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Coherent magnetotransport in confined arrays of antidots.
lll. Origin of the commensurate peaks
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We study coherent magnetotransport in finite antidot arrays in four-terminal geometry. The calculated
longitudinal resistance is in very good agreement with experimental data. The quantum-mechanical current
density is visualized, and we discuss its relation to classical electron dynamics. A pronounced commensurate
peak in the longitudinal resistance is attributed to the enhancement of the transmission in the transverse
direction due to runaway trajectori$0163-18207)01131-4

[. INTRODUCTION ductivity, a fine structure superimposed on the commensura-
bility peaks has been detected in subsequent experi-
A periodic potential applied to a high-mobility two- ments>****These features were successfully explained, both
dimensional electron gas defines arrays of islands, called afvithin the framework of the semiclassical periodic orbit
tidots, which are nontransparent for electrons. Experimentdheory,*****?'and quantum mechanicalt§-°
studies of magnetotransport in antidot arrays revealed a se- SO far, the majority of experimental and theoretical work
ries of pronounced broad peaks in the diagonal magnetordl@s concentrated on essentiatiycroscopicstructures made
sistivity p,,, which are believed to occur when commensu-YP of thousands of antidots, s_uch th_at the sample size well
rability conditions are fulfiled between the superlattice ©XC€€ds the length scale of inelastic scattering. Recently,

period and the classical cyclotron radiys=#kg/eB at the rr;ar?netn(?]trﬁnrsi)r?r:] '?hmeﬁgzgofgﬁggﬁ?e"l‘g? :ﬁt\?\/lailr:t%g_ied
Fermi momentunike .1 See Refs. 7,8 for an extensive list 5 o> SMaterthan e p g :

