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Stark shifts of excitonic complexes in quantum wells
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We utilize a nonvariational ansatz as the perturbative term to study the quadratic Stark effect of hydrogenic
systems in a fractional-dimensional space. Applying a Dalgarno-Lewis-type technique, the ansatz is used to
derive an analytical expression for the Stark shifts in quantum wells. Estimates of the energy shifts of nega-
tively charged excitons are in good agreement with recent experimental results, and provide qualitative expla-
nations for their behavior in a weak external electric field. The model is extended to study the Stark shifts of
positively charged excitons and biexcitons in quantum wgB8163-18207)06131-9

[. INTRODUCTION electric field. We also provide the theoretical basis needed
to obtain a simple analytical expression for the quad-
The effects of electric fields on hydrogenic systems likeratic Stark shift of an exciton in a finite quantum well. In
excitons have been extensively investigated in semicondudSec. lll, we compare the Stark shifts in the energy of the
tor quantum wells 8 for the past ten years. These studies areground-state heavy-hole exciton obtained using the model
mainly motivated by technological applicatiéris'due to  here with the experimental results of Lengyel, Jelly, and
the room-temperature optical speéfraf confined excitons Engelmant. In Sec. IV, we study the Stark shifts of the
with enhanced binding energies. Recent intéra& in charged exciton and obtain numerical results for ¥ie
charged exciton statesX( and X*) have opened up the complex in GaAs/A}3dGagcAs quantum wells of width
possibility of measurable stark effects, with the application300 A. We also provide qualitative results of the effect of a
of weak electric fields. BotbX~ and X", for which, respec- Weak electric field on a positively charged excitin. In
tively, an electron is bound to an exciton and a hole is boundec. V, we extend the model developed in Sec. Il to predict
to an exciton, have been observed to be stable with bindinghe redshifts of biexcitons in quantum wells. In Sec. VI, we
energies in the range of 1-2 meV, at zero electric field, fopresent the conclusion of this work.
[1I-V semiconductor materials. In one of the first experi-
ments of its type, Shieldst al'® demonstrated that when Il. QUADRATIC STARK EFFECT
a weak electric field € 10 kV/cm) is applied perpendicu- IN A FRACTIONAL-DIMENSIONAL SPACE
larly to the quantum-well layers of a remotely doped 300-A
GaAs/Alg 3 Gay gAS, the ground-state charged excitofi ()
peak energy experiences a measurable redshift. This shift

to be | than th dshift i d . -~ ) .
energy was seen 10 be 1ess than the redshiit expenenced Nacian proposed by Stillingéf, the relative motion of an

its uncharged exciton counterpart. on in th h i be d ved b
In a lower fractional-dimensional space, the anisotropiceXCI on in theé quantum well can be described Dy an

interaction in an exciton, which is typical of quantum well effective-mass Schdinger equation

We consider a single quantum well, in which a weak ex-
rnal static electric field is applied perpendicular to the well
er. Utilizing an isotropic fractional-dimensional space La-

systems in three-dimensionédD) space, become isotropic 52 9 9 2 2
in nature’*Thus only a single parameter, known as the H,y(r,0)=| — =—=—7 —1* 1 —+ —5— ———
2ur*=t or ar  2urc 4dmeer

degree of dimensionalitdenoted by), is needed to incor-

porate the effect of change in the widths of the well or barrier X (r, 0)
regions on the strength of the interaction. Our main result in ’
this paper is an analytical expression of the redshift in the =(E-Egy(r,0), 1)

energy of an exciton in a finite quantum well, as a function . o .
of the dimensionality parameter, due to a weak external whereu is the reduced mass of the excitanis the relative
’ distance vector, and is the dielectric constant in the well

electric field. The electric field is assumed to act perpendicu;e ion. The term? denotes the anaular-momentum operator
larly to the direction of confinement of the exciton. We do gron. 9 P

not aim to compete with variational calculatién$or inten- and a is the dimensionality parameter which describes the

sive computational method$, but to avoid tedious compu- degree of anisotropy of the electron-hole interaction,

. : ; : .. 1<a=<3. The exciton wave functiogi(r,#) can be written
tations in the calculations of the Stark shifts of an exciton in; ' :
n a separable forf?? y(r,0) =R(r)®(#6) for various val-

the presence of a weak electric field. Due to the simplicity of
the approach adopted here, we are able to extend calculatioH§S of th_e guantum numbers, I.’ andm. .
of the Stark shifts to the cases of the charged exciton and 1€ discrete bound-state exciton enerdigsare given by
biexciton. R

