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Real-space renormalization of the Chalker-Coddington model
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We study a number of hierarchical network models related to the Chalker-Coddington model of quantum
percolation. Our aim is to describe the physics of the quantum Hall transition. The hierarchical network models
are constructed by combining series and parallel composition of quantum resistors. The localization-
delocalization transition occurring in these models is treated by real-space renormalization techniques. Essen-
tially, the localization-delocalization transition is due to a competition between two one-dimensional localiza-
tion mechanisms.@S0163-1829~97!06031-1#
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I. INTRODUCTION

Despite the explosion of interest in and seemingly in
haustible richness of the quantum Hall effect~QHE!, surpris-
ingly little progress has been made on what is arguably
central phenomenon associated with all incompress
quantum Hall liquids—the quantum Hall transition itself. B
now the basic phenomenology is rather well known: non
teracting electrons confined to a plane, when subjected
fixed uniform magnetic field and a random scalar potent
exhibit quantum critical behavior at a sequence of ene
eigenvalues, where the correlation length behaves asj(E)

}uE2Ecu2n, with n' 7
3.

1,2 Early theories of localization in
the presence of a magnetic field held that no extended s
exist in two dimensions, a result derived from the cor
sponding ‘‘unitary class’’ nonlinears-model description of
the long-wavelength physics. Experiments, however, un
biguously demonstrated the existence of extended state
the quantum Hall system. The work of Levine, Libby, a
Pruisken3 showed how a topological term present in thes
model could produce the necessary critical behavior,
though technical difficulties rendered the improveds model
ineffective in providing a quantitative description of the tra
sition ~e.g., critical exponents, scaling functions, etc.! None-
theless, the language of critical phenomena provided a v
useful framework within which one could interpre
experiments.4,5 Consider, for instance, the behavior of th
Hall conductivitysxy as a function of the variablesB ~mag-
netic field!, L ~linear system dimension!, and Q ~tempera-
ture!. Within the scaling regime, one can write

sxy~B,L,Q!5
e2

h
f ~ uB2B* uL1/n,uB2B* uQ21/zn!, ~1!

whereB* is a critical magnetic field,z is the dynamic criti-
cal exponent, andf (x,y) is a universal scaling function
From this expression, one finds that the maximum slo
(]sxy /]B)max is proportional toQ21/zn; the power law di-
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vergence with decreasingQ is in agreement with experi
ments, which independently showz51.6 Numerical
calculations7 confirm the resultn52.3560.02, in tantalizing
agreement with a clever but alas nonrigorous argument thn
should be7

3.
8

One of the most significant developments in modeling
QHE transition has been the advent of the Chalk
Coddington network model of quantum percolation.9 The
relevance ofclassicalpercolation to the quantum Hall prob
lem was emphasized by Trugman.10 Classical electrons in a
strong magnetic fieldB5Bẑ obey the guiding center drif
equations of motion

dr

dt
52

c

eB
ẑ3¹V~r !, ~2!

whereV(r ) is the external potential. A vivid picture emerge
in which the Fermi ‘‘sea’’ is analogous to a real sea cover
a rough surface in energy space whose height is describe
the functionV(r ). The corresponding quantum eigensta
are localized along equipotentials, accruing an Aharon
Bohm phase (e/\c)*A•dr which for a complete orbit is
proportional to the magnetic flux encircled~single valued-
ness then leads to Bohr-Sommerfeld quantization rul!.
Electrons at the Fermi level either circulate clockwise~as
viewed from ‘‘above’’! around isolated lakes, whe
EF,^V&, or counterclockwise around isolated islands, wh
EF.^V&. Such states clearly are localized. Only wh
EF5Ec[^V& are states at the Fermi level extended.
E→Ec , the equipotentials become more and more rarefi
and their circumference increases in size asuE2Ecu24/3, an
exact result. However, the quantum eigenfunctions are
infinitely narrow. Rather, they have a width on the order
the magnetic lengthl 5A\c/eB, and thus quantum tunnel
ing will occur in the vicinity of saddle points ofV(r ).8,11 It is
precisely this physics which is captured by the netwo
model. Thus, rather than directly computing the eigenfu
tions of
4751 © 1997 The American Physical Society
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H5
1

