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Coherent magnetotransport in confined arrays of antidots.
III. Origin of the commensurate peaks
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We study coherent magnetotransport in finite antidot arrays in four-terminal geometry. The calculated
longitudinal resistance is in very good agreement with experimental data. The quantum-mechanical current
density is visualized, and we discuss its relation to classical electron dynamics. A pronounced commensurate
peak in the longitudinal resistance is attributed to the enhancement of the transmission in the transverse
direction due to runaway trajectories.@S0163-1829~97!01131-4#
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I. INTRODUCTION

A periodic potential applied to a high-mobility two
dimensional electron gas defines arrays of islands, called
tidots, which are nontransparent for electrons. Experime
studies of magnetotransport in antidot arrays revealed a
ries of pronounced broad peaks in the diagonal magnet
sistivity rxx , which are believed to occur when commens
rability conditions are fulfilled between the superlatti
period and the classical cyclotron radiusr c5\kF /eB at the
Fermi momentum\kF .1–6 See Refs. 7,8 for an extensive li
of further references. The semiclassical explanation of
magnetoresistance maxima is that electrons are pinned i
bits around~or between! groups of antidots for a long time
and, therefore, do not contribute to the conductivity.9 Since
the experimental data seemed to be explained by it,
above picture was widely accepted as correct.

However, an alternative explanation of the experimen
data was put forward by Baskinet al.10 who found that stable
‘‘runaway’’ trajectories, rolling along different rows of th
antidot lattice, are responsible for an enhancement of
diagonal conductivity sxx . Runaway trajectories were re
cently used by Schusteret al.11 in the interpretation of their
experiments. They found that the off-diagonal terms of
resistivity tensor play an important role and that pronoun
maxima in the magnetoresistance correspond not to min
in the conductance as one could expect, but tomaxima, con-
sistent with the existence of runaway trajectories. Sim
conclusions outlining the importance of the runaway traj
tories have recently been reported by Tsukagoshiet al.12 and
Kaiseret al.13

Quantum-mechanical calculations of the magnetocond
tance of antidot lattices have been performed by a numbe
groups,16–20 and good agreement between numerical res
and observed features in the magnetoresistance has
found. However, in contrast to the semiclassical simulatio
it is not always possible to directly relate these results
particular types of semiclassical trajectories dominating
electron dynamics.

In addition to the gross features in the the magnetoc
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ductivity, a fine structure superimposed on the commens
bility peaks has been detected in subsequent exp
ments.5,14,15These features were successfully explained, b
within the framework of the semiclassical periodic orb
theory,14,18,19,21and quantum mechanically.16–20

So far, the majority of experimental and theoretical wo
has concentrated on essentiallymacroscopicstructures made
up of thousands of antidots, such that the sample size
exceeds the length scale of inelastic scattering. Rece
magnetotransport in amesoscopicsample with total dimen-
sions smaller than the phase coherence length was studi22

Again, like in macroscopic samples, the diagonal resista
exhibits pronounced features when the cyclotron orbits
around a certain number of antidots. In addition, phase
herence effects manifest themselves in reproducible quan
fluctuations superimposed onto the commensurate peaks

In the preceding papers,7,8 hereafter called I and II, we
discussed coherent magnetotransport in mesoscopic arra
antidots in confined geometry. In paper I we calculated m
netoband structure of infinite arrays, and visualized the c
rent density of a number of Bloch states for different ma
netic fields. In particular, at magnetic fields close toB5Bc ,
when, by definition ofBc , the cyclotron diameter equals th
lattice constant of the array, the magnetobands corresp
mostly to states of the runaway type, in which electro
bounce off antidots in consecutive unit cells. On the basis
the results obtained, the two-terminal conductance of fin
arrays was analyzed in paper II. Unfortunately, the calcula
two-terminal conductance could not be directly related to
experimental data. The experiments were done on sam
with four-terminal geometry, in which the longitudinal an
Hall resistances,RL andRH , were measured. Thus, the co
nection between theory and experiment remained somew
conjectural. Besides, the calculated conductance was
lyzed on the basis of the spatial features of Bloch states.
not a priori evident that these features would survive in
finite lattice connected to leads. They could easily be
scured by mixing between different Bloch states and/or
coming and reflected electron flows.

