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Local vibrational modes and anharmonic forces of Mg¢* and S2~ in ZnTe and CdTe crystals
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We present a simple model to describe local vibrational modes at impurities in semiconductors using a
two-particle anharmonic potential. We calculated the breathing-type distortion at the impurity in the tight-
binding approximation, the frequencies of the local vibrational modes associated with the angl $~
impurities in ZnTe and CdTe, their isotope shifts, and the anharmonic forces without any parameters adjusted
to defect properties. Our results for the energies of the local vibrational modes and their isotope shifts at Mg
and S impurities in ZnTe and CdTe are in good agreement with experiments. We found an inward distortion
of the ligands of Mg@" in CdTe, an outward distortion in ZnTe, and an inward distortion &t $ both
crystals.[S0163-18287)06232-3

l. INTRODUCTION tional Fourier transform spectra on Mg, Ca’*, and $~
ions in ZnTe and CdTe crystalsin addition to the funda-

Local vibrational mode$LVM's) are easily observed by mental transitior(including the isotope structur¢he second
Raman spectroscopy if the mass of the impurity is signifi-hal‘monic transition was observed. In such a situation it is
cantly smaller than the mass of the host-lattice atoms. In thigossible to deduce some information about anharmonicity of
case, the frequencies are well above the vibrational spectruiie elastic potential. The calculation of the anharmonicity
of the host lattice and these LVM's are called split-off requires an accurate knowledge of the higher or@ebic
modes. The displacements of an impurity of such a mode arand quarti¢ force constants. We therefore apply a simple
strongly peaked at the impurity site and the calculation mayanalytical method to extract some information about the an-
be done with a model, in which the impurity and its nearestharmonic contributions to the elastic potential of impurities.
neighbors are considered as a quasimolecule embedded in
the host crystal. The normal modes of such a system and
their frequencies can be extracted provided the adiabatic in-
teraction surface is known. The Mg?* substitutes the Zn or Cd atoms while®'S

Many properties of such a quasimolecule are determinegeplaces the Te atom. Thus both defects occupy a site of
predominantly by the bond energy. Harrisohusing the tetrahedral symmetry. The oscillator potentiaferred to the
tight-binding approximation and some results following from cubic axesx,y,z) up to quartic terms which transforms as
the density-functional theory, simplified the calculation of the identity representatiof; of the groupTy is given by
the bond energy by expressing it in terms of one-electron
atomic energies and some universal parameters. The univer- K
sal parameters replace the complicated interaction integrals V= —h(x2+y2+22)+Bxyz+ Dy (x*+y4+2%)
and are common for many covalent crystals. The model can 2
be substantially improved by extending the linear depen-
dence of the interatomic force on the impurity displacement
with higher anharmonic terms. Because of the dependence of ) ) )
the frequencies of the LVM on the impurity mass, isotopeWh€rékn, B, Dy, D are the harmonic, cubic, and quartic
substitution has been used to obtain an unambiguous proff'ce constants. The energy levels are given by
for the localization of a LVM at a certain impurity. LVM
spectra of impurities, composed of several isotopes consist of ke 22 52

Vo)

1. PHENOMENOLOGICAL APPROACH

+ Dy (X2y?+ X222+ y?7?), (1)

closely spaced lines resulting from different impurity E.=# AB?+ D+ u,Dy),
masses. For example, Mg has three stable isotoffésy, " 24kﬁ# 4kh'“(’ul s
Mg, and ?®Mg, with natural abundances of 78.99, 10.00, @
and 11.01 at. %, respectively. In such a case three separated

peaks of vibrations are observed. The vibration frequenciegheren=0, 1, 2,..., andu is the reduced mass of the os-

are described by harmonic and anharmonic forces and thesélator. The values foru,, u,, and\ were derived from

frequency shifts originate not only from the mass depengperturbation theory by Ellioet al. (Table 8 in Ref. 4 and

