion
localization is not fulfilled. Nevertheless we find,
agreement with the Thouless criterion for localizatio
that quasilocalized states are insensitive to changes
the boundaries of the system, while intermediate a
border states are not. Border states seem to have no cou
part in infinite or cyclic systems. Our approach associa
with each state a resonant function whose comp
eigenvalue corresponds to aS-matrix pole of the problem,
and allows us to relate the scattering properties, i.e., tra
mission, with the eigenvalue problem. We found that
distribution of the complex poles on the energy plane
very sensitive to the strength of the disorder, and allows u
discern among the different types of states. We fou
that a disorder strength of only 10% of the value of the w
width for the periodic case already has dramatic effects
y

B

f

,
in
d
ter-
s
x

s-
e
s
to
d
ll
n

the properties of the states and the motion of the comp
poles. By increasing the disorder strength, one eventu
reaches situations where the number of wells of the sys
may change. For example, for a disorder strengthdW550,
one or several wells may disappear, leading to a differ
system. We have left these ‘‘breakup’’ systems out of t
present study. However, for disorder strengths before
breakup limit we still found, in general, the three types
states mentioned above. It is of interest to stress that pa
decay widths play a relevant role in characterizing the d
ferent types of states as well as the values of the transmis
peaks. Finally, we expect that the properties of the differ
types of states discussed here might be accessible in ex
ments involving short-period superlattices, where control
disorder can be introduced by variations of the grow
parameters.
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