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Stark shifts of excitonic complexes in quantum wells

A. Thilagam
Faculty of Science, Northern Territory University, Darwin NT 0909, Australia

~Received 24 March 1997!

We utilize a nonvariational ansatz as the perturbative term to study the quadratic Stark effect of hydrogenic
systems in a fractional-dimensional space. Applying a Dalgarno-Lewis-type technique, the ansatz is used to
derive an analytical expression for the Stark shifts in quantum wells. Estimates of the energy shifts of nega-
tively charged excitons are in good agreement with recent experimental results, and provide qualitative expla-
nations for their behavior in a weak external electric field. The model is extended to study the Stark shifts of
positively charged excitons and biexcitons in quantum wells.@S0163-1829~97!06131-6#
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I. INTRODUCTION

The effects of electric fields on hydrogenic systems l
excitons have been extensively investigated in semicond
tor quantum wells1–8 for the past ten years. These studies
mainly motivated by technological applications2,9–11 due to
the room-temperature optical spectra12 of confined excitons
with enhanced binding energies. Recent interest13–18 in
charged exciton states (X2 and X1) have opened up the
possibility of measurable stark effects, with the applicat
of weak electric fields. BothX2 andX1, for which, respec-
tively, an electron is bound to an exciton and a hole is bou
to an exciton, have been observed to be stable with bind
energies in the range of 1–2 meV, at zero electric field,
III-V semiconductor materials. In one of the first expe
ments of its type, Shieldset al.19 demonstrated that whe
a weak electric field (< 10 kV/cm! is applied perpendicu
larly to the quantum-well layers of a remotely doped 300
GaAs/Al0.33Ga0.67As, the ground-state charged exciton (X2)
peak energy experiences a measurable redshift. This sh
energy was seen to be less than the redshift experience
its uncharged exciton counterpart.

In a lower fractional-dimensional space, the anisotro
interaction in an exciton, which is typical of quantum we
systems in three-dimensional~3D! space, become isotropi
in nature.20–23 Thus only a single parameter, known as t
degree of dimensionality~denoted bya), is needed to incor-
porate the effect of change in the widths of the well or barr
regions on the strength of the interaction. Our main resul
this paper is an analytical expression of the redshift in
energy of an exciton in a finite quantum well, as a functi
of the dimensionality parametera, due to a weak externa
electric field. The electric field is assumed to act perpend
larly to the direction of confinement of the exciton. We d
not aim to compete with variational calculations1–4 or inten-
sive computational methods,5,6 but to avoid tedious compu
tations in the calculations of the Stark shifts of an exciton
the presence of a weak electric field. Due to the simplicity
the approach adopted here, we are able to extend calcula
of the Stark shifts to the cases of the charged exciton
biexciton.

This paper is organized as follows. In Sec. II, we pres
the nonvariational ansatz, which is determined by the dim
sionality of the hydrogenic system subjected to a we
560163-1829/97/56~8!/4665~6!/$10.00
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electric field. We also provide the theoretical basis nee
to obtain a simple analytical expression for the qua
ratic Stark shift of an exciton in a finite quantum well. I
Sec. III, we compare the Stark shifts in the energy of
ground-state heavy-hole exciton obtained using the mo
here with the experimental results of Lengyel, Jelly, a
Engelmann.4 In Sec. IV, we study the Stark shifts of th
charged exciton and obtain numerical results for theX2

complex in GaAs/Al0.33Ga0.67As quantum wells of width
300 Å. We also provide qualitative results of the effect o
weak electric field on a positively charged excitonX1. In
Sec. V, we extend the model developed in Sec. II to pred
the redshifts of biexcitons in quantum wells. In Sec. VI, w
present the conclusion of this work.

II. QUADRATIC STARK EFFECT
IN A FRACTIONAL-DIMENSIONAL SPACE

We consider a single quantum well, in which a weak e
ternal static electric field is applied perpendicular to the w
layer. Utilizing an isotropic fractional-dimensional space L
placian proposed by Stillinger,24 the relative motion of an
exciton in the quantum well can be described by
effective-mass Schro¨dinger equation

Hoc~r ,u!5F2
\2

2mr a21

]

]r
r a21

]

]r
1

l 2

2mr 22
e2

4peeor G
3c~r ,u!