of further references. The semiclassical explanation of th Agaqn_, like in macroscopic samples, the diagonal resistance
. R . N®xhibits pronounced features when the cyclotron orbits fit
magnetoresstance maxima is that ele_ctrons are plnne_d IN Offound a certain number of antidots. In addition, phase co-
bits around(or between groups of antidots for a long time oy ce effects manifest themselves in reproducible quantum
and, therefore, do not contribute to the condgctﬁ@mc_e fluctuations superimposed onto the commensurate peaks.
the expgrlmental da_ta seemed to be explained by it, the |5 the preceding papefd hereafter called | and II, we
above picture was widely accepted as correct. discussed coherent magnetotransport in mesoscopic arrays of
However, an alternative explanation of the experimentabntidots in confined geometry. In paper | we calculated mag-
data was put forward by Baskat al'° who found that stable netoband structure of infinite arrays, and visualized the cur-
“runaway” trajectories, rolling along different rows of the rent density of a number of Bloch states for different mag-
antidot lattice, are responsible for an enhancement of thaetic fields. In particular, at magnetic fields closeBte B..,
diagonal conductivity oy,. Runaway trajectories were re- when, by definition o8B, the cyclotron diameter equals the
cently used by Schustet all! in the interpretation of their lattice constant of the array, the magnetobands correspond
experiments. They found that the off-diagonal terms of themostly to states of the runaway type, in which electrons
resistivity tensor play an important role and that pronouncedounce off antidots in consecutive unit cells. On the basis of
maxima in the magnetoresistance correspond not to minimtne results obtained, the two-terminal conductance of finite
in the conductance as one could expect, buhtxima con-  arrays was analyzed in paper Il. Unfortunately, the calculated
sistent with the existence of runaway trajectories. Similatwo-terminal conductance could not be directly related to the
conclusions outlining the importance of the runaway trajecexperimental data. The experiments were done on samples
tories have recently been reported by Tsukageshil>and  with four-terminal geometry, in which the longitudinal and
Kaiseret al® Hall resistancesR, andRy;, were measured. Thus, the con-
Quantum-mechanical calculations of the magnetoconduaection between theory and experiment remained somewhat
tance of antidot lattices have been performed by a number afonjectural. Besides, the calculated conductance was ana-
groupst®~?°and good agreement between numerical result$yzed on the basis of the spatial features of Bloch states. It is
and observed features in the magnetoresistance has beeot a priori evident that these features would survive in a
found. However, in contrast to the semiclassical simulationsfinite lattice connected to leads. They could easily be ob-
it is not always possible to directly relate these results toscured by mixing between different Bloch states and/or in-
particular types of semiclassical trajectories dominating theoming and reflected electron flows.
electron dynamics. The purpose of the present work is to study the four-
In addition to the gross features in the the magnetoconterminal transport characteristics of finite antidot arrays. We
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1 2 ... 7 8 quent figures illustrating the current density pattésee be-
low), the antidots are shown with their effective shape, rather
than as nominal squares. Further justification for this choice
of antidot potential is given in paper |. The geometrical size
of the antidots| /2, equals the distance between them. How-
ever, taking into account the finite tunneling probability, an
effective antidot size is somehow smaller thhf2. Four
ideal leads of widthwv=400 nm are attached to the corners
of the system. The calculated transport characteristics do not
depend critically on the width of the leads, provided that they
lead 4 are sufficiently wide(i.e., they can support at least 5-10
propagating modesAll calculations have been performed in
n a one-particle picture with effective potentials, and with spin
degeneracy assumed.
1... M m Experimentally, four-terminal resistance®;; \;=(Vy
MBS S Y —V))/I are obtained by passing a currénthrough the con-
0 M+1. .. tactsi andj and measuring the voltage drop across the other
two contacts K and I). We calculate the longitudinal,
FIG. 1. Schematic geometry of the periodic antidot lattice inR =R, 5, and and the Hall resistancBR,; =R, 3,, on the
four-terminal geometry. Hard wall confinement is assumed. Anti-hasis of the Landauer-Biker formalism?>24which relates
dots are modeled by a square potential with the height just abovgye resistance of a structure to its scattering characteristics.
izﬁn';ﬁ:g'pergg;%ﬁi;tij-gfpgté‘rj;‘iji‘;rfg:;;ﬁzg‘:ﬁ ‘t‘ZOth"e;Ir]rifitcieots This requires the calculations of all total transmission and
with effectively rounded corners, as illustrated in the figure. rneljciﬁgg(r)i?]gcg?ftigelgfgjsl |sR lilridif(r:gtn(;dleir? dFligtoy\I/Eéagcfm(;E?e
transmission coefficients on the basis of the hybrid Green
calculate the |0ngitudinal and the Hall resistances of such 8unction technique introduced in papers | and I, generaiized
device, and find very good agreement with experimentahere for the presence of four leads and finite temperature.
data?z We Visualize the current denSity in the CorrespondingAithough the experiments have been performed at a base
two-terminal array, and find that it is closely related to thetemperature off~0.03 K, we useT=1 K in our calcula-
character of Bloch states in the infinite lattice. AnalySiS Oftions_ ThlS enhanced temperature takes Joule heating and
the detailed Spatial Character Of the current density reVealS i%ndomness due to electron-eiectron interactions into ac-
relationship to the semiclassical dynamics. This is thegount, in naive fashion.
strength of the present quantum approach as compared t0 Figyre Za) shows the transmission coefficients for elec-
those based directly on the Kubo formula: We can, like tharons entering the antidot array via the left lead 1. The mirror
classical simulations, reveal the dynamics underlying th&ymmetry of our device, implies that transmission from a
Conductance resultS. In partlcular, we f|nd tha.t the transmi%ad on the right is identicai to that of the Corresponding ohe
sion probabilities between certain leads are strongly engp the left, andT,3=T,;, T»=Ta,, etc. Furthermore, time
hanced around the magnetic field of the commensuratgflection invariance withB——B gives, T14=Ts=Tos
“resonance,”B=B.. The corresponding four-terminal lon- —T_, |f the device would have fourfold rotational symme-
gitudinal resistancécomputed on the basis of the calculatedtry, all leads would be equivalent. Our calculations show
transmissiqn probabilities, within the framework of the that, although the symmetry is broken in our device, the
Landauer-Bttiker formalls_n?&z‘b shows a pronounced gsymmetry breaking is sufficently small thdly; is qualita-
maximum, in agreement with experimental findifg&t the  tively similar toT,;, andT,s to T4,. Consequently, we only
same time, the current density exhibits striking features resnow the coefficients for transmission out of lead 1.
sembling the classical runaway trajectories. This allows us to Figures 2b) and 2c) show the calculate®y, R, , and

