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Biexcitons bound to single-island interface defects

O. Heller, Ph. Lelong, and G. Bastard
Laboratoire de Physique de la Matie`re Condense´e, Ecole Normale Supe´rieure, 24 rue Lhomond, 75005 Paris, France

~Received 28 January 1997!

We calculate the binding energy of biexcitons bound to single-island interface defects in deep quantum
wells. The application of a variational function leads to a calculation that is mostly analytical. We discuss in
detail the dependence of the biexciton binding energy on the defect size and the quantum-well width. The
numerical calculations are carried out for AlxGa12xAs/GaAs quantum wells with defect depths of 1 and 2
monolayers corresponding to recent experimental findings. Furthermore, we attempt to correlate our problem
of a localized biexciton with the existing results for free four-particle molecules in different confinement
structures and for different mass ratios.@S0163-1829~97!03932-5#
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I. INTRODUCTION

Nonlinear optical experiments allow the study of mo
ecules of two excitons called biexcitons. Due to the co
plexity of the biexciton wave function, the effort and th
number of methods for the calculation of the biexcitonic e
ergy are continuously increasing. The most general one is
variational method, which is applicable to all kinds of qua
tum structures that are large compared to the lattice cons
For bulk biexcitons this method was employed by Brinkm
et al.,1 followed by Miller et al.2 and Kleinman3 for quantum
wells ~QW’s!. Quantum-well wires,4,5 ~QWW’s! and quan-
tum dots6 ~QD’s! have also been examinated sucessfully
second method consists in a perturbative analysis. In ord
obtain a discrete electronic spectrum this method has b
applied to QD’s with infinite-barrier potentials and siz
smaller than the exciton Bohr radius. Bryant7 has studied
finite dots, whereas Ba´nyai8 has analyzed the limit of van
ishing dot size up to the second order. In the case of fi
QD’s with infinite barriers one of the most accurate proc
dure is the numerical matrix diagonalization,9,10 which uses
the unperturbed electronic wave functions as a basis for
excitonic and biexcitonic wave functions. Due to the lar
number of integration dimensions, quantum Monte Ca
calculations found a way in this domain. It was demonstra
that this method is also reliable11,12by a comparison betwee
its predictions and those of the perturbative matrix diagon
ization. Finally, there has been an application of the fr
tional dimension approach to biexcitons in QW’s b
Birkedal et al.13

Parallel to the investigations of biexcitons in semicond
tor physics, the corresponding molecules of two hydrogen
positronium atoms have been studied in molecular phys
The most recent and very powerful calculations consist i
combination of a variational calculation for a set of Gauss
functions14 or modern Hylleraas-type wave functions.15

Recently AlxGa12xAs/GaAs QW’s with single-island in-
terface defects formed by monolayer fluctuations of the Q
width have been studied experimentally. This kind of int
face defect creates a lateral potential and thus localizes e
tons. It acts therefore as a natural quantum dot. Sharp
toluminescence lines below the localized exciton have b
observed and attributed to localized biexcitons.16 In
560163-1829/97/56~8!/4702~8!/$10.00
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ZnSe/ZnxCd12xSe QW’s biexcitons localized to alloy disor
der have been detected.17,18 On the theoretical side, a mode
for lasing oscillations due to localized biexcitons has be
developed.19

We present in this paper calculations of the binding en
gies of the localized excitons and biexcitons by using
variational method. In this case no convenient approach w
infinite barriers can be chosen. Consequently, the pertu
tive and the matrix diagonalization methods are exclud
because the interface defect has only a few bound electr
states.20 The paper is arranged as follows. In Sec. II we d
cuss the properties of an exciton bound to an interface de
by the use of two different trial wave functions. The excito
binding energy and the lateral exciton extension are analy
in detail. In Sec. III we investigate the same quantities for
biexciton. We also present a comparison of the bound b
citons with free bulk and free quantum-well biexcitons.
both sections we show numerical results for
Al xGa12xAs/GaAs QW as a function of the defect size f
defect depths of 1 and 2 monolayers~ML !. Furthermore, we
analyze the ratio of the attractive and repulsive Coulo
energies in the biexciton and compare it with the results
the free hydrogen and the free positronium molecule.
summarize our results in Sec. IV and present the analyt
calculations of the most difficult terms in the Appendix.

