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Electron correlations in thin disordered quantum wires
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We calculate self-consistently the dependence of electron-electron correlations on electron-defect scattering
processes in quantum wires with only the lowest subband occupied. We use the Singwi-Tosi-Llande8jo
approach to calculate the many-body electron-electron correlations. The effect of electron scattering from
randomly distributed Coulombic impurities and off surface roughness of the wire is treated using self-
consistent current-relaxation theory. Electron correlations can become very strong even at relatively high
electron densities if the wire diameter is made sufficiently small. For a fixed disorder level the electron-defect
scattering rate increases with increasing electron correlations. The plasmon dispersion depends on electron
correlations and on the level of disorder. Electron-electron correlations transfer spectral weight at finite wave
number from the plasmon to the single-particle excitatip88163-18207)04731-0

Thin conducting wires fabricated using direct molecularlated within the Luttinger-Tomonaga model are essentially
beam epitaxy (MBE) growth on GaAs-AlAs tilted identical for small momentum transfeiyke<0.2. Dzy-
superlatticelare imperfect one-dimensional conductors. Im-aloshinskii and Larkih discussed correlation functions for
perfections come from the impurities embedded in the wiredhe Tomonaga model for a one-dimensional Fermi system
and surroundings as well as spatial variations of the wiravith long-range interactions. They established that the RPA
diameter. is exact for smally correlation functions where there is no

For noninteracting electrons in a wire with defects all thebackscattering. Their argument, however, does not apply to
electron states are localizAdror interacting electrons in a the largeq part of a physical density operator. The vertex
wire with one subband and without disorder a Luttinger lig-corrections do not vanish for thee=2kg or 4kg correlation
uid picture is applicable. In real quantum wires with bothfunctions of a physical density operator. In the presence of
electron-electron interactions and disorder, Fermi-liquid-likedefects this argument cannot be applied even for small mo-
behavior may be restored if the localization length becomesnentum transfers due to the backscattering introduced by the
larger than the physical length of the witéThe presence of defects.
additional subbands, even if only negligibly occupied, can In STLS the static electron correlations are taken into ac-
also help to restore Fermi-liquid-like behavior. count by replacing the Coulomb interaction by an effective

In this paper we work with realistic wires that have bothinteraction. This construction ensures that fhgum rule is
impurities and surface roughness, and we look at the mutuaxactly satisfied in the STLERef. 8 as it is in RPA. In the
dependence of electron-electron correlations and electrorimits of high density or small momentum transfer, where the
defect scattering. We are particularly interested in the casRPA is known to be exact, STLS goes continuously over to
where the electron correlations are strong. We adopt an aphe RPA.
proach that self-consistently combines the Singi-Tosi-Land- Friesen and Bergersemsed STLS to calculate the pair
Sjolander(STLS method with a memory function calcula- correlation function and the effect of correlations on the plas-
tion. The STLS is used for the electron correlations and thenon dispersion in a perfect quantum wire. They took an
memory function is used to calculate the decay time of deninteraction of the formV(q)=e?E,[(bqg)2]exd (bg)?]e ?,
sity fluctuations when they scatter off defects. whereb is the decay length of a Gaussian wave function

Recently Hu and Das Sartinvestigated the effect of perpendicular to the wiree is the wire dielectric constant,
ionized impurity scattering and finite temperatures on theand E;(x) is the exponential integral function. For small
electron self-energy and spectral function in a wire of finiteseparations in real space this potential is the interaction be-
diameter using the random-phase approximatRBA). The  tween parallel planar charge distributions. Borges, Degani,
effect of impurity scattering was treated by introducing anand Hipolitd® and Campos, Degani, and Hipofitcthave in-
adjustable parameter representing the static defect scatter-vestigated the plasmon excitation spectra using STLS for
ing rate. They concluded that small levels of impurity scat-quasi-one-dimensional quantum-well wires. They calculated
tering in a real sample would restore the Fermi surface anthe pair correlation function as a function of wire thickness
Landau Fermi liquid behavior to the system. and electron density. References 9—11 neglect the effect of

Li, Das Sarma, and Joyhhave shown at relatively high defects and are mainly concerned with electron densities and
density and thick wire diameters=0.8 andD/a;=3.1, that wire diameters such that the electron correlations are not
the dispersion of the RPA plasmon and the dispersion calcusery strong.
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We investigate self-consistently the effect on the electro
correlations of(i) charged impurities(ii) the finite diameter
of the wire, and(iii) spatial variations in the wire diameter
(surface roughness scatteringhe wire is treated as an in-
finite height well of widthD with dielectric constank. A
linear densityn; of randomly distributed Coulombic impuri-
ties of chargeZe is embedded in the wire. Electrons of linear
densityn and effective massn* are delocalized along the
wire. Their average spacing i§=(2nag)‘l in units of the
effective Bohr radiusay=(e%2)/(m*e?). In GaAsay=9.8
nm.