dence of the dynamical matrix but also from the mass depenfFable 3.3 in Ref. b The first excited oscillator levet, is

dence of the zero-temperature vibration of the LVM. triply degeneratéeither in harmonic or anharmonic approxi-
Our investigation was stimulated by recent accurate vibramation). The fundamental transitiofiy,, is given as
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72B2 42 andeg ande, are the free-atom energies for the outermost
Tun=E1—Eo=fio—— +k—(3D1+ D,), (3 s and p state€ The coupling between the two atoms is de-
Khs  Knit termined by
with o=k, /. The next oscillator leveE, is sixfold de- V,=f(n)himd, (8)

generate only in the harmonic approximation. Its six sublev- ) _ )

els are classified by representatiép E, andT,. The anhar- Wherem is the electron mass, and the functibfy) is ex-
monic terms split these levels. The second “harmonic”Pressed in terms of the four universal coefficients:
transitionTg, to the T, symmetry levelwhich is allowed by ~ 7sso™ — 1.40, 75p,=1.84, 7pp,=3.24, andzpp,=—0.81.

the selection rulgis For example, in the perfect CdTe crystal, for t\typ3—s p3
hybrids directed against each other on two neighboring at-
Ta=E,—Eo=2h 5h°B* +3ﬁ2(2D +D,). (4 o
— - = w— ro— .
s e 6kZu  Knuo b2 ot s 1) = Dssold—2\/B ngpold— 3 pp,ld= —4.373.

C)
Both the fundamental and the second harmonic transitiomrhe arametenq is the electron occupancy of the bond in
contain contributions from the cubic and quartic anharmonic P o pancy

terms. If both transitions are known from experiment, we arg'Nits of the electron charge ar is the average ofj, and

able to deduce the anharmonic contributions from the differ#f - The parametek is the only one adjustable coefficient
ence entering the theory. It is determined from the requirement

that the calculated bond lengths for C, Si, Ga, and Sn crystals
#2B2 52D are equal to the experimental values. The valué @ the
- 2 (5)  same for all crystals formed by elements of the same row of
2k2u  Knu the Periodic Table. For example, we have for the C row
k=2.5, for the Si ronk=1.455, for the Ge rovk=1.33, and
Since there are two transitiofsindamental and second har- for the Sn rowk=1.12% For bond lengths between atoms
monic) and four unknown constant(, B, Dy, andDy) it from different rows the interpolated valugk; is used.
iS necessary to use in addition some theoretical information ggch pair of nearest neighbor atoms with masdesand

Toh=2Tn=—

for unambiguous conclusions. M, can be considered as an oscillator with respect to a single
bond. The vibrational frequency of such an oscillator is de-
lIl. THEORETICAL MODEL termined by the stretching force const&ptand is given as
An impurity with an atomic mass significantly smaller wp=Vkp/u, (10)

than those of the substituted host-crystal atom, exhibits a
vibrational mode with a frequency higher than the modes ofvhereu=M;M,/(M;+M,) is the reduced mass arMd;,
the perfect crystal. The frequency increase is due to the dé¥l> are the masses of the two atoms in the elementary unit
pendence of the dynamica| matrix on the inverse Square ro&e”. The harmonic force constant iS Calculated by tak|ng the
of the vibrating masses. Additionally, the substitutional de-second derivative of the bond energy with respect to the
fect produces a symmetric lattice distortion and we disregarond lengtid. For example, at the equilibrium distandeve
here the distortions related to the Jahn-Teller effect. Thif1ave
directly influences the nearest neighbor interatomic force

3
constant. To describe the vibrations quantitatively we use the 4qVy[  V; 11
. 2 . . . . h:_ —
Harrison modét? which estimates the bonding properties of d2 /—V§+V§

solids in a simple manner. This method was successful in the

prediction of the equilibrium lattice spacing for many zinc- For diamond structure crystals, the optical frequendy’)

blende-structure compoundsee, for example, Ref.)6as at the I' point is expressed in terms ofy,, o(I)

well as many other properties like the relaxation of the bond= \/4/3w,~1.16w,, .

