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Biexcitons bound to single-island interface defects
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We calculate the binding energy of biexcitons bound to single-island interface defects in deep quantum
wells. The application of a variational function leads to a calculation that is mostly analytical. We discuss in
detail the dependence of the biexciton binding energy on the defect size and the quantum-well width. The
numerical calculations are carried out for,&k _,As/GaAs quantum wells with defect depths of 1 and 2
monolayers corresponding to recent experimental findings. Furthermore, we attempt to correlate our problem
of a localized biexciton with the existing results for free four-particle molecules in different confinement
structures and for different mass ratipS0163-18207)03932-5

. INTRODUCTION ZnSe/ZnCd,_,Se QW'’s biexcitons localized to alloy disor-
der have been detecté'® On the theoretical side, a model
Nonlinear optical experiments allow the study of mol- for lasing oscillations due to localized biexcitons has been
ecules of two excitons called biexcitons. Due to the com-developed?®
plexity of the biexciton wave function, the effort and the = We present in this paper calculations of the binding ener-
number of methods for the calculation of the biexcitonic en-gies of the localized excitons and biexcitons by using the
ergy are continuously increasing. The most general one is theariational method. In this case no convenient approach with
variational method, which is applicable to all kinds of quan-infinite barriers can be chosen. Consequently, the perturba-
tum structures that are large compared to the lattice constartive and the matrix diagonalization methods are excluded
For bulk biexcitons this method was employed by Brinkmanbecause the interface defect has only a few bound electronic
et al,* followed by Miller et al? and Kleinmanr for quantum  states?® The paper is arranged as follows. In Sec. Il we dis-
wells (QW’s). Quantum-well wired;®> (QWW'’s) and quan- cuss the properties of an exciton bound to an interface defect
tum dot§ (QD’s) have also been examinated sucessfully. Aby the use of two different trial wave functions. The exciton
second method consists in a perturbative analysis. In order foinding energy and the lateral exciton extension are analyzed
obtain a discrete electronic spectrum this method has bedn detail. In Sec. Il we investigate the same quantities for the
applied to QD’s with infinite-barrier potentials and sizes biexciton. We also present a comparison of the bound biex-
smaller than the exciton Bohr radius. Bryamtas studied citons with free bulk and free quantum-well biexcitons. In
finite dots, whereas Byaf has analyzed the limit of van- both sections we show numerical results for a
ishing dot size up to the second order. In the case of finité\l,Ga _,As/GaAs QW as a function of the defect size for
QD’s with infinite barriers one of the most accurate proce-defect depths of 1 and 2 monolay€ML ). Furthermore, we
dure is the numerical matrix diagonalizatidH, which uses analyze the ratio of the attractive and repulsive Coulomb
the unperturbed electronic wave functions as a basis for thenergies in the biexciton and compare it with the results for
excitonic and biexcitonic wave functions. Due to the largethe free hydrogen and the free positronium molecule. We
number of integration dimensions, quantum Monte Carlosummarize our results in Sec. IV and present the analytical
calculations found a way in this domain. It was demonstratedalculations of the most difficult terms in the Appendix.
that this method is also reliadfe!?by a comparison between
its predictions and those of the perturbative matrix diagonal- Il. EXCITON

ization. Finally, there has been an application of the frac- ) )
tional dimension approach to biexcitons in QW's by For the exciton we take the well-known Hamiltorfafor

Birkedal et al3 the QW with a widthL centered at = 0 and add the binding

Parallel to the investigations of biexcitons in semiconduc-€nergy Vyer due to the interface defect. The defect is as-
tor physics, the corresponding molecules of two hydrogen opumed to have a cylindrical symmetry with a lateral raddus
positronium atoms have been studied in molecular physicgnd to be centered @=0. Its extension in the direction is
The most recent and very powerful calculations consist in & and the potential depth corresponds to the barrier potential
combination of a variational calculation for a set of GaussiarJe=XX 770 meV U, =xx 480 me\j for the electror{hole)
functiong* or modern Hylleraas-type wave functiotts. and therefore depends on the Al concentratioof the bar-