In our calculations the electron densities we considered
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n Disorder is introduced by replacing the free particle dy-
namical susceptibility(?(q,w) in Eq. (3) by x®(q,w).**
This accounts for electron scattering off the disorder by
means of a static defect scattering rate

)= x®(q,0)

X(40) = -G I (a.0)

(S)( w): X(O)(qaw+i7)

X = i (w+ i 1= X (@ o+ i DX O]

(4)

ranged from a maximum of;= 1 (corresponding in GaAs to
n=5x10° cm™ '), where we took wire diameters
0.1=D=13 nm, to a minimum of ;=10 (corresponding to
n=5x10"* cm™!), where we took wire diameters

v is related to the electron mean free path by the expression
/=el(m*y). In the diffusive regimex®(q,w) takes the

13<D=<127 nm. Experiments are typically carried out om* Dg?
with wires of diametersD=<10 nm and densities1<5 lim x®(q,0)=—— . (5)
X 10° em™ 1. For such systems we confirm the electron cor- ©,q—0 7keh® DQ°tiw

relations are weak. Our results provide a compelling motiva-
tion to develop experiments to cover the strongly correlatedvhereD=v¢/y is the diffusion constant.
region. They demonstrate that strong correlations lead to We relatey to the disorder potential by using the memory
measurable effects in the properties of the plasmon collectiviinction formalism with the mode coupling approximation
excitations. for the density relaxation function. Reference 15 calculated
Perpendicular to the wire the electrons occupy discreté the same way, but correlations between the electrons were
subbands of energy E,=w?42v%/(2m*D?), with  neglectedexcept for exchangeThe dependence of electron
v=1,2,3,.... Ourcalculations are at zero temperature andcorrelations ony neglecting disorder was derived in this way
we consider densities where only the lowest-energy subbarni@d Ref. 16. Here we include both electron correlations and
is appreciably occupied. The presence of these higher sulglisorder in a single self-consistent scheme. Thus we define
bands can restore the Fermi-liquid picture. We find that the
STLS results for the lowest subband under these conditions
are insensitive to the existence of the higher subbands.

i'y=m

Within the RPA the dynamic response function is

x'(q,0)
1+V(@)x9(q,0)’

x(q,0)= 1)

wherex(9)(q, ) is the dynamical susceptibility for free elec-
trons in one dimensioff,

ke 1 |()’=(a*~20)
2Er mq |(0)*—(g*+20)%

x%(q,0)=— )

Our V(q) =2e?Ky(qD) e ! is the bare Coulomb interaction
in the wire. Ko(gD) is the zeroth-order modified Bessel
function of the second kind. It diverges logarithmically for
vanishingD, thus makingv(q) particularly sensitive to the

thickness of the wire so that we can vary the strength of th
electron correlations not only by changing the electron den-Sa

sity but also by changin®.

To treat the correlations between the electrons the ba

Coulomb interactiorV(q) is replaced by an effective inter-
action Vo=V(q)[1—-G(q)], where G(q) is a static local
field G(q).° Because the electrons repel each other the effe
tive interaction is generally less than(q). The response
function is then

B x%(q,w)
C1+V()[1-G(a) Ix (g, )

x(0, @) )

1
2 GLUimp @)+ ([ Weud )[%)]

2

¢O(q!|7)
1+iyeo(a,in)/xO(a)’

x(a)
“| X

x(@) = xO(@){1+V(a)[1- G(q)]x'P(q)} is the static re-
sponse function for correlated electronspg(q,iy)

=(1iy)[x(q,iy)—x©(q)] is the relaxation function for
noninteracting electrons scattering from defetg,(q) is
the electron-impurity potential. With Coulombic impurities
randomly distributed inside the  wire,(|Uimp(a)|2)
=n;[(2Z€’/ €)Ko(qD)]%. We take the impurity charge
Z=1. W,,{q) accounts for surface roughness scatteting.
We write (| Wy, q)|2) = \m(dEq/dD)2 ps%ex —(qn/2)?],
where » and § are surface roughness parameters and
Eo=5.76(g/D)? Ry*, is the lowest occupied subband en-
ergy level.
€ Our approach is different from that of Liu and Das
rmat® They calculated the relaxation rate for free elec-
trons scattering from impurities within the first Born ap-
rﬁroximation. In our method we consider correlated electrons
scattering from both impurities and surface roughness.