II. EXCITON

For the exciton we take the well-known Hamiltonian21 for
the QW with a widthL centered at z5 0 and add the binding
energyVde f due to the interface defect. The defect is a
sumed to have a cylindrical symmetry with a lateral radiusD
and to be centered at%50. Its extension in thez direction is
A and the potential depth corresponds to the barrier poten
Ue5x3770 meV (Uh5x3480 meV! for the electron~hole!
and therefore depends on the Al concentrationx of the bar-
rier:

H5HQW1Vde f~e!1Vde f~h!,

HQW5He1Hh1Txy1HCoul, ~1!

Vde f~e,h!52Ue,h1@L/2,L/21A#~ze,h!e2%e,h
2 /D2

,

4702 © 1997 The American Physical Society
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56 4703BIEXCITONS BOUND TO SINGLE-ISLAND INTERFACE . . .
where 1@a,b# is equal to 1 in the interval@a,b# and 0 other-
wise. In the following we will discuss in detail the excito
binding energy to the interface defectEbin(ex), which is
defined as the energy difference of the total exciton ene
with and without the defect potential. In the case of lo
barriers and shallow defects the exciton binding energy
the interface defect is small compared to the exciton bind
energy and thus compared to the energy distance betwee
1s and 2s states. Consequently, a description of the in-pla
exciton ground state by the free exciton termF1s(%) for the
relative motion and a further termC(R) for the motion of
the center of mass is appropriate.22 This procedure cannot b
applied to the case of deep QW’s where the binding ene
due to the interface defect is of the order of the excito
binding energy. Instead, we describe the exciton wave fu
tion Cex by an excitonic correlation termQcorr for the rela-
tive motion and two independent localization termsV loc for
the electron and the hole. In order to get a wave function
allows a tractable calculation even for the biexciton we us
Gaussian function in% for the relative motion. Furthermore
we use a separable form for thez direction and thexy plane,
which is justified for deep QW’s with shallow defects. O
trial wave function thus depends on three variational para
eters:l for the relative exciton motion andle andlh for the
electron and hole localizations:

Cex5NV loc~e,le!V loc~h,lh!Qcorr~e,h,l!,

V loc~ i ,m!5x i~zi !e
2% i

2/m2
,

Qcorr~ i , j ,m!5e2~%W i2%W j !
2/m2

. ~2!

The choice of a Gaussian in% leads to an underestimat
of the exciton binding energy, which will be assessed b
comparison with a second trial wave functionFex .23 It con-
sists in the exact three-dimensional numerical solutionsje

0

andjh
0 for the interface defect problem without the Coulom

term. The latter is taken into account by a three-dimensio
excitonic correlation term. This approach contains only o
excitonic variational parameterm:

Fex5Nje
0~rWe!jh

0~rWh!e2urWe2rWhu/m. ~3!

The system under consideration is an AlxGa12xAs/GaAs
QW with a widthL535 Å and an aluminium concentratio
x50.35. Neglecting the mass mismatch, we use for
masses for the electron (e) and the heavy hole~hh! mxy(e)
5mz(e)5 0.0782m0, mxy(hh)5 0.112m0, and mz(hh)5
0.377m0. The remaining parameters are the same as in
21. In Fig. 1 we present the exciton binding energy to
interface defect for the hh exciton with interface defects o
and 2 ML depths (A52.83 and 5.66 Å!.

