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Floquet states and intersubband absorption in strongly driven double quantum wells

T. Fromherz
Center for THz Science and Technology, University of California, Santa Barbara, California 93106

~Received 3 February 1997!

The effects of an intense driving field on the linear intersubband-absorption spectrum of a symmetric double
quantum well are nonperturbatively calculated within the Floquet theory. The dependence of the absorption
spectrum on the intensity of the driving field is qualitatively different for photon energies larger and smaller
than the splitting of the excited-state doublet: In the former case the splitting of the two absorption lines
originally present in the spectrum of the undriven double quantum well is altered by the intensity of the driving
field. For certain intensities, a collapse of the tunnel splitting is predicted. In the latter case photon replicas of
the original lines appear in the spectrum of the driven quantum well. The absorption strength of these addi-
tional lines depends nonmonotonically on the intensity of the driving field. It is shown that these effects can be
interpreted as generalizations of the Rabi or ac Stark splitting, which results from Floquet theory in the limit of
the driving frequency being in resonance with the splitting of the excited-state doublet.
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I. INTRODUCTION

Semiconductor quantum-well structures strongly coup
to an intense high-frequency field have gained a lot of att
tion recently. Extensive work on calculating the modific
tions of the quantum-well energy spectrum induced by
driving field has been performed by several groups.1–6 Ex-
citing effects like the coherent suppression of tunneling7,8

the miniband collapse in quantum-well superlattices,2 abso-
lute negative conductance, and photon-assisted tunnelin
resonant tunneling diodes9,10 have been predicted and part
experimentally verified.11–15 However, up to now, mainly
transport measurements have been performed in order to
the theoretical results. In this paper we propose probing
ac-field-induced modifications in the quantum-well ener
spectrum by intersubband-absorption measurements w
weak probing beam. Compared to transport measurem
optical experiments have the advantage of a higher en
resolution. In addition, transport measurements do not
rectly measure the spectral function, but rather its convo
tion with—at least—the supply function in the emitter of th
device and the spectral function in the neighboring well.

Surprisingly, calculations of the absorption spectrum o
driven quantum-well system, and its dependence on the
tensity of the driving field, have, up to now, existed in t
literature only in the rotating-wave approximation~RWA!
~Ref. 16! for the limited range of the Rabi splitting regime17

@\v nearly resonant with states of the undriven quantum w
andeFxi j /\v!1, wherev (F) denotes the frequency~am-
plitude! of the driving field andxi j the x-matrix element
between the resonantly coupled states#. By employing Flo-
quet theory,18 we are able to extend these results to virtua
arbitrary intensity and frequency of the driving field, there
covering parameter regions beyond the applicability of
RWA (eFxi j /\v.1) that have become accessible with t
advent of powerful free-electron lasers delivering radiat
in the THz region. It is shown that in this parameter ran
exciting effects like the collapse of the tunnel splitting a
photon-sideband absorption occur in the intersubband s
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trum of a strongly driven double-quantum-well system. It
interesting to note that closely related phenomena have b
predicted and observed in atomic physics.19 By applying Flo-
quet theory, it is possible to treat the suppression of tun
splitting, photon-sideband absorption, and Rabi splitting i
natural way within the same framework.

II. THEORY AND RESULTS

The Hamiltonian for an electron in a quantum-well stru
ture driven by an intense electromagnetic field has the fo
H5H01xeF cos(vt), where H05p2/2m1V(x) is the
Hamiltonian for the undriven quantum well. SinceH is pe-
riodic in time, according to the Floquet theorem,18 an ansatz

c~x,t !5exp~2 i«t/\! w~x,t !, ~1!

wherew is periodic in time, can be made for the solutions
the time-dependent Schro¨dinger equation, which then be
comes

S H2«2 i\
]

]t Dw~x,t !50. ~2!

Following the work of Shirley,20 Eq. ~2! can be transformed
into an eigenvalue problem for an infinite matix b
expanding the function w in a Fourier series w
5San(x)exp(2ivnt) with position-dependent coefficient
an(x). Expanding these coefficients in the complete setc j

0

of eigenfunctions ofH0 leads to the following expression fo
w(x,t):

w~x,t !5(
n, j

cn, jexp~2 ivnt!c j
0~x!. ~3!