In STLS we approximate the density-density correlation
Gunction by the nonlinear product{sh(r,t)sh(r’,t))
~on(r,t)g(r—r’)én(r’,t), where thedn(r,t) are expecta-
tion values andy(r) is the static electron-electron correlation
function. This relation when combined with the Fourier re-
lation betweerg(r) and the static structure fact8(q) gives
an expression for the local field,

(6)
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FIG. 1. Dependence of impurity scattering rateon impurity
concentratiort; for different electron densitiess; as marked. Wire
diameter isD/aj=2.6. Surface roughness is fixéske texkt

G(q)= dk (q—k)Ko((g—k)D)

1 )
_4qKo(qD)fo

+(q+K)Ko((q+K)D)IX[S(k)—1]. @)

y depends on the local fiel@5(q) through x(q) so
G(q) links the STLS equations and the expressiomfpEq.
(6). We use Eq(4) together with the fluctuation-dissipation
theorem to determineG(q) through Eq. (7). With this
G(qg) we solve Eq(6) for y. The new value ofy is substi-
tuted in Eq.(4) and the process is repeated until overall
self-consistency is achieved.

The system parameters dii¢ the electron density, (i)
the wire diameteD, (iii ) the density of randomly distributed
impuritiesn; , and(iv) the surface roughness. For our results
here we fix the surface roughness paramefer®.3 nm and
»=6 nm, which are found for GaAs wiré&?
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FIG. 2. Pair correlation functiong(r) for different electron
densities as marked. Wire diameterDéaj=1.3. Insets show the
the corresponding(r) within the RPA.
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FIG. 3. Pair correlation functiong(r) for different wire diam-
etersD. Labels on curves indicate/a;. Ther for each panel is
marked. Insets show the correspondag(g) within the RPA.

Figure 1 shows for different electron densities the depen-
dence ofy on the normalized impurity density parameter
ci=n;/n. For weak impurity scattering, that s,
/Iro=(8/7)(Er/y)>1, whererg is the average electron
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FIG. 4. In these panels electron densityris=10. Labels on
curves indicate wire diamet&/ag. (a) Solid lines are the effective
interactionsVgx(q). Dotted lines are the corresponding bare Cou-
lomb interactionsv(q). (b) Local fieldsG(q). (c) Static structure
factor S(q).

spacing, the disorder concentration is small andy in-
creases linearly witlg; .
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FIG. 5. (a) Static response functioN(kg)x(q) for different
electron densitiess as marked. Wire diameter B/aj=1.3. (b)
V(kg)x(q) for rg=10. Labels on curves indicate the different wire
diametersD/ag.

ence of impurities that are equally valid for al<Eg. In

Fig. 2 the pair correlation functiog(r) is shown for densi-
ties rg=1, 2, 5, and 10 for a fixed wire diameter
D/aj=1.3. The inset shows the corresponding RPA results.
We recall that the spin averaggg(r) for the noninteracting
system atr=0 equals 1/2. Fors=1 the RPA and STLS
produce similar results, indicating that correlation effects are
small at this density. Fars>2 the RPAg(r) goes negative
for small r. The corresponding STL§(r), however, re-
mains positive. The discrepancy between the SGS and

the RPAg(r) increases as the density is lowered, indicating
that correlations are becoming stronger. The range of densi-
ties in Fig. 2 takes us from a regime whegér) approxi-
mates the noninteractingy(r) to a g(r) typical for a
strongly interacting system. Thus a{=10 we see a total
exclusion of electron density around each electron out to a
separationrkg=0.1 and a peak ing(r) centered at

