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Dynamical mean-field theory of the small polaron
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A dynamical mean-field theory of the small polaron problem is presented, which becomes exact in the limit
of infinite dimensions. The ground-state properties and the one-electron spectral function are obtained for a
single electron interacting with Einstein phonons by a mapping of the lattice problem onto a polaronic impurity
model. The one-electron propagator of the impurity model is calculated through a continued fraction expan-
sion, at both zero and finite temperature, for any electron-phonon coupling and phonon energy. In contrast to
the ground-state properties, such as the effective polaron mass, which show a continuous behavior as the
coupling is increased, spectral properties exhibit a sharp qualitative change at low enough phonon frequency:
beyond a critical coupling, one energy gap and then more open in the density of states at low energy, while the
high-energy part of the spectrum is broad and can be qualitatively explained by a strong coupling adiabatic
approximation. As a consequence, narrow and coherent low-energy subbands coexist with an incoherent
featureless structure at high energy. The subbands denote the formation of quasiparticle polaron states. Also,
divergencies of the self-energy may occur in the gaps. At finite temperature such an effect triggers an important
damping and broadening of the polaron subbands. On the other hand, in the large phonon frequency regime
such a separation of energy scales does not exist and the spectrum always has a multipeaked structure.
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I. INTRODUCTION: THE SINGLE
POLARON PROBLEM

The polaron problem is an old but not fully solved pro
lem of solid state physics. Thesmall polarontheory, which
will be considered here, assumes a short-range elect
phonon interaction and explicitly includes the latti
periodicity.1,2 We therefore aim to study systems whe
screening is effective. This addresses, for instance, the
ation of a metal consisting of different bands, one of th
being narrow enough to allow for a strong coupling
phonons. In fact, if the crystal can be considered as be
made of strongly deformable molecularlike units wi
narrow-band electrons hopping from one to another, then
conditions for a strong polaron effect can be realized.2 In
realistic structures, for example, transition-metal oxides
organic metals, such units exist that provide local~oscilla-
tion! phonon modes and are indeed strongly coupled to w
defined electronic orbitals. Recently, interest in polar
theory has been revived, due to important classes of ma
als, including the high-temperature superconductors3 and the
‘‘colossal’’ magnetoresistance manganites.4–6 In fact, in the
insulating parent phase of superconducting cuprates,
larons have been unambiguously detected by opt
measurements,7–9 and some evidence of strong electro
phonon coupling effects has been given recently in the
tallic phase.9,10 In the manganites, on the other hand, stro
static or dynamic Jahn-Teller distortions appear at the me
insulator transitions.4–6
560163-1829/97/56~8!/4494~19!/$10.00
n-

tu-

g

e

r

ll-
n
ri-

o-
al

e-
g
l-

The problem of a single polaron becomes relevant for l
carrier density, but also by itself, as a paradigm to study
effect of strong coupling electron-phonon interactions. In
intermediate and strong coupling regimes, the small pola
problem is already a nontrivial many-body problem:11 the
difficulty consists in describing the dressing of the electr
by a coherent multiphonon cloud, moving coherently with
so as to form a quasiparticle. Perturbative techniques, s
ing either from the free-electron limit or from the atom
limit ~strong coupling expansions!2,12–15 fail to describe the
dressing effect in the intermediate regimes. On the ot
hand, nonperturbative solutions based, for instance, o
variational ansatz16–18 are expected to give reliable resul
only for ground-state properties, such as the effective
laron mass. But, to our knowledge, no satisfactory desc
tion of the full spectral properties has been obtained so f

Holstein’s molecular crystal model2 involves tight-
binding electrons coupled to dispersionless optical phono
As a function of phonon frequency and electron-phonon c
pling, it displays a variety of interesting regimes. The stro
coupling regime leads to the formation of small polaron
with a dramatic increase of the effective mass for low ph
non frequencies.2,12 On the other hand, for exactly zero pho
non frequency, an adiabatic solution can be obtained w
self-trapping of the polarons appearing only above so
critical coupling value, in dimensions greater than one.17,19,20

In this context, the recent discovery of a nonperturbat
theory for interacting quantum problems, based on the li
4494 © 1997 The American Physical Society
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56 4495DYNAMICAL MEAN-FIELD THEORY OF THE SMALL POLARON
of infinite lattice coordination~or dimensionality!,38,46,21–24

opened a new way of attacking strong electron-phonon p
lems. A few recent papers have addressed the problem
superconductive and charge-density-wave instabilities of
metallic state, close to half filling, either in weak coupling25

using self-consistent techniques,26,27 or from the local impu-
rity method,28 also including a local electron repulsion~the
Holstein-Hubbard problem!.29 Also, a solution at finite den-
sity in the adiabatic limit~zero phonon frequency! was
obtained.30 On the other hand, exact results for the spec
function of a single polaron at zero temperature were
cently reported by the authors.31 The aim of the present work
is to provide a complete description of the small polar
crossover based upon the knowledge of spectral quantitie
the whole range of parameters and also at nonzero temp
ture. The most striking features are found in an intermed
coupling regime where no known approximation sche
works.

Similarly to the Hubbard model, the infinite-dimension
limit allows one to map the lattice problem onto a se
consistent local impurity model, here called ‘‘polaro
impurity.’’ 31,28 It consists of a single-site electron-phono
problem, embedded into a quantum effective medium ch
acterized by an effective ‘‘free’’ propagator, which has to
self-consistently determined. This mapping preserves all
complexities of the quantum dynamics of the proble
namely, the interplay between electron and lattice fluct
tions at the local level. The crucial point here is that for
single electron the impurity model can beanalyticallysolved
by a recursion formula for any noninteracting impuri
propagator, leading to acontinued-fraction expansion~CFE!
solution for the fully dressed propagator. This unique feat
allows one to obtain at the end an exact solution for
lattice problem in the limit of infinite dimensions. This solu
tion provides directly, with modest computational efforts, t
ground state as well as the spectral properties in the ther
dynamic limit and at any temperature. Therefore it is som
how complementary to numerical works performed in fin
dimensions, such as Monte Carlo simulations20,32 or exact
diagonalization of finite clusters.33,34 Indeed, the former are
limited to finite temperatures, and the latter have to deal w
finite-size effects.