Recently AlGa _,As/GaAs QW’s with single-island in- rier:
terface defects formed by monolayer fluctuations of the QW

width have been studied experimentally. This kind of inter- H=Hqwt Viel(®) + Vger(h),

face defect creates a lateral potential and thus localizes exci-

tons. It acts therefore as a natural quantum dot. Sharp pho- How=Het+ Hn+ Tyt Heou, @)
toluminescence lines below the localized exciton have been 2
observed and attributed to localized biexcitohsin Vier(€,h)==Ugnliiaizea)(Zen)e 2en’™”,
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where 1,y is equal to 1 in the intervdla,b] and O other-

wise. Ir::Eth]e following we will discuss in detail the exciton Ebin (Ex) (meV)
binding energy to the interface defekt,;,(ex), which is o5
defined as the energy difference of the total exciton energy i
with and without the defect potential. In the case of low o0k
barriers and shallow defects the exciton binding energy to :
the interface defect is small compared to the exciton binding 15 L
energy and thus compared to the energy distance between the .
1s and X states. Consequently, a description of the in-plane 10|
exciton ground state by the free exciton tedmg(e) for the ;
relative motion and a further ternlf (R) for the motion of 5¢

the center of mass is appropri&telhis procedure cannot be
applied to the case of deep QW'’s where the binding energy
due to the interface defect is of the order of the excitonic
binding energy. Instead, we describe the exciton wave func-
tion ¥, by an excitonic correlation ter® ., for the rela-

tive motion and two independent localization terfdg, for FIG. 1. Exciton binding energy to the interface defect versus
the electron and the hole. In order to get a wave function thalefect sizeD for defect depths of 1 and 2 ML.

allows a tractable calculation even for the biexciton we use a

Gaussian function i for the rela_tlve .motlon. Furthermore, 10.4 meV ford,, and for 2 ML binding energies of 5.1
we use a separable form for thalirection and they plane, 14.0 meV for¥ .. and 6.4—20.6 meV fofb.... This com-
. ex . . ex:

which is justified for deep QW'’s with shallow defects. Our parison shows a discrepancy of the order of 30% in this
trial wave function thus depends on three variational param-

) . . . intermediate region. On the experimental side, Brunner
eters:\ for the relative exciton motlon and, and\, for the etal’® have found for a comparable Ba,_ As/GaAs
electron and hole localizations:

structure a value of about 12.4 meV for the excitonic binding
Vo= NQ o€ ) Qioc(N A O corr(€:0N), energy, which ind_icates a defect depth be.tween 1 and 2 ML.
In order to estimate the lateral extension of the exciton,
we have calculated the expectation value for the electron
distance from the defect centép.). The results are shown
(im0l in Fig. 2. The general trend is a divergence for small defects,
Ocor(i,j,u)=€"Cm e, (2 a minimum in the intermediate region, and a continuous in-
crease for increasing sizes. The two limits of vanishing and

The choice of a Gaussian @ leads to an underestimate .” .. . : .
X o ; . infinitely large defect sizes correspond to the nonlocalized
of the exciton binding energy, which will be assessed by a

comparison with a second trial wave functign,.. 2 It con- regime of a free QW exciton that has no single-particle lat-

o : : . . eral length scale. The stronger lateral localization
sists in the exact three-dimensional numerical solutighs g g o

42 for the interf def bl ith h I bcompared tod,, is due to the different treatments of the
andé;, for the interface defect problem without the Coulomb |o4a a1 part. In the case oF ., the lateral parametebs, and

term. The latter is taken into account by a three-dimensiona| 56 varied, leading to a more or less sucessful localization
excitonic correlation term. This approach contains only ONgy the defect potential, whereas in the casabgf the elec-

excitonic variational parameter: tronic lateral functions are maintained and only the excitonic

. _ 22
Qi m)=xi(z)e gi/'u,

B o= NEY(T o) (T ) ITe Tl 3)

