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Corrections to the universal behavior of the Coulomb-blockade peak splitting
for quantum dots separated by a finite barrier

John M. Golden and Bertrand I. Halperin
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 21 November 1996; revised manuscript received 21 April 1997!

Building upon earlier work on the relation between the dimensionless interdot channel conductanceg and
the fractional Coulomb-blockade peak splittingf for two electrostatically equivalent dots, we calculate the
leading small-g correction that results from an interdot tunneling barrier that is not ad function but, rather, has
a finite heightV0 and a nonzero widthj and can be approximated as parabolic near its peak. The finiteness of
the barrier leads to a small upward shift of thef -versus-g curve forg!1. The shift is a consequence of the fact
that the tunneling matrix elements vary exponentially with the energies of the states connected. For a parabolic
barrier, the energy scale for the variation is\v, wherev, which is proportional toAV0/j, is the harmonic
oscillator frequency of the inverted parabolic well. In the limitg→0, the finite-widthf -versus-g curve behaves
like (U/\v)/u lngu, where U is the energy cost associated with moving electrons between the dots.
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I. INTRODUCTION

The opening of tunneling channels between two quan
dots leads to a transition from a Coulomb blockade cha
teristic of isolated dots to one characteristic of a single la
composite dot.1 For electrostatically identical dots characte
ized by charging energiesU much greater than their single
particle level spacingsd2D , this transformation can be
chronicled by tracking the splitting of the Coulomb-blocka
conductance peaks as a function of the conductance thro
the interdot tunneling channels.2–4 If one assumes a singl
common value for the conductance in each tunneling cha
~an assumption exactly fulfilled for a spin-symmetric syst
of only two channels, one for spin-up electrons and the ot
for spin-down electrons!, one can divide the peak splitting b
its saturation value and look for the relation between t
dimensionless quantities:5,6 the fractional peak splittingf and
the dimensionless channel conductanceg.7

For g!1, prior work5,6,8,9 has treated the coupled-do
problem via a ‘‘transfer-Hamiltonian approach,’’10 in which
hopping elements connect states localized on one do
those localized on the other.~Here localizedsignifies that a
state is entirely restricted to one of the dots.! The hopping
elements have been treated as constant, independent o
states connected, as they would be if the interdot barrier w
a d function. For such a barrier, the leading small-g behavior
of f is given by f j50

(1) 5(2ln2/p2)Nchg, where Nch is the
number of separate tunneling modes~spin-up and spin-down
channels are counted separately!. The superscript off j50

(1)

tells us that this is the leading term in the weak-coupl
limit. The subscript further specifies that this term is calc
lated for a tunneling barrier of effectively zero width (j50)
and therefore, by implication, of infinite height. Forg*0.2,
terms that are higher order ing contribute significantly to the
zero-width splitting; the terms proportional tog2 have been
calculated in previous work.6

In this paper, we calculate a different correction tof j50
(1)

which arises from the fact that a realistic barrier possess
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finite heightV0 and a nonzero widthj. For such a barrier,
the hopping elements are not independent of the states
connect, and, for smallg, they depend exponentially on th
energies of the states. Hence, in the weak-coupling li
(g!1), it can pay to tunnel to intermediate states with en
gies above the barrier. The leading term inf then behaves as
(U/W)/u lngu, whereU measures the capacitive energy co
of moving electrons between the dots andW is the charac-
teristic energy scale over which the hopping elements cha
from their values at the Fermi energy.

We examine specifically the case of a finite-width barr
that can be treated as parabolic near its peak. For su
barrier, the energy scaleW is equal to\v/2p, wherev is
the harmonic oscillator frequency of the inverted parabo
well. This frequency is proportional to the square root of t
barrier curvature, itself proportional toV0 /j2. It follows that
the limit j→0 corresponds to the limitU/W→0. In recent
experiments,2–4 however, it appears thatU/W is roughly 1.
Under such circumstances, the fractional peak splittingf is
larger than the zero-width splitting,f j50, by a small but
noticeable amount, and, in the extreme limit ofg→0, the
ratio of the finite-width splitting to the previously calculate
zero-width splitting is very large. For intermediate values
g, the effect ofjÞ0 is less dramatic, the primary effec
being a relatively small increase inf and a reduction in the
slope of thef -versus-g curve.