rule out the hypothesis of pinned orbits aind, instead, pinPoiINkyo-terminal resistanceR,,. The latter is computed in the
the runaway mechanism as the one behind the commensurg{g,_terminal geometry when the leads 3 and 4 are discon-
peaks in a finite antidot lattice. nected. We note the following relation between the three,
R,~R + Ry .2° This reflects the fact that the Hall resistance
Il. RESULTS AND DISCUSSION represents a contrib_ution mainly from the edge states,
whereas the longitudinal resistance corresponds mainly to
The geometry of the structure under investigation is illus-states propagating in the bulke., inner region On the
trated in Fig. 1. The parameters of the antidot lattice are thether hand, the two-terminal resistance includes contribu-
same as those used in papers |, Il. They are chosen to closdigpns from all states.
match the experimental arrays studied by Schusteal?? The calculated longitudinal resistancB,, is in very
We consider an 84 square lattice of antidots with lattice good agreement with the corresponding curve of the experi-
constantL =250 nm. The antidots are modeled by a squarement of Schusteet al. (Fig. 2 in Ref. 22. The calculated
potential with a height just above the Fermi energy,dependence not only reproduces the positions of the two
V=1.05E. Because of the finite tunneling probability broad maxima aB~0.2 T andB~ 0.7 T but also their
through the corners, this potential corresponds to effectivelyelative height. The Fourier transform of the magnetoresis-
rounded antidots with “soft” edges. Therefore, in the subse-tance oscillations, performed in a window of magnetic fields

lead 1 lead 2

lead 3
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mechanical current density(x,y), in our finite lattice, and
compare it with the character of the Bloch states in the cor-
responding infinite latticéstudied in paper)! In principle,

we should have calculated the current densities for the same
four-terminal geometry as that used to compiRe and

Ry . However, a major reduction in computational effort was
achieved by using the two-terminal geometry instead. Note
that at relatively high magnetic field the Lorentz force con-
fines incoming electron flow to the boundaries of the struc-
ture. This makes the two-terminal geometry effectively equal
to a four-terminal ong¢see Figs. &)—3(e)]. At low magnetic
fields we intentionally confine the electron flow to the upper
boundary by choosing an appropiate linear combination of
the basic states. The physical picture emerging from these
finite lattice calculations can be directly used in the interpre-
tation of our four-terminal conductances.

Figure 3 shows current density pattef(s,y) for several
representative values of the magnetic field chosen on the
interval 0<B<2B.. The direction of the magnetic field
chosen here corresponds to counterclockwise cyclotron mo-
tion. At zero magnetic field the current predominantly flows
between rows of antidots in the longitudinal direction. This
is consistent with the character of the Bloch states in the
infinite arrays. The latter consists of fast states with essen-
tially one-dimensional laminar type flow channeling between
rows of antidots, and slower ones with a genuinely two-
dimensional flow of vortex character. Combination of the
two results in some admixture of vortices, as seen in Fig.
3(a). Note that the classical simulatidig® reveal a similar
character of electron dynamics at zero field. With increase of
the magnetic field, the predominantly one-dimensional char-
R R S N R R i’ acter of the current density gradually transforms into a com-
4 06 08 10 12 14 plex flow of vortex typd Fig. 3(b)], reflecting a correspond-

B (Tesla) ing transformation of the Bloch states. However, in the field
region nearB=0.35 T (which roughly corresponds to the

FIG. 2. (a) The transmission coefficients for electrons enteringc|assical cyclotron motion around four antidoB=B_/2),
the antidot array via It_aad 1b) The Fwo-terminal magnetor_tasi;tance the laminar quasi-one-dimensional flow along rows of anti-
Ryt anq the four-termlnal _HaII resistande,, . ((_:) The longitudinal dots is again dominant, Fig(@. Note that this is accompa-

