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We obtain exact analytical expressions for the electronic transport through a multichain system, also in the
presence of magneto- and electrostatic fields. The geometrical structure of the electrodes is found to cause a
splitting of the conduction band into many subbands depending on the number and the length of the chains, and
the conductance approaches zero when the chain number is sufficiently large due to quantum interference. In
the presence of a magnetic field very complicated oscillatory behavior of the conductance is found with a very
sensitive dependence on the number of chains and their lengths, in a remarkable distinction from the usual
two-chain Aharonov-Bohn§AB) ring. A transverse electric bias is found to cause oscillations of the conduc-
tance and by increasing the chain number the widths of the resonance peaks become narrower without a change
of the oscillation periodicities. If electric and magnetic fields are simultaneously applied the magnetoconduc-
tance oscillation pattern depends sensitively on the bias. The present study may provide useful information for
guantum device engineering50163-18207)01032-1

[. INTRODUCTION beams enclosing a magnetic flgx where the magnetic field
causes a Z( ¢/ ¢y) change of the phase difference between
Quantum transport through artificially fabricated nano-the two arms of the ring. In this system the magnetoresis-
structures has been extensively studied both experimentaltance oscillations have periath, which allows tuning of the
and theoretically during the last yedr$The miniaturization phase of a wave packet with destructive and constructive
of quantum dots or wires has now reached a stage wheiiaterference in cycles. The AB effect in the presence of mag-
devices can be fabricated at sizes smaller than the singl@etostatic flux and electrostatic potential has also been
particle electronic coherence length. In such mesoscopic systiscussed? 13 The electrostatic AB effect is due to the dif-
tems the wave function maintains its phase coherence so thfgfrent phase shifts caused by the potential difference between
the electron can travel coherently through the sample. Accese two arms. The combination of the electrostatic and mag-
to “coherent transport” is granted by the advances made ithetostatic AB effect also exhibits interesting conductance os-
lithography techniques which have opened a very rich fieldjjlation behaviort3
of theoretical and experimental research concerning quantum o ing to the great variety of the possible configurations
wires and quantum dots. Electro-optical experiments iryo; quantum dots it is of great interest to investigate the
solid-state devices could lead to new switches which use th@hange of the interference effect in AB rings when the chain
quantum wave nature of the electron. number is greater than 2. In this paper, we study the elec-

Many interesting quantum effects can .be also foqnd MNronic transport properties of a multichain structure with
c_oupled nanostructures Whe_re the electronic transport is dragbmmon leads attached at its ends. We show that it can pro-
tically affected by quantum interference phenomena. More- id it i i 0 th | AB effect for tun-
over, the application of a magnetic field, which is often used’ 0€ Many aiternative options 1o the usual etiect fortun
to probe the properties of devices, can also induce characteRY quantum mterference_ n the electror_uc tran_sport. In the
istic changes in the phase coherence of the electronic way@?"Sidered structure an initial wave splits up into comple-
functions which, in turn, give rise to particular interference Mentary wavesp, ..., whereN is the total number of
effects for the electronic transport. In the pioneering work of¢hains involved. These waves propagate independently in
Aharonov and Bohthsuch an effect was demonstrated via a€Very chain and are finally recombined at the outgoing lead.

thought experiment and it was shown that the conductance dfterference effects among the different waves can be ob-
a ring should oscillate as a function of the magnetic fluxserved from the behavior of the electrical resistance obtained

threaded through it. Among the manifestations of the Ahabetween the two leads. We also show that if the number of
ronov Bohm(AB) effect~*°usually are the periodic magne- chains involved is large enough most of the states are re-
toresistance oscillations in normal metal rings and in electroflected and only a few of them can propagate through the
statically defined heterjunction rings. The AB effect is asystem. This kind of “blocking” or “localization” of the

result of the relative phase shift between the two electrorelectron waves via quantum interference due to the geometri-
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A iannihilates(createy an electron on the siteof chaina, N,
0 S s the number of sites in theth chain (excluding the two
W nodes, N is the total number of chains and the two lead node
sites are labeled by 0 arsd The first sum is due to an applied

electrostatic bias in the transverse direction so that the po-
tential V, depends only on the chain index The next two
terms in Eq.(1) describe hopping of the electrons between
the ends of every chaia and the two leads 0 argland the
final term describes hopping between the nearest-neighbor
cal structure, can occur despite the absence of any disorder #ites in every chain. Moreover, since the chains are con-
the system. nected to each other only at their ends 0 ande made a