2mS P1
e

c
AD 2

1V~r …, ~3!

many of which are tightly localized on peaks and valleys a
hence irrelevant to the physics of the QHE transition,
network model ‘‘cuts to the chase’’ and simulates a netw
of saddle points~see Fig. 1!, each described by anS matrix

S OO8
D 5SS II8D , S5S t r 8

r t 8
D ~4!

relating incoming to outgoing flux amplitudes.9 In the frame
of an incoming electron, scattering is either to the left, w
probability T5utu25ut8u2, or to the right, with probability
R5ur u25ur 8u25(12T) — there is neither ‘‘forward’’ nor
‘‘backward’’ scattering.

WhenT, 1
2, scattering is predominantly to the right, co

responding to the aforementioned clockwise motion aro
isolated lakes. Hence there is a correspondence betwee
energy eigenvalueE for the Hamiltonian of Eq.~3! and the
transmission probabilityT; the quantum critical point should

lie at T5 1
2. Randomness enters the network model prin

pally through phases acquired by the flux amplitudes in
course of their propagation along each link. These pha
reflect the Aharonov-Bohm phases accrued due to mo
along equipotential segments of irregularly varying leng
The phases on the links are therefore modeled as ran
variables uniformly distributed between 0 and 2p. Several
numerical investigations7,9,12,13 have convincingly demon
strated the applicability of the network model to the quant
Hall transition.

In this paper, we adopt a real-space renormalization-gr
~RG! scheme which will allow us to compute exponents a
scaling functions associated with the quantum Hall tran
tion. Inasmuch as real-space renormalization is fraught w
uncontrolled approximations~e.g., values of critical expo
nents are sensitive to the geometry of the renormalized c!,
our results will be of dubious quantitative value. Howev
we find that a simple and appealing qualitative pictu
emerges from this approach, and we feel its pedagog

FIG. 1. The Chalker-Coddington network model of quantu
percolation.
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value alone merits publication. We also wish to draw t
reader’s attention to the recent work of Galstyan a
Raikh,20 who independently developed a real-space RG
proach to the network model. Their results are larg
complementary to those presented here.

II. DISTRIBUTION PL„T…

We commented above how a Chalker-Coddington n
work composed of identical scatterers should exhibit a qu

tum critical point whenT5R5 1
2. Consider now a network in

which the individual scattering probabilitiesT ~as well as the
phases on the links! are random variables, chosen from
distribution P(T). We shall be interested in how the distr
butionPL(T) behaves with increasing cell sizeL in the limit
L→`. To define the transmission coefficientT of a finite
network, we cut out aA2L3A2L section from an infinite
network ~the lattice spacing isa[1), and retain only the
central V(L)5L21(L21)2 scattering vertices. Figure 2
shows theL53 case. Note that there areM52L21 scatter-
ing nodes across each of the main diagonals. Integrating
the random phases on the links, one obtains the distribu
PL(T) for transmission to the left through the supercell.

In the limit L→`, we expect two stable distributions
given by P`(T)5d(T) and P`(T)5d(12T). These corre-
spond to bulk localized phases withT50 and 1, respec-
tively. The quantum critical point will be characterized by a
unstabledistribution P`(T)5P* (T). The terms ‘‘stable’’
and ‘‘unstable’’ refer to renormalization-group flows:14 we
shall develop an approximation scheme by which the dis
bution PbL(T) for a larger system may be determined
terms ofPL(T). This functional relation may be represente
in terms of a set of parameters$Xi(L)% which characterize
the distributionPL(T) @e.g., the coefficients in a Legendre o
Chebyshev polynomial expansion ofPL(T) in the variable
x52T21#:

Xi~bL!5Fi~$Xj~L !%;b!. ~5!