To find the leading term in the finite-width peak splittin
we adopt astationary-state approach,10 in which the first
step is to solve for the single-particle eigenstates of non
teracting electrons that move in the electrostatic potentia
the coupled dots. The capacitive interactions between
electrons are expressed in terms of these noninterac
double-dot eigenstates, and the off-diagonal elements
treated perturbatively. The leading term in the finite-wid
fractional peak splitting,f (1), is determined by finding the
value for r51 of a more general quantityf̃ (1)(r), where
r is a dimensionless parameter which measures the
asymmetry between the dots.5,6 In the limit U/W→0, the
4716 © 1997 The American Physical Society
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56 4717CORRECTIONS TO THE UNIVERSAL BEHAVIOR OF . . .
zero-width result,f j50
(1) , is recovered. For finiteU/W, an

approximate analytic calculation demonstrates the limit
1/u lngu behavior. For the particular choiceU/W51, as well
as for various other choices of the ratioU/W, the leading
term in the fractional peak splitting is computed numerica
as a function ofg. For U/W.1, previous predictions for the
splitting at intermediateg are essentially unaltered.

The structure of this paper is as follows. Section II dev
ops the stationary-state approach for calculatingf̃ (r). Sec-
tion III implements this approach for a parabolic interd
barrier, verifying the (U/W)/u lngu behavior of theg→0 peak
splitting for jÞ0 and putting the finite-width calculation i
the context of earlier work. Section IV summarizes the
sults and speculates on the effect ofjÞ0 when the dots are
strongly coupled (g.1).

II. THE STATIONARY-STATE APPROACH

We make the problem one-dimensional~1D! by consider-
ing a smooth, adiabatic interdot connection@see Fig. 1~a!#
which, for simplicity, we presume to contain only one tran
verse orbital mode that lies near or below the Fer
energy.11 ~The use of one orbital mode corresponds to
spin-symmetric Nch52 experiments of Waughet al.,2

Crouchet al.,3 and Livermoreet al.4! For such a connection
the only parts of an electron wave function that can p
from dot to dot are those that overlap with the lowest tra
verse mode. Hence, in investigating the effect of the conn
tion, we can ignore all electrons but those in this low
mode. We are left with a 1D problem in which a represe
tative electron moves in an effective potent
V(x)5Etr(x)1Vel(x), whereEtr(x) is the spatially depen
dent kinetic energy of the lowest transverse mode andVel(x)
is the spatially dependent electrostatic energy. The chara
istic length scale for the spatial variation ofV(x) is the ‘‘bar-
rier width’’ j.

For computational convenience, we employ hard bou
aries at a distanceLdot from the barrier, giving us a ‘‘box-

FIG. 1. ~a! Schematic diagram for a single orbital-mode conn
tion between the two dots. Over a distance of orderj, the connec-
tion narrows to a minimum width on the order of the Fermi wav
lengthlF . ~b! ‘‘Boxlike’’ double-dot system with a central barrier
Hard confining walls are at a distanceLdot from the barrier, which is
of heightV0 and half widthj.
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like’’ double dot with a smoothly varying longitudinal po
tential @see Fig. 1~b!#. The details of the boundary condition
away from the connecting region are unimportant so long
the connecting region itself is sufficiently smooth.12

The Hamiltonian consists of two components. The fir
H0, is a diagonal term that gives the energies of the non
teracting, single-particle eigenstates. The seco

HC5U(n̂2r/2)2, gives the capacitive energy cost of mo
ing electrons from one side of the barrier to the other5,6

Here, n̂ counts the electrons transferred from dot 1 to do
~assuming, for convenience, an even total number of e
trons initially divided equally between the two dots!. The
parameterr measures the capacitively weighted interd
bias.5,6

For the noninteracting electrons characterized byH0, the
dimensionless channel conductanceg is the transmission
probability for a particle incident on the barrier at the Fer
energy.10 f is not so easily determined because, in its eva
ation, HC is relevant. Thus, we must develop a means
dealing withn̂, which is not diagonal in the basis of nonin
teracting single-particle eigenstates.