In the presence of a magnetic field the electron movingconvenient choice of the gauge for the vector potential to
around a loop will experience a phase change determined gffect only the phase of the wave functions at the hopping
the flux threaded through the loop. In the multichain systenbonds between the right ends of each chasite
the phase changes are not the same for different paths &f,,a=1,2,...,N) and the right nods. Thus, in the Hamil-
propagation so they can lead to particular interference phedenian of Eq.(1) the magnetic field is expressed via the third
nomena accompanied by much more complicated conduderm in the sum with the phase differengég— ¢,_1 propor-
tance oscillations than in the ordinary two-chain AB ring. tional to the fluxHW,, «=2,3,...N, H being the strength
We find that the pattern of these magnetoquantum oscillaef the magnetic field andlv, is the area enclosed by the
tions is very sensitive to the number and the length distribuand (@—1)th chains. The phase of the first chain is chosen
tion of the chains involved in the structure. Moreover, theto be zerog,=0 and the hopping strength for all the bonds
oscillation patterns and their periodicities are very sensitive,=1 is the energy unit used throughout the paper.
to the partitioning of the flux among the areas enclosed by An experimental realization of the considered chain sys-
the paths. The obtained electrostatic conductance oscillationiem is the GaAs quantum wire. This structure has been pro-
have unchanged periodicities although the resonance peakssed for an experimental design of AB interferometers by
become narrower by increasing the chain number. In th&andyopadhyay and Porddsince the wires can be made so
presence of both magnetic flux and electrostatic bias a momarrow to carry only one transverse channel. The localization
drastic change of the magnetoconductance oscillation pattegstfects in this system can be minimized because of the high
can be seen. At the same time, if the magnetic flux is largenobility of GaAs. Moreover, at low temperatures the rel-
enough the electrostatic oscillations of the electron transmisevant length is shorter than the inelastic mean-free path and
sion exhibit an abrupt drop from maximum to minimum in the structure is essentially ballistic. The carrier density of the
every period. It should be pointed out that the results obGaAs quantum wire is about 40n~! and according to
tained in this paper could be useful towards understandingane’s formuld* the renormalized coupling constagtis
guantum dots with a special configuration. very close to 1. Thus, the one-dimensional electron system

The structure of the paper with the exposition of our re-may be reasonably treated in the free-electron
sults is as follows: in Sec. Il we describe the studied structurapproximation:® If we adopt the above analysis we can ne-
and give analytic expressions for the electronic transport, iglect the Coulomb interaction and/or inelastic scattering
Sec. Il we demonstrate different kinds of transport inducedrom our discussion.
by special quantum interference effects with and without Our picture of the electronic transport consists of an elec-
magnetic flux and transverse electrostatic bias. The obtainegon wave incident from the source into the perfect chain,

FIG. 1. The considered multichain system with the left and right
nodes indicated by 0 arg] respectively. The total number of chains
is N=5 and the number of sites in thexth chain is
N,, @«=1,2,... N without counting the nodes 0 arsd

results are summarized and discussed in Sec. IV. then ramified into thél chains of the structure, experiencing
different phase increments, and eventually recombined into
[l. MODEL AND FORMULA one channel at the output lead. Thus, an electronic beam

incident from the right should be partially transmitted and

We consider a ring which consists of many chains with ! S ;
two common leads at their ends threaded by a magnetic ﬁelear'ually _reflected by _th_e multichain system. In_ the site rep-
resentation the coefficients of the wave function at the left

which produces a flux in every loop enclosed by two nearest- X . .
neighbor chains. In addition we suppose that the multichaiﬁmd the right parts of the pure chain can be written as

system is embedded in an infinite perfectly conducting chain

with a left and a right part serving as the two electrodes. The a=e K forj=<0,
configuration is shown in Fig. 1 and the transport properties .