length around an isoelectronic substitutional defect. The total The localized vibration is here described by an impurity,

energy is expressed in terms of interactions between pairs @onnected to its four nearest neighbors by anharmonic

nearest neighbor atoms, i.e., in terms of the bond energy. forces. There are four equivalent bonds around the impurity.
In the valence-bond theory of tetrahedrally coordinatedThe fourfold degeneracy of the four bond stretching forces is

crystals four orthogonal and normalizexh® hybrids are  reduced and we obtain® and aA; mode of the tetrahedral

formed, and the valence-bond energy is givehas symmetry group. The threefold degenerdtge mode only
causes the impurity isotope shift of the LVM, whereas the
qvg A; mode is localized at the nearest neighbors. Both modes

1
sb=§(eﬁ+ s{f) - q\/V§+V§+ (6) arise from the same force constant but have different reduced
masses. There are also two other mode& @&fnd T, sym-
metry when taking the bond bending forces at the impurity
into account. Since the force constant of bond bending is
remarkably smaller than for bond stretching, these modes
usually are within the crystal-phonon band and hybridize

with crystal phonons. The bond length between the impurity

Klen]

with

1 1
Va=3(en—ef) and eff=7(e0P+3ep), (D)
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and its nearest neighbors is usually different from the corre- TABLE I. Nearest neighbor distanceand average optical pho-
sponding bond length of the host atoms. The substitutionaton frequencyw(I') oy=[w o(I") + 201o(T) /3.

defect produces a relaxation of the neighboring atoms. We

calculate the relaxation of the nearest neighbors of the impu- CdTe ZnTe
rity by assuming that the positions of all other atoms areParameter Exp. Calc. Exp. Calc.
unchanged and we minimize the sum of the four bond ener-

. . . . “d, (A 2.806 2.8649 2.641 2.6579
gies. Each nearest neighbor has one bond with the |mpur|t% )

-1
and three other back bonds with the second nearest neighborér)av (em ) 152 109 186 163
of the impurity. We change the position of the nearest neigh-
bors along the bond directidthis corresponds to the breath- resuits in a 12% increase of the vibrational frequency. We
ing mode distortion around the defect gitentil the sum of  therefore expect a similar inaccuracy when calculating
the four bond energies reach a minimum. We then calculatgyn's. Of course, it would be possible to adjust the inter-
the force constant from the second derivative at this miniuiomic distance so as to obtain the experimental value of the
mum. _ _ _ ~ frequency. Then the same shift could be used to calculate the
The elastic potentia’ can be obtained from an expansion | v\, Instead, we try to describe all observable parameters
of the bond energy at the equilibrium interatomic distanceor the crystal in terms of the free atomic parameters using
with respect to the mutual displacements of the atoms. Thug,e general Eq(6), which can be applied for a broad class of
4 4 isoelectronic defects in various semiconductors.
_ _N' T 2 3 4 Now we shall discuss the defect parameters. The vibra-
V_.Zl sb‘_z‘l phari—pritarit..., (12 tional spectra for the M§", Ca?*, and $~ defects were

. -reported in Ref. 3. We skip the calculation of theCebe-
wherer; are the mutual displacements between the atoms iRause of the lack of the atomicp4eigenvalues in Ref. 7
the bond direction. It can be expressed in terms of the Car; .

