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Building upon earlier work on the relation between the dimensionless interdot channel conductamte
the fractional Coulomb-blockade peak splittifigfor two electrostatically equivalent dots, we calculate the
leading smallg correction that results from an interdot tunneling barrier that is rdfuanction but, rather, has
a finite heightVy and a nonzero widtl§ and can be approximated as parabolic near its peak. The finiteness of
the barrier leads to a small upward shift of theersusg curve forg<1. The shift is a consequence of the fact
that the tunneling matrix elements vary exponentially with the energies of the states connected. For a parabolic
barrier, the energy scale for the variationfi®, wherew, which is proportional toyVy/¢, is the harmonic
oscillator frequency of the inverted parabolic well. In the ligt> 0, the finite-widthf -versusg curve behaves
like (U/hw)l/|Ing|, where U is the energy cost associated with moving electrons between the dots.
[S0163-182607)06032-3

I. INTRODUCTION finite heightV, and a nonzero widtl. For such a barrier,
the hopping elements are not independent of the states they

The opening of tunneling channels between two quantunconnect, and, for smadl, they depend exponentially on the
dots leads to a transition from a Coulomb blockade characenergies of the states. Hence, in the weak-coupling limit
teristic of isolated dots to one characteristic of a single larg€g<1), it can pay to tunnel to intermediate states with ener-
composite dot.For electrostatically identical dots character- gies above the barrier. The leading ternf ithen behaves as
ized by charging energidd much greater than their single- (U/W)/|Ing|, whereU measures the capacitive energy cost
particle level spacingsd,p, this transformation can be of moving electrons between the dots anis the charac-
chronicled by tracking the splitting of the Coulomb-blockadeteristic energy scale over which the hopping elements change
conductance peaks as a function of the conductance throudgkom their values at the Fermi energy.
the interdot tunneling channeds? If one assumes a single We examine specifically the case of a finite-width barrier
common value for the conductance in each tunneling channeghat can be treated as parabolic near its peak. For such a
(an assumption exactly fulfilled for a spin-symmetric systembarrier, the energy scaM is equal to# w/2mw, wherew is
of only two channels, one for spin-up electrons and the othethe harmonic oscillator frequency of the inverted parabolic
for spin-down electronsone can divide the peak splitting by well. This frequency is proportional to the square root of the
its saturation value and look for the relation between twobarrier curvature, itself proportional ¥y /£2. It follows that
dimensionless quantiti€€ the fractional peak splittinfand  the limit £—0 corresponds to the limity/W—0. In recent
the dimensionless channel conductagce experiment$; 4 however, it appears thal/W is roughly 1.

For g<1, prior work®®9 has treated the coupled-dot Under such circumstances, the fractional peak splitfirig
problem via a “transfer-Hamiltonian approach®in which  larger than the zero-width splittind,.—o, by a small but
hopping elements connect states localized on one dot taoticeable amount, and, in the extreme limit gf-0, the
those localized on the otheftlere localizedsignifies that a  ratio of the finite-width splitting to the previously calculated
state is entirely restricted to one of the dpfShe hopping  zero-width splitting is very large. For intermediate values of
elements have been treated as constant, independent of thethe effect ofé+0 is less dramatic, the primary effects
states connected, as they would be if the interdot barrier wereeing a relatively small increase fnand a reduction in the
a ¢ function. For such a barrier, the leading smalbehavior  slope of thef-versusg curve.
of f is given byf§§11)0=(2In2/772)Nchg, where Ng, is the To find the leading term in the finite-width peak splitting
number of separate tunneling modepin-up and spin-down we adopt astationary-state approa¢l in which the first
channels are counted separatelJhe superscript oifélz)o step is to solve for the single-particle eigenstates of nonin-
tells us that this is the leading term in the weak-couplingteracting electrons that move in the electrostatic potential of
limit. The subscript further specifies that this term is calcu-the coupled dots. The capacitive interactions between the
lated for a tunneling barrier of effectively zero widtki=€ 0) electrons are expressed in terms of these noninteracting
and therefore, by implication, of infinite height. Fg=0.2,  double-dot eigenstates, and the off-diagonal elements are
terms that are higher order gncontribute significantly to the ~treated perturbatively. The leading term in the finite-width
zero-width splitting; the terms proportional 43 have been fractional peak splittingf("), is determined by finding the
calculated in previous work. value for p=1 of a more general quantit§ *)(p), where

In this paper, we calculate a different correctionfﬁi0 p is a dimensionless parameter which measures the bias
which arises from the fact that a realistic barrier possessesasymmetry between the dot8.In the limit U/W—0, the
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like” double dot with a smoothly varying longitudinal po-

tential[see Fig. 1b)]. The details of the boundary conditions

away from the connecting region are unimportant so long as
$ ~e the connecting region itself is sufficiently smodth.

