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Real-space renormalization of the Chalker-Coddington model
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We study a number of hierarchical network models related to the Chalker-Coddington model of quantum
percolation. Our aim is to describe the physics of the quantum Hall transition. The hierarchical network models
are constructed by combining series and parallel composition of quantum resistors. The localization-
delocalization transition occurring in these models is treated by real-space renormalization techniques. Essen-
tially, the localization-delocalization transition is due to a competition between two one-dimensional localiza-
tion mechanismg.50163-18207)06031-1

[. INTRODUCTION vergence with decreasin@ is in agreement with experi-
ments, which independently showe=1% Numerical
Despite the explosion of interest in and seemingly inex-calculation$ confirm the resulv=2.35+0.02, in tantalizing
haustible richness of the quantum Hall eff@@HE), surpris-  agreement with a clever but alas nonrigorous argumentthat
ingly little progress has been made on what is arguably thghould beZ.®
central phenomenon associated with all incompressible One of the most significant developments in modeling the
guantum Hall liquids—the quantum Hall transition itself. By QHE transition has been the advent of the Chalker-
now the basic phenomenology is rather well known: nonin-Coddington network model of quantum percolatioithe
teracting electrons confined to a plane, when subjected to elevance oflassicalpercolation to the quantum Hall prob-
fixed uniform magnetic field and a random scalar potentialjem was emphasized by Trugm&hClassical electrons in a
exhibit quantum critical behavio_r at a sequence of energyrong magnetic field=Bz obey the guiding center drift
eigenvalues, where the correlation length behave§(B3  equations of motion
*x|E—E¢ ", with v~%.12 Early theories of localization in
the presence of a magnetic field held that no extended states ﬂ_ C- o
exist in two dimensions, a result derived from the corre- dt  eB @
sponding “unitary class” nonlineas-model description of . ) L
the long-wavelength physics. Experiments, however, unamyvhere_zV(r) is the gxternal_ potential. A vivid picture emerges
biguously demonstrated the existence of extended states | Which the Fermi “sea” is analogous to a real sea covering
the quantum Hall system. The work of Levine, Libby, and@ rough gurface in energy space whose height is qescrlbed by
Pruiskerl showed how a topological term present in e the funct!onV(r). The cc_Jrrespo_ndlng qua_ntum eigenstates
model could produce the necessary critical behavior, al@'® localized along equipotentials, accruing an Aharonov-
though technical difficulties rendered the improvednodel ~ Bohm phase d/#ic)JA-dr which for a complete orbit is
ineffective in providing a quantitative description of the tran- Proportional to the magnetic flux encirclédingle valued-
sition (e.g., critical exponents, scaling functions, ptdone- ~ N€ss then leads to Bohr-Sommerfeld quantization yules
theless, the language of critical phenomena provided a vergle€ctrons at the Fermi level either circulate clockwise
useful framework within which one could interpret Viewed from “above’) around isolated lakes, when
experimenté:® Consider, for instance, the behavior of the EF<(V), or counterclockwise around isolated islands, when
Hall conductivity o, as a function of the variable® (mag- Er>(V). Such states clearly are localized. Only when

netic field, L (linear system dimensionand ® (tempera- Er=Ec=(V) are states at the Fermi level extended. As
ture). Within the scaling regime, one can write E—E., the equipotentials become more and more rarefied,

and their circumference increases in sizdf@s E¢| 3, an

e? exact result. However, the quantum eigenfunctions are not

Tyy(B,L,0)= - f(|B~ B*[LY,|B~B*[®@ '), (1) infinitely narrow. Rather, they have a width on the order of
the magnetic lengtr’= y#c/eB, and thus quantum tunnel-

whereB* is a critical magnetic fieldz is the dynamic criti-  ing will occur in the vicinity of saddle points &f(r).8* It is
cal exponent, and(x,y) is a universal scaling function. precisely this physics which is captured by the network
From this expression, one finds that the maximum slopenodel. Thus, rather than directly computing the eigenfunc-
(doxy!IB) max is proportional to® ~2”; the power law di- tions of
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FIG. .1. The Chalker-Coddington network model of quantum £ 2. Transmission and reflection through d23<3y2 net-
percolation. work (L=3). The 13 vertices are denoted by black dots.
2
H:i P+ EA +V(1), (3)  value alone merits publication. We also wish to draw the
2m c reader’'s attention to the recent work of Galstyan and

many of which are tightly localized on peaks and valleys andRaikh?® who independently developed a real-space RG ap-
hence irrelevant to the physics of the QHE transition, theProach to the network model. Their results are largely
network model “cuts to the chase” and simulates a networkcOmplementary to those presented here.

