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Local vibrational modes and anharmonic forces of Mg21 and S22 in ZnTe and CdTe crystals
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We present a simple model to describe local vibrational modes at impurities in semiconductors using a
two-particle anharmonic potential. We calculated the breathing-type distortion at the impurity in the tight-
binding approximation, the frequencies of the local vibrational modes associated with the Mg21 and S22

impurities in ZnTe and CdTe, their isotope shifts, and the anharmonic forces without any parameters adjusted
to defect properties. Our results for the energies of the local vibrational modes and their isotope shifts at Mg
and S impurities in ZnTe and CdTe are in good agreement with experiments. We found an inward distortion
of the ligands of Mg21 in CdTe, an outward distortion in ZnTe, and an inward distortion at S22 in both
crystals.@S0163-1829~97!06232-2#
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I. INTRODUCTION

Local vibrational modes~LVM’s ! are easily observed b
Raman spectroscopy if the mass of the impurity is sign
cantly smaller than the mass of the host-lattice atoms. In
case, the frequencies are well above the vibrational spec
of the host lattice and these LVM’s are called split-o
modes. The displacements of an impurity of such a mode
strongly peaked at the impurity site and the calculation m
be done with a model, in which the impurity and its near
neighbors are considered as a quasimolecule embedde
the host crystal. The normal modes of such a system
their frequencies can be extracted provided the adiabatic
teraction surface is known.

Many properties of such a quasimolecule are determi
predominantly by the bond energy. Harrison,1,2 using the
tight-binding approximation and some results following fro
the density-functional theory, simplified the calculation
the bond energy by expressing it in terms of one-elect
atomic energies and some universal parameters. The un
sal parameters replace the complicated interaction integ
and are common for many covalent crystals. The model
be substantially improved by extending the linear dep
dence of the interatomic force on the impurity displacem
with higher anharmonic terms. Because of the dependenc
the frequencies of the LVM on the impurity mass, isoto
substitution has been used to obtain an unambiguous p
for the localization of a LVM at a certain impurity. LVM
spectra of impurities, composed of several isotopes consi
closely spaced lines resulting from different impuri
masses. For example, Mg has three stable isotopes,24Mg,
25Mg, and 26Mg, with natural abundances of 78.99, 10.0
and 11.01 at. %, respectively. In such a case three sepa
peaks of vibrations are observed. The vibration frequen
are described by harmonic and anharmonic forces and t
frequency shifts originate not only from the mass dep
dence of the dynamical matrix but also from the mass dep
dence of the zero-temperature vibration of the LVM.

Our investigation was stimulated by recent accurate vib
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tional Fourier transform spectra on Mg21, Ca21, and S22

ions in ZnTe and CdTe crystals.3 In addition to the funda-
mental transition~including the isotope structure! the second
harmonic transition was observed. In such a situation i
possible to deduce some information about anharmonicit
the elastic potential. The calculation of the anharmonic
requires an accurate knowledge of the higher order~cubic
and quartic! force constants. We therefore apply a simp
analytical method to extract some information about the
harmonic contributions to the elastic potential of impuritie

II. PHENOMENOLOGICAL APPROACH

The Mg21 substitutes the Zn or Cd atoms while S22

replaces the Te atom. Thus both defects occupy a site
tetrahedral symmetry. The oscillator potential~referred to the
cubic axesx,y,z) up to quartic terms which transforms a
the identity representationA1 of the groupTd is given by

V5
kh

2
~x21y21z2!1Bxyz1D1~x41y41z4!