This paper is organized as follows. In Sec. I, we present Eex=Eq—
the nonvariational ansatz, which is determined by the dimen-
sionality of the hydrogenic system subjected to a weak

T a—3\2 (2
N+ ——
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whereE, is the band-gap energn=1,2, ... is the princi- Itis to be noted that Eq11) is used within the context of a
pal quantum number, arid, is the effective Rydberg given fractional-dimensional space. This establishes a crucial rela-

by tionship betweerw and the operatorQ, and therefore the
final results of the redshift are strongly dependent on the

13600 v 5 formof S(a). At a=3, Q reduces to the well-known form
T2 E mev. © as utilized in the case of the isotropic three-dimensional hy-

. o drogen atonf®
wherem, is the free-electron mass. Likewise, the bound eX- | order to evaluate Eq9), we use the ground exciton

citon state radiae, are given by statey(r,6) in « dimensional space as:
2

Aex= n+a;3 ady 4 W(r,0)=F(a)ex __2 ) (12)
2 ) a—1)\ay)"
where the three-dimensional exciton radajg is given by whereF(a) is given by
m 2?2 Ta—1 1/2
3D e _
as,=0.53— A 5 3a-1p|Z| | =
ex M (5 o 2 5| T — w5
@)= (et D2 72, _ayatl ga| 1
We now introduce thex-dimensional perturbative term ™ Ifa=1]%(a-1) ay
due to the weak external field as and the spatial integral relation D space®
h=eF(a—2)ad, *r* 2cod, (6) o pla=1I2 oo -
. P _ _ f dr=—f r“’ldrf désin*=20. (14
whereF is the electric-field intensity. The ansatz term in Eq. D r a—1{Jo 0
(6) can be considered as an anisotropic perturbative potential 2

term that is added to the unperturbed Hamiltortignin Eq. o ) )
(1) when a weak external electric field is switched on. The An explicit expression for the energy shifE, can be
form of the ansatz satisfies the dimensionality condition, an@valuated using Eq¢10)—(14) in Eqg. (9):

reduces to the well-knowrvalue of 0 at the zero well width e
limit, i.e., whena =2. The term also yields the expected AEex(a)Z—G(a)M 2 F2, (15)
forms in the exact three-dimensional limita€3), and its h

validity in the quasi-two-dimensional case will be justified in whereG(«) can be obtained as
Sec. lll, by comparison with experimental results obtained in

Ref. 4. @)

The shift in the ground-state exciton energy due to an (@=2)(a=D)* T 5
external electric field, which is in fact a hydrogen atom in an G(a)=H(a)10**° ST T (a—1)2
electric-field problem, can be obtained using second-order 7I'(a—1)
nondegenerate perturbation thedty, ['(2a) 4T(2a—1)

2 2 X 2 * -1 ' (16
IR T T, i
oA @)= 20 EV-ED a7 EQ-ED whereI'[x] is the Euler's gamma function, and the integral
H(«) is given by
=e’FX(a-2)ad, " 2, (0[r* *costlm)(0[QIm) (8) N
m#0 ™ 5
Ha) 2 ml[a—1] 17
a)= - .
= e?F?(a—2)a3, “[(0](r* ?cosf)Q|m) oT g} a1y “T” 0%2
—(0|r*~?cos9|0)(0|Q[0)] €)

Both expressions in Eq$16) and(17) can be easily evalu-
where|0) labels the ground state, afeh) all the other ex-  ated usinguATHEMATICA .27
cited states of the exciton. The operafpappears as a result Wwith the field strength F, measured by 1
of the simplification of Eq(7) to Eq. (8) by the Dalgarno- (a.u.)=m2e%#*=5.142x10° (V/cm), the energy shift
Lewis techniqué® Thus Eq.(9) can be reduced to a simple AE.,, in Eq.(15) can be reduced to
form once the form of the operat@ is determined. Here we
use a modified form of) as AE (a)= —1.31G(a)%(aex>< 108 mY*F2 mev,

) (18

whereF anda,, are given in kV/cm and A, respectively, and

where S(a) is a term which scales the operat@, in an mj is the effective electron mass. It is clear from E#9)

a-dimensional space: that only a single quantity, the dimensionality needs to be
determined in order to obtain information about the shifts in
S(a)=10%*"°. (11 the exciton energy. The expression in ELp) reduces to the