of saddle pointgsee Fig. 1, each described by a® matrix

o I - II. DISTRIBUTION P, (T)
S H

4
relating incoming to outgoing flux amplitudésn the frame
of an incoming electron, scattering is either to the left, wit
probability T=|t|?=]|t’|?, or to the right, with probability
R=|r|?=|r'|?=(1-T) — there is neither “forward” nor
“backward” scattering.

WhenT< 3, scattering is predominantly to the right, cor-
responding to the aforementioned clockwise motion aroun
isolated lakes. Hence there is a correspondence between t

ﬁnﬁr%ie'?er?vﬁliégi?i; th?hHamn:]c:ann ?iIi E(|q(3)ig?dhtheld central V(L)=L2+(L—1)? scattering vertices. Figure 2
ansmission probability'; the quantum critical point shou shows thd. =3 case. Note that there aké=2L — 1 scatter-

lie at T=3. Randomness enters the network model princiing nodes across each of the main diagonals. Integrating over
pally through phases acquired by the flux amplitudes in thehe random phases on the links, one obtains the distribution
course of their propagation along each link. These phases, (T) for transmission to the left through the supercell.
reflect the Aharonov-Bohm phases accrued due to motion |n the limit L—, we expect two stable distributions,
along equipotential segments of irregularly varying Iength.given by P..(T)=&(T) and P..(T)=8(1—T). These corre-
The phases on the links are therefore modeled as randogpond to bulk localized phases with=0 and 1, respec-
variables uniformly distributed between O and.2Several tively. The quantum critical point will be characterized by an
numerical investigatiors"*>** have convincingly demon- nstable distribution P.(T)=P*(T). The terms “stable”
strated the applicability of the network model to the quantumand “unstable” refer to renormalization-group flodswe
Hall transition. o shall develop an approximation scheme by which the distri-
In this paper, we adopt a real-space renormalization-groupytion P, (T) for a larger system may be determined in
(RG) scheme which will allow us to compute exponents anderms of P, (T). This functional relation may be represented
scaling functions associated with the quantum Hall transij terms of a set of parametefX;(L)} which characterize
tion. Inasmuch as real-space renormalization is fraught withne gistributionP, (T) [e.g., the coefficients in a Legendre or

uncontrolled approximationge.g., values of critical expo- Chebyshev polynomial expansion Bf (T) in the variable
nents are sensitive to the geometry of the renormalizedi celly — >1_ 1)

our results will be of dubious quantitative value. However,
we find that a simple and appealing qualitative picture
emerges from this approach, and we feel its pedagogical Xi(bL)=F;({X;(L)}:b). 5)

We commented above how a Chalker-Coddington net-
work composed of identical scatterers should exhibit a quan-

ptum critical point wherT = R= 3. Consider now a network in
which the individual scattering probabilitids(as well as the
phases on the linksare random variables, chosen from a
distribution P(T). We shall be interested in how the distri-
butionP (T) behaves with increasing cell sizein the limit
—o. To define the transmission coefficiefitof a finite
etwork, we cut out a/2L x 2L section from an infinite
A&twork (the lattice spacing i®=1), and retain only the

r t’



56 REAL-SPACE RENORMALIZATION OF THE CHALKER- ... 4753

When X" =F;({X["};b) the distribution is at a fixed point. and from set§’=|M,,/?=1/T’, a transmission coefficient
The eigenvalue$\,} of the matrixR;; = (dF;/dX;)|x» de- L L

termine the relevance of the corresponding eigenvectors —

(scaling variables and hence the stability of the fixed ?:T_lT_Z[1+2 R1R2C08p+RRy], (8)
point—positive eigenvalues correspond to relevant variables i , i i

and an unstable fixed point, negative eigenvalues to irrelVhere ¢=a—pg is ranflso_m. Precisely this calculation was
evant variables. The positive eigenvalues define a set of critdone by Andersort al- in their study of one-dimensional
cal exponents/; 1= Inb/in\; the localization length expo- localization(see also Refs. 16 and 1 Averaging IfT over

nent v=Inb/ln\,, is the largest of these. One can alsothe angleg, one obtains

define theB function (INT"y=b(InT) 9)
dax; dF; _ for b scatterers in series. ThusTins driven to increasingly
ﬂi({xj}):_dmL b ' (6) negative values — this is the essence of one-dimensional
b=1 localization.
the B function vanishes at all fixed points. Equivalently, though, one may view the propagation as