The Hamiltonian consists of two components. The first,

Ho, is a diagonal term that gives the energies of the nonin-
teracting, single-particle  eigenstates. The second,
He= U(n—p/2)?, gives the capacitive energy cost of mov-
~& ing electrons from one side of the barrier to the oftfr.

Here,n counts the electrons transferred from dot 1 to dot 2
(b) § _)ﬁe § (assuming, for convenience, an even total number of elec-
ALY trons initially divided equally between the two dptdhe
<—L—> parameterp measures the capacitively weighted interdot
o bias>®
For the noninteracting electrons characterizedgy the
dimensionless channel conductangeis the transmission
probability for a particle incident on the barrier at the Fermi
energy®? f is not so easily determined because, in its evalu-
ation, H¢ is relevant. Thus, we must develop a means of

(a)

N
N

FIG. 1. (a) Schematic diagram for a single orbital-mode connec-
tion between the two dots. Over a distance of orélethe connec-
tion narrows to a minimum width on the order of the Fermi wave-
length\g . (b) “Boxlike” double-dot system with a central barrier.
Hard confining walls are at a distancg,, from the barrier, which is

of heightV, and half width¢. dealing withn, which is not diagonal in the basis of nonin-
teracting single-particle eigenstates.
zero-width result,fy, is recovered. For finitdJ/W, an Our strategy is to switch to a basis that rendensearly

approximate analytic calculation demonstrates the limitingliagonal at energies that are low compared to the barrier. We

1//Ing| behavior. For the particular choid¢/W=1, as well ~ Uuse the fact that, for a bound system containing two equal

as for various other choices of the ratiyW, the leading potential minima, the eigenstates come in well-defined, Q|s—

term in the fractional peak splitting is computed numericallycrete  pairs ?f opposite p_arl'gry. Hence, we write

as a function ofy. ForU/W=1, previous predictions for the Ho=Z, ;Es(i)CsjsCsjot Zs,jEa(i)CajsCajo . WhereS and

splitting at intermediate are essentially unaltered. A are the even and odd parity indicgss the pair index, and
The structure of this paper is as follows. Section Il devel-o is the spin indexor, more generally, a channel index

ops the stationary-state approach for calculatifg). Sec- '_A‘t_ Iowe_r :_;md Iowe_r energ_ies rela_ltive o the barrier, the
tion Il implements this approach for a parabolic interdot SPIitting within the pairs|Ea(j) —Es(j)|, approaches zero,
barrier, verifying the U/W)/|Ing| behavior of they—0 peak ~ Put the spacing between pait&s(j+ 1):EA(J)|’ remains
splitting for £+0 and putting the finite-width calculation in 2PProximately equal t@p, where 8,p=mhve/Lgo (as-

the context of earlier work. Section IV summarizes the re-SUming we do not stray too far from the Fermi surfaag:
being the Fermi velocity. At low energies, one can form

sults and speculates on the effectéef 0 when the dots are ) . .
P teot doublets ofquasilocalizedstates—states that lie mostly on

strongly coupled §=1). one of the two sides of the central barrier—from linear com-
binations of the members of each eigenstate paigd{x)

Il. THE STATIONARY-STATE APPROACH and ¢aj(x) are the real symmetric and antisymmetric
eigenfunctions of thgth lowest-energy paifwith appro-

ing a smooth, adiabatic interdot connectisee Fig. 1a)] i“(alt/e\%)[c(;]off)n+ (0 l/elr)aall+ 1zh§(s))za)s]thvih é?ecﬁi dlit(i)njé(e)z
which, for simplicity, we presume to contain only one trans- S) Al '

) ; signifies that(};,(x) is primarily localized on the dot 1 side
verse orbital mode that lies near or below the Ferm|Of the barrier ifa—1 and on the dot 2 side = 2.