Mgy

QZ—WS(CY)

r

5 +aey | COHY, (20
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22

Empirical values of o using eq.(2) and expt. results of Oclgart et al 2

20+ A Empirical values of o using eq.(18) and expt. results of Lengyel et al *

-------- Theoretical values of « using ¢q.(19)
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FIG. 1. Plot ofG(a) vs a usingu =0.04,a3°=170 A. Well width (nm)

FIG. 3. Comparison of, values obtained in Fig. 2 at the given
well-known form of AE.=— 5 ILLeZa‘e‘X/;'LZ)|:2 for three-  Wwell widths, with the best empirical estimatescaf,. The empirical
dimensional &=3) hydrogenic systems. Figure 1 shows theestimates ofr, are obtained using Eq&2) and(3) and experimen-
sharp increase dB(a) with @, which implies a decrease in tal values(Ref. 28 of exciton binding energies as a function of the
the Stark effect as the dimensionality of the hydrogenic :sys‘-NeII width.

tem is lowered. ) o )
ing values ofa,, used for the quadratic fit are also provided

in the figure.
Ill. COMPARISON WITH EXPERIMENTAL RESULTS In Fig. 3, we compare the,, values obtained in Fig. 2, at
the given well widths, with the best empirical estimates of

In this section, we compare the Stark shifts in_the ground—aex_ The empirical estimates af,, are obtained using Egs.
state heavy-hole exciton energy computed using @8  (2) and(3) and experimental valu&of exciton binding en-
with the experimental results of Ref. 4 obtained usingergies as a function of the well width. This method of deter-
GaAs/Alg 3fGag ggAs quantum wells of widths between 5 mining ., yields the most reliable valu&sfor the dimen-
and 20 nm. We only consider the shifts in the exciton energy;jonality of the confined exciton. It is to be noted that it is
for electric fields up to 100 kv/cm, well within the regime of ajmost impossible to obtain accurate exciton binding ener-
a weak external electric field. Hence Ef8), which is based gies, and hence reliable values fey,, via theoretical meth-
on the second-order perturbation theory, remains valid fofgs This is due to various factdfslike valence-band-
comparison with the experimental results. _ mixing effects, the nonparabolicity of the conduction band,

Figure 2 shows experimental valdesf the shift of the screening effects, and coupling between excitons from dif-
exciton energy as a function of the applied electric field. Theerent subbands. Also, apart from the numerical difficulties
figure also shows the the best quadratic fit through the eXjhked to the complicated nature of the valence
perimental points, calculated using E@i8). The correspond-  Hamiltoniarf® in an electric field, there is still a lack of
knowledge of accurate values for the bulk valence param-
eters. One also needs to take into account the conditions
under which the experimental binding energies are deter-
mined.

However, in the absence of experimental results, rough
estimates ofre, can generally be determined usthg

o
—»

A E (meV)
© b N H h A b v 4

L
Coy=3— exp( - KV’;YE) . (19)

In Fig. 3, the values o, calculated using Eq19) andaZP?

= 170 A are shown as dotted lines. The values are generally
less (= 0.2) than the empirical values af,, for a fixed well
width. This is attributed to the various factors mentioned in

Electric Field (kV/cm) the previous paragraph. '
Figure 3 shows that there is good agreement between the

FIG. 2. Diamond-shaped points denote experimental value§Stimates otx computed using two independent approaches
(Ref. 4 of the shift of the exciton energy as a function of the and two different sets of experimental resdité This clearly
applied electric field at the indicated well widths. The solid line is justifies the form of ansatz introduced in E6), and high-
the best quadratic fit through the experimental points, calculatelights the important role of a single parametein determin-
using Eq.(18). ing the Stark shifts of excitons in weak electric fields.
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Figure 3 also shows thai,, decreases as the well width ®  Experimental data from Shields st al 19
decreases, and reaches a minimum value at a critcal we 04 T By St A st o =251
width before increasing again. This is mainly due to the ef-
fect of the spreading of the electron and hole wave functior
into the barrier regions, as the well width is decreased. Re
cent experimental results by Yuaet al? has confirmed a
similar crossover effect, where the heavy-hole exciton wa:
shown to be best confined at a well width aroun@0 A.
The Stark shifts of excitons are expected to show a simila
crossover effect when smaller well widths:85 A) are in-
vestigated.
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0.5 |
06|
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IV. STARK SHIFTS OF THE NEGATIVELY CHARGED ooy h