FIG. 2. Transmission and reflection through a 3A233A2 net-
work (L53). The 13 vertices are denoted by black dots.
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When Xi* 5Fi($Xj* %;b) the distribution is at a fixed point
The eigenvalues$lk% of the matrixRi j 5(]Fi /]Xj )uXW * de-
termine the relevance of the corresponding eigenvec
~scaling variables! and hence the stability of the fixe
point—positive eigenvalues correspond to relevant varia
and an unstable fixed point, negative eigenvalues to ir
evant variables. The positive eigenvalues define a set of c
cal exponentsyk

215 lnb/lnlk ; the localization length expo
nent n5 lnb/lnlmax is the largest of these. One can al
define theb function

b i~$Xj%!5
dXi

dlnL
5

]Fi

]b U
b51

; ~6!

the b function vanishes at all fixed points.
From these considerations it becomes clear that one

sible way to compute the critical exponentn would be to
determine the RG flow ofPL(T). An exact procedure would
require the calculation of this distribution for finite networ
of arbitrary size. Computational limitations would rend
such attempts futile beyond even modest values ofL. In-
stead, we shall resort to two uncontrolled and closely-rela
approximations:~i! Migdal-Kadanoff ~MK ! bond shifting
and~ii ! replacing the square lattice with an unphysical, hi
archically constructed lattice. These approaches will allow
to perform the renormalization recursively, using on
simple numerical computations.

III. SERIES AND PARALLEL PROPAGATION

The group U(2) of unitary 232 matrices may be param
etrized by four angles (a,b,g,u):

S5eiaS eib 0

0 e2 ibD S cosu sinu

2sinu cosu D S eig 0

0 e2 igD .

The phase anglesa, b, andg can be absorbed by the rando
link phases, and hence without loss of generality one m
restrict attention toS matrices of the form

S5S cosu sinu

2sinu cosu D . ~7!

This S matrix may be recast in the form of a ‘‘left-to
right’’ transfer matrix M , which relates flux amplitudesO
andI8 to I andO8:

S OI8D 5M S IO8
D , M5S secu tanu

tanu secu D .

The transmission coefficientT relating the incident flux
uIu2 to the outgoing fluxuOu2 is T5cos2u, and the reflection
coefficient isR512T5sin2u.

Consider now the ‘‘series’’ transmission through two co
secutive scatterers. Multiplying transfer matrices, and tak
into account the random phases accrued in between sc
ers, one obtains a composite transfer matrix

M̃5S secu2 tanu2

tanu2 secu2D S eia 0

0 eibD S secu1 tanu1

tanu1 secu1D
rs

s
l-
ti-

s-

d

-
s

y

-
g
ter-

and from sec2u85uM̃1,1u251/T8, a transmission coefficient

1

T8
5

1

T1

1

T2
@112AR1R2cosf1R1R2#, ~8!

where f5a2b is random. Precisely this calculation wa
done by Andersonet al.15 in their study of one-dimensiona
localization~see also Refs. 16 and 17!. Averaging lnT over
the anglef, one obtains

^ lnT8&5b^ lnT& ~9!

for b scatterers in series. Thus lnT is driven to increasingly
negative values — this is the essence of one-dimensio
localization.

Equivalently, though, one may view the propagation
‘‘top to bottom,’’ and define a transfer matrixN relating
O8 andI8 to I andO:

SO8

I8 D 5NS IOD , N5S 2cscu cotu

2cotu cscu D .