The main result of the present self-consistent impu
approach is that, in the crossover regime, low- and hi
energy scales can be accurately described, as in the M
Hubbard transition problem.24 Polaron states in the low
energy range appear as coherent strongly renormal
quasiparticle states, while at higher energies the electro
incoherently scattered by a quasiclassical random distort
These features are clearly displayed in the low phonon
quency regime, where the spectral density displays lo
energy peaks coexisting with a broad and incoherent h
energy continuum. This provides a physically transpar
representation of the polaron crossover. As the coup
strength is increased, it proceeds through successive o
ings of gaps in the spectral density, separating polaron s
bands. At intermediate couplings, and decreasing the pho
frequency, one finds that the dressing of electron states
multiphonon coherent cloud drastically reduces the effec
electronic energy scales and leads to an adiabaticity ‘‘ca
trophe’’ in the low-energy spectrum. In terms of a perturb
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tive expansion, this can be clearly ascribed to high-or
vertex dressing. It is important to emphasize that even in
intermediate regime of couplings a well-defined polaron q
siparticle excitation is present at low energy. Also, an imp
tant feature is the appearance of a discrete set of frequen
where the self-energy diverges within the low-energy gaps
the spectrum. Those points are sensitive to disorder.35 In par-
ticular, at finite temperatures, they enhance the damping
thermal broadening of polaron states in their vicinity, leadi
to a loss of coherence of the main polaron subband.

This paper is organized as follows. In Sec. II, we intr
duce the Holstein molecular crystal model and we disc
the main limiting cases in a finite-dimensional lattice. In S
III, we introduce the impurity analogy and the exact CF
solution of the impurity model, at zero and at finite tempe
ture. In the same section the limiting results of the CFE
presented and compared to the finite-dimensional case.
tion IV presents the general results of the CFE solution of
impurity problem. Section V is devoted to conclusions and
a discussion of possible extensions of this method to fin
density, in relation with a coherent potential approximati
~CPA! formulation of the CFE.

II. THE HOLSTEIN MODEL

In this section we shall summarize the main results c
cerning the Holstein model in finite dimensions, in the lim
in which analytical calculations can be performed. We es
cially focus on the role of dimensionality, which will allow
one to discuss later how our theory~exact in infinite dimen-
sions! can be compared with results in finite-dimension
lattices.

The Holstein model consists of tight-binding conducti
electrons interacting with local dispersionless phonon mod
The Hamiltonian is

H52 (
^ i j &,s

t i , j~ci ,s
† cj ,s1H.c.!2g(

i ,s
ci ,s

† ci ,s~ai1ai
†!

1v0(
i

ai
†ai , ~1!

whereci ,s
† (ci ,s) creates~destroys! an electron with spins at

site i , andai
† (ai) creates~destroys! a phonon at sitei . The

hopping matrix elementst i , j connect nearest-neighborin
sites of a lattice ind dimensions and we assume they gi
rise to a band of half bandwidtht. This model possesses tw
independent control parameters.18 The first one is the bare
coupling constantl5g2/v0t5uepu/t, whereep52g2/v0 is
the polaron energy obtained in the atomic limit (t50). The
second one is the adiabatic parameterg5v0 /t. A third pa-
rameter can be conveniently introduced as a combinatio
the above ones, asa5g/v0, with a25l/g. While l and
g are commonly used as parameters in the perturba
analysis, the parametera, which measures the strength of th
lattice deformation involved in the polaron effect, will sho
to be crucial in the strong coupling regime. Let us stress t
these parameters are defined from the bare energy s
v0 ,g,t in the Hamiltonian, contrarily to usual definitions i
the theory of electron-phonon interaction in metals where
particular the dressed phonon frequency is used. It is wo
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defining the following regimes and limits, which are releva
to the Holstein model:~i! weak ~strong! coupling l,1
(.1); ~ii ! small ~large! phonon frequencyg,1 (.1); ~iii !
multiphonon regimea2.1; ~iv! adiabatic limitv050, finite
l. Figure 1 shows the corresponding regions in the (l,g)
plane.

Throughout this paper we shall concentrate on the pr
lem of one electron in interaction with phonons, i.e., a s
tem in which density is zero in the thermodynamic limit. T
analyze the perturbative behavior of the model we shall fi
discuss the simplifications due to this limit. The discussion
restricted to the zero-temperature limit but can be easily g
eralized to finite temperatures~see Sec. II B!. For a single
electron the Green’s function in the site representation ca
defined as

Gi , j~ t !52 i ^0uTcj~ t !ci
†~0!u0&, ~2!

whereu0& is the vacuum for phonons and electrons and
unessential spin indices are omitted. One observes that t
is only one possible ordering (t.0) of theT product, so that
the function is purely retarded.37 Then the standard perturba
tion theory is introduced in the site representation by de
ing the electron self-energy38 S i , j (v) through the Dyson
equation

Gi , j5@G0# i , j1(
k,l

@G0# i ,kSk,lGl , j , ~3!

whereG0 is the free-electron propagator.

FIG. 1. A schematic plot of the regions of parameter sp
(l,g) for the Holstein model in an infinite-dimensional Bethe la
tice. Below the dashed line (a251) multiphonon processes ar
important. On the bold horizontal axis the adiabatic limit holds. T
point in the upper right corner is reached at the atomict50 limit. In
the shaded area perturbation theory~smalll) or Holstein’s approxi-
mation ~largeg) are valid. Notice that perturbation theory exten
its validity up to the adiabatic critical value for localizationlc ~see
text!.
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At zero density, the following simplifications hold:~i! A
general self-energy diagram consists of a single electron
first emitting and then absorbing phonons.~ii ! The emission
~absorption! of a phonon consists in subtracting~adding! a
quantum of phonon frequencyv0 to the energy of the propa
gating electron line.