1D2~x2y21x2z21y2z2!, ~1!

wherekh , B, D1, D2 are the harmonic, cubic, and quart
force constants. The energy levels are given by

En5\Akh

m
~n1 3

2 !2
\2

24kh
2m

lB21
\2

4khm
~m1D11m2D2!,

~2!

wheren50, 1, 2, . . . , andm is the reduced mass of the o
cillator. The values form1, m2, and l were derived from
perturbation theory by Elliotet al. ~Table 8 in Ref. 4 and
Table 3.3 in Ref. 5!. The first excited oscillator levelE1 is
triply degenerate~either in harmonic or anharmonic approx
mation!. The fundamental transitionTfun is given as
4592 © 1997 The American Physical Society
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Tfun5E12E05\v2
\2B2

6kh
2m

1
\2

khm
~3D11D2!, ~3!

with v5Akh /m. The next oscillator levelE2 is sixfold de-
generate only in the harmonic approximation. Its six subl
els are classified by representationA1, E, andT2. The anhar-
monic terms split these levels. The second ‘‘harmoni
transitionTsh to theT2 symmetry level~which is allowed by
the selection rule! is

Tsh5E22E052\v2
5\2B2

6kh
2m

1
3\2

khm
~2D11D2!. ~4!

Both the fundamental and the second harmonic transi
contain contributions from the cubic and quartic anharmo
terms. If both transitions are known from experiment, we
able to deduce the anharmonic contributions from the dif
ence

Tsh22Tfun52
\2B2

2kh
2m

1
\2D2

khm
. ~5!

Since there are two transitions~fundamental and second ha
monic! and four unknown constants (kh , B, D1, andD2) it
is necessary to use in addition some theoretical informa
for unambiguous conclusions.

III. THEORETICAL MODEL

An impurity with an atomic mass significantly smalle
than those of the substituted host-crystal atom, exhibit
vibrational mode with a frequency higher than the modes
the perfect crystal. The frequency increase is due to the
pendence of the dynamical matrix on the inverse square
of the vibrating masses. Additionally, the substitutional d
fect produces a symmetric lattice distortion and we disreg
here the distortions related to the Jahn-Teller effect. T
directly influences the nearest neighbor interatomic fo
constant. To describe the vibrations quantitatively we use
Harrison model1,2 which estimates the bonding properties
solids in a simple manner. This method was successful in
prediction of the equilibrium lattice spacing for many zin
blende-structure compounds~see, for example, Ref. 6! as
well as many other properties like the relaxation of the bo
length around an isoelectronic substitutional defect. The t
energy is expressed in terms of interactions between pai
nearest neighbor atoms, i.e., in terms of the bond energ

In the valence-bond theory of tetrahedrally coordina
crystals four orthogonal and normalizedsp3 hybrids are
formed, and the valence-bond energy is given as1,2

«b5
1

2
~«h

a1«h
b!2qAV2

21V3
21

qV2
2

ku« h̄u
, ~6!

with

V35
1

2
~«h

a2«h
b! and «h

a,b5
1

4
~«s

a,b13«p
a,b!, ~7!
-
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and «s and «p are the free-atom energies for the outerm
s and p states.8 The coupling between the two atoms is d
termined by

V25 f ~h!\2/md2, ~8!

wherem is the electron mass, and the functionf (h) is ex-
pressed in terms of the four universal coefficien
hsss521.40, hsps51.84, hpps53.24, andhppp520.81.
For example, in the perfect CdTe crystal, for twosp3–sp3

hybrids directed against each other on two neighboring
oms,

f sp32sp3~h!5hsss/422A3hsps/423hpps/4524.373.
~9!

The parameterq is the electron occupancy of the bond
units of the electron charge and« h̄ is the average of«h

a and
«h

b . The parameterk is the only one adjustable coefficien
entering the theory. It is determined from the requirem
that the calculated bond lengths for C, Si, Ga, and Sn crys
are equal to the experimental values. The value ofk is the
same for all crystals formed by elements of the same row
the Periodic Table. For example, we have for the C r
k52.5, for the Si rowk51.455, for the Ge rowk51.33, and
for the Sn rowk51.12.6 For bond lengths between atom
from different rows the interpolated valueAkikj is used.