In this case, the roles ofT andR are reversed:T5sin2u and
R5cos2u, and two scatterers in parallel give

1

R8
5

1

R1

1

R2
@112AT1T2cosf1T1T2#, ~10!

with

^ lnR8&5b^ lnR&

for b parallel scatters. In this case the reflection amplitude
driven to zero. Now in the network model, both series
well as parallel propagation occur, and in our viewpoint it
a competition between these two one-dimensional local
tion mechanisms which leads to a critical point correspo
ing to the quantum Hall transition. It is, however, impossib
to separate the two modes of propagation neatly, and
shall have to resort to approximation schemes, such as
Migdal-Kadanoff approach, or to a modification of the orig
nal model, such as hierarchical network constructions, in
der to make progress.

IV. MIGDAL-KADANOFF APPROACH

In order to apply the Migdal-Kadanoff bond shiftin
scheme to the network model, we begin by graphically r
resenting the elementary scattering process as a kind o
teraction vertex, as depicted in Fig. 3. Thus the entire n
work may be represented by an infinite sequence of para
lines on which currents flow in alternating directions, a
backscattering processes which divert flux from one line
one of its neighbors~see Fig. 4!. We call this the ‘‘bricklay-
er’s representation’’ of the network model, for obvious re
sons, and further describe the propagation as being e
‘‘horizontal’’ or ‘‘vertical.’’ To effect a rescaling by a factor
b, we start with the~horizontal! bricklayer’s representation
shown in Fig. 4. In every other row, we then shiftb21 out
of everyb interaction line so as to form a network in whic
each renormalized vertex representsb bare vertices in series
This is depicted forb52 in Fig. 5. We then rescale horizon
tal distances byb. Were we to proceed in this manner, w
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would obtain the one-dimensional localization of Ref. 1
Instead, we view the network again in the bricklayer’s re
resentation, this time with vertical propagation, and perfo
a second bond-shifting operation. This replaces each sca
ing vertex with an effective composite vertex, shown in F
6. This network resembles that of Fig. 7.

To see how this leads to critical behavior, consider
behavior of thetypical transmission coefficient, exp^lnT&, un-
der such a transformation. From Eq.~9!, we obtain

T8512~12Tb!b[ f ~T;b!, ~11!

where we implicitly are working with typical values. For th
caseb52, we have

f ~T;b52!52T22T4,

FIG. 3. ~a! The S matrix relates incoming to outgoing flux am
plitudes @see Eq.~4!#. This information may alternately be ex
pressed as a transfer matrixM relating left and right flux amplitudes
~b!, or N relating top and bottom flux amplitudes~c!.

FIG. 4. The horizontal ‘‘bricklayer’s representation’’ of the ne
work model. Quantum-mechanical particles propagate in the di
tions of the arrows; scattering processes are represented by the
ted lines. The corresponding vertical representation is rotated
90°.
.
-

er-
.

e

which has two stable fixed points atT* 50 and 1, and one

unstable fixed point atT* 5 1
2 (A521)'0.618. Linearizing

about the unstable fixed point, we obtain an eigenva
@] f (T;b52)/]T#T* 5622A5, corresponding to a localiza
tion length exponent ofn5 lnb/lnl'1.635. Note thatT*
Þ 1

2, a consequence of the order in which the bond shift
was performed: the composite vertex corresponds to se
followed by parallel propagation~note the composite verte
of Fig. 6 is not symmetric under 90° rotations!. We could
equally well have chosen parallel followed by series pro
gation, which would switch the roles ofT and R. We note
that the RG equation~11! and its counterpart withT replaced
by 12T coincide with two RG equations obtained in
Migdal-Kadanoff approach to classical bond percolation18

There, the bond occupation probabilityp plays the role of

c-
ot-
y

FIG. 5. The first step in theb52 Migdal-Kadanoff renormal-
ization of the network model. Compare with Fig. 4. Dashed lin
indicate bonds which have been shifted to the left. Dotted lin
indicate unshifted bonds.

FIG. 6. The composite vertex in theb52 Migdal-Kadanoff
renormalization, which corresponds to series followed by para
propagation.
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T, and the MK bond shifting which leads to the compositi
of quantum resistors in the network model corresponds
multiplication of bond occupation probabilities.