The system under consideration is an®@d, _,As/GaAs
QW with a widthL=235 A and an aluminium concentration 200
x=0.35. Neglecting the mass mismatch, we use for the [ \
masses for the electrore) and the heavy holénh) m,,(e) i \
=m,(e)= 0.0782n,, m,,(hh)= 0.112n,, and m,(hh)= : -
0.37g. The remaining parameters are the same as in Ref. r N -
21. In Fig. 1 we present the exciton binding energy to the 100 - ’ .
interface defect for the hh exciton with interface defects of 1 I ]
and 2 ML depths A=2.83 and 5.66 A 50" Qe -
In the region of very small defect radif , is not appro- [ Yo —
priate: it leads to negative binding energies, wherdas 0: lllllll L L :
provides a better description in the whole range due to the 0 20 400 600
three-dimensional excitonic description. In the following we .
will restrict ourselves to an intermediate defect size region D (A)
between 100 and 400 A, which corresponds to the estimated
size of interface defects in many samples. FIG. 2. Excitonic expectation value for the electron lateral dis-
For defect sizes ranging from 100 to 400 A we get fortance from the defect center versus defect Bizier a defect depth
1 ML binding energies of 1.4-7.4 meV fo¥,, and 2.4— of 1 ML.
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parameter is varied. The corresponding expectation values E . (Bi) (meV)

for the hole differ only by a few percent from those of the bin

electron. As a consequence, we can idengify) with the 18—

lateral exciton size. The important point is that in the inter-

mediate region the localization follows the size of the defect, 16 o ]

i.e., for decreasing defect size the exciton size decreases also.
This trend of the exciton localization will be compared in the

following section with the biexciton localization. FoF ., 1.4 - o % 2ML
the exciton extension in the intermediate region is of the a
order of 100 A and changes only weakly with 1210 TML
l1l. BIEXCITON Jol
The Hamiltonian for a biexciton in a QW with an inter- 0 200 400 600
face defect is written as D (A)

H=Hey +Hep+ Hiy + Hio = Tay T Heout Vaer(€1) FIG. 3. Biexcitonic binding energy versus defect s2efor
+ Vger(€2) + Vaer hy) + Ve hy), defect depths of 1 and 2 ML.

2 52 whereas in our case the situation is much more complicated
by the localization potential. This approach for biexcitons
bound to interface defects corresponds to the first variational
wave function for free QW biexcitons of Millest al? in the
e’ [ 1 1 1 way that the correlation parts of the biexcitonic wave func-
tions are the symmetrized products of the excitonic correla-
tion terms. This approach is very crude because no repulsive
1 1 1 difference appears in the wave function. This means that it
B e e B (4) contains no part for the repulsion that would disfavor the
IFer=rhal  [rea=Tmal |re2—rnal electron-hole configurations with highly repulsive Coulom-
bic energies. Kleinmahhas corrected this deficiency by

A glance at the form of the biexciton Hamiltonian allows completing the first term, which includes the attractive coor-
one to get some general information on the wave function, P 9 '

First, one deduces from the Coulomb part of the Hamiltonia dgztcesiet%g ;irr?mw:g]vgiﬁ);l]st'\é? ;88&?'22};5(;08% tg:z dmt?)irrllse
that the biexciton wave function depends on the differenc P 0 b

coordinates. It has to be not only a function of tit&ractive results of 'V“.”E:‘ret al. Oon the exper_lmental side, the use Of.
four-wave-mixing techniques provides an accurate experi-