for non-interacting electrons in this system are studied via

the tight-binding Hamiltonian aj=Ae U941 RekI=S  forj=s, 2
. < herek=cos ¥(E/2) is the wave vector of a wave function
_ oL + iyt wherek=cos is wave v wave functi
H (,21 Vai; Ca,i Caii™to (CO Caat€Con Cs with energyE, A is the amplitude of the incident wavR,is
o the amplitude of the reflected wave, and the wave function is

normalized so that the transmitted wave amplitude is unity.
) 1) The transmission coefficient which measures the transpar-

ancy of the system can be subsequently defined as
wherec; , (c{a) is the annihilatior(creation operator which  |t|>=1//A|2. The wave-function coefficients in theth chain,

R
+ 21 cli Cairrt He
“
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by including the left node 0, can be expressed as a lineaf the chain lengths are equal bd;=N,=
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...=Ny=L, and

combination of the propagating and the reflected planghe two nearest-neighbor chains enclose a fixed area

waves via

a, =A% +R,e7*d, forO<j<N,,

3

wherea, ; is the coefficient at thg¢th site of theath chain

andk,=cos X((E—V,)/2) is the electron wave vector of the

a chain in the electrostatic potentidl, .
The coefficient at the left lead node=0 from Egs.(2)
and (3) gives the relation

A,+R,=1. 4

é=¢,— ¢, 1 in the absence of electrostatic potential

e (N=De2gin(N ¢/2) sink
sin(¢/2)sin(k(L+1)) ’

~ NsinkL
Co= Sin(k(L+1))"
and a simpler exact expression for the transmission coeffi-

cient|t(E)|? can be obtained. It can be seen from ELD)
that the magnetic-field dependence is solely duéfgb so

(12)

Similarly, we can calculate the coefficient at the right nodethat if the factors M,, 1/(W,+Ws,), ..., 1&"_, W, have
j=s, by including the flux-induced phase shift term, and acommon multiples the oscillations {f E)|? as a function of

comparison with Eq(2) gives a second relation

(Aaeik“(N”+1)+ Rae*ika(Na+l))efi¢a:A+ R

©)

Therefore, from the two Eq$4) and(5) we can express the
wave-function coefficient of Eq.3) for all chainsa via

e*ika(NaJrl)_(A_’_R)ei(ﬁa
A= T T GinkuN D)

(6)

eika(Na+1)— (A+ R)ei¢“
Re= S sk (N7 1))’
in terms of A andR.
On the other hand, from the Scliinger difference equa-
tions at the two lead nodes 0 asdve obtain

(@)

E=ek+ > (A ket R e ka), (8)
E(A+R)=Ae K+ Re*+ > e '?«(A ekeNe
+R, e Koo, (9)

and by a substitution of Eq$6), (7) into Eqgs.(8), (9) even-
tually obtain two equations foA andR. Finally, the trans-

mission coefficient can be calculated from their solutio

which gives
-
e 7 "o
where
ei‘/’leiw’f‘/’l)sinka
fo= 2 ~gGink (N, + 1))
and

sink, N,
Co= EC:' Sin(k (N_+1))’

for arbitrary chain lengthdl,,,«=1,2,... N.

a magnetic field have a period othy, wherev is the small-

est common multiple withp, being the flux quantum. The
electronic conductance can be also directly computed from
the transmission coefficient via the Landauer forntula

It(E)|?

EETET

(13
at the Fermi energi.

IIl. QUANTUM OSCILLATIONS FOR VARIOUS
MULTICHAIN CONFIGURATIONS

In this section we show our results associated with quan-
tum interference effects in multichain systems by application
of Eg. (10). Our purpose is to illustrate the electronic wave
transport in the geometric multichain ring structure, also in
the presence of external fields.