l .
energy.” (The use of one orbital mode corresponds to the At high energies, we continue to form the analogous com-

spin-symmetric N;,=2 experiments of Waughet al.? S .
Cﬁouc%et al,? anddllivermorZet al® For such a c?)nnection bln_atlons._ W_e refer to the full set of statﬁga(x)_ assemllo_-
y ' ' _calizedto indicate that these states are sometimes quasilocal-

the only parts of an electron wave function that can pass, (i.e., at low energigsand sometimes not.

from dot to dot are those that overlap with the lowest trans- The semilocalized states are the basis needed. In terms of

verse mode. Hence, in investigating the effect of the connec- : S N

tion, we can ignore all electrons but those in this Iowestthe associated - annihilation operatosgm,—(q./\/?)[csj,,
: - : +(—1)**1c,,], we have Hy==2,,E(j)a,.a

mode. We are left with a 1D problem in which a represen- Ajals 0™ “o,a,] jac%jac

tative electron moves in an effective potential ~ Za,t()(2j2,8j1,+ H.c.), whereE(j) is the average en-
V(X) = Ey(X) + Vg((X), Where E(X) is the spatially depen- €19y of the pair and(j) is half the difference within the pair.
dent kinetic energy of the lowest transverse mode\gek) ~ WhereasE(j) is generally on the order of the Fermi energy,
is the spatially dependent electrostatic energy. The charactei{j) i no greater than the average level spacing
istic length scale for the spatial variation\éfx) is the “bar- ~ S10=7hve/Lgoy @and vanishes in the large-dot limit
rier width” &. (Lgor—°). The minuteness df(j) permits us to ignore it in
For computational convenience, we employ hard boundcalculating the leading contribution fo
aries at a distancky, from the barrier, giving us a “box- We writen in terms of the semilocalized operators. If dot

We make the problem one-dimensioaD) by consider-
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1 corresponds to the<0 side of the barrier and dot 2 cor-

o 2
responds to the x>0 side, we  have A(Z)(p)z—U2<0 onP, (’no {J) Pyon O>, ©)
A= (1/2)dX[ O (x) — O (—x) ¢ (X) (x), wherey(x) is the Ho=Eo(p)

position operator and (x) is the Heaviside step function.

After writing ¢(x) in terms of thea;,,, we see that \hereE)(p) is the energy of the ground state Hf, and

Nn=ng+ dnc+ ény, where nozigm[(—1)“/2]a;rm,ajw, where P, is the operator that projects out the unperturbed

snc does not transfer electrons from dot 1 to dot 2, andground stateA®)(p) consists of two parts: a term second-

sn; does effect such a transfer: order in énc, which involves hopping between states
semilocalized on the same dot, and a term second order in

_1)a sny, which involves hopping between states on different
Sne= >, B(jz.aijy.a) =54, , 8] ol 0p,  0OIS.

Il. PEAK SPLITTING AND CONDUCTANCE
. — :
shi= > B(j2, i1, @)a) ) a0 (1) FOR A PARABOLIC BARRIER

In order to progress further, we must adopt a model for
Here, the barrier that gives the energy dependence of the elements

of &n [recall Eq.(1)]. We assume that the interdot barrier
. . _ Leo ol can be modeled as parabolic. For an energy barrier with peak
B(i2,az;j1,@1) = (12) [ X[ (= 1)* " g, (X) paj, (X) height Vo, such a model is plausible wheviy=Eg>U,
+(122)] whereEg is the Fermi energy’ The formula for a parabolic
' potential centered at the origin with half widtl is

where (%-2) indicates that the previous term is repeatedv_()l():Vo(l_xi/2§2) rforh|X|<\/§'§ a”d.|P otherwise. A Eru'
with indices 1 and 2 exchanged, andmeans “nota.” .C'a etn((ajrgy ch e|.|st ﬁl.ﬁarnlo?c;szc/lzat\%er):eﬁgyofht €
Using dn= énc+ dny and assuming thag is small, we inverted parabolic well7iw=(2mh)7/2my2mhyé, where

P ot Al _ 27INny=(2mVy/%?)¥2 and m is the effective mass of the
express the Hamiltonian in terms of one nonperturbativeyo.tron

piece,Hy, and two perturbative piecely andHc: The problem of transmission through a parabolic barrier is
exactly solvable using parabolic cylinder functidfis®
A The  dimensionless channel  conductance 4§
Ho= 2 E(j)a 0840+ U(No—pl2)?, g=1[1+e 2™(EF)], where E is the Fermi energy and
7] Y(E)=(E—Vy)/hw. 1t follows that Vy—Ep)/tiw
=(1/2m)In[(1—g)/g]. Consequently, even for experimental
system&2 in which ¢ is quite small €=\g), Ef is close to
Hi=—2 t(j)(a5,8j1,+H.C), V,, for |Ing|<27%2.