Each pair of nearest neighbor atoms with massesM1 and
M2 can be considered as an oscillator with respect to a sin
bond. The vibrational frequency of such an oscillator is d
termined by the stretching force constantkh and is given as

vb5Akh /m, ~10!

wherem5M1M2 /(M11M2) is the reduced mass andM1,
M2 are the masses of the two atoms in the elementary
cell. The harmonic force constant is calculated by taking
second derivative of the bond energy with respect to
bond lengthd. For example, at the equilibrium distanced we
have

kh5
4qV2

d2 S V2

AV2
21V3

2D 3

. ~11!

For diamond structure crystals, the optical frequencyv(G)
at the G point is expressed in terms ofvb , v(G)
5A4/3vb'1.16vb .

The localized vibration is here described by an impuri
connected to its four nearest neighbors by anharmo
forces. There are four equivalent bonds around the impu
The fourfold degeneracy of the four bond stretching force
reduced and we obtain aT2 and aA1 mode of the tetrahedra
symmetry group. The threefold degenerateT2 mode only
causes the impurity isotope shift of the LVM, whereas t
A1 mode is localized at the nearest neighbors. Both mo
arise from the same force constant but have different redu
masses. There are also two other modes ofE and T2 sym-
metry when taking the bond bending forces at the impu
into account. Since the force constant of bond bending
remarkably smaller than for bond stretching, these mo
usually are within the crystal-phonon band and hybrid
with crystal phonons. The bond length between the impu
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and its nearest neighbors is usually different from the co
sponding bond length of the host atoms. The substitutio
defect produces a relaxation of the neighboring atoms.
calculate the relaxation of the nearest neighbors of the im
rity by assuming that the positions of all other atoms
unchanged and we minimize the sum of the four bond en
gies. Each nearest neighbor has one bond with the impu
and three other back bonds with the second nearest neigh
of the impurity. We change the position of the nearest nei
bors along the bond direction~this corresponds to the breath
ing mode distortion around the defect site! until the sum of
the four bond energies reach a minimum. We then calcu
the force constant from the second derivative at this m
mum.

The elastic potentialV can be obtained from an expansio
of the bond energy at the equilibrium interatomic distan
with respect to the mutual displacements of the atoms. T

V5(
i 51

4

«bi5(
i 51

4
1

2
khr i

22br i
31ar i

41 . . . , ~12!

wherer i are the mutual displacements between the atom
the bond direction. It can be expressed in terms of the C
tesian displacements of the atoms, and for example, for
@111# direction we have

r 15@~x12x!1~y12y!1~z12z!#/A3. ~13!

The sum in Eq.~12! runs over the four bonds. Using Eq.~12!
the dynamical matrix is set up in the harmonic approxim
tion and solved analytically. The frequencies of vibration a

vT2
5Akh /m, ~14!

vA1
5Akh /ML, ~15!

wherem53MIML /(3MI14ML). MI is the impurity mass
andML denotes the mass of the ligand. These solutions
similar to the stretching modes of a five atom molecule.
order to find the correspondence between the anharm
force constants in Eqs.~1! and~12! it is necessary to take th
displacement of the ligands from their equilibrium positio
equal to zero and compare with the corresponding term
Eq. ~1!. We thus find B528b/A3, D154a/9, and
D258a/3.

IV. RESULTS AND DISCUSSION

We do not use any adjustable parameters in the prese
model. First, we apply Eq.~6! to the perfect crystal bond. W
determine the interatomic equilibrium distanced from the
requirement ]«b /]d50 and the optical vibrational fre
quencyv(G) at the G point. In the case of the diamon
lattice we havev(G)5A4/3vb , wherevb is given by Eq.
~10!. The results of our calculation are presented in Tabl
The interatomic distance is given with more digits assum
that the initial parameters~like atomic eigenvalues! are given
accurately. As can be seen from Table I, the error of
calculatedd is 2% for CdTe and 0.6% for ZnTe, but we us
five digits to show the later change ofd with isotope mass.
This overestimation effects the vibration frequencies wh
sensitively depend ond. For ZnTe a 0.4% increase ofd
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results in a 12% increase of the vibrational frequency. W
therefore expect a similar inaccuracy when calculat
LVM’s. Of course, it would be possible to adjust the inte
atomic distance so as to obtain the experimental value of
frequency. Then the same shift could be used to calculate
LVM. Instead, we try to describe all observable paramet
for the crystal in terms of the free atomic parameters us
the general Eq.~6!, which can be applied for a broad class
isoelectronic defects in various semiconductors.