A. Equal chain system without fields

In the absence of a magnetic field the replacenentd
for fg, cg is made in Egs(11), (12). The obtained results in
this case correspond to a similar model of a total number of
N thin wires joined together at their two ends as it was in-
troduced by Wanget al® in their study of electronic trans-

nPort through a quantum cavity. These authors have predicted

that the total electron transmission can be simply expressed
as a coherent sum of the transmission coefficients obtained
from every chain. Our results can give even more compli-
cated transmission behavior due to the geometrical structure
of the electrodes.

In Fig. 2 we plot the transmission coefficient versus the
electronic energy for such a multichain system made of equal
chains. The pattern shown exhibits an interesting bridge-arc
shape whose curvature becomes larger and the blank region
below the arc smaller if the chain number increases, with
some states still having high values of the transmission co-
efficient. Thus, if the chain number is large enough most of
the states are reflected and only very few states can propa-
gate through the system. It must be emphasized that the
blocking of the electron propagation at most energies is
merely caused by quantum interference due to the geometri-

Equation(10) is the most important result of this paper, cal structure involved. It seems, however, a puzzle why such

which presents the general analytical expression for tha rather symmetric geometry can give rise to a very compli-
transmission coefficient in a multichain ring. This expressioncated behavior of the outgoing wave. This is probably due to
can be further simplified for special geometries, for examplethe fact that the translation symmetry is broken at the two
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0.25¢ FIG. 3. The conduction band vs the chain numNefor a mul-
05 1 0 = 2 tichain system with chain lengthl,=5000, @=1,2,...N. A
(a) Energy conduction band is defined as being nonzero at the energy values
) where the corresponding transmission coefficient is higher than 0.1.
disorder and/or interchain couplings, except at the two end
0.75
i node connections. A relation between the conductance and
0.5k @ @ the chain number can be extracted from Fig. 4, where a
075 monotonic drop of the conductance is seen when the number
) 002'2 of chains is increased. This is another indication of the trend
g‘: o shown by the system to become more “insulating” for large
g o.7smw\m m\-zw chain numbers.
g 05f
Z 025
E E B. Magnetoconductance oscillations
§ 075F ) . . .
E oSk In Fig. 5@ we show the characteristics of the transmis-
0.25F | JJ sion coefficient obtained in the absence of a magnetic field,
 ma—— omdlhocd boilh such as the bridge-arc shape already seen in K, b
E ) ge- p Cy ;S .
06725— order to compare with the cases with an applied magnetic
025t field [Figs. §b), 5(c), and Fd)]. We find a remarkable
’ Q)i h h change of the transmission in the latter case when the areas
o 2 01 Eneorgy 0.1 02 between neighboring chains enclose equal magnetic fluxes.

In Figs. 8b), 5(c), and §d) the arc structure is no longer

present and the transmission becomes more and more sparse
FIG. 2. The transmission coefficient as a function of the elec-qye to the higher magnetic flux through the system.

tronic energy for aN-chain system of equal chain lengtita) In Fig. 6 we present the magnetic-field dependence of the

L=N,=100, @=12, ... N and(b) L=1000. The chain numbers .ansmission coefficient for equal chains with the same

involved in each case ard) N=2, (2) N=4, (3) N=10, (4)  pegrestneighbor path areas. In this case the curves show

N=40, and(5) N=80. periodic quantum-magnetic oscillations governed by the field

contacts, which leads to partial destructive interference of the 100
electron waves. Wangt al® have also observed a partial oL=100
blocking of electron waves by varying the electronic wave- 10 gk:gggo
length in the propagation regime of a quantum-wave filter @ +L=6000
consisting of field-induced nanoscale cavities and 1D wires. 2 1
Our results could account for the reported experimental be- é o1
havior. 2 )
We have also investigated the relationship between the Z o0
obtained features of the conducting spectrum and the chain O
number for an equal chain multichain system. In Fig. 3 the 0.001
conduction band as a function of the number of chains is
illustrated and we observe that by increasing the chain num- 0.0001 . 2'0 4'0 6*0 %