If we setb511z, wherez→0, we obtain equations fo
an ‘‘infinitesimal’’ Migdal-Kadanoff renormalization:

T85T1z@TlnT2~12T!ln~12T!#1O~z2!. ~12!

The infinitesimal MK transformation has a fixed point

T* 5 1
2, and an eigenvaluel52(12 ln2)z, corresponding to a

critical exponent ofn51/2(12 ln2)'1.629. The MK b
function is then

b~T!5
d

dz U
z50

f ~T;11z!

5TlnT2~12T!ln~12T!; ~13!

this is shown in Fig. 8.
In statistical mechanics applications, such as the Is

model, one can define a HamiltonianH8 in which bonds
have been shifted according to the MK prescription. Wh
computing the partition function, one can in principle pe
form thermodynamic perturbation theory in (H82H) in or-
der to systematically improve upon the MK procedure. W
know of no such systematic improvement for our schem
nor do we have any sort of reliable estimate for the err
involved in the calculation ofn.

V. HIERARCHICAL LATTICES

A related approach to the problem involves the constr
tion of hierarchical lattices. Consider, for example, the sc
tering unit of Fig. 9, which containsV55 vertices in an area
M2; in units of the distance between vertices, we ha
M53. Now replace each of the vertices with a replica of t
original cell, forming the structure shown in Fig. 10. Repe
ing the processn times generates a hierarchical structu
with Vn vertices contained in a square of side lengthMn. The
Hausdorff dimension of this hierarchical lattice

FIG. 7. After shifting in both the horizontal and vertical dire
tions, each vertex in the network represents a composite ofb2 ver-
tices. The caseb52 is shown here.
to

g

n
-

e
,
s

-
t-

e
e
-

DH5 lnV/lnM'1.465. From V(M )5 1
2 (M211), one has

limM→`DH(M )52. The renormalization flow of the trans
mission coefficient and the multifractal spectrumf (a) was
calculated in Ref. 19 for the casesM53, 5, and 9; the results
for n and f (a) rapidly converge to the network model resu
even for such modest sizes. The RG equations for the c
M53 are identical to those obtained in Ref. 20, where
different interpretation is adopted.

If one replaces the central scatterer in Fig. 9 with one
which T51, one recovers the four-site scattering unit of F
6. One can use this as the fundamental unit of a hierarch
construction, and the results differ from those of the previo
section only in that the linear dimension is taken to

FIG. 8. Theb function resulting from the infinitesimal Migdal
Kadanoff renormalization.T50 and 1 are attractive fixed points

the critical point lies atT5
1
2. Arrowheads point in the direction o

RG flow.

FIG. 9. AnM53, V55 elementary cell on which a hierarchica
lattice is based.
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M52b21 rather thanb. The Hausdorff dimension of the
hierarchical lattice isDH5 lnb2/lnM (5 ln4/ln3 for b52),
whereas the lattice of Fig. 7 is fully two dimensional. T
exponentn now is changed:n5 lnM/lnl5ln3/ln(622A5)
'2.592. Generalizations to other values ofb are straightfor-
ward: iterating Eq.~11! n times, we obtain the flow equatio

T~Mnl 0!5 f [n]
„T~ l 0!;b5 1

2 M1 1
2 …, ~14!

where f [n] is the iterated function satisfying

f [n11]~T;b!5 f „f [n]~T;b!;b…

and f [1][ f . Since f (T;b) is monotonically increasing from
f (0;b)50 to f (1;b)51, there are always three fixed poin
on the intervalTP@0,1#: T50 andT51 ~both stable!, and a
nontrivial unstable fixed point with 0,T* ,1. The critical
exponentn is

n5
lnM

lnf 8~T* ; 1
2 M1 1

2 !
, ~15!

where f 8(T;b)5d f(T;b)/dT.
Whereas the Hausdorff dimensionDH and fixed point

both increase monotonically, with

DH~b51!51, DH~b5`!52,

T* ~b51!5 1
2 , T* ~b5`!51,

the critical exponentn exhibits a minimum forb'35, where
n'2.11. We find thatn diverges weakly~as lnb/lnlnb) in the
b→` limit. These results are plotted in Fig. 11.