From these considerations it becomes clear that one poStop to bottom,” and define a transfer matriX relating
sible way to compute the critical exponentwould be to O’ andZ’ toZ and O:
determine the RG flow o (T). An exact procedure would

require the calculation of this distribution for finite networks ol T —Csw cotd
of arbitrary size. Computational limitations would render T =N o/’ N=| _cot9 csm|-
such attempts futile beyond even modest valued ofn-

stead, we shall resort to two uncontrolled and closely-relateg}, ihis case, the roles af andR are reversedT = sin?d and
approximations:(i) Migdal-Kadanoff (MK) bond shifting R=cog6, and two scatterers in parallel give
and(ii) replacing the square lattice with an unphysical, hier- '
archically constructed lattice. These approaches will allow us 1 1
to perform the renormalization recursively, using only R~ R R.LLt2VTaTocosp+TaTo], (10
simple numerical computations. 172
with

Ill. SERIES AND PARALLEL PROPAGATION (InR’)—b(InR)
for b parallel scatters. In this case the reflection amplitude is
driven to zero. Now in the network model, both series as

The group U(2) of unitary X2 matrices may be param-
etrized by four anglesd, 3, v, 6):

ef 0 co® sing) /e? 0 well as pe}r_allel propagation occur, and ir) our v_iewpoint it_ is
S=gi@ ig ] iy a competition between these two one-dimensional localiza-
0 e —sing cogf|| 0O e 7| tion mechanisms which leads to a critical point correspond-

ing to the quantum Hall transition. It is, however, impossible
The phase angles, 8, andy can be absorbed by the random to separate the two modes of propagation neatly, and we
link phases, and hence without loss of generality one maghall have to resort to approximation schemes, such as the

restrict attention t® matrices of the form Migdal-Kadanoff approach, or to a modification of the origi-
_ nal model, such as hierarchical network constructions, in or-
B cos® sing @) der to make progress.
| —sind cos)

IV. MIGDAL-KADANOFF APPROACH

se® tand
tand sed

This S matrix may be recast in the form of a “left-to- . -

right” transfer matrix M, which relates flux amplitude® In order to apply the MlgdaI-Kadgnoff bond _sh|ft|ng

) . scheme to the network model, we begin by graphically rep-

andZ’ toZ andO’: . . ) X
resenting the elementary scattering process as a kind of in-
teraction vertex, as depicted in Fig. 3. Thus the entire net-

o z work may be represented by an infinite sequen f parallel

=M M= . y be rep Y8 sequence of paralie

T o lines on which currents flow in alternating directions, and
backscattering processes which divert flux from one line to

The transmission coefficient relating the incident flux one of its neighborgsee Fig. 4 We call this the “bricklay-

|Z]2 to the outgoing fluYO|? is T=cog¥6, and the reflection er’s representation” of the network model, for obvious rea-

coefficient isR=1—T=sir?6. sons, and further describe the propagation as being either

Consider now the “series” transmission through two con- “horizontal” or “vertical.” To effect a rescaling by a factor

secutive scatterers. Multiplying transfer matrices, and takingdp, we start with the(horizonta) bricklayer’s representation,

into account the random phases accrued in between scatteshown in Fig. 4. In every other row, we then shift- 1 out

ers, one obtains a composite transfer matrix of everyb interaction line so as to form a network in which

_ each renormalized vertex represelntsare vertices in series.

e* 0 This is depicted fob=2 in Fig. 5. We then rescale horizon-

0 ¢if tal distances byo. Were we to proceed in this manner, we

sed@, tand, se®,; tand,

M:

tand, sed, tand,; sed;
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FIG. 3. (a) The S matrix relates incoming to outgoing flux am- FIG. 5. The first step in the=2 Migdal-Kadanoff renormal-

plitudes [see Eq.(4)]. This information may alternately be ex- zation of the network model. Compare with Fig. 4. Dashed lines
pressed as a transfer mathk relating left and right flux amplitudes  jngicate bonds which have been shifted to the left. Dotted lines
(b), or N relating top and bottom flux amplitudés). indicate unshifted bonds.