The first statement comes from the absence of den
fluctuations in the zero density limit~no bubble diagrams, no
phonon renormalization!. Moreover, in the zero-temperatur
limit all the phonons must be created from vacuum bef
being absorbed. To illustrate the second statement, we
notice that in a generic self-energy diagram involvingN pho-
non lines, it is always possible to choose an integration c
tour that avoids all the poles and cuts of the electron Gree
function, since the retarded electron propagator is analyti
the upper half plane. Then the only contribution comes fr
the poles associated to the phonon lines.

A. Weak coupling and adiabatic limit

The perturbation expansion of the self-energy to sec
order ing gives a local~k-independent! self-energy:

S2~v!5g2G0~v2v0!, ~4!

whereG0 is the local free propagator obtained by the know
edge of the free particle density of states~DOS! N(e) as
G05*deN(e)(v2e)21. Notice that dimensionality enter
only through the free DOS.39 The electron effective mass, i
the case of a local self-energy, is easily calculated via

m*

m
512

dReS~v!

dv U
E0

, ~5!

whereE0 is the ground-state energy.
Let us first consider the low phonon frequency regime.

this case for electron states lying at the bottom of a ba
dimensionality effects enter through the band shape near
band bottom and control both the behavior of the effect
mass and the spectral properties. We assume that nea
band bottom (e52t) N(e);(11e/t)d/221/t, then one has
from Eqs.~4! and ~5! for 0,d,4 ~Ref. 40!

m*

m
511lkdgd/221, ~6!

wherekd is a numerical constant.41 It is not surprising that
we do not recover the expected ‘‘Migdal’’ result 11l. In
fact this last result is obtained by assuming an infinite
band, which could be the case of a metal whose Fermi
ergy lies far from singularities~like Van Hove ones! in the
DOS. From Eq.~6! we can define an effective couplin
l̃5lN~E01v0!t as in the case of Van Hove singularities42 in
order to writem* /m511 l̃. The effective coupling strength
l̃ tends to zero for vanishing phonon frequency in dime
sionsd.2 ~keepingl constant!, while it goes to infinity for
d,2. Surprisingly, aperturbative analysis provides non
trivial information about the adiabatic limit: ford.2 we
expect free-electron behavior while ford,2 the perturbation
expansionaround a delocalized solutionfails in the adiabatic
limit for any finite l. This is consistent with the nonpertu
bative findings of Ref. 19, where it is shown that renorm
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56 4497DYNAMICAL MEAN-FIELD THEORY OF THE SMALL POLARON
ization effects are absent up to afinite value of l5lc for
d>2, while in d51 the behavior is polaronic for any finit
value ofl.43

In the opposite case of large phonon frequency, calcu
ing the self-energy in Eq.~4! for largev0 and taking advan-
tage of the asymptotical behavior of the free propagato
high energy, it is easy to get

m*

m
511a2. ~7!

It appears as a first-order expansion in power ofa2. As we
shall see this expansion is actually resummed, in the la
phonon-frequency limit, by the use of the Lang-Firsov12

transformation.
It is worth comparing the spectral properties obtained

finite bandwidth and zero density with those derived up
second order ing in the classical work of Engelsberg an
Schrieffer39 in the case of an infinite bandwidth. Since th
self-energy is local one can define the spectral function a
function of energye and frequencyv ~Ref. 39!

A~e,v!52
1

p
Im

1

v2e2S~v!
, ~8!

wheree runs over the noninteracting band energiesek of a
translationally invariant lattice. The electron spectral dens
N(v)52(1/p)ImG(v) is derived from Eq.~8! by integrat-
ing over the energy distribution.

In agreement with Ref. 39, one easily obtains a quasip
ticle excitation spectrum ~with ImS50) at energies
E0<v<E01v0 and an incoherent broad spectrum at larg
energies.

In the low phonon frequency case the spectral density
the low-energy quasiparticle states can be determined by
low-energy properties of the free DOS. A band of coher
excitations could separate from incoherent states, depen
on the dimensionality. The equation that determines the b
edges is

v2ReS~v!56t. ~9!

The minus sign determines the band bottomincluding the
ground-state energywhile the plus sign determines the ban
top. Using the self-energy of Eq.~4! it is easy to see that nea
E01v0, ReS diverges in d51 and d52 as v21/2 and
ln(v), respectively, while it is well behaved ford.2. In
contrast with Ref. 39 the finite-bandwidth effects taken in
account by Eq.~9! generate a gap ind51,2. More precisely
the amplitude of the gap~in units of the bandwidth! between
coherent and incoherent states scales with (lg)4 in d51 and
with exp(21/lg) in d52. In d53 the real part of the self
energy does not diverge atE01v0 so that a sufficiently large
coupling is necessary to fulfill Eq.~9!. In this case we expec
the appearance of a gap only forl greater than a certain
value, which depends on the phonon frequency and explic
on the whole band shape.

The discussion of this subsection suggests that, in dim
sions larger than 2, perturbative expansions fail beyond s
critical coupling above which gaps open up in the on
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electron density of states. This property will be revealed
detail by the self-consistent local impurity theory analyzed
Secs. III and IV.

B. Atomic and large-phonon-frequency limits

The atomic limit is defined as the zero hopping cas
(t50). It can be understood also as an infinite coupling lim
l→`. One considers a single electron on a single site lat
~atom! whose Hamiltonian is given by Eq.~1! with t50. In
the case of zero bandwidth the Hamiltonian of Eq.~1! can be
diagonalized by the unitary Lang-Firsov~LF! trans-
formation12

U5exp@ac†c~a2a†!#. ~10!

The effect of this transformation is to shift the phonon o
erators by a quantitya so that the electron-phonon intera
tion is eliminated. It introduces a new fermion, the polaro
which carries this phonon field shift

c→Xc, ~11!

where X5expa(a2a†). Once the transformation is per
formed, the Hamiltonian becomes diagonal and the grou
state energy is the polaronic energyep52g2/v0, the excited
polaron states having an energyep1nv0.