R, resistance. The inset i) shows the Fourier Transform & niaq py an increase of the corresponding transmission prob-
performed in thg window ((_).4 <'fB<_O.8 T) of the magnetic field ability, T,y
Fear Bc (S°“d."n.es)’ and in the \{vm_dow €B<0.4 T (dashed Figure 3d) shows a current density pattern calculated in
ines). Arrows indicate the magnetic fields of Aharonov-Bohm pe- the vicinity of the magnetic fiel®=B,. The formation of
riodicity associated with cyclotron orbits around one and four anti- . . . ¢
dots. The temperature is chosenTas1 K, and the sheet electron edge states in Wh'Ch electrons skip qlong the upper boundqry
density isn,=3x 10"m~2. Finally, B,=#k /eL is the magnetic qf the structure is clearly seen. At thl_s yqlue of the magnetic
field when the cyclotron diameter equals the lattice constanf field, most of the bulk states in the infinite array are of the
the array. runaway type. This can be clearly traced in the current den-
sity pattern in the finite lattice. In particular, a significant part
aroundB,, reveals a pronounced peak corresponding to thef the electrons in the bulki.e., those which do not skip
periodicity 1AB=12 T !~L2%e/h, whereL? is the area of along the upper edge of the systemun away along the
one lattice cellsee inset in Fig. 2, and note that the window leftmost column of antidots from lead 1 to lead 3. It is worth
chosen fixes the resolution of the corresponding Fouriementioning that the corresponding transmission coefficient,
spectrum. At lower magnetic fieldsB<0.4 T, a second Tz, iS enhanced, relatively speaking, in this field region.
peak appears, AB~40T !, which approximately corre- When the magnetic field is increased beyond the classical
sponds to the area of four unit cells. These findings are alscommensurability “resonance” &, , transport in the infi-
consistent with the experimental observation of Ref. 22. Anite lattice is mediated by statdbeyond the edge stajes
detailed discussion of the periodicity of the conductance oswhich are localized around antidots or in the space between
cillations and their relation to the oscillating part of the num-antidots. This is clearly manifested in the current density of
ber of states in the antidot lattice, and to the Aharonov-Bohnthe finite array, as shown in Fig(6. Finally, at high mag-
effect, is given in paper Il netic field B=2B,, the incoming electron flow is spatially

Before we proceed to a discussion of the calculated magsqueezed by the Lorentz force to an interval smaller than the

netoconductance, it is useful to visualize the quantumdistance between the upper row of antidots and the edge of
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the system. In this case electrons travel near the edge without
even “seeing” the antidot lattice, see Fig(fB

Visualized current density patterns, along with the calcu-
lated transmission coefficients;; , provide us with valuable
information which makes it possible to discuss with confi-
dence the calculated and observed features of the longitudi-
nal magnetoresistané¢g . The behavior of the four-terminal
longitudinal resistancedR, is strongly correlated with the
two-terminal resistancéR,;, see Fig. %). On the other
hand, at relatively low magnetic fieldB=<0.5 T, the two-
terminal conductanc®&,;= 1/R,, rather faithfully follows the
number of Bloch state@NOS) in the infinte antidot lattice
(see paper )l Thus, low-field features in the magnetoresis-
tance reflect the band structure of a periodic antidot poten-
tial. In particular,R,; is characterized by a broad minimum
at B~B./2 (which corresponds to an enhancement of the
conductance and increase of the NOBhe transmission co-
efficient T, is enhanced as well, and the corresponding cur-
rent density, as discussed above, shows a significant fraction
of the electrons traveling between the horizontal rows of an-
tidots. This is consistent with the classical concept of run-
away trajectories bouncing off every other antidot in a row,
at B=B./2. It is inconsistentwith the picture of electrons
trapped in orbits around four antidots. Note that when the
Landauer-Bttiker formalism is used to expre$y in terms
of the transmission coefficients, keeping leading terms only
(in this field regime, one arrives at the approximate relation
R ~T3,/T»T43. SinceT,3 is qualitatively similar toT,,,
we can discus®, in terms of

(d)
R.~Ta/T3,. 1)

It follows from Eq. (1) that the enhancement of the transmis-
sion coefficienfT,; nearB=B./2 causes a pronounced mini-
mum of the longitudinal magnetoresistance.