would obtain the one-dimensional localization of Ref. 15. ] )
Instead, we view the network again in the bricklayer’s rep-Which has two stable fixed points & =0 and 1, and one
resentation, this time with vertical propagation, and perfornmunstable fixed point al* =%(\/5—1)~0.618. Linearizing
a second bond-shifting operation. This replaces each scattesbout the unstable fixed point, we obtain an eigenvalue
ing vertex with an effective composite vertex, shown in Fig.[ 5f(T;b=2)/dT]« =6—24/5, corresponding to a localiza-
6. This network resembles that of Fig. 7. _ tion length exponent ofv=Inb/In\~1.635. Note thatT*

To see how this leads to critical behavior, consider thex 1 g consequence of the order in which the bond shifting
behavior of theypical transmission coefficient, e4pT), un-  was performed: the composite vertex corresponds to series

der such a transformation. From H§), we obtain followed by parallel propagatiofnote the composite vertex
, - of Fig. 6 is not symmetric under 90° rotatign&Ve could
T'=1-(1-T")"=f(T;b), (11 equally well have chosen parallel followed by series propa-

gation, which would switch the roles df and R. We note
that the RG equatiofil1) and its counterpart witfi replaced
by 1-T coincide with two RG equations obtained in a
Migdal-Kadanoff approach to classical bond percolatfon.
There, the bond occupation probabilipy plays the role of

where we implicitly are working with typical values. For the
caseb=2, we have

f(T;b=2)=2T2-T4,

FIG. 4. The horizontal “bricklayer’s representation” of the net- 0
work model. Quantum-mechanical particles propagate in the direc-
tions of the arrows; scattering processes are represented by the dot- FIG. 6. The composite vertex in the=2 Migdal-Kadanoff
ted lines. The corresponding vertical representation is rotated byenormalization, which corresponds to series followed by parallel
90°. propagation.
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FIG. 7. After shifting in both the horizontal and vertical direc- 02
tions, each vertex in the network represents a composib® okr-
tices. The casb=2 is shown here.

FIG. 8. Theg function resulting from the infinitesimal Migdal-

T, and the MK bond shifting which | h mposition
, and the bond shifting ch leads to the compositio (})<adanoff renormallzatlonT 0 and 1 are attractive fixed points;

of quantum resistors in the network model corresponds t
multiplication of bond occupation probabilities. the critical point lies aff = 3. Arrowheads point in the direction of
If we setb=1+¢, where{—0, we obtain equations for RG flow.
n “infinitesimal” Migdal-Kadanoff renormalization:
Dy=InV/INM~1.465. FromV(M)=3(M?+1), one has
T'=T+{TINT-(1-T)In(1-T)]+0(». (12  limy_..Dy(M)=2. The renormalization flow of the trans-
mission coefficient and the multifractal spectrdifw) was
calculated in Ref. 19 for the caskb= 3, 5, and 9; the results
T* =3, and an eigenvalue=2(1-In2),, correspondingtoa g5, andf(a) rapidly converge to the network model results
critical exponent of v=1/2(1-In2)~1.629. The MK B8 eyen for such modest sizes. The RG equations for the case
function is then M=3 are identical to those obtained in Ref. 20, where a
different interpretation is adopted.
f(T;1+90) If one replaces the central scatterer in Fig. 9 with one for
d¢ (=0 which T=1, one recovers the four-site scattering unit of Fig.
6. One can use this as the fundamental unit of a hierarchical
=TInT—(1=-T)In(1-T); (13 construction, and the results differ from those of the previous
this is shown in Fig. 8. section only in that the linear dimension is taken to be

In statistical mechanics applications, such as the lIsing
model, one can define a Hamiltonidd’ in which bonds
have been shifted according to the MK prescription. When
computing the partition function, one can in principle per-
form thermodynamic perturbation theory it (— #) in or-
der to systematically improve upon the MK procedure. We
know of no such systematic improvement for our scheme,
nor do we have any sort of reliable estimate for the errors
involved in the calculation of.