5~E2Eg!c~r ,u!, ~1!

wherem is the reduced mass of the exciton,r is the relative
distance vector, ande is the dielectric constant in the we
region. The terml 2 denotes the angular-momentum opera
and a is the dimensionality parameter which describes
degree of anisotropy of the electron-hole interactio
1<a<3. The exciton wave functionc(r ,u) can be written
in a separable form20,22 c(r ,u)5R(r )F(u) for various val-
ues of the quantum numbers,n, l , andm.

The discrete bound-state exciton energiesEex are given by

Eex5Eg2
R

S n1
a23

2 D 2 , ~2!
4665 © 1997 The American Physical Society
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4666 56A. THILAGAM
whereEg is the band-gap energy,n51,2, . . . is the princi-
pal quantum number, andRy is the effective Rydberg given
by

Ry5
13 600

e2

m

me
meV, ~3!

whereme is the free-electron mass. Likewise, the bound
citon state radiiaex are given by

aex5S n1
a23

2 D 2

aex
3D ~4!

where the three-dimensional exciton radiusaex
3D is given by

aex
3D50.53e

me

m
Å. ~5!

We now introduce thea-dimensional perturbative term
due to the weak external field as

h5eF~a22!aex
32ar a22cosu, ~6!

whereF is the electric-field intensity. The ansatz term in E
~6! can be considered as an anisotropic perturbative pote
term that is added to the unperturbed HamiltonianHo in Eq.
~1! when a weak external electric field is switched on. T
form of the ansatz satisfies the dimensionality condition, a
reduces to the well-known1 value of 0 at the zero well width
limit, i.e., when a 52. The term also yields the expecte
forms in the exact three-dimensional limits (a53!, and its
validity in the quasi-two-dimensional case will be justified
Sec. III, by comparison with experimental results obtained
Ref. 4.

The shift in the ground-state exciton energy due to
external electric field, which is in fact a hydrogen atom in
electric-field problem, can be obtained using second-or
nondegenerate perturbation theory,25

DEex~a!5 (
nÞm

u^nuhum&u2

En
~0!2Em

~0! 5 (
mÞ0

u^0uhum&u2

En
~0!2Em

~0! ~7!

5e2F2~a22!aex
32a (

mÞ0
^0ur a22cosuum&^0uQum& ~8!

5e2F2~a22!aex
32a @^0u~r a22cosu!Qum&

2^0ur a22cosuu0&^0uQu0&# ~9!

whereu0& labels the ground state, andum& all the other ex-
cited states of the exciton. The operatorQ appears as a resu
of the simplification of Eq.~7! to Eq. ~8! by the Dalgarno-
Lewis technique.26 Thus Eq.~9! can be reduced to a simpl
form once the form of the operatorQ is determined. Here we
use a modified form ofQ as25

Q52
maex

\2 S~a!S r

2
1aexD r cosu, ~10!

where S(a) is a term which scales the operator,Q, in an
a-dimensional space:

S~a!5103a29. ~11!
-
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It is to be noted that Eq.~11! is used within the context of a
fractional-dimensional space. This establishes a crucial r
tionship betweena and the operator,Q, and therefore the
final results of the redshift are strongly dependent on
form of S(a). At a53, Q reduces to the well-known form
as utilized in the case of the isotropic three-dimensional
drogen atom.25

In order to evaluate Eq.~9!, we use the ground exciton
statec(r ,u) in a dimensional space as:

c~r ,u!5F~a!expS 2
2

a21D S r

aex
D , ~12!

whereF(a) is given by

F~a!5F 23~a21!GFa2G2

GFa21

2 G
p~a11!/2G@a21#2~a21!a11

1

a
B

a
G 1/2

, ~13!

and the spatial integral relation ina-D space:20

E
aD

dr5
2p~a21!/2

GFa21

2 G E0

`

r a21drE
0

p

du sina22u. ~14!

An explicit expression for the energy shift,DE, can be
evaluated using Eqs.~10!–~14! in Eq. ~9!:

DEex~a!52G~a!
me2aex

4

\2 F2, ~15!

whereG(a) can be obtained as

G~a!5H~a!103a29

~a22!~a21!a21GS a

2 D 2

2a12pG~a21!2

3S G~2a!