The purpose of the present work is to study the fo
terminal transport characteristics of finite antidot arrays. W
4710 © 1997 The American Physical Society
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56 4711COHERENT MAGNETOTRANSPORT . . . . III. . . .
calculate the longitudinal and the Hall resistances of suc
device, and find very good agreement with experimen
data.22 We visualize the current density in the correspond
two-terminal array, and find that it is closely related to t
character of Bloch states in the infinite lattice. Analysis
the detailed spatial character of the current density reveal
relationship to the semiclassical dynamics. This is
strength of the present quantum approach as compare
those based directly on the Kubo formula: We can, like
classical simulations, reveal the dynamics underlying
conductance results. In particular, we find that the transm
sion probabilities between certain leads are strongly
hanced around the magnetic field of the commensu
‘‘resonance,’’B5Bc . The corresponding four-terminal lon
gitudinal resistance~computed on the basis of the calculat
transmission probabilities, within the framework of th
Landauer-Bu¨ttiker formalism23,24! shows a pronounced
maximum, in agreement with experimental findings.22 At the
same time, the current density exhibits striking features
sembling the classical runaway trajectories. This allows u
rule out the hypothesis of pinned orbits and, instead, pinp
the runaway mechanism as the one behind the commens
peaks in a finite antidot lattice.

II. RESULTS AND DISCUSSION

The geometry of the structure under investigation is illu
trated in Fig. 1. The parameters of the antidot lattice are
same as those used in papers I, II. They are chosen to clo
match the experimental arrays studied by Schusteret al.22

We consider an 834 square lattice of antidots with lattic
constantL5250 nm. The antidots are modeled by a squ
potential with a height just above the Fermi energ
V51.05EF . Because of the finite tunneling probabilit
through the corners, this potential corresponds to effectiv
rounded antidots with ‘‘soft’’ edges. Therefore, in the sub

FIG. 1. Schematic geometry of the periodic antidot lattice
four-terminal geometry. Hard wall confinement is assumed. A
dots are modeled by a square potential with the height just ab
the Fermi energy,V51.05EF ~dashed squares!. Due to the finite
tunneling probability this potential corresponds to ‘‘soft’’ antido
with effectively rounded corners, as illustrated in the figure.
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quent figures illustrating the current density pattern~see be-
low!, the antidots are shown with their effective shape, rat
than as nominal squares. Further justification for this cho
of antidot potential is given in paper I. The geometrical s
of the antidots,L/2, equals the distance between them. Ho
ever, taking into account the finite tunneling probability,
effective antidot size is somehow smaller thanL/2. Four
ideal leads of widthw5400 nm are attached to the corne
of the system. The calculated transport characteristics do
depend critically on the width of the leads, provided that th
are sufficiently wide~i.e., they can support at least 5–1
propagating modes!. All calculations have been performed i
a one-particle picture with effective potentials, and with sp
degeneracy assumed.

Experimentally, four-terminal resistancesRi j ,kl5~Vk
2Vl!/I are obtained by passing a currentI through the con-
tactsi and j and measuring the voltage drop across the ot
two contacts (k and l ). We calculate the longitudinal
RL5R12,34 and and the Hall resistance,RH5R14,32, on the
basis of the Landauer-Bu¨ttiker formalism,23,24 which relates
the resistance of a structure to its scattering characteris
This requires the calculations of all total transmission a
reflection coefficientsTji ,Rii , from lead i to lead j ~the
numbering of the leads is indicated in Fig. 1!. We compute
transmission coefficients on the basis of the hybrid Gre
function technique introduced in papers I and II, generaliz
here for the presence of four leads and finite temperat
Although the experiments have been performed at a b
temperature ofT'0.03 K, we useT51 K in our calcula-
tions. This enhanced temperature takes Joule heating
randomness due to electron-electron interactions into
count, in naive fashion.

Figure 2~a! shows the transmission coefficients for ele
trons entering the antidot array via the left lead 1. The mir
symmetry of our device, implies that transmission from
lead on the right is identical to that of the corresponding o
on the left, andT235T41, T215T34, etc. Furthermore, time
reflection invariance withB→2B gives, T145T415T23
5T32. If the device would have fourfold rotational symme
try, all leads would be equivalent. Our calculations sh
that, although the symmetry is broken in our device,
symmetry breaking is sufficently small thatT13 is qualita-
tively similar toT21, andT43 to T31. Consequently, we only
show the coefficients for transmission out of lead 1.