VI. RENORMALIZATION GROUP FOR DISTRIBUTIONS

In Sec. IV, we derived RG flows for the typical transmi
sion coefficient, defined byTtyp[exp̂ lnT&. Now we will
concern ourselves with the RG flow for the entire distrib

FIG. 10. The hierarchical lattice at the second level of constr
tion, beginning with theM53, V55 cell of Fig. 9. There are
V2525 vertices in thisM23M25939 supercell.
-

tion P(T). We will choose the simplest nontrivial unit cel
namely, that of Fig. 6, in which two composite scattere
each of which is two bare scatterers in series, are place
parallel.

Starting with a distribution functionP(T), we derive the
intermediate distributionPint after taking two scatterers in
series:

Pint~T!5E
0

1

dT1P~T1!E
0

1

dT2P~T2!

3E
0

p df

p
d@T2 f ~T1 ,T2 ,cosf!#, ~16!

with

f ~T1 ,T2 ,m!5
T1T2

11~12T1!~12T2!12mA~12T1!~12T2!
.

We now combine two of these composite units in paral
obtaining the renormalized transmission coefficient distrib
tion

P̃~T!5E
0

1

dR1Pint~12R1!E
0

1

dR2Pint~12R2!

3E
0

p df

p
d@12T2 f ~R1 ,R2 ,cosf!#. ~17!

This is equivalent to the following:

Pint~T!5
1

2pT2E
0

1

dT1E
0

1

dT2P~T1!P~T2!

3
Q~12uAu!

A12A2

T1T2

A~12T1!~12T2!
,

- FIG. 11. Results of the hierarchical lattice renormalization
Eq. ~14! for the fixed point transmission coefficientT* ~solid
curve!, and the localization length exponentn ~dashed curve!, vs
lnb. The linear dimension isM52b21.
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56 4757REAL-SPACE RENORMALIZATION OF THE CHALKER- . . .
A5
T1T22T@11~12T1!~12T2!#

2TA~12T1!~12T2!
,

whereQ~x! is the step function, followed by

P̃~T!5
1

2p~12T!2E
0

1

dT1E
0

1

dT2Pint~T1!Pint~T2!

3
Q~12uBu!

A12B2

~12T1!~12T2!

AT1T2

,

B5
~12T1!~12T2!2~12T!~11T1T2!

2~12T!AT1T2

.

Note thatB(T1 ,T2 ;T)5A(12T1,12T2 ;12T).
We have numerically iterated the distribution according

these equations. Since we expect a single relevant sca
variable controlling the RG flow ofP(T), we parametrize
the initial distribution by its averagêT& init and a width
(DT) init5A^T22^T&2&. By varying ^T& init alone, we drive
the system through its critical point. This is shown in Fig. 1
where the iterated average transmission coefficient is plo
for several initial values of̂T&. ~We used an initial distribu-
tion which was a sum of linear plus exponentially increas
terms, though the precise details are presumably unim
tant. Keeping the initial width fixed and varyinĝT& init be-
tween 0.605 and 0.606, we found the critical point^T&* at
^T& init'0.605 36.! The fixed point distribution itself is plot-
ted in Fig. 13.

Within the hierarchical lattice approach, each iterati
rescales the linear system size by a factorM53. Analyzing

FIG. 12. The RG flow of the distributionP(T). The average
transmission coefficient̂T& is plotted vs iteration for various initia
conditions. The initial value ofDT was held fixed aŝT& init was
varied between 0.605 and 0.606. The critical point was found to
at ^T& init'0.605 36.
ng

,
d

g
r-

the iterated average transmission coefficient^T& as a func-
tion of the numberN of iterations allows for the computatio
of n from

^T&N2^T&* }MN/n. ~18!