In the region of very small defect radiiCex is not appro-
priate: it leads to negative binding energies, whereasFex
provides a better description in the whole range due to
three-dimensional excitonic description. In the following w
will restrict ourselves to an intermediate defect size reg
between 100 and 400 Å, which corresponds to the estim
size of interface defects in many samples.

For defect sizes ranging from 100 to 400 Å we get
1 ML binding energies of 1.4–7.4 meV forCex and 2.4–
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10.4 meV forFex and for 2 ML binding energies of 5.1–
14.0 meV forCex and 6.4–20.6 meV forFex . This com-
parison shows a discrepancy of the order of 30% in t
intermediate region. On the experimental side, Brun
et al.16 have found for a comparable AlxGa12xAs/GaAs
structure a value of about 12.4 meV for the excitonic bindi
energy, which indicates a defect depth between 1 and 2

In order to estimate the lateral extension of the excit
we have calculated the expectation value for the elect
distance from the defect center^%e&. The results are shown
in Fig. 2. The general trend is a divergence for small defe
a minimum in the intermediate region, and a continuous
crease for increasing sizes. The two limits of vanishing a
infinitely large defect sizes correspond to the nonlocaliz
regime of a free QW exciton that has no single-particle l
eral length scale. The stronger lateral localization ofCex
compared toFex is due to the different treatments of th
lateral part. In the case ofCex the lateral parametersle and
lh are varied, leading to a more or less sucessful localiza
to the defect potential, whereas in the case ofFex the elec-
tronic lateral functions are maintained and only the excito

FIG. 1. Exciton binding energy to the interface defect vers
defect sizeD for defect depths of 1 and 2 ML.

FIG. 2. Excitonic expectation value for the electron lateral d
tance from the defect center versus defect sizeD for a defect depth
of 1 ML.
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4704 56O. HELLER, PH. LELONG, AND G. BASTARD
parameter is varied. The corresponding expectation va
for the hole differ only by a few percent from those of th
electron. As a consequence, we can identify^%e& with the
lateral exciton size. The important point is that in the int
mediate region the localization follows the size of the defe
i.e., for decreasing defect size the exciton size decreases
This trend of the exciton localization will be compared in t
following section with the biexciton localization. ForCex
the exciton extension in the intermediate region is of
order of 100 Å and changes only weakly withD.

III. BIEXCITON

The Hamiltonian for a biexciton in a QW with an inte
face defect is written as

H5He11He21Hh11Hh21Txy1HCoul1Vde f~e1!

1Vde f~e2!1Vde f~h1!1Vde f~h2!,

Txy52
\2

2mxy* ~e!
~D%W e1

1D%W e2
!2

\2

2mxy* ~h!
~D%W h1

1D%W h2
!,

HCoul5
e2

4p«0« r
F 1

urWe12rWe2u
1

1

urWh12rWh2u
2

1

urWe12rWh1u

2
1

urWe12rWh2u
2

1

urWe22rWh1u
2

1

urWe22rWh2u
G . ~4!

A glance at the form of the biexciton Hamiltonian allow
one to get some general information on the wave functi
First, one deduces from the Coulomb part of the Hamilton
that the biexciton wave function depends on the differe
coordinates. It has to be not only a function of theattractive

coordinates urWe12rWh1u, urWe12rWh2u, urWe22rWh1u, and urWe2

2rWh2u but also of therepulsive coordinatesurWe12rWe2u and
urWh12rWh2u. Second, the interface defect potential-energy p
requires a further dependence on the single-particle coo
nates%e1 ,%e2 ,%h1 ,%h2, which accounts for the localization
For the ground state we choose a wave function that is tot
symmetric in the space part and totally antisymmetric in
spin part, which corresponds to the spin singlet state for b
the electrons and holes. We take the product of two exc
wave functionsCex of Sec. II and symmetrize it by addin
the permutated functionC2:

Cbi5NV loc~e1 ,le!V loc~e2 ,le!V loc~h1 ,lh!V loc~h2 ,lh!