Figures 2~b! and 2~c! show the calculatedRH , RL , and
two-terminal resistance,R2t . The latter is computed in the
two-terminal geometry when the leads 3 and 4 are disc
nected. We note the following relation between the thr
R2t'RL1RH .25 This reflects the fact that the Hall resistan
represents a contribution mainly from the edge sta
whereas the longitudinal resistance corresponds mainly
states propagating in the bulk~i.e., inner region!. On the
other hand, the two-terminal resistance includes contri
tions from all states.

The calculated longitudinal resistance,RL , is in very
good agreement with the corresponding curve of the exp
ment of Schusteret al. ~Fig. 2 in Ref. 22!. The calculated
dependence not only reproduces the positions of the
broad maxima atB;0.2 T andB; 0.7 T but also their
relative height. The Fourier transform of the magnetores
tance oscillations, performed in a window of magnetic fie
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aroundBc , reveals a pronounced peak corresponding to
periodicity 1/DB512 T21'L2e/h, whereL2 is the area of
one lattice cell~see inset in Fig. 2, and note that the windo
chosen fixes the resolution of the corresponding Fou
spectrum!. At lower magnetic fields,B,0.4 T, a second
peak appears, 1/DB'40T21, which approximately corre-
sponds to the area of four unit cells. These findings are
consistent with the experimental observation of Ref. 22
detailed discussion of the periodicity of the conductance
cillations and their relation to the oscillating part of the nu
ber of states in the antidot lattice, and to the Aharonov-Bo
effect, is given in paper II.

Before we proceed to a discussion of the calculated m
netoconductance, it is useful to visualize the quantu

FIG. 2. ~a! The transmission coefficients for electrons enter
the antidot array via lead 1.~b! The two-terminal magnetoresistanc
R2t and the four-terminal Hall resistance,RH . ~c! The longitudinal
RL resistance. The inset in~c! shows the Fourier Transform ofRL

performed in the window (0.4 T,B,0.8 T) of the magnetic field
near Bc ~solid lines!; and in the window 0,B,0.4 T ~dashed
lines!. Arrows indicate the magnetic fields of Aharonov-Bohm p
riodicity associated with cyclotron orbits around one and four a
dots. The temperature is chosen asT51 K, and the sheet electro
density isns5331015m22. Finally, Bc5\kF /eL is the magnetic
field when the cyclotron diameter equals the lattice constant,L, of
the array.
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mechanical current density,j (x,y), in our finite lattice, and
compare it with the character of the Bloch states in the c
responding infinite lattice~studied in paper I!. In principle,
we should have calculated the current densities for the s
four-terminal geometry as that used to computeRL and
RH . However, a major reduction in computational effort w
achieved by using the two-terminal geometry instead. N
that at relatively high magnetic field the Lorentz force co
fines incoming electron flow to the boundaries of the str
ture. This makes the two-terminal geometry effectively eq
to a four-terminal one@see Figs. 3~d!–3~e!#. At low magnetic
fields we intentionally confine the electron flow to the upp
boundary by choosing an appropiate linear combination
the basic states. The physical picture emerging from th
finite lattice calculations can be directly used in the interp
tation of our four-terminal conductances.

Figure 3 shows current density patternsj (x,y) for several
representative values of the magnetic field chosen on
interval 0,B,2Bc . The direction of the magnetic field
chosen here corresponds to counterclockwise cyclotron
tion. At zero magnetic field the current predominantly flow
between rows of antidots in the longitudinal direction. Th
is consistent with the character of the Bloch states in
infinite arrays. The latter consists of fast states with ess
tially one-dimensional laminar type flow channeling betwe
rows of antidots, and slower ones with a genuinely tw
dimensional flow of vortex character. Combination of t
two results in some admixture of vortices, as seen in F
3~a!. Note that the classical simulations15,26 reveal a similar
character of electron dynamics at zero field. With increase
the magnetic field, the predominantly one-dimensional ch
acter of the current density gradually transforms into a co
plex flow of vortex type@Fig. 3~b!#, reflecting a correspond
ing transformation of the Bloch states. However, in the fie
region nearB50.35 T ~which roughly corresponds to th
classical cyclotron motion around four antidots,B'Bc/2),
the laminar quasi-one-dimensional flow along rows of an
dots is again dominant, Fig. 3~c!. Note that this is accompa
nied by an increase of the corresponding transmission p
ability, T21.