In Fig. 14 we plot lnu(^T&N2^T&* )/^T&* u versusNlnM; we find
n'6.6. Note that within the MK scheme, the rescaling fac
is b52; consequentlyn'4.2.

The iteration of the full distribution functionP(T), ac-
cording to Eqs.~16! and ~17!, yields an exact RG flow for
PL(T) for the four-site scattering unit of Fig. 6. Howeve
the iteration could be performed only numerically. We co

e
FIG. 13. The fixed distributionP* (T) obtained by iteration of

the RG flow equations. Shown are results of a numerical integra
~dotted curve! and a smooth fit to the numerical data~solid curve!.

FIG. 14. To deriven from Eq.~18!, we plot the logarithm of the
left-hand side vsNlnM. The slope is thenn21. Here we show
results for M53 discussed in Sec. VI; we findn'6.6, in poor

agreement with the accepted valuen' 7
3 .
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clude this section with a brief account of an analytic
method to obtainP(T). In the context of one-dimensiona
localization, Eq.~8! has been used to derive a Fokker-Plan
equation~cf. Ref. 21! for the distribution functionPL(T).
One identifiesT1[T(L) with the transmission coefficient o
a one-dimensional resistor of lengthL placed in series with a
resistor of infinitesimal length and transmission coefficie
T2[T(dL). In a regime of ‘‘local weak scattering,’’ one ca
identify the elastic mean free pathl e by l e5dL/^R(dL)&,
and derive the following Fokker-Planck equation by stand
methods~cf. Ref. 17 and references therein!:

l e

]PL~T!

]L
5

]

]TH ~12T!
]

]T
@T2PL~T!#J . ~19!

This is an equation describing one-dimensional localizati
It turns out thatl e sets the scale for the localization lengt
i.e., ^2 lnT&L5L/le.

We now try to extend this one-dimensional scheme to
network model. Keeping with our previous approach,
successively add infinitesimal pieces in series, and the
parallel. This two-dimensional iteration scheme is schem
graphically depicted in Fig. 15. We begin with anL3L array
and attach to it two infinitesimal rectangles of sizeL3dL
and dL3(L1dL), respectively. Transport then takes pla
according to the usual series and parallel composition la
The main obstacle in deriving a Fokker-Planck equation
this model is due to the fact that we do not knowa priori
how the transmission coefficients of the infinitesimal bloc
behave. To make progress, we proceed in analogy to
one-dimensional case, andassume

^R~L,dL !&5^2 lnT&L~dL/L !, ~20!

FIG. 15. Construction of a network by adding infinitesimal n
works to a square network of linear sizeL. The infinitesimal net-
works are characterized by a small extensiondL in one direction.
The network is composed according to series and parallel com
sition laws.
l

k

t

d

.

e

in
is

s.
r

s
he

^T~dL,L1dL !&5^2 ln~12T!&L~dL/L !.

With this assumption, the resulting Fokker-Planck equat
reads

]

]L
PL~T!52

]

]T
J~T;L !, ~21!

where the ‘‘current’’ is given by

J~T;L !5^ lnT&L

12T

2L

]

]T
$T2PL~T!%

1^ ln~12T!&L

T

2L

]

]T
$~12T!2PL~T!%. ~22!

Without going into details we report on the results that o
can obtain from the Fokker-Planck equation~21!. We find
that there are three fixed-point distributions:d(T),
d(12T), and a uniform critical distributionP* (T)[1. To
extract the critical exponentn of the localization length we
took XL5^ ln(12T)&L2^lnT&L as a scaling variable which ha
a fixed-point valueX* 50. Linearizing the flow equation
around the fixed-point distribution gives rise to ab function
for XL which reads

dXL

dlnL
5XL . ~23!