Our strategy is to switch to a basis that rendersn̂ nearly
diagonal at energies that are low compared to the barrier.
use the fact that, for a bound system containing two eq
potential minima, the eigenstates come in well-defined, d
crete pairs of opposite parity. Hence, we wri
H05(s, jES( j )cS js

† cS js1(s, jEA( j )cA js
† cA js , whereS and

A are the even and odd parity indices,j is the pair index, and
s is the spin index~or, more generally, a channel index!.

At lower and lower energies relative to the barrier, t
splitting within the pairs,uEA( j )2ES( j )u, approaches zero
but the spacing between pairs,uES( j 11)2EA( j )u, remains
approximately equal tod1D , where d1D5p\vF /Ldot ~as-
suming we do not stray too far from the Fermi surface!, vF
being the Fermi velocity. At low energies, one can for
doublets ofquasilocalizedstates—states that lie mostly o
one of the two sides of the central barrier—from linear co
binations of the members of each eigenstate pair. IffS j(x)
and fA j(x) are the real symmetric and antisymmetr
eigenfunctions of thej th lowest-energy pair~with appro-
priately chosen overall phases!, the recipe is V j a(x)
5(1/A2)@fS j(x)1(21)a11fA j(x)#, where the dot indexa
signifies thatV j a(x) is primarily localized on the dot 1 side
of the barrier ifa51 and on the dot 2 side ifa52.

At high energies, we continue to form the analogous co
binations. We refer to the full set of statesV j a(x) assemilo-
calizedto indicate that these states are sometimes quasilo
ized ~i.e., at low energies! and sometimes not.

The semilocalized states are the basis needed. In term
the associated annihilation operatorsaj as5(1/A2)@cS js

1(21)a11cA js], we have H05(s,a, jE( j )aj as
† aj as

2(s, j t( j )(aj 2s
† aj 1s1H.c.), whereE( j ) is the average en

ergy of the pair andt( j ) is half the difference within the pair
WhereasE( j ) is generally on the order of the Fermi energ
t( j ) is no greater than the average level spac
d1D5p\vF /Ldot and vanishes in the large-dot lim
(Ldot→`). The minuteness oft( j ) permits us to ignore it in
calculating the leading contribution tof .

We write n̂ in terms of the semilocalized operators. If d

-

-
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4718 56JOHN M. GOLDEN AND BERTRAND I. HALPERIN
1 corresponds to thex,0 side of the barrier and dot 2 co
responds to the x.0 side, we have
n̂5(1/2)*dx@Q(x)2Q(2x)#c†(x)c(x), wherec(x) is the
position operator andQ(x) is the Heaviside step function
After writing c(x) in terms of the aj as , we see that
n̂5n̂01dn̂C1dn̂T , where n̂05(s,a, j@(21)a/2#aj as

† aj as ,

dn̂C does not transfer electrons from dot 1 to dot 2, a
dn̂T does effect such a transfer:

dn̂C5 (
s,a, j 1 , j 2

FB~ j 2 ,a; j 1 ,a!2
~21!a

2
d j 1 , j 2Gaj 2as

† aj 1as ,

dn̂T5 (
s,a, j 1 , j 2

B~ j 2 ,ā ; j 1 ,a!aj 2ās
†

aj 1as . ~1!

Here,

B~ j 2 ,a2 ; j 1 ,a1!5~1/2!*0
Ldotdx@~21!a111fS j2

~x!fA j1
~x!

1~1↔2!#,

where (1↔2) indicates that the previous term is repea
with indices 1 and 2 exchanged, andā means ‘‘nota.’’