2
1

4 G~2a21!

a21 D , ~16!

whereG@x# is the Euler’s gamma function, and the integr
H(a) is given by

H~a!5

p1/2GFa21

2 G
2GFa2G 2

pG@a21#

2a21GFa12

2 GGFa22

2 G . ~17!

Both expressions in Eqs.~16! and ~17! can be easily evalu-
ated usingMATHEMATICA .27

With the field strength F, measured by 1
(a.u.)5me

2e5/\455.1423109 (V/cm), the energy shift
DEex, in Eq. ~15! can be reduced to

DEex~a!521.31G~a!
m

me*
~aex3108 m21!4F2 meV,

~18!

whereF andaex are given in kV/cm and Å, respectively, an
me* is the effective electron mass. It is clear from Eq.~18!
that only a single quantity, the dimensionalitya, needs to be
determined in order to obtain information about the shifts
the exciton energy. The expression in Eq.~15! reduces to the
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56 4667STARK SHIFTS OF EXCITONIC COMPLEXES IN . . .
well-known form of DEex52 9
4 (me2aex

4 /\2)F2 for three-
dimensional (a53) hydrogenic systems. Figure 1 shows t
sharp increase ofG(a) with a, which implies a decrease i
the Stark effect as the dimensionality of the hydrogenic s
tem is lowered.

III. COMPARISON WITH EXPERIMENTAL RESULTS

In this section, we compare the Stark shifts in the grou
state heavy-hole exciton energy computed using Eq.~18!
with the experimental results of Ref. 4 obtained usi
GaAs/Al0.32Ga0.68As quantum wells of widths between
and 20 nm. We only consider the shifts in the exciton ene
for electric fields up to 100 kV/cm, well within the regime o
a weak external electric field. Hence Eq.~18!, which is based
on the second-order perturbation theory, remains valid
comparison with the experimental results.

Figure 2 shows experimental values4 of the shift of the
exciton energy as a function of the applied electric field. T
figure also shows the the best quadratic fit through the
perimental points, calculated using Eq.~18!. The correspond-

FIG. 1. Plot ofG(a) vs a usingm 50.04,aex
3D5170 Å.

FIG. 2. Diamond-shaped points denote experimental va
~Ref. 4! of the shift of the exciton energy as a function of th
applied electric field at the indicated well widths. The solid line
the best quadratic fit through the experimental points, calcula
using Eq.~18!.
-

-

y

r

e
x-

ing values ofaex used for the quadratic fit are also provided
in the figure.

In Fig. 3, we compare theaex values obtained in Fig. 2, at
the given well widths, with the best empirical estimates o
aex. The empirical estimates ofaex are obtained using Eqs.
~2! and~3! and experimental values28 of exciton binding en-
ergies as a function of the well width. This method of dete
mining aex yields the most reliable values29 for the dimen-
sionality of the confined exciton. It is to be noted that it i
almost impossible to obtain accurate exciton binding ene
gies, and hence reliable values foraex, via theoretical meth-
ods. This is due to various factors30 like valence-band-
mixing effects, the nonparabolicity of the conduction band
screening effects, and coupling between excitons from d
ferent subbands. Also, apart from the numerical difficultie
linked to the complicated nature of the valenc
Hamiltonian31 in an electric field, there is still a lack of
knowledge of accurate values for the bulk valence param
eters. One also needs to take into account the conditio
under which the experimental binding energies are dete
mined.

However, in the absence of experimental results, rou
estimates ofaex can generally be determined using21

aex532expS 2
Lw

2aex
3DD . ~19!

In Fig. 3, the values ofaex calculated using Eq.~19! andaex
3D

5 170 Å1 are shown as dotted lines. The values are genera
less (< 0.2! than the empirical values ofaex for a fixed well
width. This is attributed to the various factors mentioned i
the previous paragraph.

Figure 3 shows that there is good agreement between
estimates ofa computed using two independent approache
and two different sets of experimental results.4,28 This clearly
justifies the form of ansatz introduced in Eq.~6!, and high-
lights the important role of a single parametera in determin-
ing the Stark shifts of excitons in weak electric fields.

s

d

FIG. 3. Comparison ofaex values obtained in Fig. 2 at the given
well widths, with the best empirical estimates ofaex. The empirical
estimates ofaex are obtained using Eqs.~2! and~3! and experimen-
tal values~Ref. 28! of exciton binding energies as a function of the
well width.
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4668 56A. THILAGAM
Figure 3 also shows thataex decreases as the well widt
decreases, and reaches a minimum value at a critcal
width before increasing again. This is mainly due to the
fect of the spreading of the electron and hole wave funct
into the barrier regions, as the well width is decreased.
cent experimental results by Yuanet al.32 has confirmed a
similar crossover effect, where the heavy-hole exciton w
shown to be best confined at a well width around;20 Å.
The Stark shifts of excitons are expected to show a sim
crossover effect when smaller well widths (<35 Å! are in-
vestigated.