ber the transmission pattern becomes more and more sparse
and the conduction band splits into several subbands. If the
number of chains becomes large enough we find that most of FIG. 4. The conductance(E) as a function of the number of
the states cannot propagate through the system, becomirgains N for a system with equal chains of length=N,,
“blocked” or “localized.” Thus, the conduction band be- «=1,2,...,N, at a Fermi energ\e=1.0, in the absence of a
comes discrete due to quantum interference in the absence whgnetic field.

NUMBER OF CHAINS
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FIG. 5. A comparison of the transmission coefficient with and  FIG. 7. The electronic conductance vs the magnetic flux for a
without a magnetic field. The structure consistdNs£4 chains of ~ multichain  system N=4) with equal chain lengths
lengthsL =N,=2000, «=1,2,3,4 and the magnetic flux threaded L=N,=2000, «=1,2,3,4 and electron energy fixed Bt=1.1,
in the system ia) 0, (b) 0.1, (c) 0.5, and(d) 2.0. with the magnetic flux quantungo=1. (&) ¢~ P1=d3— ¢,=

da— b3 (D) do— pr1=¢p3— 052:%(?54* ¢3), (© ¢r— =3
dependence which entefg via Eqgs.(11) and (12), finally ~ ¢3~ %2 andda=¢3=0.(d) ¢o= d1=ds= ¢2= 2(da= ).
leading to N—1)¢q. These findings share many similarities
with the optical multislit interference patteffswith main Our results for a system with equal chains but nonequal
common features thid—1 minima and theN—2 subsidiary ~areas enclosed by every two nearest-neighbor paths are
maxima between every two consecutive principal maximashown in Figs. 7 and 8. It can be seen that the interference
However, the obtained electronic transmission is more compattern and the magnetoscillation periods vary, depending on
plicated when compared to the analogous optical case due tbe distribution of the magnetic flux between the closed
the complexity of the denominator in our expression forpaths. In Fig. 7 we show the electronic conductance versus
|t(E)|2_ Moreover, from Fig_ 6 we can observe many pointsthe magnetic flux for a four-chain system made of equal
of zero transmission which imply a magnetic-field-inducedchains with magnetic flux periods) 3¢y, (b) 5¢q, (C) 460,
destructive interference effect. and(d) 4¢,. One can easily deduce the relation between the

oscillation period and the distribution of the mag-
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FIG. 8. The electronic conductance vs the magnetic flux for a

FIG. 6. The electronic transmission vs the magnetic flux for amultichain  system N=4) with equal chain lengths
multichain system with equal chain lengthis=N,=2000,« L=N,=2000,a¢=1,2,3,4 and electron energy fixed Bt=1.1,
=1,2,... N and fixed electron energifg=1.1. The unit of the with the magnetic flux quantung,=1: (& ¢,— P1=P3— Pp,=
magnetic flux is the flux quantumiy=1 and the chain numbers are ¢,— 3, (b)) 0.99(po— 1) =p3— o= 1.01(ds— ¢3), (©
(@ N=2, (b) N=3, (c) N=4, (d) N=5, and(e) N=9. 0.98(¢2~ h1) =3~ ¢, =1.01(hs— ¢b3).
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FIG. 10. The transmission coefficients vs the electrostatic poten-
tial for systems with various chain numbers, equal chain lengths
FIG. 9. The electronic conductance vs the magnetic flux for a_.=N_=1000, «=1,2,3,4 and an electric biaé=0.5. The chain
multichain system Nl=4) with almost equal chain lengthy,,, numbers arga) N=2 for the solid line,(b) N=6 for the dotted-
a=1,2,3,4 and electron energy fixed Bt 1.1 with the magnetic  dashed line(c) N=20 for the dashed line, an@) N=80 for the
flux quantum ¢o=1: (8 the chain lengths aréa) N,=2000, dotted line.
a=1,234, (b) N;=2000,N,=2002,N;=2004,N,=2006,
(c) N;=2000,N,=2010,N3=2020,N,=2030,(d) N,=2000,N,
=2100,N;=2200,N,=2300.