o We now consider the sizes of the enerdieandW. From
the result forg, the energy scal&V equals#fw/27 and
U/W=27U/fiw. For symmetric dots, U equals
e?/(Cs+2C;,), whereCy is the total capacitance of one of
_ _ L the dots andC;, is the interdot capacitance. The energy

As in Refs:;S and 6, th(ifractlonal peak splitting is deter-g.a1e4 0 is, by comparison, only roughly known. From the
mined from f(p), where f(p)=4[A(0)—A(p)]/U, and fact that the barrier height, is approximately equal t&,
A(p) is the energy shift of the ground statetdf due to the  we know that\,=\g. Calculations such as that of Davies
perturbationsH; and H¢ for the given value ofp, where  and Nixon of the potential induced by a line gétsuggest
0=<p<1 and the total number of particles in the double dotthat §{=d, whered is the distance between the surface me-
is even. The quantity |ingT(p) equals the fractional peak tallic gates and the two-dimensional electron (#BEG). In
splitting f. the Al,Ga _,As/GaAs heterostructures of Waugtt al,

Since we are only interested in relative energy shifts, weCrouch et al, and Livermoreet al,*™* where d is fairly
can ignore terms such a§§|U(5ﬁ)Z|O> that are independent small, about 50 nniapproximately one Fermi wavelength

of p. (Here the brackets indicate an expectation value takeﬂ:rther circumstantial evidence fgr-d comes frqm the fact .
in the ground state ofH,.) Terms of the form that the space between the gates that form the interdot barrier

- - is about 100 nni{see Ref. b Hence, for these experimental
(0]U(no—p/2)6n|0) are zero due to the symmetry of the systems,fw is approximately 0.B¢. Since U is about
ground state with respect to interchange of the dots. FinaIIyQOEF’ 27Ulhw=1, within a factor of 2. For experimen-
terms that contairHy are negligible becaust(j) goes to (5] systems in which the Fermi wavelength is still about 50
zero with the reciprocal of the system size and, unbke  nm but the gates are further from the 2DEGthe ratio

H: only connects each state to one other, rather than cor2mU/%w is even larger. On the other hand, b&HE and
necting each state to a manifold of others. The leading petJ/Eg are much less than 1, and we can linearize the single-
turbative energy shift is therefore particle energy spectrum about the Fermi surface,

He=U(Ng—p/2)8n+Udn(ng—p/2)+U(Sn)%.  (2)
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taking E(j)=Eg+7hive[kj—kg], where kj=[2mE(j)/ What happens wheé is between 0 aneé? By perform-

h2v2. ing two-partial integrations and dropping terms that go to
Using the solutions for the wave functions in the vicinity zerg as the cutoffs, become infinite, we find that

of the parabolic potentidfy'® we find thatB(j,,a;j1,)

=(—1)*"tsinx(y,~y)V2(s—ki)Lgot, and B(jz,a:jy,@)

=(—1)*"*sifRy) +Ry)V2(k—k)Lgot»  Where R(y) _ Nerg
=(1é2)arctans§”y) and k=0.1 for g~0.1 with k—0 as fW(p)= — (1—p)In(1—p)
g—u.
It can be shown that the leading contribution Adp) _ ~
from same-dot hopping is essentially negligiterhe lead- + %j“dx IT(%1,0 h(p,x O)}
ing contribution from interdot hopping obeys m2lo TN axg L
Ncthz 3’:|:(O,X2)
_ _ = — | ""dX| ———h(p,0X5)
A(Z)( )E— NCthdeX deX T(Xl-Xz) 772 0 2 Xz P 2
TP am2Jo o T XX+ 1-p ~
NCh )71 ;2 52T(X1,X2)
_ +— dxf dxg———————h(p,X1,X)
+[p——p], (4) 2lo o % ax10%,
¥ — it B B(— = +lp——pl )
where  T(x1,Xp) =SiF[R(Ux/hw)+R(—Uxi/hw)],  R(Y)