We find that the static properties of the system are notkg=1.8.
sensitive to the presence of defects in the applicable range of In Fig. 3 we show the dependence gfr) on the wire
y=Eg. We present a single set of static results in the presdiameterD for electron densities;=1, 5, and 10. The insets
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FIG. 6. Dispersion curves for the plasmai(q) with impurities and surface roughne@ee text Shaded areas are the single-particle
excitation regions(a) Without disorder. Electron density, and wire diameteD/aj are marked on each panel. The solid line is from the
present calculation. The dash-dotted line is the REA.Without disorder. Curves for different wire diametedda; as marked.(c)

Comparison with and without disorder. Electron densitygis 10. Wire diameter i©/aj=2.6. Present calculatiof8TLS) and RPA curves
as marked. Dashed lines;=0.01 with surface roughness. Solid lines: without disorder.
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10 : FIG. 8. Imy(q,w) for fixed q/ke=1 for wires with impurities
and surface roughness. Electron density 10. Wire diameter is
r=10 D/ag=1.3. Labels on curves indicate impurity concentratimn
The ¢;=0 peaks have been multiplied by a factor of 0.05. Solid
S.P lines are from present calculation. Dashed lines are RPA.

Figure 4a) compares the effective interaction
Veir(@)=V(q)[1—-G(q)] at rg=10 with the bare Coulomb
0.5 . interaction V(q) for three wire diametersD. For

Plasmon PIasT?n// D/a§=2.6 the changes i(q) compensate the dependence
T of V(q) on D so thatV4(q) is much more weakly depen-
- dent on D than is V(g). The compensating changes is
.~ ] G(q) are shown in Fig. ). For smallerD the G(q) in-
-t creases more rapidly with, indicating that the correlations
T are stronger. The range gfover which correlations have a
R oy =3 significant effect ory(q, ) decreases with increasimyand
0 1 2 3 this explains forD/aj=<12.7 the more rapid increase of
(o) ke G(q) towards unity in the rangg/kg=1.
FIG. 7. Separate contributions to the static structure factor Th_e strong dependence c_)f the cor_relatlons on wire d_lam-
C : : o eter is again apparent in Fig(c}, which shows the static
S(qg) from the plasmon and from single partidl8.P) excitations .
(solid lines. The dotted lines are the corresponding contributionsStrUCture factorS(q). However, even for the smallest wire

calculated within the RPA. Electron densities are as marked. Thg|ameter there is no |nd|cat|.0n of a peaks(q). .
wire diameter isD/aj=2.6. In Fig. 5@ the static response functiony(q)

=x(g,w=0) is shown at densitieg=1, 5, and 10 for a wire

showg(r) calculated within the RPA for the same wire di- diameterD/ag=1.3. Within the RPAx(q) has a cusp at
ameters. In the RPA the sensitivity gfr) to D is due solely a/kg=2 that is a remnant of the cusp in the free-electron
to the increased strength of the bare Coulomb potential astatic susceptibility(?)(q). Forr =1 where the correlations
D is decreased but in the full calculation this is compensate@re weak the peak ig(q) is still centered om/ke=2 but as
by the buildup in electron correlatiorisee Fig. 4a)]. The rg increases the peak center moves towards lacgeBy
net result is that oug(r) is less sensitive t® than itisin  r;=10 it is centered om/k=3. The peak height increases
the RPA and for,=5 and 10 wherD has become small with rg and it also broadens. We found no tendency for the
g(r) changes only slowly witlD. Forrs=1 g(r) goes from peak to diverge.
the noninteracting result for largdd, to a quite strongly Figure b) shows the dependence of the static response
correlated system for small&. function on wire diameter. The density is fixedrat 10. For

We note in the RPA for =1 thatg(r) at smallr goes larger wire diametersD/a5=12.7, where the correlations
negative for wire diametef®/aj=<0.1. A negative value for are weak the peak remains centered gfk=2. By the
this positive definite probability function indicates a break-smallest wire diameteb/ag= 1.3 the center has moved to
down in the RPA. The breakdown occurs at increasinglyg/kg=3.
larger values oD asrg is increased. We now turn to the dependence of the dynamical proper-

Forrs=10 ourg(r) has a peak. A® decreases the peak ties of the system on disorder. In the absence of disorder the
moves towards smaller and at the same time the slope of plasmon dispersiow(q) is determined from the zeroes in
g(r) to the left of the peak becomes steeper. The maximunthe denominator of Eq(3). The analytical expression for
peak height does not increase with wp(q) is