Due to the presence of an electron at a given site,
lattice is deformed. The magnitude of this effect is measu
by the local part of the static electron-displacement corre
tion function defined as

C05^ni~ai1ai
†!&. ~12!

In the atomic limit one getsC052a, which means that the
atomic ground state is that of a localized polaron, i.e.,
electron surrounded by a ‘‘cloud’’ represented by a coher
~Glauber! phonon state, with an average number^a†a&5a2

of phonons. The electron propagator can also be calcul
after the LF transformation37

G~v!5 (
n50

`
a2ne2a2

n!

1

v2nv02ep
. ~13!

The resulting spectral density appears as a Poissonian d
bution ofd peaks separated by the phonon frequencyv0. By
exploiting the Lehmann representation of the Green’s fu
tion one can see that such a distribution is due to the pro
tion of a localized zero-phonon state onto the (n-phonon!
polaron eigenstates of the Hamiltonian. This can be usef
understood from a gedanken x-ray or optical absorption
periment, where the wave function of the localized electro
final state~with undistorted lattice! is expanded onto the~lat-
tice relaxed! polaron eigenstates, which builds the electr
spectral function. From Eq.~13! we see that the Green’
function has a spectral weight close to the ground-state
ergy that is exponentially small in the interaction streng
while the spectral weight is maximum for excitations invol
ing approximatelyn;a2 phonons.

Let us now consider the action of the hopping. An a
proximation valid for large phonon frequencies is deriv
from the LF transformation, applied to the Hamiltonian wi
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a nonzero hopping term. The hopping term, modified by
transformation, represents the hopping of thepolaron:

t i , j ci ,s
† cj ,s→t i , jXi

†Xjci ,s
† cj ,s . ~14!

The Holstein approximation2 consists in averaging the po
laron kinetic energy on the free phonon variables, thus
taining at zero temperature an effective hopping amplitud

t i , j^0uXi
†Xj u0&5t i , je

2a2
~15!

for i , j nearest neighbors. This approximation amounts to
glecting phonon emission and absorption during the hopp
process. It is believed to give correct results whenv0 is the
largest energy scale.44

In the same spirit, following Alexandrov and Ranninge
one can go further and use the same approximation to ca
late theelectronpropagator, also for finite electron density,13

which gives

A~ek ,v!52
1

p
ImF e2a2

v2ek* 2ep

1 (
n51

`
1

N(
q

a2ne2a2

n!

3
1

v2eq* 2nv02ep
G , ~16!

where ek* 5ekexp(2a2) runs over the renormalized band
width obtained by replacing the free hopping parametert by
t* 5texp(2a2). This solution shows a coherent low-ener
quasiparticle band describing a polaron of effective mass

m*

m
5ea2

~17!

located aroundep , together with an incoherent structure
higher energies.

Let us give a physical interpretation of this result
showing that at least for the low-energy states it correspo
to substituting the exact self-energy with the atomic o
This is valid in the casev0@t where a generic scatterin
process will lead electrons through intermediate states ou
the band. In this scattering process the system can be tho
of as a flat band ‘‘atomic’’ system in interaction with high
energy phonons. For frequencies near the polaron grou
state energyep , the atomic self-energy reads

S~v!5v~12ea2
!1ea2

ep . ~18!

Using the definition Eq.~8! we get the spectral function

A~e,v!52
1

p
Im

e2a2

v2e* 2ep

, ~19!

where e* 5eexp(2a2) describes the renormalized ban
Thus one recovers the low energy part of Eq.~16! from an
approximation to the self-energy that is justified in the lar
phonon frequency regime andnear the quasiparticle po-
laronic peak. However, fora2@1, i.e., when multiphonon
effects are important, the validity of the Holstein approxim
tion is questionable even in the case of largebut finitepho-
non frequency. Results from small cluster exa
e

-

e-
g

,
u-

ds
.

of
ght

d-

e

-

t

diagonalization45 show that the adiabatic ratiov0 /t must in-
crease asa2 to ensure the validity of the Holstein approx
mations~see Fig. 1!.

Finally, let us give the result for the electron propagator
the atomic limit, at finite temperature. The Green’s functi
is then defined generally by averaging on phonons only~the
problem is that of a ‘‘cold’’ electron in a thermalized phono
bath!. In the atomic limit, it is obtained in the same way as
T50, yielding the pole representation37

G~v!5 (
n52`

1`

e2~2N11!a2
I n$2a2@N~N11!#1/2%

3env0/2T
1

v2nv02ep
, ~20!

whereN5exp(2v0 /T) is the phonon thermal weight an
I n$z% are the Bessel functions of complex argument.

Comparing this expression with Eq.~13!, we remark that
at TÞ0 the corresponding spectral function displays peak
frequencies below the polaron ground-state energy, wit
spectral weight that is exponentially small at low tempe
tures. This apparent paradox of having electron state
lower energy than the ground state can be explained if
interprets these states as polaron states formed after ab
ing n thermal phonons from the thermal bath, with a pro
ability exp(2bnv0/2). This reduces the cost in lattice en
ergy required to form the polaron. Since the polaron ene
results from a balance between this~positive! cost and the
~negative! electron-lattice coupling energy, it is possible
create states lying below the zero-temperature ground-s
level. The price to be paid is that these states are incohe
due to the incoherent~thermal! phonon distribution. Also,
the chemical potential goes to minus infinity, allowing th
fermion occupation number to be zero at any energy for
particle at finiteT.