coordinates IFex—Tnals [Fes—Thal, |re2_rh£|7 and fez mental determination of the biexciton binding energy. The
—Thp| but also of therepulsive coordinate$r;—re| and  more recent experimental valddsre about the double of
|Fh1—Fh2|. Second, the interface defect potential-energy parthe values found by Kleinman. Thus a comparison of the
requires a further dependence on the single-particle coordresults of Milleret al. with these experimental ones yields a
natesge;,0e2,Cn1,2n2, Which accounts for the localization. factor 3 between them. Passing now to bulk biexcitons, one
For the ground state we choose a wave function that is totallfinds the results of Brinkmaret al," who used the same
symmetric in the space part and totally antisymmetric in thevave function as Kleinman. A comparison between their re-
spin part, which corresponds to the spin singlet state for botsults and the Green’s-function Monte Carlo calculations of
the electrons and holes. We take the product of two excitohee et al?* shows a factor of about 1.6 between them. In
wave functions¥,, of Sec. Il and symmetrize it by adding summary, the best experimental and theoretical values for
the permutated functiol,: the free bulk and the free QW biexcitons differ by a factor
between 2 and 3 from the trial wave function of Millet al.
Whi=NQjoc(€1,M6) Qioc(€2,Me) Qioc(N1, M p) Qioc(hz, N py) This fact implies that a great care has to be exercized when
discussing the binding energy of the localized biexciton. The
X[Ocorr(€1.N1,0)Ocor(€2,02.}) latter is d%fined as tr?e diffegrince between 2 times the total

7T, —(A; +A; ) ——(A; +A; ),
Xy Zm:y(e)( Ce1 Qe2 Zm:y(h)( On1 €h2

477808ft IFea—Teal  [Thi—Thal IFes—Thal

+0Ocor(1,12,M)Ocorr(€2,h1,0M)] exciton energy and the total biexciton energy:
=Vt (12, Epin(bi) =2 Etol(€X) ~ Eqor(bi). ®)
—W, 4V, (5)

This means, in practice, that we calculate the total biex-
The idea of taking advantage of the tractability of theciton energy usingV'y,; for the biexciton Hamiltoniatt4) and
Gaussian functions has already been used by Rebane atite total exciton energy usin®¥ ., for the exciton Hamil-
ZoteV!* for the positronium molecule. They used correlationtonian (1). The resulting biexciton binding energy is pre-
terms not only for the attractive coordinates but also for thesented in Fig. 3 for the same parameters as in Sec. Il. The
repulsive ones. In their case the calculation is completelgeneral behavior is a decreasing binding energy with increas-
analytical due to the fact that the four particles are freejng defect size. For a 1-ML defect depth the values decrease
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FIG. 4. Biexcitonic expectation value for the electron lateral
distance from the defect center versus defect §izdor defect 11.0 ——— — |
depths of 1 and 2 ML. r
10.8 i b) .
monotonically from about 1.6 meV to 1.25 meV. The corre- 10.6 | i
sponding values for 2 ML are only approximately 0.1 meV
higher. 104 L ]
Apparently, there exists a general relation between the _
size and the binding energy not only for the exciton but also 102 | 1
for the biexciton. The biexciton binding energy seems to I
increase with decreasing biexciton size. On the experimental 00—+
side, this has been confirmed for QW’s by Birkeealal}® 10 20 30 40 50 60
This trend was found in theoretical investigations for
QWW's (Ref. 5 and for QD’s(Ref. 9 with infinitely high L (A)

barriers. In our case there are no infinitely high barriers that
are responsible for a clearly defined localization. Neverthe- FG. 5. (a) Biexciton binding energy versus well width for a
less, the defect potential causes a localization, as alrea@éfect depth of 1 ML and> =200 A. The numerical precision of

demonstrated for the excitons in Sec. Il. The questionhe calculatior(squaresis of the order of the distance to the curve
whether a relation exists between the localization and théhat is a polynomial fit(b) Binding energy of thdree QW exciton

biexciton binding requires an investigation of the lateral sizeversus well widthL.
of the biexciton. Therefore, we calculate for the biexciton the
mean distance between an electron and the center of the in- A second possibility of external influence on the localiza-

terface defect: tion consists in changing the well width. The results for the
1-ML defect depth and a defect size of 200 A are presented
in Fig. 5a).
(0e(b1))y={Wpi|1/2( 01+ 0e2) | Vi) (7) From 20 A up to about 27.5 A the binding energy is

increasing and after a maximum value of about 1.6 meV the
binding energy decreases with increasing well width. This
The calculations show that the mean distances for the holevell width dependence is reminiscent of the well-known