IV. STARK SHIFTS OF THE NEGATIVELY CHARGED
EXCITON X2 IN QUANTUM WELLS

Although theoretical calculations33,34 of charged excitons
in quantum wells have shown good agreement with exp
mental results, they are variational, and involve intens
computations. The accuracy of the results also depend on
parameters chosen to represent the trial wave functions. I
earlier paper, we simplified the approach of determing
binding energies ofX2 andX1 in quantum wells by model-
ing the charged exciton complex as a hydrogenic system
fractional-dimensional space.18 In this section, we apply Eq
~18! to the hydrogenic model of the charged exciton co
plex, to determine their shifts in weak electric fields.

The binding energyEbX2 of a negatively charged exci
ton, in the presence of an electric fieldF, can be written as33

EbX2~F !5Eg~F !1Eex~F !2EX2~F !,
~20!

DEbX2~F !5DEex~F !2DEX2~F !.

Equation~20! means that the shift in the binding energy
X2, DEbX2(F), is essentially equal to the difference in th
redshifts of the exciton (DEex) and charged exciton (DEX2).
Both DEex and DEX2 can be easily determined using E
~18!, once their dimensionalitiesaex and aX21 are deter-
mined accurately.

In order to obtain numerical values for the Stark effe
of X2, it is important to estimate the best value ofaex and
aX21, so that comparison can be made with the exp
mental result19 of DEX2 @Eq.~18!# performed using remotely
doped GaAs/Al0.33Ga0.67As quantum wells of width 300 Å.
Using the three-dimensional effective Rydberg energyRy
and Bohr radiusaex as 3.1 meV and 170 Å,1 respectively, for
the heavy-hole exciton, we obtainaex 5 2.75 by using Eq.
~2! and the binding energyEbex, of 4 meV for an exciton in
GaAs/Al0.33Ga0.67As quantum wells of width 300 Å.

The dimensionalityaX21 can be determined using
simple analytical form that was recently18 derived forEbX2:

EbX25Fe r
2S 11

2s11

s214s12D 21

21GEbex, ~21!

wheree r is the ratio of the dielectric constant of the excito
to that of the charged exciton,X2 ands5me* /mh* . Due to
the lack of knowledge of accurate values fore r ands of the
X2 complex, we have used the experimental value
EbX2' 0.95 meV atF50, as obtained by Shieldset al.19 in
ell
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r
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quantum wells of width 300 Å. SubstitutingEbex 5 4 meV
into Eq. ~21!, we obtains50.73 ande r51.34. Using Eqs.
~5! and ~19!, we obtain the radius of the charged exciton
aX2 5 340 Å and dimensionalityaX252.36. A more accu-
rate estimate ofaX2 can be obtained by adding a correctiv
value of 0.15~see Fig. 3! to aX2:

aX2'2.3610.1552.51. ~22!

Substitutingaex 5 2.75 andaX2 5 2.51, for wells of
width 300 Å, into Eq.~18!, we obtain

DEex~F !520.062F2 meV, ~23!

DEX2~F !520.051F2 meV, ~24!

where F is given in units of kV/cm. A plot ofDEex and
DEX2, as well as their difference,EbX2(F), is shown in Fig.
2. The figure shows that our calculated results are consis
with the experimental results obtained by Shieldset al.19 It is
interesting to note that the energy shifts of the exciton a
charged exciton complexX2 are about 5–6 times as large a
the shift in the binding energy of the extra electron, given
EbX2(F).

An approximate value of the electric field at which it be
comes difficult to resolve the spectral splitting between t
exciton and charged exciton peaks is determined using

DEbX2~F !.EbX2~F50!. ~25!

Using EbX2(F50)'0.95 meV and Eq.~24!, we obtain
F.9.3 kV/cm, which agrees well with the experimental r
sult ~9.4 <F< 10.8! of Shieldset al.19

The hydrogenic model of a charged exciton has a lar
effective bohr radius, and hence a smaller dimensiona
when compared to an exciton in a quantum well of the sa
well width. This results in a smaller redshift ofX2 in com-
parison to the uncharged exciton, as is shown in Fig. 4. T

FIG. 4. Plot of the redshift ofX2 and the uncharged exciton a
a function of the electric field. The difference in their energy shi
is compared with the experimental data of Shieldet al. ~Ref. 19!.
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the spectral splitting between the exciton and charged e
ton peaks decreases as the electric-field intensity increas
should be noted that the quadratic fit through the experim
tal points based on our model breaks down for electric fie
F>5.5 meV. This may be caused by the high sensitivity
the binding energy ofX2 to extrinsic electric fields in the
experimental setup.19

It may be desirable to mention the behavior of the po
tively charged excitonX1, which has been observed to b
stable14 in quantum wells. Theoretical calculations18,33

have shown the binding energy ofX1 to be slightly higher
than that for X2, so that aX1<aX2. Consequently, the
energy shifts experienced byX1 are expected to be less tha
that for X2. It may be difficult to resolve the spectra
splitting between the exciton and positively charged
citon peaks, for electric fieldsF>5 kV/cm in wells of width
300 Å.