3@Qcorr~e1 ,h1 ,l!Qcorr~e2 ,h2 ,l!

1Qcorr~e1 ,h2 ,l!Qcorr~e2 ,h1 ,l!#

5C11pe~1,2!C1

5C11C2 . ~5!

The idea of taking advantage of the tractability of t
Gaussian functions has already been used by Rebane
Zotev14 for the positronium molecule. They used correlati
terms not only for the attractive coordinates but also for
repulsive ones. In their case the calculation is comple
analytical due to the fact that the four particles are fr
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whereas in our case the situation is much more complica
by the localization potential. This approach for biexcito
bound to interface defects corresponds to the first variatio
wave function for free QW biexcitons of Milleret al.2 in the
way that the correlation parts of the biexcitonic wave fun
tions are the symmetrized products of the excitonic corre
tion terms. This approach is very crude because no repul
difference appears in the wave function. This means tha
contains no part for the repulsion that would disfavor t
electron-hole configurations with highly repulsive Coulom
bic energies. Kleinman3 has corrected this deficiency b
completing the first term, which includes the attractive co
dinates by a term with repulsive coordinates. By this me
he achieved an improvement of about 65% compared to
results of Miller et al. On the experimental side, the use
four-wave-mixing techniques provides an accurate exp
mental determination of the biexciton binding energy. T
more recent experimental values13 are about the double o
the values found by Kleinman. Thus a comparison of
results of Milleret al. with these experimental ones yields
factor 3 between them. Passing now to bulk biexcitons,
finds the results of Brinkmanet al.,1 who used the same
wave function as Kleinman. A comparison between their
sults and the Green’s-function Monte Carlo calculations
Lee et al.24 shows a factor of about 1.6 between them.
summary, the best experimental and theoretical values
the free bulk and the free QW biexcitons differ by a fact
between 2 and 3 from the trial wave function of Milleret al.
This fact implies that a great care has to be exercized w
discussing the binding energy of the localized biexciton. T
latter is defined as the difference between 2 times the t
exciton energy and the total biexciton energy:

Ebin~bi !52 Etot~ex!2Etot~bi !. ~6!

This means, in practice, that we calculate the total bi
citon energy usingCbi for the biexciton Hamiltonian~4! and
the total exciton energy usingCex for the exciton Hamil-
tonian ~1!. The resulting biexciton binding energy is pre
sented in Fig. 3 for the same parameters as in Sec. II.
general behavior is a decreasing binding energy with incre
ing defect size. For a 1-ML defect depth the values decre

FIG. 3. Biexcitonic binding energy versus defect sizeD for
defect depths of 1 and 2 ML.
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56 4705BIEXCITONS BOUND TO SINGLE-ISLAND INTERFACE . . .
monotonically from about 1.6 meV to 1.25 meV. The corr
sponding values for 2 ML are only approximately 0.1 me
higher.

Apparently, there exists a general relation between
size and the binding energy not only for the exciton but a
for the biexciton. The biexciton binding energy seems
increase with decreasing biexciton size. On the experime
side, this has been confirmed for QW’s by Birkedalet al.13

This trend was found in theoretical investigations f
QWW’s ~Ref. 5! and for QD’s~Ref. 9! with infinitely high
barriers. In our case there are no infinitely high barriers t
are responsible for a clearly defined localization. Nevert
less, the defect potential causes a localization, as alre
demonstrated for the excitons in Sec. II. The quest
whether a relation exists between the localization and
biexciton binding requires an investigation of the lateral s
of the biexciton. Therefore, we calculate for the biexciton
mean distance between an electron and the center of th
terface defect:

^%e~bi !&5^Cbiu1/2~%e11%e2!uCbi&. ~7!