Now we shall discuss the defect parameters. The vib
tional spectra for the Mg21, Ca21, and S22 defects were
reported in Ref. 3. We skip the calculation of the Ca21 be-
cause of the lack of the atomic 4p eigenvalues in Ref. 7
which we need in Eq.~6!. The investigation of an isolated
impurity-ligand bond would result in the same vibration
frequencies of Mg21 in ZnTe and CdTe crystals. We there
fore take the impurity-ligand bond together with three ba
bonds of the ligands into account. In this way we account
the static displacement of atoms. We calculate the relaxa
of the nearest neighbor atoms only and we obtain the ene
minimum by displacing the ligands~Te in the case of
Mg 21 and Zn or Cd in the case of S22) in the bond direc-
tion. We consider thesp3 bonds as rigid and we calculate th
energy due to the misalignment of the bonds between
first and second nearest neighbors numerically. The equ
rium distances between the impurityI and the ligand as wel
as between ligand and the second nearest neighbor are g
in the first and second rows of Table II and Table III. Th
value of d and the harmonic force constantkh have more
digits to show the isotope mass effect.

The isotopic substitution in a crystal is a perturbation w
only one parameter: the nuclear mass. Contrary to subs
tions with different atoms it does not change the largest
teraction in a crystal — the Coulomb interaction. As a res
the isotope dependence of the force constant is not taken
account. The determination of the bond length from t
minimum of the bond energy~or from the minimum of the
total energy inab initio theories! is an approximation only in
case the kinetic vibration energy is neglected. More ac
rately, the equilibrium interatomic distance must be det
mined not only from the electrostatic energy but also
taking the vibrational energy into account,8 i.e., d must be
determined from the minimum of the Helmholtz free energ
Since LVM’s were observed atT55 K,3 we need to con-
sider only zero-temperature vibration energy. The ze
temperature vibration energy increases the calculated e
librium distance and decreases the vibrational frequen
Consequently, the harmonic force constant depends i
rectly on mass. The isotopic dependence of the force c
stant is rather weak because the relative change of the
tope mass is small and because zero-temperature vibra
energy is small with respect to the electrostatic bond ene

TABLE I. Nearest neighbor distanced and average optical pho
non frequencyv(G)av5@vLO(G)12vTO(G)#/3.

CdTe ZnTe
Parameter Exp. Calc. Exp. Calc.

d, ~Å! 2.806 2.8649 2.641 2.6579
v(G)av ~cm21) 152 109 186 163



r

56 4595LOCAL VIBRATIONAL MODES AND ANHARMONIC . . .
TABLE II. Results of the stretching mode calculation and the experimental energies of the Mg21 and
S22 ions in CdTe. The fundamental transition frequencyv fun is given for the lightest isotope. For heavie
isotopes, the shifts in frequency are given with respect to the light isotope@for example,
v fun(

25Mg)5(233.824.1) cm21#. The experimental data atT55 K are taken from Ref. 3.