The infinitesimal MK transformation has a fixed point at

ﬁ(T)—

V. HIERARCHICAL LATTICES

A related approach to the problem involves the construc-
tion of hierarchical lattices. Consider, for example, the scat-
tering unit of Fig. 9, which containg=5 vertices in an area
M?; in units of the distance between vertices, we have
M = 3. Now replace each of the vertices with a replica of the
original cell, forming the structure shown in Fig. 10. Repeat-
ing the proces: times generates a hierarchical structure
with V" vertices contained in a square of side lenigth The FIG. 9. AnM=3,V=5 elementary cell on which a hierarchical
Hausdorff dimension of this hierarchical lattice is lattice is based.
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Fixed Point T*

Localization Length Exponent v

04

In(b)

FIG. 10. The hierarchical lattice at the second level of construc- FIG. 11. Results of the hierarchical lattice renormalization of
tion, beginning with theM =3, V=5 cell of Fig. 9. There are EQ. (14) for the fixed point transmission coefficieft* (solid
V2=25 vertices in thisM2x M?=9x9 supercell. curve), and the localization length exponent(dashed cunje vs

Inb. The linear dimension iM=2b—1.
M=2b—1 rather tharb. The Hausdorff dimension of the . . o _
hierarchical lattice isDy=Inb%InM (=In4/In3 for b=2),  tion P(T). We will choose the simplest nontrivial unit cell,
whereas the lattice of Fig. 7 is fully two dimensional. The hamely, that of Fig. 6, in which two composite scatterers,
exponentr now is changed:w=InM/In\=In3/In(6—24/5) each of which is two bare scatterers in series, are placed in
~2.592. Generalizations to other valuesbodre straightfor- ~ Parallel. . o . _
ward: iterating Eq(11) n times, we obtain the flow equation  Starting with a distribution functio®(T), we derive the
intermediate distributiorP;,; after taking two scatterers in

T(M"/ o) =fI"(T(/):b= 3 M+3), (14  series:
wherefl" is the iterated function satisfying
fIrH(T;b) = £(FI"(T;b);b)

andflll=f. Sincef(T;b) is monotonically increasing from J”d_‘ﬁ _
f(0;b)=0 to f(1;b)=1, there are always three fixed points % 0o AT=1(T1, Tz, co8p)], (16
on the intervall €[0,1]: T=0 andT=1 (both stablg and a
nontrivial unstable fixed point with @T*<1. The critical
exponenty is

1 1
Pinl(T)= fo dT,P(Ty) fo dT,P(T)

with

f(T1,Tou) LELE
12, 0)= .
. InM (15 1+(1-T)(L-T)+2p(1-T(1-Ty)
’ .1 1y’
Inf"(T*;z M+ 3) We now combine two of these composite units in parallel,
wheref’(T;b)=df(T;b)/dT. obtaining the renormalized transmission coefficient distribu-

Whereas the Hausdorff dimensidd, and fixed point tion
both increase monotonically, with

~ 1 1
Du(b=1)=1, Dy(b=)=2, P(T)=fodepimu—Rl)fodRZPimu—Rz)

— — 1 — _ 7d
T*(b=1)=7z, T"(b=x*)=1, xJ 7¢5[1—T—f(R1,R2,cos¢)]. (17)
the critical exponent exhibits a minimum fob~ 35, where 0
v~2.11. We find that diverges weaklyas Irb/Ininb) in the  This is equivalent to the following:
b— < limit. These results are plotted in Fig. 11.

1 1
VI. RENORMALIZATION GROUP FOR DISTRIBUTIONS Pin(T)= ZWTzfo dTlfo dT-P(T1)P(T2)

In Sec. IV, we derived RG flows for the typical transmis- A(1-A|) TT
sion coefficient, defined byly,=exyInT). Now we will 5 L2 ,
concern ourselves with the RG flow for the entire distribu- VI-A% J(1-T(1-Ty)
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FIG. 12. The RG flow of the distributiof(T). The average T
transmission coefficier(T) is plotted vs iteration for various initial
conditions. The initial value oAT was held fixed agT);,; was FIG. 13. The fixed distributiodP* (T) obtained by iteration of
varied between 0.605 and 0.606. The critical point was found to lighe RG flow equations. Shown are results of a numerical integration
at(T);,i;~0.605 36. (dotted curve and a smooth fit to the numerical ddsolid curve.