V. STARK SHIFTS OF BIEXCITONS
IN QUANTUM WELLS

Biexcitons are bound two-exciton states, and their role
quantum wells have been the subject of much rec
interest35–38 recently. Biexciton states are generally reach
by two-electron excitations from the ground state, or by tw
photon excitation from the ground state and their bind
energyEbbiex is determined using:

Ebbiex52Eex2Ebiex. ~26!

Recent works have shown that the biexciton has an an
tropic character in two-and three-dimensional systems,38,39

and can effectively be represented by a hydrogenic syste
a fractional-dimensional space. Thus the Stark shifts of b
citons in quantum wells can be easily determined using
~18!, once an accurate estimate for the dimensionality
biexciton is determined.

The Stark shifts of the biexciton can be determined us
a recently derived result38 of the ratio of the binding energy
of the biexciton (Ebbiex) to that of the exciton:

Ebbiex

Ebex
'0.228. ~27!

Using Eq.~27! in Eq. ~15!, we obtain

DEbiex~abiex!5
mbiex

mex
S abiex

aex
D 4

DEex~abiex!. ~28!

Equation~28! can be further simplified using the simp
ratios38

mbiex

mex
5

2

3
, ~29!

abiex

aex
52.74. ~30!

In order to obtain numerical results, we consider the cas
the biexciton in quantum wells of width 300 Å. Using Eq
~19!, ~23!, ~28!, ~29!, and~30!, we obtain
i-
. It
n-
,
f

i-

-

n
nt
d
-
g

o-

in
x-
q.
f

g

of

abiex.2.28, ~31!

DEbiex520.016F2 meV, ~32!

DEbbiex5DEex2DEbiex520.046F2 meV. ~33!

Bearing in mind that our calculated value ofabiex is probably
underestimated, the calculated value ofDEbbiex in Eq. ~33!
would differ by some factors~1.5–2! from the expected shift.
Nevertheless, the qualitative gross features in the shift of
biexciton energy with the electric field is expected to rem
unaltered.

Due to the larger Bohr radius of the biexciton (; 470 Å!,
it experiences a smaller redshift in comparison to the char
exciton complexX2. ThusDEbbiex is expected to be large
thanDEbX2, i.e., the binding forces of a biexciton would b
more sensitive to an external electric field than that in
charged exciton. We are unable to obtain experimental
ues of the biexciton at this moment in time to see this tre

An approximate value of the electric field at which it b
comes difficult to resolve the spectral splitting between
exciton and biexciton peaks can be determined using

DEbbiex~F !.Ebbiex~F50!. ~34!

With EbX2(F50)' 1 meV,40 we obtainF. 4.7 kV/cm in
a well of width 300 Å, which is about half of that in the cas
of the charged exciton.

VI. CONCLUSION

We used a flexible and computationally simple method
determining the Stark shifts of hydrogenic systems like
exciton, and some of its complexes in quantum wells. W
calculated the redshifts of the exciton and its charged exc
complex in quantum wells of width 300 Å, for the sake
comparison with the experimental results of Shieldet al.19

The calculations can be easily done for quantum wells of
well widths. We discussed two possible ways~Sec. III! of
determining the crucial parametera which is needed to de
termine the redshifts in a quantum well of a known width

It should be noted that, for large well widths (> 300 Å!,
there is the possibility of optical nonlinearity due to excito
exciton interactions.41 Also, effects arising out of electron
electron and electron-hole interactions42 may be important to
consider when determining the dimensionality of excit
complexes. It is thus likely that these factors may add a sm
percentage of error to our calculated values of the St
shifts of the charged exciton and biexciton.

In conclusion, in this paper, we have presented a met
of determining the shifts in the energy of the exciton and
complexes. Our calculated energy shifts are in qualitative
well as quantitative agreement with known experimental
sults. This work may have importance in future experimen
work involving exciton complexes in weak electric fields.
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