ian disol f th d i e f hwhich we need in Eq(6). The investigation of an isolated
tesian displacements of the atoms, and for example, for t ﬁ‘r1purity-|igand bond would result in the same vibrational
[111] direction we have

frequencies of Mg" in ZnTe and CdTe crystals. We there-
_ fore take the impurity-ligand bond together with three back
=[0G+ (=) + (=213, 13 ponds of the ligands into account. In this way we account for
The sum in Eq(12) runs over the four bonds. Using E§2)  the static displacement of atoms. We calculate the relaxation
the dynamical matrix is set up in the harmonic approxima-of the nearest neighbor atoms only and we obtain the energy
tion and solved analytically. The frequencies of vibration areminimum by displacing the ligand¢Te in the case of
Mg?2* and Zn or Cd in the case of?S) in the bond direc-

w1,= Vkn/p, (14)  tion. We consider thep® bonds as rigid and we calculate the
energy due to the misalignment of the bonds between the
W= Vkn/M_, (15) first and second nearest neighbors numerically. The equilib-

rium distances between the impurityand the ligand as well
where u=3M M /(3M,+4M_). M, is the impurity mass as between ligand and the second nearest neighbor are given
andM_ denotes the mass of the ligand. These solutions ari the first and second rows of Table Il and Table Ill. The
similar to the stretching modes of a five atom molecule. Invalue of d and the harmonic force constakf have more
order to find the correspondence between the anharmontigits to show the isotope mass effect.
force constants in Eq$l) and(12) it is necessary to take the The isotopic substitution in a crystal is a perturbation with
displacement of the ligands from their equilibrium positionsonly one parameter: the nuclear mass. Contrary to substitu-
equal to zero and compare with the corresponding terms itions with different atoms it does not change the largest in-
Eq. (1). We thus find B=—-8p/\3, D;=4a/9, and teraction in a crystal — the Coulomb interaction. As a result,
D,=8al3. the isotope dependence of the force constant is not taken into
account. The determination of the bond length from the
IV. RESULTS AND DISCUSSION minimum of the bond energgor from the minimum of the
total energy imab initio theorieg is an approximation only in
We do not use any adjustable parameters in the presentedse the kinetic vibration energy is neglected. More accu-
model. First, we apply Ed6) to the perfect crystal bond. We rately, the equilibrium interatomic distance must be deter-
determine the interatomic equilibrium distandefrom the  mined not only from the electrostatic energy but also by
requirement ds,/9d=0 and the optical vibrational fre- taking the vibrational energy into accodhte., d must be
quency w(I') at theI" point. In the case of the diamond determined from the minimum of the Helmholtz free energy.
lattice we havew(I')= \/4/3w,,, Wherew,, is given by Eq.  Since LVM's were observed & =5 K,® we need to con-
(10). The results of our calculation are presented in Table Isider only zero-temperature vibration energy. The zero-
The interatomic distance is given with more digits assumingemperature vibration energy increases the calculated equi-
that the initial parameterdike atomic eigenvalugsare given librium distance and decreases the vibrational frequency.
accurately. As can be seen from Table |, the error of theConsequently, the harmonic force constant depends indi-
calculatedd is 2% for CdTe and 0.6% for ZnTe, but we use rectly on mass. The isotopic dependence of the force con-
five digits to show the later change dfwith isotope mass. stant is rather weak because the relative change of the iso-
This overestimation effects the vibration frequencies whichtope mass is small and because zero-temperature vibration
sensitively depend oml. For ZnTe a 0.4% increase af  energy is small with respect to the electrostatic bond energy.
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TABLE II. Results of the stretching mode calculation and the experimental energies of the &gl
S?~ ions in CdTe. The fundamental transition frequensy, is given for the lightest isotope. For heavier
isotopes, the shifts in frequency are given with respect to the light isotdpe example,
oun(?®Mg) = (233.8-4.1) cmi 1]. The experimental data &=5 K are taken from Ref. 3.