T, To—T[1+(1=Ty)(1=T5)] the iterated average transmission coefficieht as a func-

A= , tion of the numbeN of iterations allows for the computation
2TV(1-Ty(1-Ty) of » from
where®(x) is the step function, followed by <T>N—<T>*OCMN/V_ (18

L 2 In Fig. 14 we plot In(T)—(T)*)KT)*| versusNInM; we find
f dTlf dT,P(T1)Pind( T2) v~6.6. Note that within the MK scheme, the rescaling factor
0 0 is b=2; consequently~4.2.
The iteration of the full distribution functiofP(T), ac-

- 1
P~ 2m1i-72

X(1_|B|) (1-TY(A-Ty) cording to Eqgs.(16) and (17), yields an exact RG flow for
J1-B2 JT1To ' P.(T) for the four-site scattering unit of Fig. 6. However,
the iteration could be performed only numerically. We con-
B— (1-T)A-Ty)—(1-T)(1+T,Ty) 05
2(1-T)\T,T, '

Note thatB(T;,T,;T)=A(1—T;,1-T,;1-T). -

We have numerically iterated the distribution according to &
these equations. Since we expect a single relevant scalin £,
variable controlling the RG flow oP(T), we parametrize 2
the initial distribution by its averagéT);,; and a width E
(AT) = WT?—(T)?). By varying (T);,; alone, we drive =
the system through its critical point. This is shown in Fig. 12,
where the iterated average transmission coefficient is plotte:
for several initial values ofT). (We used an initial distribu- s
tion which was a sum of linear plus exponentially increasing
terms, though the precise details are presumably unimpor ol . = =
tant. Keeping the initial width fixed and varyind );; be- N in3
tween 0.605 and 0.606, we found the critical pgim}* at
(T)nir=0.605 36) The fixed point distribution itself is plot- FIG. 14. To derivev from Eq.(18), we plot the logarithm of the
ted in Fig. 13. left-hand side vsNInM. The slope is therv™!. Here we show

Within the hierarchical lattice approach, each iterationresults forM =3 discussed in Sec. VI; we find~6.6, in poor
rescales the linear system size by a fadtb= 3. Analyzing  agreement with the accepted value 3.
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(T(SL,L+68L))=(—In(1—T)) (SLIL).

With this assumption, the resulting Fokker-Planck equation
reads

J J
&_LPL(T):_O?_TJ(T’L)’ (21)
where the “current” is given by

1T 9 pop (T
o grit (M}

J(T;L)=(InT),

a
{(1-T)?PL(D)}. (22

+<In(1_T)>LZ ﬁ

Without going into details we report on the results that one
can obtain from the Fokker-Planck equati@l). We find
that there are three fixed-point distributionss(T),
8(1-T), and a uniform critical distributioP* (T)=1. To
extract the critical exponent of the localization length we
took X, =(In(1—T)) —(InT)_ as a scaling variable which has
a fixed-point valueX* =0. Linearizing the flow equation
around the fixed-point distribution gives rise tgdunction

for X, which reads

FIG. 15. Construction of a network by adding infinitesimal net-
works to a square network of linear size The infinitesimal net-

works are characterized by a small extensinin one direction. dX

: : . L
The network is composed according to series and parallel compo- dinL =X_. (23
sition laws.

Consequently, the critical exponent is=1. Although the
clude this section with a brief account of an analytical Fokker-Planck approach to the network model is able to de-
method to obtainP(T). In the context of one-dimensional scribe the correct qualitative physics of the localization-
localization, Eq(8) has been used to derive a Fokker-Planckdelocalization transition, it suffers from an ambiguity in
equation(cf. Ref. 2] for the distribution functionP (T).  modeling the average transmission coefficients of the infini-
One identifiesT;=T(L) with the transmission coefficient of tesimal blocks. Adopting a different model can change the
a one-dimensional resistor of lendthplaced in series with a critical exponentr. In addition, the composition laws on
resistor of infinitesimal length and transmission coefficientwhich the Fokker-Planck approach is based do not lead to
T,=T(4L). In a regime of “local weak scattering,” one can the full Chalker-Coddington network.
identify the elastic mean free path by |.=S6L/(R(5L)),
and derive the following Fokker-Planck equation by standard VIl. CONCLUSION
methods(cf. Ref. 17 and references thergin