The calculations show that the mean distances for the
are nearly the same as those for the electron. As a co
quence,̂ %e& is a fair estimate of the lateral biexciton siz
As presented in Fig. 4,̂%e& ranges from about 95 Å to 13
Å and shows a clear monotonic increase with increasing
fect size for 1 and 2 ML. The values for the 2-ML defects a
smaller than the values for the 1 ML due to the deeper
calization potential. This means that the biexciton size~like
the exciton size! is decreasing with decreasing defect size
this intermediate region while the biexciton binding ener
increases. This is in agreement with the trends found in
QW, QWW, and QD structures cited above. The compari
between the exciton and the biexciton mean extens
shows that the latter is about 10–25 % greater. This tra
lates to a biexciton volume that is about 20–50 % grea
than the exciton one.

FIG. 4. Biexcitonic expectation value for the electron late
distance from the defect center versus defect sizeD for defect
depths of 1 and 2 ML.
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A second possibility of external influence on the localiz
tion consists in changing the well width. The results for t
1-ML defect depth and a defect size of 200 Å are presen
in Fig. 5~a!.

From 20 Å up to about 27.5 Å the binding energy
increasing and after a maximum value of about 1.6 meV
binding energy decreases with increasing well width. T
well width dependence is reminiscent of the well-know
binding energy of free QW excitons25 and has been ex
plained by the changingz-direction extension due to th
finite-barrier heights. The corresponding values for our
rameters are presented in Fig. 5~b!. One clearly sees the sam
width dependence for the exciton as for the biexciton with
maximum value for about 27.5 Å. In fact, in our model, bo
the exciton and the biexciton wave functions are describe
a separable form with the same partsxe andxh and conse-
quently theirz-direction extensions are the same. To get
idea of this extension we calculate^ze,h

2 &, which shows that
the hole extension is a monotonical decreasing function w
decreasing QW width. On the contrary, the extension of
electron is decreasing down to about 30 Å and then incre
ing with decreasing QW width due to the less efficient co
finement of the finite well. In summary, we are able to sh

l

FIG. 5. ~a! Biexciton binding energy versus well widthL for a
defect depth of 1 ML andD5200 Å. The numerical precision o
the calculation~squares! is of the order of the distance to the curv
that is a polynomial fit.~b! Binding energy of thefree QW exciton
versus well widthL.
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TABLE I. Individual energies and the ratio of the attractive and the repulsive Coulomb energy. C
lations are given for the three-dimensional hydrogen, the two-dimensional hydrogen, the three-dime
positronium molecule and the biexciton in the QW withA51 ML and D5200 Å.

E ~eV! H2
(3D) a H2

(3D) b H2
(2D) c e1e1e2e2 (3D) b h1h1e2e2 (QW)

Ekin 30.99 142 13.12
Eatt –97.20 –98.14 –426 –40.18 –59.431023

Erep(ee) 15.59 15.75 68 6.51 11.431023

Erep(hh) 18.66 18.22 74 6.51 12.231023

Etot –30.96 –142 –14.04
Ebin 3.76 33 0.43
Eatt /Erep 2.8 2.9 3.0 3.3 2.5

aReference 26.
bReference 14.
cReference 27.
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that the dependence of the bound biexciton binding ene
on the QW width is coupled to thez-direction extension. Due
to the fact that the values for^ze

2& and ^zh
2& are significantly

different, a direct attribution to a biexciton size for thez
direction is not possible, unlike the case of the lateral siz

Finally, we consider the Coulomb energy, which consi
of two repulsive and four attractive parts and can be sim
fied by reason of symmetry to the expression

ECoul5
e2

4pe0e r
K 1

urWe12rWe2u L 1
e2

4pe0e r
K 1

urWh12rWh2u L
243

e2

4pe0e r
K 1

urWe12rWh1u L ~8!

where the first term on the right-hand side is equal
Erep(ee), the second term toErep(hh) and the third term to
Eatt . In the following we analyze the ratio of the attractiv
Eatt and the repulsive Coulomb energyErep5Erep(ee)
1Erep(hh). We start our discussion with some results fro
molecular physics in Table I. The hydrogen molecule w
handled in an approximation by Flu¨gge26 in three dimensions
and in the same way in two dimensions by Zhuet al.27 We
present also the recent three-dimensional results from
bane and Zotev.14 for the hydrogen molecule and the pos
tronium molecule.