CdTe
Parameter 24Mg 25Mg 26Mg 32S 33S 34S

d~I-ligand! ~Å! 2.7279 2.7278 2.7277 2.5818 2.5817 2.5816
d~ligand-2nd shell! ~Å! 2.9134 2.9135 2.9135 2.9713 2.9713 2.9714
v fun~cal.! ~cm21) 233.8 -4.1 -8.0 212.40 -2.6 -5.2
v fun~exp.! ~cm21) 253.3 -4.4 -8.6 254.1 -3.4 -6.5
(Tsh22Tfun)~cal.! ~cm21) -3.1 -3.1 -3.1 -2.8 -2.8 -2.8
(Tsh22Tfun)~exp.! ~cm21) -1.3 -1.3 -1.2 -0.6 -0.9
kh ~eV/Å2) 3.1930 3.1935 3.1941 3.3052 3.3060 3.3067
b ~eV/Å3) 1.57 1.57 1.57 1.76 1.76 1.76
a ~eV/Å4) 1.37 1.37 1.37 1.69 1.69 1.69
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We find an inward breathing mode distortion around
Mg 21 ion in CdTe and an outward distortion in ZnTe~see
Tables II and III!. Around the S22 ion we find in both crys-
tals an inward distortion. The calculated bond length
d52.58 Å for S-Cd in CdTe is a bit larger than the corr
sponding bond length ofd52.52 Å in the perfect CdS crys
tal. Similarly, the S-Zn bond length ofd52.51 Å in ZnTe
crystal is larger than the bond length ofd52.34 Å in the
ZnS crystal. This is due to the influence of the back bon
between the nearest and second nearest neighbors of th
purity. For a perfect crystal with defects the loss of trans
tional symmetry means that the normal modes of vibrat
can no longer be classified by a wave vector. Hence,
reduced mass for a LVM mode ofT2 symmetry is m
53MIML /(3MI14ML) instead ofm5MIML /(MI1ML).
The last expression is valid for a two atomic mol
cule or for a perfect crystal with two atoms per element
unit cell. For example, takingMI5M (24Mg)524 and
ML5M (Te)5127.6 one obtains according to the first fo
mula m515.77, while the second formula~for a two-atomic
molecule! gives m520.2. TheA1 mode is localized at the
nearest neighbors. Both modes have the same stretc
force constantkh but different reduced masses. According
Eq. ~15! the A1 mode reduced mass is simply the liga
mass. As this mass is remarkably larger than the defect m
the A1 mode lies in the perfect crystal-phonon band. F
e
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example, theA1 mode related to theS22 ion in CdTe has a
frequency of v589 cm21, while in ZnTe it is
v5135 cm21. Although, the modes of this symmetry are n
infrared active, they were observed as gap modes at ene
of 106.1 cm21 and 144.6 cm21 in CdTe and ZnTe,
respectively.3

The calculated fundamental transition frequenciesv fun are
smaller than the experimental ones, and similarly the ca
latedv(G) for the perfect crystal is smaller than the expe
mental value. This indicates that in reality the impurit
ligand distance may be shorter by 0.0220.04 Å. On the other
hand, the frequencies of heavier isotopes with respect to
lightest one are reproduced correctly. In Ref. 3 the effect
mass of the ligand was determined from the fit of Eq.~2! to
the observed frequencies. The effective mass obtained f
the fit to the Mg21 spectra turns out to be different in ZnT
and in CdTe in spite of the fact that ligand mass in both ca
is the Te atom mass. An energy shift of 19 cm21 was re-
ported in Ref. 3 for the fundamental transition when goi
from the CdTe to ZnTe crystal. Nearly, the same shift w
obtained in our calculation for the Mg21 ion and we at-
tribute this to the change of the relaxation energy in b
crystals.

The harmonic treatment of vibrational frequencies, d
cussed above, is correct only for small displacements of
atoms from their equilibrium positions with respect to t
bond length. For vibrations involving the displacements
TABLE III. Results of the stretching mode calculation and the experimental energies of the Mg21 and
S22 ions in ZnTe.