are nearly the same as those for the electron. As a consbinding energy of free QW excitofisand has been ex-
quence,.) is a fair estimate of the lateral biexciton size. plained by the changing-direction extension due to the
As presented in Fig. 4,0.) ranges from about 95 A to 130 finite-barrier heights. The corresponding values for our pa-
A and shows a clear monotonic increase with increasing decameters are presented in Figbp One clearly sees the same
fect size for 1 and 2 ML. The values for the 2-ML defects arewidth dependence for the exciton as for the biexciton with a
smaller than the values for the 1 ML due to the deeper lomaximum value for about 27.5 A. In fact, in our model, both
calization potential. This means that the biexciton gldee  the exciton and the biexciton wave functions are described in
the exciton sizpis decreasing with decreasing defect size ina separable form with the same pagsand x, and conse-
this intermediate region while the biexciton binding energyquently theirz-direction extensions are the same. To get an
increases. This is in agreement with the trends found in thélea of this extension we calcula¢e§’h>, which shows that
QW, QWW, and QD structures cited above. The comparisonhe hole extension is a monotonical decreasing function with
between the exciton and the biexciton mean extensiondecreasing QW width. On the contrary, the extension of the
shows that the latter is about 10-25 % greater. This transelectron is decreasing down to about 30 A and then increas-
lates to a biexciton volume that is about 20-50 % greateing with decreasing QW width due to the less efficient con-
than the exciton one. finement of the finite well. In summary, we are able to show
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TABLE I. Individual energies and the ratio of the attractive and the repulsive Coulomb energy. Calcu-
lations are given for the three-dimensional hydrogen, the two-dimensional hydrogen, the three-dimensional
positronium molecule and the biexciton in the QW witk=1 ML and D=200 A.

E (eV) H(ZSD) a H(zao) b H(22D) c etete e (BDD h*hte e (QW
Exin 30.99 142 13.12

Eart -97.20 -98.14 —426 -40.18 -59410°3
Erep(€®) 15.59 15.75 68 6.51 114103
Erep(hh) 18.66 18.22 74 6.51 12:210°3
Eior —-30.96 —-142 —14.04

Ebin 3.76 33 0.43

Eat/Erep 2.8 2.9 3.0 3.3 2.5

%Reference 26.
bReference 14.
‘Reference 27.

that the dependence of the bound biexciton binding energgnergies of 3.3. The corresponding two-dimensional calcula-

on the QW width is coupled to thedirection extension. Due tion has been undertaken by Birkedslal:* They assumed

to the fact that the values fqz2) and(z2) are significantly ~a classical configuration where the holes and the electrons

different, a direct attribution to a biexciton size for the occupy the opposite corners of a square with a flexible size

direction is not possible, unlike the case of the lateral size.of the square. The symmetry of this geometric structure im-
Finally, we consider the Coulomb energy, which consistsplicitly assumes that the particles have identical masses (

of two repulsive and four attractive parts and can be simpli-—=1). They obtained a rati&,/E of 2.2 reflecting the

fied by reason of symmetry to the expression square geometry. In summary, the cited calculations lead to a

ratio between 2.8 and 3.3, which is only weakly dependent

e | 1 e | 1 on the dimensionality and the mass ratio. This indicates that
ECouI:47TGOEr\ [Fo1—Feal +47T€0€r\ [Fh1—Thal the ratioE,/E,¢p could play the role of a biexcitonic pa-

rameter, which provides, on the theoretical side, an estimate
Cax e? 1 ® of the quality of the trial wave function.
4rmege, \ [Fe1— Tl For our case of the biexciton bound to the interface defect