We start with the limiting case ofs5me /mh50, which
is nearly satisfied for the hydrogen molecule H2. The three-
dimensional results of Flu¨gge show a ratio of 2.8, wherea
the more accurate calculation by Rebane and Zotev does
considerably change this ratioEatt /Erep . The comparison
with the energies of the two-dimensional hydrogen molec
shows that the absolute energies are considerably enha
by about a factor 4 for the individual energies and a facto
for the binding energy. This strong enhancement of the bi
ing energy for a reduction of the dimensionality is we
known for free excitons, where the transition from three
two dimensions leads to a factor 4. On the other hand,
Coulomb energy ratio has only weakly changed to a value
3.0. In the second limiting case ofs51, i.e., the positronium
molecule, the three-dimensional calculation of Rebane
Zotev leads to a much greater extension accompanied
energy values that are about half those of the thr
dimensional hydrogen. They obtained a ratio of the Coulo
y

.
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e
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8
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d
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b

energies of 3.3. The corresponding two-dimensional calc
tion has been undertaken by Birkedalet al.13 They assumed
a classical configuration where the holes and the electr
occupy the opposite corners of a square with a flexible s
of the square. The symmetry of this geometric structure
plicitly assumes that the particles have identical massess
51). They obtained a ratioEatt /Erep of 2A2 reflecting the
square geometry. In summary, the cited calculations lead
ratio between 2.8 and 3.3, which is only weakly depend
on the dimensionality and the mass ratio. This indicates
the ratioEatt /Erep could play the role of a biexcitonic pa
rameter, which provides, on the theoretical side, an estim
of the quality of the trial wave function.

For our case of the biexciton bound to the interface def
the ratio is presented in Fig. 6 versus the defect size. It c
responds to an in-plane mass ratiosxy'0.7, which is closer
to the positronium case than the hydrogen one.

Our calculations lead to ratios between 2.3 and 2.6, wh
are smaller than all the values cited in Table I. We attrib
this to the missing suppleness of our biexciton trial wa
function. This is in agreement with the above discussion
our wave function, which in no way takes the repulsive c
ordinates into account and should therefore decrease th
tio.

FIG. 6. Relation of the attractive to the repulsive Coulomb e
ergy part versus defect sizeD for defect depths of 1 and 2 ML.
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IV. CONCLUSION

We have studied the binding energy of biexcitons bou
to single-island interface defects in deep QW’s. Our var
tional wave function consisted in separate localization p
for each particle and a correlation part that corresponds to
one used by Milleret al.2 By this means we have analyzed
detail the biexcitonic binding energy as a function of t
defect size and the QW width. In order to estimate the bi
citon extension we have calculated the lateral electron
hole extension. Our numerical results showed a clear co
lation between the size of the biexciton and its binding
ergy. As in the case of the exciton, the biexciton bindi
energy increases with decreasing size.

The detailed analysis of the ratioEatt /Erep for the free
biexciton in different dimensions and with different ma
ratios showed only weak differences. The comparison w
the ratio for our trial wave function indicated that a bet
account of the repulsion between the like particles is requ
in our wave function. On the experimental side, Brunn
et al.16 have found for a comparable AlxGa12xAs/GaAs
structure a value of about 4.2 meV, which has been att
uted to the biexciton. Thus further work is necessary to r
oncile theory and experiment.
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APPENDIX

The following relation is often used:

ea cosw5 (
n52`

`

einwI n~a!,

whereI n means the modified Bessel function and we defi

I eh~q!5E xe
2~ze!xh

2~zh!e2quze2zhudzedzh ,

I ee~q!5E xe
2~ze1!xe

2~ze2!e2quze12ze2udze1dze2 ,

I hh~q!5E xh
2~zh1!xh

2~zh2!e2quzh12zh2udzh1dzh2 .