Using dn̂5dn̂C1dn̂T and assuming thatg is small, we
express the Hamiltonian in terms of one nonperturba
piece,H08 , and two perturbative pieces,HT8 andHC8 :

H085 (
s,a, j

E~ j !aj as
† aj as1U~ n̂02r/2!2,

HT852(
s, j

t~ j !~aj 2s
† aj 1s1H.c.!,

HC8 5U~ n̂02r/2!dn̂1Udn̂~ n̂02r/2!1U~dn̂!2. ~2!

As in Refs. 5 and 6, the fractional peak splitting is det
mined from f̃ (r), where f̃ (r)54@D(0)2D(r)#/U, and
D(r) is the energy shift of the ground state ofH08 due to the
perturbationsHT8 and HC8 for the given value ofr, where
0<r,1 and the total number of particles in the double d
is even. The quantity limr→1 f̃ (r) equals the fractional pea
splitting f .

Since we are only interested in relative energy shifts,
can ignore terms such as^0uU(dn̂)2u0& that are independen
of r. ~Here the brackets indicate an expectation value ta
in the ground state of H08 .! Terms of the form

^0uU(n̂02r/2)dn̂u0& are zero due to the symmetry of th
ground state with respect to interchange of the dots. Fina
terms that containHT8 are negligible becauset( j ) goes to

zero with the reciprocal of the system size and, unlikedn̂,
HT8 only connects each state to one other, rather than c
necting each state to a manifold of others. The leading p
turbative energy shift is therefore
d

d
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r-

D~2!~r!52U2K 0Udn̂P0

~ n̂02r!2

H082E08~r!
P0dn̂U0L , ~3!

where E08(r) is the energy of the ground state ofH08 and
where P0 is the operator that projects out the unperturb
ground state.D (2)(r) consists of two parts: a term secon
order in dn̂C , which involves hopping between state
semilocalized on the same dot, and a term second orde
dn̂T , which involves hopping between states on differe
dots.

III. PEAK SPLITTING AND CONDUCTANCE
FOR A PARABOLIC BARRIER

In order to progress further, we must adopt a model
the barrier that gives the energy dependence of the elem
of dn̂ @recall Eq. ~1!#. We assume that the interdot barri
can be modeled as parabolic. For an energy barrier with p
height V0, such a model is plausible whenV0.EF@U,
whereEF is the Fermi energy.13 The formula for a parabolic
potential centered at the origin with half widthj is
V(x)5V0(12x2/2j2) for uxu,A2j and 0 otherwise. A cru-
cial energy scale is the harmonic oscillator energy\v of the
inverted parabolic well:\v5(2p\)2/2pA2mlVj, where
2p/lV5(2mV0 /\2)1/2 and m is the effective mass of the
electron.

The problem of transmission through a parabolic barrie
exactly solvable using parabolic cylinder functions.14–16

The dimensionless channel conductance is15,17

g51/@11e22py(EF)] , where EF is the Fermi energy and
y(E)5(E2V0)/\v. It follows that (V02EF)/\v
5(1/2p)ln@(12g)/g]. Consequently, even for experiment
systems2,3 in which j is quite small (j.lF), EF is close to
V0 for u lngu!2p2A2.

We now consider the sizes of the energiesU andW. From
the result for g, the energy scaleW equals \v/2p and
U/W52pU/\v. For symmetric dots, U equals
e2/(CS12Cint), whereCS is the total capacitance of one o
the dots andCint is the interdot capacitance.3,5 The energy
scale\v is, by comparison, only roughly known. From th
fact that the barrier heightV0 is approximately equal toEF ,
we know thatlV.lF . Calculations such as that of Davie
and Nixon of the potential induced by a line gate18 suggest
that j.d, whered is the distance between the surface m
tallic gates and the two-dimensional electron gas~2DEG!. In
the AlxGa12xAs/GaAs heterostructures of Waughet al.,
Crouch et al., and Livermoreet al.,2–4 where d is fairly
small, about 50 nm~approximately one Fermi wavelength!,
further circumstantial evidence forj.d comes from the fact
that the space between the gates that form the interdot ba
is about 100 nm~see Ref. 5!. Hence, for these experimenta
systems,\v is approximately 0.2EF . Since U is about
0.03EF , 2pU/\v.1, within a factor of 2. For experimen
tal systems in which the Fermi wavelength is still about
nm but the gates are further from the 2DEG,19 the ratio
2pU/\v is even larger. On the other hand, bothW/EF and
U/EF are much less than 1, and we can linearize the sin
particle energy spectrum about the Fermi surfa
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taking E( j )5EF1\vF@kj2kF#, where kj5@2mE( j )/
\2] 1/2.