ZnTe
Parameter 24Mg 25Mg 26Mg 32S 33S 34S

d~I-ligand! ~Å! 2.6757 2.6756 2.6755 2.5185 2.5184 2.5183
d~ligand-2nd shell! ~Å! 2.6520 2.6521 2.6521 2.7076 2.7076 2.7076
v fun~cal.! ~cm21) 253.3 -4.5 -8.6 261.13 -2.9 -5.6
v fun~exp.! ~cm21) 272.3 -4.7 -9.0 272.7 -7.0
(Tsh22Tfun)~cal.! ~cm21) -3.3 -3.3 -3.3 -2.7 -2.7 -2.7
(Tsh22Tfun)~exp.! ~cm21) -1.7 -1.6 -1.7 -1.6
kh ~eV/Å2) 3.7498 3.7507 3.7517 4.4349 4.436 4.4373
b ~eV/Å3) 1.89 1.89 1.89 2.23 2.23 2.23
a ~eV/Å4) 1.64 1.64 1.64 2.13 2.13 2.13
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Mg or S atoms, the vibration amplitudes are rather small
the anharmonic corrections are expected to be also sm
The energy shifts due to anharmonicity are calculated
Refs. 4 and 9 by perturbation theory, in which cubic ter
are treated in second order~there is no first-order effect! and
quartic terms are considered in the first order only. The
contributions are usually of similar magnitude. The calcu
tion of the anharmonic corrections requires an accurate
mation of the elastic potential derivatives up to the fou
order. We therefore calculated the cubic and quartic fo
constants analytically, using the impurity-ligand bond ene
at the equilibrium distance found for the four impurity-liga
stretching bonds including the three back bonds. The b
energy given analytically by Eq.~6! contains only one ad
justable parameter. An improvement of the bond energy
pression can only be made by introducing additional par
eters. On the other hand the first-principles calculations g
the harmonic force constant with an accuracy of around 1
the cubic force constant with an accuracy of around 4
50 %, and the quartic force constant with a poor accura
The calculated anharmonic correction, i.e.,Tsh22Tfun are
presented in Table II and Table III. The theoretical resu
are about twice the experimental values. This may be du
the fact that our final result is the sum of cubic and qua
terms of opposite sign and both terms are sensitive to
equilibrium distance. For example, Mg21 ion in CdTe has an
anharmonic correction of (25.512.4) cm21523.1 cm21,
where the first term in brackets is the contribution from
cubic potential. Similarly, the anharmonic correction
S22 in CdTe is (25.112.3) cm21522.8 cm21.

The Mg21 and S22 defects, considered here, are isoel
tronic with respect to replaced atoms and therefore have
calized states, which are completely occupied by electr
s
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Since their atomic eigenvalues, entering Eq.~6!, differ from
the eigenvalues of the substituted host atoms, they cau
breathing mode distortion of the ligands. Some defects, l
transition-metal ions, introduce additionally to the 4s valence
states thed states close to the valence-band states. Thesd
states are not fully occupied, hence they are orbitally deg
erate. In such a case it is necessary to extend Eq.~6! by a
perturbation term, which accounts for interaction betwe
the d and the ligand electrons. The resulting distortio
around the defect is a superposition of the breathing m
distortion10 and the asymmetrical distortions ofT2 or E type
which are known as the Jahn-Teller distortions. Because
these distortions the LVM ofT2 symmetry will be split into
a doubly degenerate mode and a singly degenerate m
~because the defect site symmetry is lower than tetrahe
symmetry site!. The Cr21 atom in II-VI semiconductor ex-
hibits the Jahn-Teller distortion. However, such a fine sp
ting has not been observed within the experimental accur
at the fundamental transition of the LVM reported in Ref.
This may be due to the fact that asymmetrical static dist
tion is too small or that there exists a dynamical Jahn-Te
effect.

In conclusion, we applied a simple but useful model f
the calculation of the vibrational properties of neutral imp
rities. It is free of adjustable parameters of the defect an
reproduces the dynamical properties of isovalent impuriti
We calculated separately the anharmonic cubic and qua
corrections to the frequencies in the harmonic approxim
tion. These corrections cannot be deduced from the fun
mental and the second harmonic transitions because co
sponding formulas@see Eqs.~3!–~5!# include four unknown
parameters.
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