1. Normalization

The normalization is completely analytical:

15^CbiuCbi&5^C1uC1&1^C2uC2&12^C1uC2&
~A1!
^C1uC2&5N2~2p!4E d%e1d%e2d%h1d%h2%e1%e2%h1%h2e22de~%e1
2

1%e2
2

!e22dh~%h1
2

1%h2
2

!(
n

I nS 2

l2
%e1%h1D

3I nS 2

l2
%e2%h2D I nS 2

l2
%e1%h2D I nS 2

l2
%e2%h1D

5N2
p4

de
2 E d%h1d%h2%h1%h2expF2S 2dh2

1

del
4D ~%h1

2 1%h2
2 !G(

n
I n

2S 1

del
4
%h1%h2D ,
of
^C1uC2&5N2
p4l4

16dedh~dedhl421!
,

^C1uC1&5^C2uC2&

5N2
p4l8

16~dedhl421!2
,

de,h51/l211/le,h
2 .

2. Interface defect energy

The potential energy due to the binding to the interfa
defect leads to the expression
e

Ude f~e!5^CbiuVde f~e1!1Vde f~e2!uCbi&

52@^C1uVde f~e1!uC1&1^C2uVde f~e1!uC2&

12^C1uVde f~e1!uC2&#

54@^C1uVde f~e1!uC1&1^C1uVde f~e1!uC2&#.

~A2!

The integrals are of the same form as for the calculations
the normalization and are thus calculated analytically.
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3. Coulomb energy

All Coulomb integrals can be analytically reduced to t
following forms, which are finally calculated numerical
( i , j P @1,2#!:

K C iU 1

urWe12rWh1u
UC j L 5Ai j E e2a i j q

2
I eh~q!dq,
K C iU 1

urWe12rWe2u
UC j L 5Bi j E e2b i j q

2
I ee~q!dq,

K C iU 1

urWh12rWh2u
UC j L 5Ci j E e2g i j q

2
I hh~q!dq.
4. Kinetic in-plane energy

The kinetic in-plane energy is the most difficult part of the Hamiltonian and has to be calculated numerically:

Ekinxy5^CbiuTxyuCbi&

5^CbiuTxy~e1!1Txy~e2!1Txy~h1!1Txy~h2!uCbi&

54@^C1uTxy~e1!1Txy~h1!uC1&1^C1uTxy~e1!1Txy~h1!uC2&#. ~A3!

We present the most difficult term of the kinetic energy:

,

T152
\2N2p2

8 mxy~e!

l4

dedh
E dxe1dxe2dxh1dxh2F24de12de

2xe1
2 1

2

dhl4
xh2

2 G
3e2~xe1

2
1xe2

2
1xh1

2
1xh2

2
!1g~xe1xh11xe2xh21xe1xh21xe2xh1! (

n52`

1`

Ĩ n~gxe1xh1! Ĩ n~gxe2xh2! Ĩ n~gxe1xh2! Ĩ n~gxe2xh1!,

T25
\2N2p2

4 mxy~e!

del
2

Adedh
3E dxe1dxe2dxh1dxh2xe1xh2e2~xe1

2
1xe2

2
1xh1

2
1xh2

2
!1g~xe1xh11xe2xh21xe1xh21xe2xh1!

3 (
n52`

1`

Ĩ n~gxe1xh1! Ĩ n~gxe2xh2! Ĩ n~gxe2xh1!@ Ĩ n21~gxe1xh2!1 Ĩ n11~gxe1xh2!#,

g51/~l2Adedh!.

The termsT1 andT2 are calculated numerically using the bound and easy to handle functionsĨ n leading to a convergent sum
in only a few terms:

Ĩ n~x!:5A2px e2xI n~x!.
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