the ratio is presented in Fig. 6 versus the defect size. It cor-
where the first term on the right—hand side is equal tOresponds to an in_p|ane mass raﬁg]m07, which is closer
Erep(ee), the second term ,.,(hh) and the third term to o the positronium case than the hydrogen one.
Eaw- In the following we analyze the ratio of the attractive  Qur calculations lead to ratios between 2.3 and 2.6, which
Earw and the repulsive Coulomb enerdy,.,=Eep(€€)  are smaller than all the values cited in Table I. We attribute
+E,ep(hh). We start our discussion with some results fromthis to the missing suppleness of our biexciton trial wave
molecular physics in Table I. The hydrogen molecule wasunction. This is in agreement with the above discussion of
handled in an approximation by Fjge® in three dimensions  our wave function, which in no way takes the repulsive co-
and in the same way in two dimensions by Zéwal>’ We  ordinates into account and should therefore decrease the ra-
present also the recent three-dimensional results from Rejp.
bane and ZoteV for the hydrogen molecule and the posi-
tronium molecule.

We start with the limiting case of=m,/m,,=0, which Eatt / Erep
is nearly satisfied for the hydrogen moleculg.Hhe three-
dimensional results of Fage show a ratio of 2.8, whereas 3.0 —— T
the more accurate calculation by Rebane and Zotev does not [ ]
considerably change this rati,/E,.,. The comparison 2.8 ]
with the energies of the two-dimensional hydrogen molecule 56 _ g 1 M|__3
shows that the absolute energies are considerably enhanced: Tl - E 2 ML |
by about a factor 4 for the individual energies and a factor 8 o4l U m 1
for the binding energy. This strong enhancement of the bind- T om
ing energy for a reduction of the dimensionality is well ool 1
known for free excitons, where the transition from three to
two dimensions leads to a factor 4. On the other hand, the 20 0
Coulomb energy ratio has only weakly changed to a value of 0] 200 400 600
3.0. In the second limiting case of=1, i.e., the positronium
molecule, the three-dimensional calculation of Rebane and D (A)

Zotev leads to a much greater extension accompanied by
energy values that are about half those of the three- FIG. 6. Relation of the attractive to the repulsive Coulomb en-
dimensional hydrogen. They obtained a ratio of the Coulomlergy part versus defect sif for defect depths of 1 and 2 ML.
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IV. CONCLUSION sites Paris 6 et Paris 7. O.H. gratefully acknowledges the
EC for financial support{Training and Mobility of Re-

We have studied the binding energy of biexcitons boun earchers, Contract No. ERB FMB ICT 961 405

to single-island interface defects in deep QW's. Our varia-
tional wave function consisted in separate localization parts
for each particle and a correlation part that corresponds to the APPENDIX
one used by Milleet al? By this means we have analyzed in

The following relation is often used:
detail the biexcitonic binding energy as a function of the g

defect size and the QW width. In order to estimate the biex- o
citon extension we have calculated the lateral electron and @2 Cose— 2 el (a),
hole extension. Our numerical results showed a clear corre- n=-—o

lation between the size of the biexciton and its binding enyyhere|  means the modified Bessel function and we define
ergy. As in the case of the exciton, the biexciton binding
energy increases with decreasing size.

The detailed analysis of the ratl,/E,e, for the free Ieh(q)=f Xg(ze)xﬁ(zh)e’que’zh'dzedzh,
biexciton in different dimensions and with different mass
ratios showed only weak differences. The comparison with
the ratio for our triallwave function indicateq that. a bet;er Iee(q):f Xg(zel)xg(Zez)e—q\zel—zezldzeldzez,
account of the repulsion between the like particles is required
in our wave function. On the experimental side, Brunner
et all® have found for a comparable Ma _,As/GaAs
structure a value of about 4.2 meV, which has been attrib-
uted to the biexciton. Thus further work is necessary to rec-
oncile theory and experiment.