Figure 3~d! shows a current density pattern calculated
the vicinity of the magnetic fieldB5Bc . The formation of
edge states in which electrons skip along the upper boun
of the structure is clearly seen. At this value of the magne
field, most of the bulk states in the infinite array are of t
runaway type. This can be clearly traced in the current d
sity pattern in the finite lattice. In particular, a significant pa
of the electrons in the bulk~i.e., those which do not skip
along the upper edge of the system! run away along the
leftmost column of antidots from lead 1 to lead 3. It is wor
mentioning that the corresponding transmission coefficie
T31, is enhanced, relatively speaking, in this field regio
When the magnetic field is increased beyond the class
commensurability ‘‘resonance’’ atBc , transport in the infi-
nite lattice is mediated by states~beyond the edge states!
which are localized around antidots or in the space betw
antidots. This is clearly manifested in the current density
the finite array, as shown in Fig. 3~e!. Finally, at high mag-
netic field B*2Bc , the incoming electron flow is spatially
squeezed by the Lorentz force to an interval smaller than
distance between the upper row of antidots and the edg
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56 4713COHERENT MAGNETOTRANSPORT . . . . III. . . .
FIG. 3. Current density patterns in the antidot array for differ
magnetic fields:~a! B50; ~b! B50.2 T; ~c! B50.4 T (B'Bc/2); ~d!
B50.7 T (B'Bc); ~e! B50.9 T; ~f! B51.5 T.
the system. In this case electrons travel near the edge wit
even ‘‘seeing’’ the antidot lattice, see Fig. 3~f!.

Visualized current density patterns, along with the calc
lated transmission coefficients,Ti j , provide us with valuable
information which makes it possible to discuss with con
dence the calculated and observed features of the longit
nal magnetoresistanceRL . The behavior of the four-termina
longitudinal resistanceRL is strongly correlated with the
two-terminal resistanceR2t , see Fig. 2~b!. On the other
hand, at relatively low magnetic fields,B&0.5 T, the two-
terminal conductanceG2t51/R2t rather faithfully follows the
number of Bloch states~NOS! in the infinte antidot lattice
~see paper II!. Thus, low-field features in the magnetores
tance reflect the band structure of a periodic antidot pot
tial. In particular,R2t is characterized by a broad minimum
at B;Bc/2 ~which corresponds to an enhancement of
conductance and increase of the NOS!. The transmission co-
efficientT21 is enhanced as well, and the corresponding c
rent density, as discussed above, shows a significant frac
of the electrons traveling between the horizontal rows of
tidots. This is consistent with the classical concept of ru
away trajectories bouncing off every other antidot in a ro
at B5Bc/2. It is inconsistentwith the picture of electrons
trapped in orbits around four antidots. Note that when
Landauer-Bu¨ttiker formalism is used to expressRL in terms
of the transmission coefficients, keeping leading terms o
~in this field regime!, one arrives at the approximate relatio
RL'T31/T21T13. SinceT13 is qualitatively similar toT21,
we can discussRL in terms of

RL;T31/T21
2 . ~1!

It follows from Eq.~1! that the enhancement of the transm
sion coefficientT21 nearB5Bc/2 causes a pronounced min
mum of the longitudinal magnetoresistance.

With a further increase of the magnetic field, the numb
of incoming states in the leads decreases much faster tha
NOS in the antidot array. As a result, incoming states in
leads are not able to closely match all the Bloch states in
antidot lattice, and the structure of NOS can hardly be tra
any longer in the conductance. In the field region whe
B;Bc , RL shows a broad, but distinct, maximum. We a
tribute this maximum to the existence of the runaway-ty
states. Indeed, in the regionBc/2,B,Bc , the transmission
coefficientT21 decreases. At the same timeT31 is more or
less constant, i.e., it is enhanced on the background o
overall decay due to gradually increasing efficiency of ed
state transport. This behavior of the transmission coefficie
shows that electrons entering the antidot lattice via lead 1
redirected into lead 3. This occurs via runaway-type sta
along the leftmost vertical column of the array. The curre
pattern of Fig. 3~d! demonstrates this. It is worth mentionin
that pinned trajectories would cause the opposite effect
reduction of T31 near Bc . With a further increase of the
magnetic field beyondBc runaway states no longer exis
Thus, in this field region,T31 rapidly decreases. As a resu
electrons entering the lattice from lead 1, predominantly e
from lead 2, with a resulting increase ofT21.