CdTe
Parameter Mg Mg Mg 823 ESS 843
d(I-ligand) (A) 2.7279 2.7278 2.7277 2.5818 2.5817 2.5816
d(ligand-2nd shell (A) 2.9134 2.9135 2.9135 2.9713 2.9713 2.9714
wgr(cal) (cm™1) 233.8 4.1 8.0 212.40 2.6 52
win(exp) (cm™1) 253.3 4.4 8.6 254.1 3.4 6.5
(Tor— 2Trr) (cal) (cm™1) 3.1 3.1 3.1 2.8 2.8 238
(Teh—2Twun) (€XP) (cm™1) -1.3 -1.3 -1.2 -0.6 -0.9
Kp (eV//-\Z) 3.1930 3.1935 3.1941 3.3052 3.3060 3.3067
B (eVIA?) 1.57 1.57 1.57 1.76 1.76 1.76
o (eV/A“) 1.37 1.37 1.37 1.69 1.69 1.69

We find an inward breathing mode distortion around theexample, theA; mode related to th&?~ ion in CdTe has a
Mg?* ion in CdTe and an outward distortion in ZnTsee frequency of »=89cm !, while in ZnTe it is
Tables Il and I1). Around the S2 ion we find in both crys- ©=2135 cmi %. Although, the modes of this symmetry are not
tals an inward distortion. The calculated bond length ofinfrared active, they were observed as gap modes at energies
d=2.58 A for S-Cd in CdTe is a bit larger than the corre-of 106.1 cm* and 144.6 cm® in CdTe and ZnTe,
sponding bond length af=2.52 A in the perfect CdS crys- respectively’ - _

tal. Similarly, the S-Zn bond length af=2.51 A in ZnTe The calculated funde_lmental transition fre_qu_enmg,ﬁ are
crystal is larger than the bond length 0F2.34 A in the smaller than the experimental ones, and similarly the calqu-
ZnS crystal. This is due to the influence of the back bonddated (') for the _perfe(;t crystal is s.maller. than th? experi-
between the nearest and second nearest neighbors of the ifj€ntal value. This indicates that in reality the impurity-
purity. For a perfect crystal with defects the loss of transla-'gand distance may be shorter by 0:02.04 A. On the other

tional symmetry means that the normal modes of vibratiori?and' the frequencies of heavier isotopes with respect to_the
ightest one are reproduced correctly. In Ref. 3 the effective

-NCe, N ass of the ligand was determined from the fit of E2).to
reduced mass for a L.V M mode of, symmetry is u the observed frequencies. The effective mass obtained from
=3MM_/(3M,+4M,) instead ofu=M\M_/(M|+M\). e fit to the Mg " spectra turns out to be different in ZnTe
The last expression is valid for a two atomic mole- 5n4 in CdTe in spite of the fact that ligand mass in both cases
cule or for a perfect crystal with two atoms per elementaryis the Te atom mass. An energy shift of 19 chwas re-

unit cell. For example, takingM,=M(*Mg)=24 and ported in Ref. 3 for the fundamental transition when going
M_=M(Te)=127.6 one obtains according to the first for- from the CdTe to ZnTe crystal. Nearly, the same shift was
mula = 15.77, while the second formuléor a two-atomic  obtained in our calculation for the Mg ion and we at-
moleculg gives ©=20.2. TheA; mode is localized at the tribute this to the change of the relaxation energy in both
nearest neighbors. Both modes have the same stretchingystals.

force constank;, but different reduced masses. According to  The harmonic treatment of vibrational frequencies, dis-
Eqg. (15 the A; mode reduced mass is simply the ligand cussed above, is correct only for small displacements of the
mass. As this mass is remarkably larger than the defect massoms from their equilibrium positions with respect to the
the A; mode lies in the perfect crystal-phonon band. Forbond length. For vibrations involving the displacements of

TABLE llI. Results of the stretching mode calculation and the experimental energies of the Mul
S2” ions in ZnTe.