Ihn(Q)= f Xﬁ(Zhl)Xﬁ(th)eiq‘zhlizmldzhldzhz-

1. Normalization

ACKNOWLEDGMENTS The normalization is completely analytical:
The Laboratoire de Physique de la MatéieCondense 1=(Wpi| WUy =(W | W)+ (W, | WL+ 2(V,|V,)
ENS is UnifeAssociee au CNRSUA 1437) et aux Univer- (A1

2 2 2 2 2
<‘1’1|‘I’2>:N2(27T)4f dQeldQe2th1dQhZQelgeZQthhZe_Zde(991+gez>e_2dh(ghl+th); |n<§9e19h1)

2 2 2
><In FQeZQhZ In FQelQhZ In FQeZth

4

T 1 1
=N? — | dop,d exg —| 2d,— 2 +02 |2(— )
a2 €n1d€h20n1€n2 F{ ( h de)\4>(9h1 th)l% n de)\49h19h2
|
(V)= N2 a4 Uged(€) =(¥pi| Vaef€1) + Vaer €2)| Phi)
v 16ddp(dedN4— 1)
=2[(¥1|Vaer €|V 1)+ (¥ 2| Vaer(€)|V2)
<‘I’1|‘I’1>:<‘I’2|‘1’2>
, 71_4)\8 +2<\P1|Vdef(el)|q’2>]
=N
4 2’
16(dedph "~ 1) = A[(W 1| Vger(€0) [ W1) + (W 1| Vaer(er) | W 2)].

den=1N2+12),. (A2)

2. Interface defect energy

The potential energy due to the binding to the interfaceThe integrals are of the same form as for the calculations of

defect leads to the expression the normalization and are thus calculated analytically.
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3. Coulomb energy 1 ,
All Coulomb integrals can be analytically reduced to the <q’i oo qu> :Bijf e ATl {a)dq,
following forms, which are finally calculated numerically el ez
(i,j € [1,2):
1 2 1 — w02
‘I’i - — \I’J :Aijfe_a’ijq |eh(Q)dq, Wil — > \I’j :Cij e %ijd lhh(q)dq
IV e1— Ml IMha=Thal

4. Kinetic in-plane energy
The kinetic in-plane energy is the most difficult part of the Hamiltonian and has to be calculated numerically:
Exinxy= (W bil Ty Vi)
=(Vpil Txy(€1) + Tyy(€2) + Tyy(hq) + Ty (D) [ W)
=4[] Tyy(er) + Ty (1) [ W 1) (V1| Tyy(€1) + Ty (hy) [ W) . (A3)

We present the most difficult term of the kinetic energy:

2 -
(U | Tay(er) | 02 ) = —gg%xgj(‘l’llvg-ﬂl‘l’z)

= - BN p o don dPon &

= mf Qel G7°Qh) A"Qe2 47 0h2
% 6"2/)‘3 (921""?32)6'2/’\?. (921"‘922)
X e-(é'ex-é'm)z/ A2 e—(iez—é'hz)z/ a2
x e—(Eel—O'hz)z/ a2 e"(é'ez‘f-hl)zl 22

X [~4 de +4d.2 0% +4 02,/ +—8 FurBez de/N? )

—)le =+ T 1

fi°N2m2  \4
Tl: — m mj dxeldXEZdXhldXhZ

2
—4d+ 2d2x3 + —— &
e e”tel dh)\4 h2

+ o0
2 2 2 2 ~ ~ ~ ~
X @~ (X1 Xep Xy *Xha) T 7(XerXn1 FXeXh2 T XerXh2 tXe2nt) DT T (yXeqXng) T n( ¥Xe2Xn2) T n ¥XerXn2) T n YXe2Xn1),

n=—=

LN 4’
>4 my(e) Jd.d,3

2 2 2 2
f 0 Xe1 0 Xep0 X1 AXppXeg Xpp€ ™ et Xea ™ Xin1 TXha) T 7(Xe1Xn1 F Xe2Xn2 + Xe1Xn2 + Xe2Xh1)

+
Xn;x I n(¥Xe1Xn) I n(¥Xe2Xn2) T n( ¥XeoXn) [ 1 n-1(¥XerXn2) + 1 s 1(¥Xe1Xn2) 1,

y=1/(\?\dd}).

The termsT; andT, are calculated numerically using the bound and easy to handle fundtidlesding to a convergent sum
in only a few terms:

Ta(X):=V2mx e X1 ,(x).
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