Inserting Eq.~3! into Eq. ~2!, multiplying from the left
side with exp(ivmt)(ck

0)* , and integratingx over the normal-
ization interval andt over one periodT52p/v leads to the
infinite matrix eigenvalue equation
4772 © 1997 The American Physical Society
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56 4773FLOQUET STATES AND INTERSUBBAND ABSORPTION . . .
(
n, j

$@Ej2~«1n\v!#dm,ndk, j

1 1
2 eFxk, j~dm,n211dm,n11!%cn, j

50, ~4!

where Ej denotes the eigenenergy ofH0 corresponding to
the functionc j

0, and xk, j5^ck
0uxuc j

0& denotes thex-matrix
element.

It is straightforward to show that if«0 is an eigenvalue of
Eq. ~4! with eigenvectorcn, j

0 , then, for all integersl ,

« l5«01 l\v, cn, j
l 5cn1 l , j

0 ~5!

are also eigenenvalues with corresponding eigenvec
However, from Eqs.~1! and~3! it follows that the same tota
wave functionc(x,t) is obtained for alll . This is a direct
consequence of the Floquet theorem, and illustrates that
periodically driven system the ‘‘quasienergies’’« are only
determined up to an integer multiple of the driving frequen
\v, and, therefore, can be mapped into a quasienergy z
with boundaries separated by\v ~Refs. 18 and 20!. The
quasienergy zone picture turns out to be very useful
strong driving fields, i.e., for dipole energiesuexi j Fu much
greater than the splittinguEi2Ej u. However, in the following
we will discuss the changes of the intersubband-absorp
spectrum induced by fields with maximum dipole energies
the order of magnitude of the splitting. In this case it appe
more appropriate to represent the eigenstates by the qua
ergies that evolve from the respective eigenenergies foF
50, i.e., we use the eigenvalues« i ,0 and eigenvectorscn, j

i ,0 of
Eq. ~4! that are defined by

F→0: « i ,0→Ei and uc0,i
i ,0u2→1. ~6!

For the sake of nomenclature in the following, we will ref
to this representation as the zero-photon representation~in-
dicated by a 0 in theupperpair of indices at« andc! and to
the quasienergies« i ,l5« i ,01 l\v and the corresponding
eigenvectorscn, j

i ,l 5cn1 l , j
i ,0 as thel -photon representation. Thi

has to be distinguished from thenth Fourier component o
the l -photon representation which is denoted by then in the
lower pair of indices ofcn, j

i ,l .
It is worth noting that for a symmetric quantum-well sy

tem (H2 i\]/]t) is invariant under the operationSp : (x→
2x,t→t1T/2). As a consequence, a complete set of so
tions of Eq. ~2! can be found among Floquet functionsw
with either even or odd parity underSp . Since in the expan-
sion of the Floquet functionw @Eq. ~3!# the wave functions
of the undriven quantum well with even@j 51 ~ground state!,
3...! and odd (j 52,4...) parity with respect to space inve
sion are used as a basis, the coefficientscn, j must satisfy the
following relations:

w,even parity: cn, j50 for n1 j even, ~7a!

w,odd parity: cn, j50 for n1 j odd. ~7b!

For a given symmetry of the Floquet functions, half of t
expansion coefficientscn, j vanish according to Eq.~7!. For
the Floquet functions in the zero-photon representation,
rs.
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operation Sp becomes equivalent to the space invers
(x→2x) for vanishing F. Therefore, for a symmetric
quantum-well system, the zero-photon Floquet functio
have the same parity with respect toSp as the corresponding
basis functionsc j

0 have with respect to space inversion.
In the following we consider two symmetric quantu

wells separated by a thin barrier. The ground states in
adjacent quantum wells (E1 ,E2) are assumed not to b
coupled through the barrier and, consequently, are dege
ate (D125E22E150). Furthermore, we assume that th
first excited states (E3 ,E4) are separated from the ground
state doublet by approximately 100 meV. Due to the hig
energy of these states, they are coupled by tunneling,
therefore, are split by an energyD345E42E3 assumed to be
in the order of 5–10 meV. Such a situation, for example
realized by two 80 Å GaAs/Al0.3Ga0.7As quantum wells
separated by a 50 Å barrier, the energy diagram of which
schematically shown in Fig. 1. In this structure, virtually a
the intersubband oscillator strength is contained inE1→E4
andE2→E3 transitions~indicated by the thin arrows in Fig
1!. The driving frequency\v is assumed to be much smalle
than the intersubband transition energies, i.e., on the orde
magnitude of the tunnel splittingD34 ~sketched by the thick
arrow in Fig. 1!. Under these conditions, the coupling of th
ground- and excited-state doublets due to the driving fi
can be safely neglected for realistic field strengthsF. There-
fore, Eq.~4! can be separated into two blocks, one describ
the ground-state doublet„j ,kP@1,2# in Eq. ~4!…, the other
one the excited-state doublet„j ,kP@3,4# in Eq. ~4!….