EXCITON X~ IN QUANTUM WELLS ™0 T 2 s 4 5 s 7 8
Electric Field (kV/cm)

Although theoretical calculatiofi$®* of charged excitons
in quantum wells have shown good agreement with experi-
mental results, they are variational, and involve intensive
computations. The accuracy of the results also depend on trElalefunction of the electric field. The difference in their energy shifts

para_lmeters chosen _to re_present the trial wave functions. In E}Qcompared with the experimental data of Shieldal. (Ref. 19.
earlier paper, we simplified the approach of determing the

binding energies oK~ andX™ in quantum wells by model-
ing the charged exciton complex as a hydrogenic system in
fractional-dimensional spacé.In this section, we apply Eq.
(18) to the hydrogenic model of the charged exciton com-
plex, to determine their shifts in weak electric fields.

The binding energyEby- of a negatively charged exci-
ton, in the presence of an electric figfd can be written a8

FIG. 4. Plot of the redshift oK™ and the uncharged exciton as

guantum wells of width 300 A. Substitutirgbe, = 4 meV
Into Eqg. (21), we obtaing=0.73 ande,=1.34. Using Egs.
(5) and(19), we obtain the radius of the charged exciton as
ay- = 340 A and dimensionalityry-=2.36. A more accu-
rate estimate ofry- can be obtained by adding a corrective
value of 0.15(see Fig. 3to ax-:

ay-~2.36+0.15=2.51. (22)
Ebx-(F)=Ey(F) +EedF) —Ex-(F), 20
Substitutingae, = 2.75 anday- = 2.51, for wells of
AEby-(F)=AE.(F)—AEx-(F). width 300 A, into Eq.(18), we obtain
Equation(20) means that the shift in the binding energy of AE.(F)=—0.06F2 meV, (23

X7, AEby-(F), is essentially equal to the difference in the
redshifts of the excitonAE,,) and charged excitorAEy-).
Both AE,, and AEx- can be easily determined using Eq.
(18), once their dimensionalities,, and ax-1 are deter-
mined accurately.

AEy-(F)=—0.05FF2 meV, (24)

where F is given in units of kV/cm. A plot ofAE., and
. . AEy-, as well as their differenc&by-(F), is shown in Fig.
In order to obtain numerical values for the Stark effectsz_ The figure shows that our calculated results are consistent

of X7, it is important to estimate the best va!uecog‘x and _with the experimental results obtained by Shietisl° It is
ax-1, SO that comparison can be made with the experi-

. interesting to note that the energy shifts of the exciton and
mental resulf’ of AEx- [Eq.(18)] performed using remotely charged gxciton complex™ are aggut 5-6 times as large as
doped GaAs/A} 355ag gAs quantum wells of width 300 A, the shift in the binding energy of the extra electron, given by
Using the three-dimensional effective Rydberg eneRjy Eby-(F).
and Bohr radiusie, as 3.1 meV and 170 Arespectively, for An approximate value of the electric field at which it be-

the heavy-hole exciton, we obtai,, = 2.75 by using Eq.  comes difficult to resolve the spectral splitting between the

(2) and the binding energitbe,, of 4 meV for an exciton in  exciton and charged exciton peaks is determined using
GaAs/Aly 38Gag ¢As quantum wells of width 300 A.

The dimensionalityayx-1 can be determined using a

simple analytical form that was receriffyderived forEby-: AEDby-(F)=Ebx-(F=0). (25
-1 ) .
Eby- = ef(l+ 22(”'1 —1|Ebg,, 21) Using bef(F=0)_~O.95 meV and_ Eq.(24), we obtain
o°+40+2 F=9.3 kV/cm, which agrees well with the experimental re-

sult (9.4 <F< 10.8 of Shieldset al®
wheree, is the ratio of the dielectric constant of the exciton  The hydrogenic model of a charged exciton has a larger
to that of the charged excitoiX™ ando=mg/mj . Due to  effective bohr radius, and hence a smaller dimensionality
the lack of knowledge of accurate values &grando of the ~ when compared to an exciton in a quantum well of the same
X~ complex, we have used the experimental value ofwell width. This results in a smaller redshift of in com-
Eby-~ 0.95 meV at-=0, as obtained by Shields al®in parison to the uncharged exciton, as is shown in Fig. 4. Thus
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the spectral splitting between the exciton and charged exci- piex=2.28, (31)
ton peaks decreases as the electric-field intensity increases. It
should be noted that the quadratic fit through the experimen-