III. THE IMPURITY ANALOGY AND THE EXACT
SOLUTION FOR A SINGLE ELECTRON

The dynamical mean-field theory is developed as the
act solution of an infinite-dimensional46 or infinite connec-
tivity lattice. It has been shown38,46 that to have a finite free-
electron kinetic energy the hopping matrix elements must
scaled with the square root of the lattice dimensionality
lattice coordination.36 A second point to deal with is the
proper choice of the infinite coordination lattice in order
get a finite value of the ground-state energy. In fact, a pr
lem arises, for example, in the case of a hypercubic latt
which has a Gaussian DOS with an infinite tail towards lo
energy.46 For large but finite dimensions the scaling of th
hopping matrix elements implies that the ground-state ene
of one electron is proportional toAd. Therefore, the forma-
tion of a small polaron requires an electron-phonon coupl
energy of the same order of magnitude and a coupling c
stantl, which diverges withAd. Indeed, just like the forma-
tion of a bound state from an external potential, polaron f
mation by self-trapping requires an infinite coupling streng
in an ordinarily connected lattice in infinite dimensions~see
Ref. 31!. To overcome this difficulty we consider a Beth
lattice of infinite coordinationd. The hopping matrix ele-
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56 4499DYNAMICAL MEAN-FIELD THEORY OF THE SMALL POLARON
ments in Eq.~1! have been scaled ast i , j5t/2Ad with t being
the half bandwidth of the lattice. In the Bethe lattice~see
Ref. 47, Sec. 5.3.4! only self-retracing paths are allowed.
restriction of the possible paths to go from one site to ano
allows this lattice to mimic a finite-dimensional one also
the limit of infinite coordination, giving rise to a finite band
width semielliptical free DOS,

N~e!5
2

pt2
At22e2, ~21!

which correctly simulates the low-energy features of a thr
dimensional lattice. More generally, in interacting fermi
problems, with this particular choice, localization pheno
ena can be found even in the infinite-dimension limit; f
instance, the Mott-Hubbard transition is correctly obtained
a finite coupling for the half-filled Hubbard model.24

Let us now come to the essential simplification occurr
in the limit of infinite dimensions, namely, the fact that th
electron self-energy islocal in space. The usual argume
that holds for local electron interactions46,22,51can be worked
out also in the context of the Holstein model. One can ca
on the standard argument but taking into account also
phonon self-energies and electron-phonon vertices instea
the electron-electron four leg vertices.46 This gives the scal-
ing of the real-space propagator with the intersite ‘‘Manh
tan’’ distanceR5u i 2 j u asG(R)}1/AdR. Using this scaling
and the skeleton expansion of the vertex function one
prove that the self-energy is not only local but that itdepends
only on local phonon and electron propagators.46,24 In prac-
tice in a generic self-energy diagram all the internal lines
local propagators.

Using the locality of the self-energy, the lattice propag
tor in the k space is then given by Gk(v)
5@v2ek2S(v)#21, where ek is the tight-binding elec-
tronic dispersion. WritingGii 51/N(kGk and introducing
the free DOS asN(e)51/N(kd(e2ek) one has~dropping
the site index fori 5 j )

G~v!5E de
N~e!

v2S~v!2e
. ~22!

Notice that in infinite dimensions the properties of the latt
enter only through the free-electron DOS.

Having a local self-energy, one can demonstrate follo
ing Ref. 22 the existence of an impurity model equivalent
the lattice problem. This can be readily seen by writing
real-space Dyson equation for thelocal propagatorGii @Eq.
~3!# in two steps. The first one involves self-energy con
butions on sitesj , with j Þ i . Once these contributions ar
resummed, one is led with a modified local propagator,
noted byG0. The latter can be used in the full Dyson equ
tion for Gii , reintroducing the missing self-energy contrib
tions that involvethe same site i. It leads to thelocal Dyson
equation forGii 5G ~assuming translational symmetry!

G~v!5@G0
21~v!2S~v!#21. ~23!

The problem is therefore that of an impurity embedded int
medium. All the electron-phonon scattering processes oc
ring on sites other than the impurity site are contained in
er
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effective ‘‘free’’ impurity propagatorG0, while local pro-
cesses at the impurity site are taken into account by the s
energyS in Eq. ~23!.

This impurity problem can be made more physical
parametrizing it as a ‘‘polaron’’ Anderson impurity mode
involving a localized ‘‘d’’ level coupled to a local phonon
and hybridized with a fictitious conduction electron ba
‘‘ c’’ of dispersionEk :

H imp5(
k

Ekck
†ck2(

k
Vk~ck

†d1d†ck!1v0a†a

2gd†d~a1a†!, ~24!

with new impurity parametersVk andEk being related to the
propagatorG0 by

G0
21~v!5v2E

2`

1`

dE
D~E!

v2E
~25!

and

D~E!5
1

N(
k

Vk
2d~E2Ek!. ~26!

The original lattice Green’s function is that of thed level.
Therefore, solving the problem defined by the impur
Hamiltonian of Eq.~24! for a given G0 and applying the
self-consistency conditions Eqs.~22! and ~23! one has the
so-called local impurity self-consistent approximatio
~LISA!, which is the exact solution of ad→` problem. In-
terestingly enough, the above impurity Hamiltonian has be
used in the past to model core-level relaxation in the x-
problem.48 However, in the context of the LISA approach, i
significance becomes much more general. Just as the re
sive Anderson impurity model for the Hubbard model,
plays the role of a ‘‘paradigm’’ impurity model for the phys
ics contained in the Holstein Hamiltonian. Though the a
vantages of using an impurity parametrization of thed→`
problem have been extensively reported in Ref. 24~we also
refer to the original references!, we must stress, as a gener
fact, that such a parametrization is not unique in the LIS
context.

A. The zero-temperature formalism

In the case of one single electron the Green’s function
zero temperature in terms of the impurity operators is

G~ t !52 iu~ t !^0ud~ t !d†~0!u0&. ~27!

This function describes the propagation amplitude of the
purity electron created from the vacuum at time zero a
destroyed at timet. Fourier transforming Eq.~27! leads to
the resolvent

G~v!5^0ud
1

v1 id2H
d†u0&, ~28!

which has the correct prescriptiond.0 for convergence of
the time integrals. The vacuum energy is defined here to
zero.