With a further increase of the magnetic field, the number
of incoming states in the leads decreases much faster than the
NOS in the antidot array. As a result, incoming states in the
leads are not able to closely match all the Bloch states in the
antidot lattice, and the structure of NOS can hardly be traced
any longer in the conductance. In the field region where
B~B., R. shows a broad, but distinct, maximum. We at-
tribute this maximum to the existence of the runaway-type
states. Indeed, in the regi®@/2<B<B,, the transmission
coefficientT,; decreases. At the same tinig, is more or
less constant, i.e., it is enhanced on the background of an
overall decay due to gradually increasing efficiency of edge
O state transport. This behavior of the transmission coefficients
O shows that electrons entering the antidot lattice via lead 1 are

redirected into lead 3. This occurs via runaway-type states
O along the leftmost vertical column of the array. The current
O

(®)

O OO
O OO
O OO0
O O O

O O
O O
O O
O 0O

pattern of Fig. &) demonstrates this. It is worth mentioning
that pinned trajectories would cause the opposite effect of a
reduction of T3; near B,. With a further increase of the
magnetic field beyondB, runaway states no longer exist.

FIG. 3. Current density patterns in the antidot array for differentThus, in this field regionT 3, rapidly decreases. As a result,
magnetic fields(a) B=0; (b) B=0.2 T;(c) B=0.4 T (B=~B./2); (d) electrons entering the lattice from lead 1, predominantly exit
B=0.7 T B~B,); () B=0.9 T;(f) B=15T. from lead 2, with a resulting increase ©§, .

O O
O O
O O
O O
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The above behavior of the transmission coefficients near I1l. CONCLUSIONS
B, (approximate constancy df3;, and a local broad mini-
mum in T,,) causes, according to E¢l), the broad maxi- We have presented a quantum-mechanical study of mag-

mum of the longitudinal resistancB, . Note that this maxi- netotransport in a finite antidot lattice in a confined four-
mum, accompanied by an approximate constancy of théerminal geometry. The calculated longitudinal magnetore-
(transversgtransmissionT sy, is consistent with the similar  sistance reproduces the experimental results of Schuster
behavior of the magnetoresistivity in macroscopic rectanguet al,?? including peak positions of the broad commensurate
lar (nonsquargarrays? In the latter, increase of the diago- resonances, as well as the periodicity of the quantum oscil-
nal magnetoresistance in one directigay py,) is related to  |ations. By visualizing current density patterns in the antidot
an increase of the diagonal conductivity in the other dwecuonarray we relate the features in the magnetoresistance to par-
(ayy)- o . ticular types of semiclassical trajectories dominating electron
When the magnetic field is well abo®,, R, is greatly  gynamics at a given magnetic field. We find that the current
reduce% %ue to aﬂ mcrdeasg of effflﬁlency ot:‘ edgfebstlite ltra?la'ensity patterns closely match the character of the corre-
port and due to the reduction of the number of bulk Bloc sponding Bloch states in infinite arrays. In our analysis of the

states. The oscillatory structure R observed in this field L ; .
; . . commensurate peaks we pinpoint the importance of classical
region, reflects the existence of bulk quasibound states

where electrons are localized between or around antidets funaway trajectc_)ries. In particular, the pronounged peak in
Fig. 3(e)]. In this field region, transport through the antidot the magnetoresistance detectedBat B;, we attribute to

lattice resembles that of the extreme quantum regime consid€!ative enhancement of the transmission in tr@nsverse
ered in Ref. 27. direction, caused by the runaway states along the leftmost

To conclude this section we stress that our analysis jvertical column of antidots. At the magnetic field of the sec-

restricted to the case when the distance between antidots §'d commensurate “resonanceB=B./2, the longitudinal
somewnhat larger than the antidot size. This corresponds ffFSistance exhibits a pronounced minimum. This we relate to
the experimerie which we try to model. Other experimental the .enhancement of the transmission in kegitudinal di-
studied! show that in antidot lattices with large aspect ratios"®ction due to the runaway states.

“antidot size/lattice period,” quasipinned orbits dominate

over runaway trajectories. Classical simulations of the mag-
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