=R[Y(Eg)+VY], x;=fiveA, /U, the symbol= signifies

equality modulop-independent terms, and the bracketed exyhere h(p,X1,X) = (Xo+X;+1—p)In(Xo+x+1—p). The
pressionp— —p stands for the quantity obtained by replac- first term on the right-hand side of E(p) is the zero-width
in_g p by —p in the previous term. Ultraviolet cutoffs (asyit. The other terms go to zero whéns0.

xr="hveA, /U have been inserted in recognition of the fact Numerical evaluations of Eq5) are plotted in Fig. &)

that our formulas for the integrands break down at someor several values of the parameter@/#% . A curious fea-
distance A;~1/§ from the Fermi surface. Since we tyre is that the corrections to the zero-width behavior are
want the integrals to encompass the range of energiesntisymmetric abouy=0.5, a property that can be demon-
in which R(E) is rapidly growing, we need strated analytically by considering what happens under the
Ar=ko, where E(ketko)=Vo and, consequently, transformationsg—(1—g) and x;—Xx,. Though the anti-
koé=(1/2m\2)IN[(1-g)/g]. The requiremerk,é=<1 tellsus symmetry is suggestive, it must be remembered that
that our calculation gives quantitatively reliable results onIyT(l)(p) is only the leading term in a perturbative expansion

for g=10"4. N o Lo
To obtain a result with negligible dependence on the Cut_aboutg—O. The small posmve_ contrl_bu)tlon 6 (p) _that
offs X_ we must haves(_>1. On the other hand. to ensure c°M€S from the same-dot-hopping smfg breaks this an-
0 ' ' tisymmetry, and other higher-order corrections are likely to

that the answer is quantitatively reliable, we need ;
— o . do the same. Nevertheless, a rough antisymmetry about
xr=fvpg/U¢. Thus, we can only expect quantitatively reli-

able results fold <huvp/£; i.e., for 2aUlkw<2my2. g=0.5 is probably preserved, for, just &6p) is enhanced at
From T(0,0)=g, it follows that the limit 2rU/%w—0 smallg by hopping connections to states with large transmis-

yields the zero-width linear-ig-result that has been derived Sion amplitudes, so we expect tha{p) is diminished at
before®82In the limit 2wU/% w— o, on the other hand, the large g by the fact that many of the occupied states from
shift of Eq. (4) is g independent fog a finite distance from which one hops have transmission probabilities smaller than
both 0 and 1. Of course, such a result for the limit9. _ . .

27wUlhw—o is only qualitative. An equivalent expression for EEp) is

T(x1, %)
(X2+X1+ 1)(X2+X1+ 1_p)(X2+ X1+ 1+ p) '

-~ 2Neo? (11 Xo
)= 2 Max, [ Y, ©
v 0 0

Forg<1, the magnitude of thé )(p) is largely determined "f'gle)p(p), where fgle)p~(Ncr/4w2)(2wu/ﬁw)[1/(||ng|+277U/
by the portion of the integral that correspondsxtg= X, hw)] for xy=1 and k,<1/£ or, equivalently, for
wherexo="%vgko/U. For x, in this range,T(x;,X,) is on  (27U)/hw=<|Ing<2m2.

the order of 1 and therefore much larger tH&(0,0). We It is instructive to comparé{) with the zero-width peak
label this high-energy portion of the double integral spliting, f{2y. For 27U/fiw=1, the ratio f{ff{2; is
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to characterize the experiments that have supplied the stars,

(a L . triangles, and squarés’ The dot-dashed line is the leading-
- oj s order-ing, zero-width curve from Fig. @). The small-
£ - dashed curve is an interpolation for the entire zero-width
& g T curve. This interpolation matches both the second-order-in-
g calculation of the fractional peak splitting for weak coupling
go and the two-term calculation for strong coupling, which were
§ obtained in Ref. 6 and are shown as solid curves.

For 2nU/hw=1, we see that, although the finite-width
correction tof changes the answer by a large factor for small
g, the correction is small on an absolute scale. The difference
between the dashed curve and the dot-dashed curve never
exceeds 0.02 and therefore causes only a small correction to
the overall shape of thé-versusg curve. Qualitatively, the

0.0
0.