Solving the lattice problem requires finding the soluti
of the impurity problem for any givenG0. Let us separate the
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impurity Hamiltonian of Eq.~24! into H0 and HI , where
H0 alone leads to the effective free propagatorG0 andHI is
the local interaction term, then an operator identity for t
resolvent holds

1

z2H
5

1

z2H0
1

1

z2H0
HI

1

z2H
. ~29!

The diagonal matrix element of this operator on the impu
zero-phonon stated†u0& is the Green’s function of Eq.~28!.
To proceed further one needs to introduce the general
matrix elements48

Gn,m5^0u
an

An!
d

1

v1 id2H
d†

~a†!m

Am!
u0& ~30!

so that the elementG0,0 will be the solution of theT50
problem.

In the case ofHI given by Eq.~24!, to express the matrix
element of the right term in Eq.~29! one takes advantage o
the linearity of the interaction term in the electron dens
operatorn5d†d. Namely, introducing a set of zero-electro
p-phonon statesu0,p&5(a†)p/Ap! u0& one can write

HI5(
p

d†u0,p&^0,pud~a1a†!, ~31!
i
r
q

n
ity
e

y

ed

leading to the recursion formula for theGn,m’s

Gn,m5G0ndn,m2g(
p

G0nXn,pGp,m , ~32!

whereG0n5G0(v2nv0) is the diagonal element of the fre
resolvent andXn,p are the phonon displacement matrix el
ments:

Xn,p5Ap11dn,p111Apdn,p21 . ~33!

Equation~32! is solved in matrix notation:

G215G0
211gX. ~34!

One immediately recognizes that, due to the particular fo
of X, G21 is a tridiagonal matrix, so that the solution of th
problem is reduced to the inversion of a matrix in arbitra
dimensions. Following the lines given in Ref. 49~see alter-
natively Ref. 48! one can express the diagonal element of
G matrix in terms of the diagonal and nondiagonal eleme
of G21. The local propagator~the 0,0 element ofG) is ob-
tained in terms of a continued fraction expansion, as a fu
tional of the ‘‘bare’’ propagatorG0:
tional
G~v!5
1

G0
21~v!2

g2

G0
21~v2v0!2

2g2

G0
21~v22v0!2

3g2

G0
21~v23v0!2••• . ~35!

Due to the impurity analogy,this is also the local propagator of the original lattice problem, provided that Eqs.~22! and~23!
are fulfilled. As a special case, one notices that in the atomic limit, settingG0(v)5v21, Eq. ~35! is nothing but an alternative
representation of the atomic propagator, Eq.~13!. In the general case, the self-energy is immediately recognized as a func
of G0, from the self-consistency condition~23!

S~v!5
g2

G0
21~v2v0!2

2g2

G0
21~v22v0!2

3g2

G0
21~v23v0!2•••. ~36!
ed

n

This allows one to solve the impurity problem in the dynam
cal mean-field theory. Once the self-energy is obtained fo
given G0, the local lattice propagator is calculated from E
~22! and using Eq.~23! a new G0 is obtained. After few
numerical iterations a fixed pointG0* is reached, and the
lattice local propagatorG215G0*

212S@G0* # is determined.
We emphasize that Eq.~36! only involves adiscreteset of
values ofG0 and this turns out to be a drastic simplificatio
of the calculation. Moreover, in the Bethe lattice the impur
and the local propagator are simply related:
-
a
.

G0
21~v!5v2

t2

4
G~v!, ~37!

which, replacing Eqs.~22! and ~23!, simplifies the calcula-
tion.

Let us now show diagrammatically how formula~36! ex-
actly sums up all of the self-energy contributions. It is inde
possible to relate term by term the expansion of Eq.~36! in
powers ofg consideringG0 as a parameter in the skeleto
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56 4501DYNAMICAL MEAN-FIELD THEORY OF THE SMALL POLARON
expansion of the self-energy. The relation is obtain
through the following steps:~i! first obtain a truncation to a
given formal ordergk of the skeleton expansion of the se
energy using the rules previously introduced.~ii ! Express the
internal fully interacting propagator of the skeleton expa
sion in terms of the ‘‘bare’’ impurity propagatorG0 using
the self-consistency conditions~22! and~23! and expand the
result togk. The result is equal to the expansion of the co
tinued fraction to theformal ordergk.

It is now instructive to understand the meaning of a fin
truncation of the CFE. The self-energy given in Eq.~36! can
be defined recursively,

S~p21!~v!5
pg2

G0
21~v2pv0!2S~p!~v!

, ~38!

where p is the stage index of the CFE forS. An N-stage
truncation of the CFE is defined by neglectingS (N11) in Eq.
~38!. In the resulting diagrammatic expansiononly phonon
states un& with n<N appear as intermediate states. This
operates a selection of diagrams, which is different from t
based on the perturbative expansion, which by contras
related to the number of interaction vertices. Indeed, at e
step of the truncation an infinite set of diagrams is
summed,including vertex corrections~see Fig. 2!. As one
can easily see by writing the expansion for the atomic lim
the parametera2 measures the importance of multiphon
effects and the number of phononsN needed for an accurat
description of all the scattering processes should be m
larger thana2. It is interesting to note that a self-consiste
noncrossing approximation such as a Migdal scheme, alw
fails, since it can be put in a CFE context by changing
coefficients ofgn in Eq. ~36! to 1.

B. Generalization to a thermalized lattice

The above formalism can be easily generalized to nonz
temperature. The trace performed over free phonon st
gives

G~v!5~12e2bv0!(
n

e2bnv0Gn,n~v!, ~39!

FIG. 2. The CFE expansion diagrams obtained by a trunca
of the CFE at the first stage and some of those obtained at
second stage. Diagrams~a!, ~b!, and ~c! represent respectively th
second and fourth order perturbation theory terms. In this case
ternal propagators are assumed to be freeG0.
d
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whereGn,n are the diagonal elements of the correlation m
trix defined in Eq. ~30! and calculated by means of th
Dyson equation~34!.