Using the solutions for the wave functions in the vicini
of the parabolic potential,15,16 we find that B( j 2 ,a; j 1 ,a)
.(21)a11sin@k(y22y1)#/2(k22k1)Ldot, and B( j 2 ,ā ; j 1 ,a)
.(21)a11sin@R(y2)1R(y1)#/2(k22k1)Ldot, where R(y)
5(1/2)arctan(epy) and k.0.1 for g;0.1 with k→0 as
g→0.

It can be shown that the leading contribution toD(r)
from same-dot hopping is essentially negligible.12 The lead-
ing contribution from interdot hopping obeys

DT
~2!~r!>2

NchU

4p2 E0

x̄ 1
dx1E

0

x̄ 2
dx2

T̃~x1 ,x2!

x21x1112r

1@r→2r#, ~4!

where T̃(x1 ,x2)5sin2@R̃(Ux2 /\v)1R̃(2Ux1 /\v)#, R̃(y)
5R@y(EF)1y#, x̄ r5\vFL r /U, the symbol > signifies
equality modulor-independent terms, and the bracketed
pressionr→2r stands for the quantity obtained by repla
ing r by 2r in the previous term. Ultraviolet cutoffs
x̄ r5\vFL r /U have been inserted in recognition of the fa
that our formulas for the integrands break down at so
distance L r;1/j from the Fermi surface. Since w
want the integrals to encompass the range of ener
in which R̃(E) is rapidly growing, we need
L r>k0, where E(kF1k0)5V0 and, consequently
k0j.(1/2pA2)ln@(12g)/g#. The requirementk0j&1 tells us
that our calculation gives quantitatively reliable results o
for g*1024.

To obtain a result with negligible dependence on the c
offs x̄ r , we must havex̄ r@1. On the other hand, to ensu
that the answer is quantitatively reliable, we ne
x̄ r&\vF /Uj. Thus, we can only expect quantitatively re
able results forU!\vF /j; i.e., for 2pU/\v!2pA2.

From T̃(0,0)5g, it follows that the limit 2pU/\v→0
yields the zero-width linear-in-g result that has been derive
before.5,6,8,9In the limit 2pU/\v→`, on the other hand, the
shift of Eq. ~4! is g independent forg a finite distance from
both 0 and 1. Of course, such a result for the lim
2pU/\v→` is only qualitative.
-

t
e

es

t-

t

What happens whenj is between 0 and̀ ? By perform-
ing two-partial integrations and dropping terms that go

zero as the cutoffsx̄ r become infinite, we find that

f̃ ~1!~r!5
Nchg

p2
~12r!ln~12r!

1
Nch

p2 E0

x̄ 1
dx1F ] T̃~x1,0!

]x1
h~r,x1 ,0!G

1
Nch

p2 E0

x̄ 2
dx2F ] T̃~0,x2!

]x2
h~r,0,x2!G

1
Nch

p2 E0

x̄ 1
dx1E

0

x̄ 2
dx2

]2T̃~x1 ,x2!

]x1]x2
h~r,x1 ,x2!

1@r→2r#, ~5!

where h(r,x1 ,x2)5(x21x1112r)ln(x21x1112r). The
first term on the right-hand side of Eq.~5! is the zero-width
result. The other terms go to zero whenj→0.