t
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4714 56I. V. ZOZOULENKO, FRANK A. MAAO” , AND E. H. HAUGE
The above behavior of the transmission coefficients n
Bc ~approximate constancy ofT31, and a local broad mini-
mum in T21) causes, according to Eq.~1!, the broad maxi-
mum of the longitudinal resistance,RL . Note that this maxi-
mum, accompanied by an approximate constancy of
~transverse! transmission,T31, is consistent with the simila
behavior of the magnetoresistivity in macroscopic rectan
lar ~nonsquare! arrays.12 In the latter, increase of the diago
nal magnetoresistance in one direction~sayrxx) is related to
an increase of the diagonal conductivity in the other direct
(syy).

When the magnetic field is well aboveBc , RL is greatly
reduced due to an increase of efficiency of edge state tr
port and due to the reduction of the number of bulk Blo
states. The oscillatory structure inRL observed in this field
region, reflects the existence of bulk quasibound sta
where electrons are localized between or around antidots@see
Fig. 3~e!#. In this field region, transport through the antid
lattice resembles that of the extreme quantum regime con
ered in Ref. 27.

To conclude this section we stress that our analysis
restricted to the case when the distance between antido
somewhat larger than the antidot size. This correspond
the experiment22 which we try to model. Other experimenta
studies11 show that in antidot lattices with large aspect rat
‘‘antidot size/lattice period,’’ quasipinned orbits domina
over runaway trajectories. Classical simulations of the m
netoconductance in antidot arrays with different aspect ra
are discussed in terms of dominating trajectories in Ref.

Our model is an idealized one with a lattice of identic
antidots and absence of impurity scattering. Accounting
fluctuations in antidot size and lattice constant, as well as
effects of impurities, one would bring the theory29 closer to
experiment. However, commensurate peaks and quantum
cillations would survive in the magnetoresistence of anti
arrays, if the deviations from an ideal ordering are not
large12,29and the scattering from disorder is not too strong29
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III. CONCLUSIONS

We have presented a quantum-mechanical study of m
netotransport in a finite antidot lattice in a confined fou
terminal geometry. The calculated longitudinal magneto
sistance reproduces the experimental results of Schu
et al.,22 including peak positions of the broad commensur
resonances, as well as the periodicity of the quantum os
lations. By visualizing current density patterns in the antid
array we relate the features in the magnetoresistance to
ticular types of semiclassical trajectories dominating elect
dynamics at a given magnetic field. We find that the curr
density patterns closely match the character of the co
sponding Bloch states in infinite arrays. In our analysis of
commensurate peaks we pinpoint the importance of class
runaway trajectories. In particular, the pronounced peak
the magnetoresistance detected atB5Bc , we attribute to
relative enhancement of the transmission in thetransverse
direction, caused by the runaway states along the leftm
vertical column of antidots. At the magnetic field of the se
ond commensurate ‘‘resonance,’’B5Bc/2, the longitudinal
resistance exhibits a pronounced minimum. This we relat
the enhancement of the transmission in thelongitudinal di-
rection due to the runaway states.
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Rev. Lett.57, 1761~1986!.

24C. W. J. Beenakker and H. van Houten, inSolid State Physics
Advances in Research and Applications, edited by H. Ehrenreich
and D. Turnbull ~Academic, San Diego, 1991!, Vol. 44.; S.
Datta,Electronic Transport in Mesoscopic Systems~Cambridge
University Press, Cambridge, 1995!.

25R. G. Mani, K. von Klitzing, and K. Ploog, Phys. Rev. B51, 2584
~1995!.

26R. Fleischmann, T. Geisel, R. Ketzmerick, and G. Petschel, Se
cond. Sci. Technol.9, 1902~1994!.

27I. V. Zozulenko, F. A. Maaø, and E. H. Hauge, Phys. Rev. B51,
7058 ~1995!.

28S. Ishizaka and T. Ando~unpublished!.
29S. Uryu and T. Ando, inThe Physics of Semiconductors~Ref. 6!,

p. 1505.