The calculation of the diagonal elementsGn,n follows the
lines given in Refs. 49 and 48. The inverse of ea
Gn,n(v) is now the sum of aninfinite continued fraction,
which is similar to the result atT50 plus afinite fraction,
which formally takes into account the absorption proces
at negative frequencies. This reads

Gn,n~v!5
1

G0
21~v!2A2B

, ~40!

where

A5
ng2

G0
21~v1v0!2

~n21!g2

G0
21~v12v0!2

~n22!g2

�2
g2

G0
21~v1nv0!

~41!

and

B5
~n11!g2

G0
21~v2v0!2

~n12!g2

G0
21~v22v0!2

~n13!g2

G0
21~v23v0!2••• .

~42!

The solution of the problem now follows the same lines
the zero temperature case.

The relation between the CFE expansion and the per
bation theory can be exploited using the simplification th
holds in the zero density limit at nonzero temperatures. T
rules for constructing a self-energy diagram at nonzero te
perature are easily obtained as a generalization of those
tained in Sec. II B.~1! A general self-energy diagram con
sists of a single electron line emitting and absorbi
phonons.~2! The emission~absorption! of a phonon consists
in subtracting~adding! a quantum of phonon frequencyv0 to
the energy of the propagating electron line. Associate to e
process a factor 11 f B(v0) when subtractingv0 and a factor
f B(v0) when addingv0 to the electron line.

The introduction of the temperature energy scaleT/v0
rules the truncation of the series of CFE Eq.~39!. For any
finite n we also consider, in the practical evaluation of t
spectral function, a finite truncation ofB of size N. We
therefore have a maximum number of phononsN1n in an
intermediate virtual state of whichN are emitted andn are
absorbed from the thermal bath. Therefore the criterion
truncation valid atT50 (N@a2) has to be supplemented b
the conditionn@T/v0.

C. Limiting cases in the LISA approach

We discuss here some limiting cases based upon the L
approach and show that the main properties of the fin
dimensional polaron problem are captured by the infin
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4502 56CIUCHI, de PASQUALE, FRATINI, AND FEINBERG
dimensional limit. We also analyze the adiabatic lim
which, when the polaron becomes localized, involves
breaking of translational symmetry and consequently can
be achieved using the CFE, which assumes this symme

By expanding to second order the LISA self-energy giv
by Eq. ~36! and substituting the free propagator for the se
consistentG0 we obtain the perturbative relation of Eq.~4!.
Then from Eq.~5! and using the semielliptical~Bethe lattice!
DOS of Eq.~21! one gets the effective mass:

m*

m
5122lgF12

11g

A~11g!221
G . ~43!

In the low-phonon-frequency regime, this becomes

m*

m
511A2gl, ~44!

which shows the same behavior as in a regular thr
dimensional case@see Eq.~6!#. In the large phonon fre-
quency regime we obtain the same result as Eq.~7!.

The fourth-order term in the self-energy expansion is

S4~v!52g4G0
2~v2v0!G0~v22v0!. ~45!

From the previously stated rules,S4 is the sum of two con-
tributions, e.g., a fourth-order noncrossing diagram@Fig.
2~b!# plus a vertex correction@Fig. 2~c!#. In the zero density
limit and in infinite dimensions,the two contributions are
exactly equal. As a consequence, any noncrossing appro
mation such as the self-consistent approximation of Eng
berg and Schrieffer39 is not valid here. In fact, this kind o
approximation can be justified by the conventional Migda
argument50 restated for Einstein phonons.39 This argument
requires the conditionlv0 /EF!1, whereEF is the Fermi
energy,33 which is trivially invalidated in the zero densit
limit where EF50.

Concerning the spectral properties, most of the pertur
tive considerations of the three-dimensional case~Sec. II! are
valid. Due to the fact that the real part ofS to second order
does not diverge, a finite gap arises in the spectral density
sufficiently large values of the phonon frequen
@g.2/(112l)#.

In the atomic limit, all the self-consistentG0
21(v2nv0)

in Eq. ~35! must be substituted by their atomic valu
v2nv0. The resulting continued fraction can be also ind
pendently obtained by solving directly the atomic mod
through the resolvent technique described in the previ
section. The advantage of this formulation, compared to
LF result@Eq. ~13!# is to yield immediately the self-energy a
a functional of the free atomic propagator. The exact resu
finite hopping could then be understood as the result o
coherent potential approximation~CPA! procedure. By CPA
we mean the self-consistent approximation that amount
substituting in the CFE form of the atomic self-energy
self-consistent Green’s function for the atomic one.51 It is
worth noting that although the ‘‘pole’’ and CFE expressio
of the atomic propagator are equivalent, they give differ
results when extended to finite hopping through the CP
For example, if one extracts the self-energy for the C
e
ot
.

n
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e-

i-
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l
s
e
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t
.

procedure from Eq.~13!, one recovers an expression th
agrees with the exact results only for large phonon frequ
cies.

The Holstein approximation described in Sec. II B can
recovered at low energy by the CFE expansion of the lo
propagator whenv0 is the largest energy scale in the se
consistent propagator G0. In this case, all the
G0

21(v2nv0) with n>0 appearing in Eq.~35! can be re-
placed by their atomic value, giving an atomic self-ener
that yields the exponential renormalization of the effect
mass as shown in Sec. III.

Another instructive formula can be derived from the CF
in the limit v0→0. In this case all theG0(v2nv0) in Eq.
~35! can be replaced byG0(v) and one recognizes the con
tinued fraction expansion of the complex error function52

which can be expressed in terms of an integral:

G~v!5E dx

A2p
e2x2/2

1

G0~v!2gx
. ~46!

The physical interpretation of this formula is that the electr
moves within a field of displacements with a Gaussian d
tribution. Such a distribution can be understood as the ‘‘cl
sical’’ limit of the quantum probability distribution of loca
lattice displacements when the phonon frequency goe
zero while keeping the elastic energy finite. Let us rem
that as long as the hopping self-energy term in Eq.~46! is
neglected one recovers a Gaussian DOS as predicted
v0→0 by the atomic limit.