(b

Nawr’

0.8

§ . correction due toé#0 is quite similar to adding a small

s constant tof nearg=0 and decreasing the slope of the

§ 04 R f-versusg curve for more intermediatg. This qualitative

E similarity follows from the fact that the region whefelrops

'§ rapidly to zero is almost invisible in the plot. Consequently,

= ] the correction to the zero-width curve might be hard to dis-

* tinguish from the effects of a small interdot capacitance,

255 To which have already been included in analyzing the data. In-

02 0.4 0.6 0.8
Dimensionless interdot conductance g

troduction of the finite thickness correction therefore has

little effect on the agreement between theory and the data in
FIG. 2. (a) Plots of the leading—0 term of the fractional peak  F-19- 2b), for which 27U/% w=1. Nevertheless, such correc-

splitting f as a function of the dimensionless interdot channel conlions may be important in future experiments.

ductanceg for different values of ZU/Aw (see legend on right

All curves are for two interdot tunneling channeN,,=2. The

upward sloping solid line is the linear-gp-result for an interdot V. CONCLUSION
barrier of effectively zero width (2U/hw=0). The dashed and .
dot-dashed curves are for finite-width barriers withl2/# » taking By developing an approach to the coupled-dot problem

values from 0.5 to 32. The horizontal solid line is for an infinite- that relies upon the non-interacting, single-particle eigen-
width barrier. The curves can only be expected to be quantitativelyptates of the full coupled-dot system, we solve for the leading
accurate when 2U/hw<10. (b) f-versusg results for the full ~ correction to zero-width, weak-coupling results that were de-
domain ofg whenNg,=2. The solid lines are the complete zero- rived in previous work:®®°The nonzero barrier width and
width results in the weak- and strong-coupling limits. These resultdinite barrier heightV, mean that the off-diagonal “hopping
contain both leading and subleading terfRef. 6. The plot for the  terms” vary exponentially with the energies of the states
leading zero-width term in the smajiHimit is included as a dot- they connect. For a small interdot channel conductance
dashed curve. The small-dashed curve fromf]=(0,0) to (g<1), the resulting enhancement of tunneling to “high-
(9,f)=(1,1) is an interpolating curve derived from the zero-width energy” states above the barrier leads to an increase in the
results. The !ong-dashed lineistheB@/hiw=1 curve of Fig. Za). magnitude of the fractional peak splittirfy observed at a
The stars, triangles, and squares represent different sets of EXpeﬂl"ven value ofg. For a parabolic barrier, the magnitude of
mental datgRefs. 2 and 4 the squares being the most recéref. this increase grows with the ration2)/% w, whereU is the
4. interdot charging energy and is the frequency of the in-
verted parabolic well. Except in a very small region near
roughly 0.6 wheng=0.1 and 25 whem=0.001. Thus, for 4_q wheref behaves like (ZU/% w)/|Ing|, the increase in
very weak coupling, the correction f§"), is proportionately g accompanied by a decrease in the slope offthersus-
very large. At intermediate values gf the results fo€=0 g curve. The effect upon the overall shape of fheersusg

and §+0 converge. b _ curve is not very substantial for/2J/fw=1 but could be
Comparison of our results fdi{t) with the numerical re-  crucial in interpreting experiments involving wider barriers.
sults for f*) in Fig. 2(a) confirms thatffé}p captures the es- One might worry that the finite-width corrections to

sential f-versusg behavior, particularly as 2U/Aow be-  higher-order terms in the weak-coupling expansion could
comes larger and the exponential enhancement of thiead to a more dramatic alteration of tfieversusg curve.
tunneling amplitudes becomes more important. The sharp inHowever, the corrections to such “largg-terms should be
crease in slope ag—0 can be understood as resulting from muted by the fact that, agincreases, there is less difference
the fact that the high-energy portion of the peak splitting isbetween tunneling amplitudes between states at the Fermi
proportional to (2rU/% w)/|Ing|. energy and those between a state at the Fermi energy and a
Turning to Fig. Zb), we examine the significance of the state lying above the barrier.
calculated finite-width corrections in the context of the entire A more vital source of concern might be the treatment of
f-versusg curve. The long-dashed curve in Figh2is the the electron-electron interactions in the vicinity of the bar-
curve from Fig. 2a) for the value 2rU/A =1 that appears rier. Clearly, the use of a sharp step function in the equation
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for n is an artifice. A more realistic model would account for Of the correction tof at large values ofy is probably a
the fact that, though electrons in and about the interdot charenerally right physical feature. Whem is large and the
nel still repel one another locally, their interactions with theéflection probability at the Fermi energy is small, the energy

rest of the electrons in the system are screened by the surfagéPendence of the reflection amplitude, ¢e¥0, should lead
to a decrease i as a result of the enhanced reflection for

gates. ; . :
Finally, one might wonder whether higher-order correc-CcCupied states lying below the barrier.
tions tof preserve a rough antisymmetry ab@it0.5. Re- The authors thank C. Livermore, C. H. Crouch, R. M.