— 2
tal points based on our model breaks down for electric field, AEpiex=—0.016=° meV, (32
F=5.5 meV. This may be caused by the high sensitivity of
the binding energy oX™ to extrinsic electric fields in the AEDbpiey= AEg— AEpe= —0.0462 meV. (33

experimental setup’

~ It may be desirable to mention the behavior of the posi-gearing in mind that our calculated value®fi, is probably
tively ghgrged excitorX™, which has been observed t°3 be underestimated, the calculated valueAdE by, in Eq. (33)
stablé® in quantum wells. Theoretical calculatidfiS® \youid differ by some factor&L.5—2 from the expected shift.
have shown the binding energy ¥f" to be slightly higher  Nevertheless, the qualitative gross features in the shift of the
than that forX™, so that ax-<ax-. Consequently, the piexciton energy with the electric field is expected to remain
energy shifts experienced By are expected to be less than unaltered.

that for X~. It may be difficult to resolve the spectral Due to the larger Bohr radius of the biexciton 470 A),

splitting between the exciton and positively charged exit experiences a smaller redshift in comparison to the charged
citon peaks, for electric fields=5 kV/cm in wells of width  ay¢iton complexX ™. ThusAEby,, is expected to be larger

300 A. thanAEby-, i.e., the binding forces of a biexciton would be
more sensitive to an external electric field than that in a
V. STARK SHIFTS OF BIEXCITONS charged exciton. We are unable to obtain experimental val-
IN QUANTUM WELLS ues of the biexciton at this moment in time to see this trend.

An approximate value of the electric field at which it be-
mes difficult to resolve the spectral splitting between the
géxciton and biexciton peaks can be determined using

Biexcitons are bound two-exciton states, and their role irl:o
guantum wells have been the subject of much rece
interest®>8recently. Biexciton states are generally reache
by two-electron excitations from the ground state, or by two-
photon excitation from the ground state and their binding AEbpie(F) =Ebypjex F=0). (34)
energyE by, is determined using:

With Eby-(F=0)~ 1 meV?° we obtainF= 4.7 kV/cm in
E bpiex= 2Eex— Eniex- (260 a well of width 300 A, which is about half of that in the case

L . of the charged exciton.
Recent works have shown that the biexciton has an aniso- 9

tropic character in two-and three-dimensional syst&his,
and can effectively be represented by a hydrogenic system in VI. CONCLUSION

a fractional-dimensional space. Thus the Stark shifts of biex- W d a flexibl d tationally simol thod of
citons in quantum wells can be easily determined using Eq. € used a fiexiblé and computationally Simplé metnod o

(18), once an accurate estimate for the dimensionality O]det(_armining the Stark §hifts of hydrogenic systems like the
biex'citon is determined exciton, and some of its complexes in quantum wells. We

The Stark shifts of the biexciton can be determined usin alculated the redshifts of the exciton and its charged exciton
a recently derived resdftof the ratio of the binding energy omple)_< In quantum wells .Of width 300 A, for the Salfg of
of the biexciton Eby;,) to that of the exciton: comparison with the experimental results of Shietdal.
bie ' The calculations can be easily done for quantum wells of any

Bpiex well widths. We discussed two possible waigec. Ill) of
Ep_ ~ 0-228. (27)  determining the crucial parameterwhich is needed to de-
X termine the redshifts in a quantum well of a known width.
Using Eq.(27) in Eqg. (15), we obtain It should be noted that, for large well widths=(300 A),
there is the possibility of optical nonlinearity due to exciton-
Mbiex| @biex exciton interactiond! Also, effects arising out of electron-

4
AEex @piex)- (28)  electron and electron-hole interactiéhmay be important to
consider when determining the dimensionality of exciton
Equation(28) can be further simplified using the simple complexes. Itis thus likely that these factors may add a small
ratios® percentage of error to our calculated values of the Stark
shifts of the charged exciton and biexciton.
In conclusion, in this paper, we have presented a method

AE ol piny) =
blex( blex) Moy | oy

Foiex_ z (29 of determining the shifts in the energy of the exciton and its

Mex 3 complexes. Our calculated energy shifts are in qualitative as

well as quantitative agreement with known experimental re-

Apiex sults. This work may have importance in future experimental
=2.74. B0 work involving exciton complexes in weak electric fields.

ex

In order to obtain numerical results, we consider the case of
the biexciton in quantum wells of width 300 A. Using Egs.
(19), (23), (28), (29), and(30), we obtain The author acknowledges support from NTU.
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