Numerical evaluations of Eq.~5! are plotted in Fig. 2~a!
for several values of the parameter 2pU/\v. A curious fea-
ture is that the corrections to the zero-width behavior
antisymmetric aboutg50.5, a property that can be demo
strated analytically by considering what happens under
transformationsg↔(12g) and x1↔x2. Though the anti-
symmetry is suggestive, it must be remembered t

f̃ (1)(r) is only the leading term in a perturbative expansi

about g50. The small positive contribution tof̃ (r) that
comes from the same-dot-hopping shiftDC

(2) breaks this an-
tisymmetry, and other higher-order corrections are likely
do the same. Nevertheless, a rough antisymmetry ab

g50.5 is probably preserved, for, just asf̃ (r) is enhanced at
smallg by hopping connections to states with large transm

sion amplitudes, so we expect thatf̃ (r) is diminished at
large g by the fact that many of the occupied states fro
which one hops have transmission probabilities smaller t
g.

An equivalent expression for Eq.~5! is
f̃ ~1!~r!5
2Nchr

2

p2 E
0

x̄ 1
dx1E

0

x̄ 2
dx2

T̃~x1 ,x2!

~x21x111!~x21x1112r!~x21x1111r!
. ~6!
For g!1, the magnitude of thef̃ (1)(r) is largely determined
by the portion of the integral that corresponds tox2>x0,

wherex05\vFk0 /U. For x2 in this range,T̃(x1 ,x2) is on

the order of 1 and therefore much larger thanT̃(0,0). We
label this high-energy portion of the double integral
f̃ hep
(1)(r), where f hep

(1);(Nch/4p2)(2pU/\v)[1/(u lngu12pU/
\v)] for x0*1 and k0&1/j or, equivalently, for
(2pU)/\v&u lngu&2pA2.

It is instructive to comparef hep
(1) with the zero-width peak

splitting, f j50
(1) . For 2pU/\v51, the ratio f hep

(1)/ f j50
(1) is
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4720 56JOHN M. GOLDEN AND BERTRAND I. HALPERIN
roughly 0.6 wheng50.1 and 25 wheng50.001. Thus, for
very weak coupling, the correction tof j50

(1) is proportionately
very large. At intermediate values ofg, the results forj50
andjÞ0 converge.

Comparison of our results forf hep
(1) with the numerical re-

sults for f (1) in Fig. 2~a! confirms thatf hep
(1) captures the es

sential f -versus-g behavior, particularly as 2pU/\v be-
comes larger and the exponential enhancement of
tunneling amplitudes becomes more important. The sharp
crease in slope asg→0 can be understood as resulting fro
the fact that the high-energy portion of the peak splitting
proportional to (2pU/\v)/u lngu.

Turning to Fig. 2~b!, we examine the significance of th
calculated finite-width corrections in the context of the ent
f -versus-g curve. The long-dashed curve in Fig. 2~b! is the
curve from Fig. 2~a! for the value 2pU/\v51 that appears

FIG. 2. ~a! Plots of the leadingg→0 term of the fractional peak
splitting f as a function of the dimensionless interdot channel c
ductanceg for different values of 2pU/\v ~see legend on right!.
All curves are for two interdot tunneling channels,Nch52. The
upward sloping solid line is the linear-in-g result for an interdot
barrier of effectively zero width (2pU/\v50). The dashed and
dot-dashed curves are for finite-width barriers with 2pU/\v taking
values from 0.5 to 32. The horizontal solid line is for an infinit
width barrier. The curves can only be expected to be quantitati
accurate when 2pU/\v!10. ~b! f -versus-g results for the full
domain ofg when Nch52. The solid lines are the complete zer
width results in the weak- and strong-coupling limits. These res
contain both leading and subleading terms~Ref. 6!. The plot for the
leading zero-width term in the small-g limit is included as a dot-
dashed curve. The small-dashed curve from (g, f )5(0,0) to
(g, f )5(1,1) is an interpolating curve derived from the zero-wid
results. The long-dashed line is the 2pU/\v51 curve of Fig. 2~a!.
The stars, triangles, and squares represent different sets of ex
mental data~Refs. 2 and 4!, the squares being the most recent~Ref.
4!.
he
n-