For each of the two doublets under consideration, Eq.~4!
can be separated into equations for the even and odd Flo
functions by using Eq.~7!, rearranging lines and columns
and setting the origin of the energy scale to the mean va
of the doublet energies:

FIG. 1. Schematic energy diagram of the coupled Ga
Al0.3Ga0.7As quantum wells under consideration. The eigenenerg
and the squared moduli of the wave functions of the undriven s
tem are shown for the ground- (E1 ,E2) and excited-state doublet
(E3 ,E4). The transitions induced by the weak probing field~ampli-
tude f frequencyV! are indicated by the thin arrows, whereas t
thick double arrow schematically shows the intense driving fi
~amplitudeF; frequencyv, F@ f , v!V!.
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In Eq. ~8!, the abbreviations m5eFxjk/2\v, d
5uD jku/2\v, and «̃5«/\v are used. The upper~lower!
signs in Eq.~8! correspond to Floquet functions with eve
~odd! parity. In addition, the indexj of the Fourier compo-
nentscn, j has been omitted since, for a symmetric two-lev
system, the specification of the parity and frequencyn)
uniquely determines the expansion of the Floquet funct
@Eq. ~4!# in the sense of Eq.~7!.

For the ground-state doublet,D1250 according to our as
sumption. In this case, the eigenvalues and eigenvector
Eq. ~8! are readily obtained to be21

«6,m5m\v, cn
6,m5Jn1mS eFx12

\v D , ~9!

whereJn denotes thenth-order Bessel function of the firs
kind. Therefore, in the zero-photon representation (m50),
the two Floquet functions evolving from the ground-sta
doublet are given by

w1~2 !,0~x,t !5 (
n52`

`

@J2n~a12!e
2 i2nvtc1~2!

0 ~x!

1J2n11~a12!e
2 i2~n11!vtc2~1!

0 ~x!#,

~10!

where a125eFx12/\v. These results are similar to thos
obtained, for example, by Holthaus1 for strongly driven
coupled quantum wells.

For the excited-state doublet (E3 ,E4), Eq. ~8! cannot be
solved analytically since the splittingD34 is finite. Therefore,
in the following, results obtained by numerically diagonal
ing Eq. ~8! are presented. In these calculations the infin
matrix in Eq.~8! has to be truncated. As a consequence,
infinite series of eigenvalues spaced by\v @defined in Eq.
~5!# is broken, and the eigenvalues of those states, for wh
the coupling to the truncated states would be significant,
deviate from the equally spaced quasienergy ladder. This
be used to check the error induced by truncating Eq.~8! a
posteriori: for the range of field strengthsF such that the
difference between the quasienergies of the zero-photon
resentation and the adjacent quasienergies belonging to
same ladder, i.e., the quasienergies of the61-photon repre-
sentation! does not deviate significantly from6\v, the error
due to the truncation of Eq.~8! is negligible. In our calcula-
tions, interactions via up to ten photons@corresponding to 21
Fourier components in Eq.~8!# were included, resulting in an
error in the difference between the eigenvalues of the z
and one-photon representation of less than 0.1% of\v for
fields up toeFxi j /\v,15.
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Figure 2~a! shows the result of the calculation for then
50,61 Fourier components of the eigenvector correspo
ing to the third level in the zero-photon representation («3,0)
as a function of the strengthF of the driving field. In

FIG. 2. ~a! Numerical solution for then521 ~diamonds!, n
50 ~squares!, andn511 ~circles! Fourier components of the ei
genvector corresponding to the third level in the zero-photon re
sentation. For intense driving fields, these solutions can be app
mated by the Bessel functions shown in the plot by the dash-do
full, and dotted lines. In the calculationD34/\v52.2 was assumed
~b! Part of the quasienergy ladder calculated forD34/\v52.2.
Shown are only those quasienergies that form a ladder with
quasienergies evolving fromE3 ~circles! andE4 ~dots!. For intense
driving fields, the dependence of the quasienergies on the dri
field can be approximated by6J0(2eFx34/\v), as shown by the
full and dash-dotted lines.
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56 4775FLOQUET STATES AND INTERSUBBAND ABSORPTION . . .
the calculations,D34/\v52.2 is assumed. Figure 2~a! shows
that the coefficients strongly deviate from the Bessel fu
tion behavior that is obtained for vanishing splitting acco
ing to Eq. ~9!. However, for very strong fields (eFx34/\v
.7) the n521, 0, and 1 components approach the Bes
functions2J2 , J1 , and2J0 @shown by the dotted, full, and
dash-dotted lines in Fig. 2~a!, respectively#. In this regime of
field strength,D34!eFx34 and therefore, can be neglected
Eq. ~8! ~strong driving limit!. As a consequence, the Bess
functions given by Eq.~9! are approximate solutions of Eq
~8! for intense driving fields.@Settingm521 in Eq. ~9! and
using J2n5(21)nJn results~up to the phase factor facto
21! in the Bessel functions shown in Fig. 2~a!#. Following
the work of Holthaus,1 in the strong driving limit the correc
tions of the quasienergies due toD34 being finite can then be
obtained in first-order perturbation theory:

«6,m5m\v7~21!m
D34

2
J0~2a!. ~11!

Moreover, using similar arguments, it can be shown that
the limit D34,\v, Eqs. ~9! and ~11! are good approxima
tions even for low amplitudes of the driving field.

In Fig. 2~b!, the quasienergy ladder in the energy ran
2D34/2 to D34/2, as obtained by numerical diagonalizatio
of Eq. ~8! for D34/\v52.2, is shown as a function of th
driving field strength. The quasienergies belonging to
same ladder as the one evolving from the levelE3 (E4) of
the undriven well are shown by circles~dots!, and are labeled
by «3,n («4,n). Also shown in Fig. 2~b! by the broken and full
lines are the approximate quasienergies calculated from
~11! for m50. As in the case of the Fourier componen
sinceD34/\v52.2 only for very strong fields (eFx34/\v
.7), Eq.~11! becomes a good approximation to the nume
cal solution of Eq.~8!.

In the remaining part of this paper, the intersubband tr
sition probability from the ground-state doublet (E1 ,E2) to
the excited-state doublet (E3 ,E4) and its dependence on th
driving field is calculated. Such transitions can be induced
a weak probing field with a frequency on the order of t
energy difference of the two doublets. The interaction o
strongly driven quantum-well system with a probing fie
can be described in the dipole approximation by adding
term H int5exf cos(Vt) ( f !F) to the HamiltonianH. The
transition ratesPif ~proportional to the linear absorption co
efficient! from an initial statec i to the final statec f @c i ( f )
5exp(2i«i(f)t/\)wi(f)(x,t),iP$1,2%, f P$3,4%# induced by this
interaction are then calculated in first order inH int by time-
dependent perturbation theory. The relevant matrix elem
are given by

^wf~x,t !uxuwi~x,t !&5xf ,i(
N

8 exp~2 iNvt !(
n

cn
f cn1N

i ,

~12!

where the apostrophe at the left summation symbol indic
that the summation indexN runs only over even~odd! inte-
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gers for Floquet functionswf ,wi with opposite~equal! parity
with respect toSP . In addition, in deriving Eq.~12!, for the
symmetric quantum-well structure under consideration
usedx32'x41[xf ,i . With Eq. ~12!, Fermi’s golden rule for
the transition ratesPi f becomes

Pif~V!} (
N52`

`

8d~« i2« f1N\v1\V!U(
n

cn
f cn1N

i U2

.

~13!

Needless to say,Pif (V) is independent of the represent
tion, as can be shown by using Eq.~5!. In the following we
will discuss the dependence of the quantum-well absorba
on the frequency and intensity of the driving field as it
gradually increased from zero. Therefore, the zero-pho
representation is the natural representation to work w
Note that for the transition processes discussed below
numbers given forN refer to this representation.

In Fig. 3 the transition ratesPif (V) calculated according
to Eq.~13! and summed over the degenerate initial-state d
blet of the coupled quantum wells under consideration
shown as a function of the strength of the driving field (F)
and the photon energy of the probe field~V! for four differ-
ent ratios ofD34/\v. ~In Fig. 3, V0 denotes the average o
the transition energiesE42E1 and E32E2 . The transition
rate is grey scale coded with black indicating high transit
rates.! Figure 3 shows that for frequencies greater than
splitting of the excited states in the undriven syste
~D34/\v50.8 in Fig. 3!, the absorption spectrum mainl
consists of two lines for all intensities of the driving field
These strong absorption lines evolve continuously from
absorption lines forF50, showing that only theN50 terms
in Eq. ~13! contribute significantly to the absorption spe
trum. The splitting of the absorption lines closely follows th
Bessel function behavior of Eq.~11! ~even for small fields!,
and, therefore, it can be suppressed at 2eFx34/\v equal to
the zeros of the Bessel functionJ0 : as shown in Fig. 3, only
one absorption line remains in the spectrum for these fi
strengths. This suppression of the tunnel splitting is ana
gous to the miniband collapse predicted by Holthaus.1,2