Consequently, the critical exponent isn51. Although the
Fokker-Planck approach to the network model is able to
scribe the correct qualitative physics of the localizatio
delocalization transition, it suffers from an ambiguity
modeling the average transmission coefficients of the infi
tesimal blocks. Adopting a different model can change
critical exponentn. In addition, the composition laws o
which the Fokker-Planck approach is based do not lead
the full Chalker-Coddington network.

VII. CONCLUSION

In this paper we developed a simple approach to the qu
tum Hall transition. We considered a number of hierarchi
network models related to the Chalker-Coddington mode
quantum percolation. The basic ingredients of our netwo
are series and parallel compositions of quantum resist
their hierarchical nature allows us to analyze their critic
properties using simple real-space renormalization te
niques. In particular we studied network models that can
interpreted as resulting either from Migdal-Kadanoff bon
shifting scheme or from the construction of hierarchical l
tices of Hausdorff dimensionDH,2. The different models
are labeled by an integerb, whereb2 is the number of resis-
tors that form an elementary cell.

In Sec. VI we calculated the flow of the distribution fun
tion PL(T) for the transmission coefficientT ~‘‘two-point-
conductance’’! in the caseb52. This was done by means o
numerically iterating the renormalization-group equatio
We found the flow to have three fixed points, two of whic
correspond to localization (T[0, T[1). The third fixed dis-
tribution P* (T) corresponds to the quantum critical poin
where delocalization occurs. The critical point distributio
P* (T) turned out to be very broad, and the flow ofPL(T) in

o-
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the vicinity of P* (T) is governed by one-parameter scalin
The critical exponentn was also determined, and found to b
in poor agreement with accepted values.

As a further simplification we derived renormalizatio
schemes for the typical transmission coefficie
Ttyp[exp̂ lnT&. Here we simply averaged over the rando
link phases, neglecting variations in the individual transm
sion coefficients. We obtained closed RG equations forTtyp
~Secs. IV and V!. From these equations we derived fixe
point values forTtyp* (b) and critical localization length expo
nentsnb for arbitraryb.1. For smallb the notion of typical
transmission coefficient as a substitute for a whole distri
tion ~which is broad! is dubious, and it is no surprise tha
nb52 differs from the value obtained by iterating the who
distribution function. However, the notion of typical tran
mission coefficient is more reliable for largeb, where the
composition ofb resistors in series favors the formation
log-normal-type distributions. On the other hand, for largeb
the resulting hierarchical network has little in common w
the original Chalker-Coddington network. Nevertheless,
slow variation ofnb with b shows that the results for inter
mediateb are not too far from that of the original networ
model.

All models that we considered exhibit a localizatio
delocalization transition which results from a competiti
between two one-dimensional quantum-mechanical local
tion mechanisms. The models result from uncontrolled
proximations to the network model, but have at least so
pedagogical value. In contrast to the well-known classi
ld
n
ua
re
rm

Le
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od

.

.
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t

-

-

e
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e
l

percolation model for quantum Hall transitions, our mod
are essentially quantum mechanical. Furthermore, the c
cept of real-space renormalization can be extended to
prove quantitative results~see Refs. 20 and 19!.

We recently discovered the work of Ref. 20, in which
similar real-space renormalization-group approach to
Chalker-Coddington model is developed. In that work an
ementaryM53, V55 cell ~see Fig. 9! replaces each scat
terer in the renormalization step. The 180° rotational sy
metry of this cell nicely guarantees that the critical point w

lie at T5 1
2. Note that the rescaling factor in Ref. 20 isb52

rather than ourM53. In our work the central scatterer o
this cell is replaced with one for whichT51 ~or R51),
resulting in the simple series-parallel composition laws d
cussed above. Due to the rotational asymmetry,T*
ÞR* 5(12T* ) at the critical point, henceT* Þ 1

2.
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