call that the leading smad- correction, when extended to Westervelt, and I. E. Smolyarenko for helpful discussions.
g=1, changes sign and becomes negativegor0.5. Al-  This work was supported by the NSF through the Harvard
though a proper calculation of the behavior at large values oMaterials Research Science and Engineering Center, Grant
g requires consideration of higher-order terms, the negativitNo. DMR94-00396.

1For an introduction to the Coulomb blockade, see M. A. Kastner, °K. A. Matveev, L. |. Glazman, and H. U. Baranger, Phys. Rev. B

Rev. Mod. Phys.64, 849 (1992; D. V. Averin and K. K. 54, 5637(1996.

Likharev, in Mesoscopic Phenomena in Solidslited by B. L. 1°C. B. Duke, inSolid State Physics: Advances in Research and
Altshuler, P. A. Lee, and R. A. Web@North Holland, Amster- Applications edited by H. Ehrenreich and D. Turnbuca-
dam, 199); various articles inSingle Charge Tunnelingvol. demic, New York, 1968 Suppl. 10.

294 of NATO Advanced Study Institute, Series B: Physidied 11K, A. Matveev, Phys. Rev. B1, 1743(1995.
by H. Grabert and M. H. DevoréPlenum, New York, 1992 or 123 M. Golden and B. I. Halperin, cond-mat/9611173.
U. Meirav and E. B. Foxman, Semicond. Sci. Techridl, 255 13K. A. Matveev and L. I. Glazman, Phys. Rev.33, 10 (1996.

(1996. 14E. Guth and C. J. Mullin, Phys. Re§9, 575(1941); C. Herring
’F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. and M. H. Nichols, Rev. Mod. Phy1, 185 (1949; D. W.
Campman, and A. C. Gossard, Phys. Rev. L#.705(1995; Juenker, G. S. Colladay, and E. A. Coomes, Phys. B@v772

F. R. Waugh, M. J. Berry, C. H. Crouch, C. Livermore, D. J. (1953; K. W. Ford, D. L. Hill, M. Wakano, and J. A. Wheeler,
Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Ann. Phys.(N.Y.) 7, 239(1959.
Phys. Rev. B63, 1413(1996; F. R. Waugh, Ph.D. thesis, Har- 1°J. N. L. Connor, Mol. Phys15, 37 (1968.

vard University, 1994, 183, C. P. Miller, inHandbook of Mathematical Functionedited

3C. H. Crouch, C. Livermore, F. R. Waugh, R. M. Westervelt, K. by M. Abramowitz and I. A. Stegun, Natl. Bur. StandJ.S)
L. Campman, and A. C. Gossard, Surf. S861-362 631 Appl. Math. Ser. No. 55U.S. GPO, Washington, DC, 1964.
(1996. 685.

4C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campman, ’E. C. Kemble, Phys. Re¥8, 549(1935; L. D. Landau and E. M.
and A. C. Gossard, Scien@4, 1332(1996. Lifshitz, Quantum Mechanic&Ref. 9, p. 184.

5J. M. Golden and B. I. Halperin, Phys. Rev.53, 3894 (1996. 183, H. Davies and J. A. Nixon, Phys. Rev.3B, 3423(1989.

63. M. Golden and B. I. Halperin, Phys. Rev.5#, 16 (1996. 19N, C. van der Vaart, A. T. Johnson, L. P. Kouwenhoven, D. J.

"The dimensionless conductanceiggthe “dimensionful” channel Maas, W. de Jong, M. P. de Ruyter van Steveninck, A. van der
conductance divided by the conductance quargéih. Tunnel- Enden, and C. J. P. M. Harmans, Physica&, 99 (1993; N.

ing channelkefers to any distinct orbital or spin tunneling mode.  C. van der Vaart, S. F. Godijn, Y. V. Nazarov, C. J. P. M.
8K. A. Matveev, L. I. Glazman, and H. U. Baranger, Phys. Rev. B Harmans, J. E. Mooij, L. W. Molenkamp, and C. T. Foxon,
53, 1034(1996. Phys. Rev. Lett74, 4702(1995.