electrostatic bias can be seen in Fig. 11 where a drastic effect
of the magnitude of the bias to the oscillation pattern is
shown. If the voltage is increased the number of the second-

netic fluxes by noticing that the phase shift for every chain®"Y maxima in every oscillation period first decreases and

must be an integer times2 If the magnetic flux distribution thffen retliO\r/]er?)_the zer(;]-blas value. This |mpI|es_|'c|1n oscillatory
has small deviations the mageto-oscillation pattern and it§"ect of the bias on the magnetoquantum oscillations.

period changes abruptly, as shown in Fig. 8. Without any Figure 12 shows electroconductance oscillations under
deviation, the spectrum has a strict period of and destruc- _different values of the magnetic flux. It can be observed that

tive interference occurs twice during this period. Introducing;flhe F’IfF'Od'C'W 'r? not cha?hgetdbby varlatl_ons”?f the matgnﬁtlc
small deviations, the spectrum has no longer strict periodic: ux. LIS seen, however, that by increasing the magnetic flux

ity and the interference pattern changes aperiodically. the transition from maximum to minimum in each period of

In Fig. 9 we present results for a system of both differe”g‘sad"aﬁon is sharpened and the width of resonance regions

chain lengths and nonequal areas enclosed by two neare ECOMES Very narrow. It. is interes_ting to poi_nt out that fpr
neighbor paths. From the realizations of EtD) we find that Zero magne’qc flux there is only a single peak in every period
the conductance changes when the chain length varies b%u'[ by applying a nonzero flux two peaks appear with one of
cause of variations in both the numerator and the denomind"€™ extremely sharp.
tor of Eq.(10). For a certain length distribution we observe a
quasiperiodic pattern close to about&gb but its real period

is 3¢ as in Fig. 9d). Thus, we may conclude that even a  Quantum interference plays a central role in the quantum
small variation of the chain lengths can cause abrupt changgshysics of mesoscopic systems. We have shown that for a
in the conductance oscillation patterns. It is, perhaps, worth

IV. DISCUSSION

mentioning that the sensitivity found could provide an op- 1 (@)
. . . . . . 0.1
portunity for applications of the studied multichain structure 001l
to electronic device engineering. 0.001F
0.1
C. Electro- and magnetoconductance oscillations 0.01
In this subsection, we investigate the influence of an ad- 5 1 ®)
ditional electric bias on the conductance of the system. In % ©
Fig. 10, we show the characteristics of the transmission vs 2 01
the electrostatic potential for a system with different chain %
numbers. We observe periodic oscillatory behavior and by B 01 )
increasing the chain number the period of the oscillations 001}
remains unchanged but the widths of the resonance peaks 0.001
become narrower with the distance between minimum and 0000l T s s

maximum decreased in each period. If the chain number

MAGNETIC FLUX

reaches 80 the maximum to minimum value ratio is nearly F|G. 11. The electronic transmission vs the magnetic flux for a
500. These results are similar to those obtained in the studyiultichain  system N=6) with equal chain lengths
of serially connected mesoscopic ringsThe corresponding L=N,=1000, a=1,2,... N: The electrostatic bias i&) V=0,
magetoconductance oscillation pattern in the presence @f) V=0.004,(c) V=0.008, andd) V=0.012.
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1 @ between each pair of minima a subsidiary maximum exfsts,
0.75¢ as confirmed by our numerical calculations. In the presence
05 of a transverse electric bias the conductance also oscillates as
025F . R . .
1 a function of the bias. If the chain number increases the
0.75F (b) periodity of the oscillation does not change but the widths of
05k the resonance peaks become narrower. Furthermore, in the
Z 025 presence of both electric and magnetic fields the magneto-
Z 07;_ © conductance oscillation pattern is very sensitive on the bias.
g st Questions refering to more appropriate conductance formu-
Z oo las can be found in Ref. 18 and the AB oscillations in a ring
< § . . . . . ; .
e 1 with a quantum dot inserted in one of its arms is studied in
&= o075k (@)
ok Ref. 19.
025k It must be pointed out that our results are also relevant
Y R T Y for the case of Arjdreev scatterffgvhich occurs m norme}I-
VOLTAGE superconductor interfaces. It turns out that if the right-