s

to characterize the experiments that have supplied the s
triangles, and squares.2–4 The dot-dashed line is the leading
order-in-g, zero-width curve from Fig. 2~a!. The small-
dashed curve is an interpolation for the entire zero-wi
curve. This interpolation matches both the second-order-ig
calculation of the fractional peak splitting for weak couplin
and the two-term calculation for strong coupling, which we
obtained in Ref. 6 and are shown as solid curves.

For 2pU/\v51, we see that, although the finite-widt
correction tof changes the answer by a large factor for sm
g, the correction is small on an absolute scale. The differe
between the dashed curve and the dot-dashed curve n
exceeds 0.02 and therefore causes only a small correctio
the overall shape of thef -versus-g curve. Qualitatively, the
correction due tojÞ0 is quite similar to adding a sma
constant tof near g50 and decreasing the slope of th
f -versus-g curve for more intermediateg. This qualitative
similarity follows from the fact that the region wheref drops
rapidly to zero is almost invisible in the plot. Consequent
the correction to the zero-width curve might be hard to d
tinguish from the effects of a small interdot capacitan
which have already been included in analyzing the data.
troduction of the finite thickness correction therefore h
little effect on the agreement between theory and the dat
Fig. 2~b!, for which 2pU/\v.1. Nevertheless, such correc
tions may be important in future experiments.

IV. CONCLUSION

By developing an approach to the coupled-dot probl
that relies upon the non-interacting, single-particle eig
states of the full coupled-dot system, we solve for the lead
correction to zero-width, weak-coupling results that were
rived in previous work.5,6,8,9The nonzero barrier widthj and
finite barrier heightV0 mean that the off-diagonal ‘‘hopping
terms’’ vary exponentially with the energies of the stat
they connect. For a small interdot channel conducta
(g!1), the resulting enhancement of tunneling to ‘‘hig
energy’’ states above the barrier leads to an increase in
magnitude of the fractional peak splittingf observed at a
given value ofg. For a parabolic barrier, the magnitude
this increase grows with the ratio 2pU/\v, whereU is the
interdot charging energy andv is the frequency of the in-
verted parabolic well. Except in a very small region ne
g50 wheref behaves like (2pU/\v)/u lngu, the increase in
f is accompanied by a decrease in the slope of thef -versus-
g curve. The effect upon the overall shape of thef -versus-g
curve is not very substantial for 2pU/\v.1 but could be
crucial in interpreting experiments involving wider barrier

One might worry that the finite-width corrections t
higher-order terms in the weak-coupling expansion co
lead to a more dramatic alteration of thef -versus-g curve.
However, the corrections to such ‘‘large-g’’ terms should be
muted by the fact that, asg increases, there is less differenc
between tunneling amplitudes between states at the F
energy and those between a state at the Fermi energy a
state lying above the barrier.

A more vital source of concern might be the treatment
the electron-electron interactions in the vicinity of the ba
rier. Clearly, the use of a sharp step function in the equa
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for n̂ is an artifice. A more realistic model would account f
the fact that, though electrons in and about the interdot ch
nel still repel one another locally, their interactions with t
rest of the electrons in the system are screened by the su
gates.

Finally, one might wonder whether higher-order corre
tions to f preserve a rough antisymmetry aboutg.0.5. Re-
call that the leading small-g correction, when extended t
g51, changes sign and becomes negative forg.0.5. Al-
though a proper calculation of the behavior at large value
g requires consideration of higher-order terms, the negati
e
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of the correction tof at large values ofg is probably a
generally right physical feature. Wheng is large and the
reflection probability at the Fermi energy is small, the ene
dependence of the reflection amplitude, forjÞ0, should lead
to a decrease inf as a result of the enhanced reflection f
occupied states lying below the barrier.
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