In this paper we developed a simple approach to the quan-
IP(T) 4 I, tum Hall transition. We considered a number of hierarchical
le— =271 A~ D 7 [TPuDIy. (19 network models related to the Chalker-Coddington model of
quantum percolation. The basic ingredients of our networks
This is an equation describing one-dimensional localizationare series and parallel compositions of quantum resistors;
It turns out thatl, sets the scale for the localization length, their hierarchical nature allows us to analyze their critical
i.e., (=InT) =L/,. properties using simple real-space renormalization tech-
We now try to extend this one-dimensional scheme to théliques. In particular we studied network models that can be
network model. Keeping with our previous approach, weinterpreted as resulting either from Migdal-Kadanoff bond-
successively add infinitesimal pieces in series, and then ighifting scheme or from the construction of hierarchical lat-
parallel. This two-dimensional iteration scheme is scheme ig§ces of Hausdorff dimensiob<2. The different models
graphically depicted in Fig. 15. We begin with hix L array ~ are labeled by an integér, whereb? is the number of resis-
and attach to it two infinitesimal rectangles of siz&x L tors that form an elementary cell.
and 6L x (L+ 6L), respectively. Transport then takes place In Sec. VI we calculated the flow of the distribution func-
according to the usual series and parallel composition lawgion P (T) for the transmission coefficierit (*two-point-
The main obstacle in deriving a Fokker-Planck equation forconductance) in the caséo=2. This was done by means of
this model is due to the fact that we do not knawpriori numerically iterating the renormalization-group equations.
how the transmission coefficients of the infinitesimal blocksWe found the flow to have three fixed points, two of which
behave. To make progress, we proceed in analogy to theorrespond to localizationl(=0, T=1). The third fixed dis-
one-dimensional case, aagsume tribution P*(T) corresponds to the quantum critical point,
where delocalization occurs. The critical point distribution
(R(L,8L)y=(—=InT)_ (SL/L), (200  P*(T) turned out to be very broad, and the flowRf(T) in
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the vicinity of P*(T) is governed by one-parameter scaling. percolation model for quantum Hall transitions, our models
The critical exponent was also determined, and found to be are essentially quantum mechanical. Furthermore, the con-
in poor agreement with accepted values. cept of real-space renormalization can be extended to im-
As a further simplification we derived renormalization prove quantitative resultsee Refs. 20 and 19
schemes for the typical transmission coefficient We recently discovered the work of Ref. 20, in which a
Typ=exp(InT). Here we simply averaged over the randomsimilar real-space renormalization-group approach to the
link phases, neglecting variations in the individual transmis-Chalker-Coddington model is developed. In that work an el-
sion coefficients. We obtained closed RG equationsTigy ~ ementaryM =3, V=5 cell (see Fig. 9 replaces each scat-
(Secs. IV and V. From these equations we derived fixed- terer in the renormalization step. The 180° rotational sym-
point values forTy (b) and critical localization length expo- metry of this cell nicely guarantees that the critical point will
nentswy, for arbitraryb>1. For smallb the notion of typical  |ie at T=1. Note that the rescaling factor in Ref. 20kis- 2
transmission coefficient as a substitute for a whole distriburather than ouM =3. In our work the central scatterer of
tion (which is broad is dubious, and it is no surprise that this cell is replaced with one for whici=1 (or R=1),
vp— differs from the value obtained by iterating the whole resylting in the simple series-parallel composition laws dis-

distribution function. However, the notion of typical trans- cyssed above. Due to the rotational asymmetiy,
mission coefficient is more reliable for larde where the . g* —(1_T*) at the critical point, henc&* # 1.

composition ofb resistors in series favors the formation of
log-normal-type distributions. On the other hand, for laibge
the resulting hierarchical network has little in common with
the original Chalker-Coddington network. Nevertheless, the
slow variation ofy,, with b shows that the results for inter- D.P.A. and M.J. would like to thank the Physics Depart-
mediateb are not too far from that of the original network ment at Technion, where this work was started. D.P.A. also
model. thanks the Lady Davis Fellowship Trust and the National

All models that we considered exhibit a localization- Science Foundation, Grant No. NSF DMR-91-13631, for
delocalization transition which results from a competitionpartial support. M.J. also thanks the MINERVA foundation
between two one-dimensional quantum-mechanical localizaand the Sonderforschungsbereich 341 of the Deutsche For-
tion mechanisms. The models result from uncontrolled apschungsgemeinschaft for partial support. We are grateful to
proximations to the network model, but have at least somé\. Weymer for discussions and for assistance in computing
pedagogical value. In contrast to the well-known classicathe exponent in Sec. VI.
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