ZnTe
Parameter 2Mg Mg 26Mg 823 ES s
d(l-ligand) (A) 2.6757 2.6756 2.6755 2.5185 2.5184 2.5183
d(ligand-2nd shejl (&) 2.6520 2.6521 2.6521 2.7076 2.7076 2.7076
ogyn(cal) (cm™1) 253.3 4.5 -8.6 261.13 2.9 5.6
wpnexp) cm™h) 272.3 A7 9.0 272.7 7.0
(Ten—2Tgn) (cal) (em™1) -3.3 -3.3 -3.3 2.7 2.7 2.7
(Teh—2Twn) (€XP) (cm™1) -1.7 -1.6 -1.7 -1.6
ki (eVIA?) 3.7498 3.7507 3.7517 4.4349 4.436 4.4373
B (eVIA3) 1.89 1.89 1.89 2.23 2.23 2.23

a (eVIA% 1.64 1.64 1.64 2.13 2.13 2.13
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Mg or S atoms, the vibration amplitudes are rather small an&ince their atomic eigenvalues, entering Eg), differ from

the anharmonic corrections are expected to be also smathe eigenvalues of the substituted host atoms, they cause a
The energy shifts due to anharmonicity are calculated irbreathing mode distortion of the ligands. Some defects, like
Refs. 4 and 9 by perturbation theory, in which cubic termstransition-metal ions, introduce additionally to thevalence

are treated in second ordehere is no first-order effecnd  states thed states close to the valence-band states. THese
quartic terms are considered in the first order only. The twastates are not fully occupied, hence they are orbitally degen-
contributions are usually of similar magnitude. The calcula-grate. In such a case it is necessary to extend(@dy a

tion of the anharmonic corrections requires an accurate eSteryrhation term, which accounts for interaction between
mation of the elastic potential derivatives up to the fourthy o 4 and the ligand electrons. The resulting distortion

constants analytically, using the impurity-ligand bond energ;%round the defect is a superposition of the breathing mode

at the equilibrium distance found for the four impurity-ligand distortiori® and the asymmetrical distortions ©f or E type

stretching bonds including the three back bonds. The bonﬁghwh are known as the Jahn-Teller distortions. Because of

energy given analytically by Eq6) contains only one ad- ese distortions the LVM of, symme_try will be split into
justable parameter. An improvement of the bond energy ex@ doubly degenerate mode and a singly degenerate mode
pression can only be made by introducing additional param(because th_e defect site symmetry is Iowgr than tetrahedral
eters. On the other hand the first-principles calculations giv€ymmetry site The CP* atom in 11-VI semiconductor ex-
the harmonic force constant with an accuracy of around 100/J:||b|t$ the Jahn-Teller distortion. However, such a fine Spllt-
the cubic force constant with an accuracy of around 40-ting has not been observed within the experimental accuracy
50 %, and the quartic force constant with a poor accuracyat the fundamental transition of the LVM reported in Ref. 3.
The calculated anharmonic correction, i.€4— 2Ty, are  This may be due to the fact that asymmetrical static distor-
presented in Table Il and Table Ill. The theoretical resultstion is too small or that there exists a dynamical Jahn-Teller
are about twice the experimental values. This may be due teffect.
the fact that our final result is the sum of cubic and quartic In conclusion, we applied a simple but useful model for
terms of opposite sign and both terms are sensitive to ththe calculation of the vibrational properties of neutral impu-
equilibrium distance. For example, Mg ion in CdTe has an rities. It is free of adjustable parameters of the defect and it
anharmonic correction of5.5+2.4) cm '=—-3.1cm 1, reproduces the dynamical properties of isovalent impurities.
where the first term in brackets is the contribution from theWe calculated separately the anharmonic cubic and quartic
cubic potential. Similarly, the anharmonic correction for corrections to the frequencies in the harmonic approxima-
S2” in CdTe is (-5.1+2.3) cm '=—2.8cm 1. tion. These corrections cannot be deduced from the funda-
The Mg?* and §~ defects, considered here, are isoelec-mental and the second harmonic transitions because corre-
tronic with respect to replaced atoms and therefore have Issponding formulagsee Eqs(3)—(5)] include four unknown
calized states, which are completely occupied by electrongarameters.
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