Decreasing the driving frequency toD34/\v51.2 leads
to a splitting of the two absorption lines for moderate fiel
~eFx34/\v<1; see the upper right panel of Fig. 3!. The two
additional absorption lines emerging for finiteF are sepa-
rated by6\v from the absorption lines that evolve from th
two lines present atF50 @i.e., they correspond to theN5
61 terms in Eq.~13!#. ForeFx34/\v!1, this splitting is the
well-known Rabi or ac Stark splitting. However, the forma
ism chosen in this work is not restricted to small drivin
fields and, therefore, we are able to calculate the Rabi s
ting and its dependence on the field strength beyond
RWA for all magnitudes of the driving field: The upper righ
panel of Fig. 3 shows that for increasing field the oscilla
strength is gradually transferred to theN561 transitions.
Finally, for very intense fields, these are the only transitio
that remain in the calculated absorption spectrum. Their tr
sition energy oscillates about and decays toward the a
metic mean of the transition energies forF50. In analogy to
the dc Stark effect~i.e., a strong dc field decouples th
double quantum well, so that both wells finally absorb at
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FIG. 3. Grey-scale contour plot of the trans
tion ratesPif summed over the initial state dou
blet ~black indicating high transition rates! as a
function of the driving fieldF and of the photon
energy of the probing field~V! for four different
ratiosD34/\v. ~V0 denotes the mean energy di
ference between the ground- and excited-st
doublets of the undriven system.! The arrows in-
dicate the energy difference corresponding to
driving field photon. The integers in the uppe
panels refer to the termsN in Eq. ~13! ~in the
zero-photon representation! that correspond to
the respective absorption lines~see the text for
further discussion!. In the lower two panels these
labels have been omitted for clarity.
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same energy!, this behavior can be interpreted as the qu
tum wells becoming gradually decoupled by the inten
(eFx34/\v@1) ac driving field.

The lower two panels in Fig. 3 show that decreasingv
further leads to an even richer structure in the calcula
absorption spectra as more photon replicas of the orig
lines ~photon sidebands! appear in the absorption spectr
For example, in the panel corresponding toD34/\v53.2,
significant oscillator strength is redistributed among as m
as six absorption lines in the range 1,eFx34/\v,2. It is
evident here that Rabi splitting and photon sideband abs
tion are closely related, the latter being a generalization
the former for nonresonant driving. However, for the larg
fields included in the calculations, again only two absorpt
lines dominate the calculated absorption spectra, indica
the decoupling of the quantum wells by the driving field.

The increased complexity of the absorption spectrum
driving frequencies\v,D34 can be understood in the fo
lowing way: Figure 3 shows that for these frequencies
quasienergies evolving from the excited-state doublet
pushedapart as the driving field is gradually increased fro
zero@note that, according to Eq.~9!, the quasienergies evolv
ing from the ground-state doublet are independent ofF.
Therefore, the quasienergies evolving from the excited-s
doublet display the same dependence onF as the transition
energies shown in Fig. 3#. Consequently, for certain field
strengthsF, these levels are pushed into multiphoton re
nances producing strong mixing and hence the enrichmen
the ~Fourier! spectrum shown in Fig. 3. Since for drivin
frequencies\v.D34 the quasienergies evolving from th
excited-state doublet are pushedtogether~see Fig. 3!, multi-
photon resonances cannot occur and, therefore, no side
absorption results.
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III. CONCLUSIONS

We have calculated the changes in the absorption s
trum of a symmetrically coupled double-quantum-well sy
tem induced by a strong driving field. By using the Floqu
theory, we were able to numerically calculate these chan
in a nonperturbative way for arbitrary frequency and inte
sity of the driving field. Depending on the relative magn
tudes of the splitting of the excited states and the inten
and frequency of the driving field, both the collapse of t
splitting and the appearance of multiphoton replicas of
original absorption lines including ac Stark splitting has be
predicted within one unified approach. Experimental
double-quantum-well systems withD34'10 meV andx34

'80 Å are well within the capability of III-V molecular-
beam-epitaxy growth. High-frequency driving fields wi
field strength on the order of 10 kV/cm can, for example,
generated by the free-electron lasers at the University
California at Santa Barbara. Therefore, the phenomena
dicted in this work should be observable, and might ope
possibility to investigate the dynamics of strongly drive
coupled quantum wells by optical means.
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