hand side periodic chain attached to the considered dot
: - — _ structure is replaced by a clean superconducting wire the
resf'(:?'pzzré;r:e?;ef;reo2;;?2??:?;; \ﬁ.”ﬁsli]cégz;'iacsf:’(‘ghistheobtained results for the transmission coefficient of the
$=0. (b) $=0.01,(c) $—0.02, and(d) ¢—0.04. normal-dot-normal geometry can be used for finding the

' ' ' transmission through the normal-dot-superconductor sys-

tem. This is achieved via Beenaker's fornfdlgor the

multichain system an incident wave splits into several chairfonductance G=(2e*h)2|t|*/(2—[t|?)* which is ex-
beams at the entrance and recombines at the exit. Thus, tREeSSed via the transmission 0‘; the nonsuperconducting part
conduction band becomes discrete and the electronic tran80ly- If we use the obtainegt|® from Eq. (10) an extra

port properties are drastically modified by a “localization” doubling of ~periodicity is expected for the dot-
effect, despite the absence of any disorder. Moreover, in theUPerconductor interface. , , ,
presence of a magnetic flux we obtain magneto-oscillations, ' SUmmary, we have systematically studied the electronic
which are much more complicated than these known in th@roperties of a multichain system connected at its two
usual AB rings. In the AB effect a magnetic field is threaded®"dS: A recursion method was employed and an exact
through the center of a ring so that the electrons passing vid"alytic expression for the electronic conductance was
each of the two chains experience different phase shifts. ||pr¢s.ented. Many interesting features of the transmission co-
we vary the magnetic field one can modulate the phase an%fflmen't, the magneto—. and electroconducta_nce were shown
produce conductance oscillations in the wave transport fronfPr various configurations{1) The geometrical structure
one terminal to the other. We show that the transmission as & the electrodes is found to cause a discreteness of the con-
function of an electric bias also exhibits a miniband struc-duction band, which eventually affects remarkably the trans-
ture, similar to that obtained for serially connected AB POt properties leading to a kind of “localization” in the
rings® However, the origin for the similar behavior in the @bSence of disordef2) We find various magneto-oscillation
two cases is different, since in Ref. 13 tNeconnected rings per_lodlcmes and !nterference_: patterns by varying the distri-
correspond t\ tunneling barriers in one-dimensional super- bution of the relative magnetic flux through the structure_ and
lattices which giveN— 1 resonance peaks in the transmission@Prupt changes of the conductance versus the magnetic flux

curves. In our ring structure it is the presence of many chaing the length distribution of the system is modulated, which is

which provides channels with different phase shifts due td!Seful to distingush even slight chain length variatiofs.

the bias, finally inducing destructive or constructive interfer- 1 N€ Studied system can be also used to probe the distribution

ences. Thus, the physical origin of the miniband structure irpf the magnetic field since the obtained interference patterns

our case is solely due to the considered multichain ring ge@'® Very sensitive to the distribution of the magnetic flux
ometry. among neighboring closed pathg) The small ratio of the

The magnetic-field dependence of the electrical conducreésonance peak widths to the period of the oscillation in the

tance also shows an oscillating behavior different from theP!0ts Of conductance vs the electric bias for large enough
AB ring effect, since the multichain system exhibits more chain numbers may be useful for quantum device engineer-

complicated interference phenomena determined by th&'9:

phase shifts in the various propagation paths. Each phase

shift is caused by both the electronic momentum and the

magnet!c flux, so that momentum yaria';ions anq ghanges in ACKNOWLEDGMENTS
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