$(q)
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q° h[ qm? HUZ In Fig. 7 we show in the absence of defects the separate
1+ —+qcot ibuti i i
24 16r Ko(qD)[1—G(q)] contributions to the static strugture fac@(rq) coming from
the plasmon and from the single-particle excitations. The
corresponding contributions calculated within the RPA are

In the RPAw,,() merges with the single-particle excita- SO shown. Fors=1 STLS gives similar results to RPA.
tion region in the asymptotic limig— . The introduction of ~ For r<=2 the single-particle excitations calculated within
G(q) lowers this cutoff wave vector, which is then deter- STLS are significantly greater than the RPA for a given
mined by theq value at whichG(q) crosses unity. As value ofg. Forrs=5 the single-particle excitations start to
increases the value for the cutoff wave vector decreases. be significant wher/ke=1.5. After that the single-particle

In Fig. 6@ our plasmon dispersion curves,(q) are  contribution increases rapidly with By q/kg=2—2.5 these
shown in the defect-free casp for electron density =1 excitations have supplanted the plasmon as the dominant
and wire diameteD/aj=0.01, and(ii) for electron density contributor to the spectral strength. Thesum rule is auto-
r«=10 and wire diameteD/ag=1.3. The corresponding matically satisfied in the STLERef. § as in the RPA. We
curves calculated within the RPA are also shown. The corfound in our results that the numerical accuracy offtrseim
relations introduced through the local figB{q) weaken the rule was the same in STLS as in RPA.
effective electron-electron interaction and dramatically de- Figure 8 shows the variation with) of the imaginary part
creasew,,(q) compared with the RPA. Even for a relatively of the dynamic response function ifg,») for fixed
high densityrs=1, strong electron correlations significantly g/k.=1. The wire diameter i©/aj=1.3 and the surface
depress the plasmon energy for small wire diameters. roughness is fixed. The dotted lines are the RPA result. For

_Figure Gb) showsw,(q) for rs=1 and 10 for a range of convenience the;=0 peaks have been multiplied by a scale
wire diametersD. The variation inwy(q) with changing  tactor of 0.05. Since we are at zero temperature the width of
wire dla_lmeter is duép to the dependence of the Coulomb . peaks is determined by. For ¢,=0 the finite width
interaction orD and(ii) the dependence @(q) onD. The results from surface roughness scatteringcAsicreases the

gecreas:/omp,(q)ID\/v!thtir]ncr;asi_ngl?_ meallcfns :hﬁ]the deﬁe’?' peaks broaden. The RPA peaks have almost the same width
ence ofv(q) on D is the dominating effect. The results in Put are shifted towards higher frequencies.

Fig. 6 extend those of Refs. 11 and 13 into the region o In summary we developed a method to calculate self-

strong electron correlations. Fog= 10 the local fieldG(q) consistently the interdependence between electron-electron

g?{;ﬁgfe“r’é"gﬁ)e (\;vehv?gt?o/rlﬁfrzo%%ngrigss:mlal?n'?hIl,?sr%ﬁe\/\:g(sault Scorrelations and the effects of electron scatterings off disor-
reported by Gonet al2! which are forr.— 0.8 andD/a" = 3. der. For the levels of disorder considered the properties of

are not affected by correlations the system at lower electron densities or small wire diam-

Figure c) shov?//s the effect O'f impurities on the olasmon eters depend weakly on the disorder. Strong electron corre-

_igur o np . P lations significantly depress the dispersion curve of the plas-
dispersion curvewp(q) at finite ¢; is determined from the

peak position of Iny(d, ). Impurities depresss(q) and mon and also significantly boost the spectral strength of the

) single-particle excitations so that the plasmon at figitioes
reduce its curvature near the plasmon cutoff. The corre- ge-p P a

sponding results in the RPA are also shown. The RPA curveQOt saturate the spectral strength.
are not sensitive to the presence of these impurities. We can We thank D. J. W. Geldart, G. La Rocca, M. P. Tosi, and
estimate the localization length using the expression. Voit for helpful discussions. This work is supported by an
/Iro=(8/7)(Eg/y). For ¢;<0.01 /Iry, remains much Australian Research Council grant. D.N. thanks F. Bassani
greater than unity so for these results we remain far awagor the hospitality and facilities of the Scuola Normale Su-

from localization. periore.

wp(d)=2q
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