The adiabatic limit is reached when bothv0 andg go to
zero, keepingl fixed. In this case the CFE yields the fre
electron propagator. The problem is that one needs to c
sider the possibility of translational symmetry breaking. W
have developed an independent scheme presented in the
pendix that allows an exact solution at zero phonon f
quency,keepingl finite. The ground-state energy is dete
mined by minimizing the total energy with respect to t
lattice displacement, described by a classical variable.
cording to the shape of the total energy curve as a functio
the lattice displacement~see Fig. 3! we find three different
regimes:~i! l,lc8 . The only stable minimum corresponds

FIG. 3. The adiabatic potential for~a! l,lc8 , ~b! lc8,l,lc ,
and ~c! l.lc ~see text!.
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56 4503DYNAMICAL MEAN-FIELD THEORY OF THE SMALL POLARON
an undistorted lattice~delocalized solution, strictly free elec
tron!. ~ii ! lc8,l,lc . The delocalized solution is still a
stable minimum, but a relative minimum appears in the
tential at nonzero lattice deformation, corresponding to
metastable localized solution~small polaron!. ~iii ! l.lc .
The stable minimum corresponds to a localized soluti
wherelc850.649, . . . andlc50.843, . . . .

Therefore in thed→` Bethe lattice a first-order localiza
tion transition occurs atlc from a delocalized free electro
to a localized polaron. Moreover, for finite values of t
coupling, the localized polaron extends over several lat
shells of neighbors around a given localization site, just a
finite dimensions.19 All these features are quite similar t
those found in regular two-dimensional and thre
dimensional cubic lattices.

To summarize the discussion of this section, examina
of the various limiting regimes in the special case of
infinite-dimensional Bethe lattice shows the consistency
this limit with a three-dimensional situation. This is true
well in the adiabatic regime as in the perturbative and la
phonon frequency regimes~shaded areas in Fig. 1!. The dy-
namical mean-field solution, exact in infinite dimensions a
presented in the following section, allows us to complete
phase diagram and can be thought of as a controlled inte
lation scheme valid at least qualitatively also in finite dime
sion d.2.

IV. RESULTS FROM THE DYNAMICAL
MEAN-FIELD THEORY

Let us now turn to the self-consistent solution for t
infinite-dimensional lattice with a semielliptical density
states, by solving Eqs.~37! and ~35!. We first discuss the
ground-state properties, as deduced from the behavio
S(v) close to the ground-state energy.

A. Ground-state properties

The knowledge of the self-energy and of the Gree
function allows access to the ground-state properties:
ground-state energy, which is evaluated by solving Eq.~9!;
the electron-latticelocal correlation function defined in Eq
~12!, which can be evaluated using the Hellmann-Feynm
theorem53 from the first derivative of the ground-state ener
with respect tog; the electron kinetic energy, i.e., the ave
age over the ground state of the hopping term of the Ham
tonian Eq.~1!, which, using again the Hellmann-Feynma
theorem, is calculated as a derivative ofE0 with respect to
t; the average phonon number in the ground state, which
be obtained as a derivative of the ground-state energy
respect tov0.

The ground-state properties are summarized in Figs. 4
They illustrate the above relevant quantities as functions
the coupling constantl for three different values ofa2, 1, 2,
and 5. The polaron crossover is seen as a continuous ch
from weakly dressed to quasilocalized electrons. The cro
over almost disappears fora251, while it becomes sharpe
for large a2, approaching the first-order localization trans
tion observed in the adiabatic limitv050 ~see Appendix!.
The existence of a smooth crossover rather than an ab
transition~for finite v0) corroborates the general proof pr
-
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viously derived by Gerlach and Lo¨wen.54 However, the
ground-state properties are quantitatively calculated here
any value of the parameters.

Let us discuss these results in more detail. Concerning
ground-state energy depicted in Fig. 4 one sees that
bounded from above by the adiabatic res
(v050,a2→`) and from below by the large-phonon fre
quency result (v05`,a250,E052l). As the coupling in-
creases, the crossover occurs forl of the order oflc , where
lc is the critical coupling strength obtained in the adiaba
limit. The behavior of the effective mass is shown in Fig.
For largel it increases witha2, but remains smaller than
Holstein’s prediction of Eq.~17!, which is attained asymp
totically only for very large couplings.55

Notice also that fora251 we do not observe any chang
in the curvature of the effective mass, showing that no
preciable crossover occurs but rather a smooth increas
the effective mass from 1 towards exp(1);2.7. On the other

FIG. 4. Ground-state energy vsl for three different values of
the parametera251,2,5 ~triangles, asterisks, diamonds!. Continu-
ous line is the adiabatic limit; the dashed line is the strong coup
result.

FIG. 5. Polaron effective mass in units of the bare electron m
vs l for three different values of the parametera251,2,5~triangles,
asterisks, diamonds!. Arrows mark the Holstein’s approximation
result exp(a2).
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4504 56CIUCHI, de PASQUALE, FRATINI, AND FEINBERG
hand, one notices that forl,lc , the effective mass dimin
ishes asa2 increases, in agreement with the adiaba
(a2→`) prediction of having unrenormalized electrons f
small couplings. Therefore, the mass renormalization a
function of a2 behaves in opposite ways forl,lc and
l.lc . For infinite a2 (v050), m* /m jumps from 1 to
`.

The spectral properties, discussed in the next paragr
will clarify this singular behavior, which indeed reflects th
breakdown of the perturbation theory forl.lc .

The ground-state kinetic energy is shown in Fig. 6. Ag
a crossover is found as a change of curvature only
a2.1 and becomes sharper as the adiabatic limit is
proached. Figure 7 displays the electron-phonon correla
function~i.e., the local deformation of the lattice!. To make a
comparison with the well-defined adiabatic limit, it is conv
nient to scale this quantity by the strong coupling va
2a. A sharp crossover towards large electron-lattice lo
correlations is found for largea2. Similarly, the number of
phonons in the ground state, shown in Fig. 8 attains the v

FIG. 6. Polaron kinetic energy vsl for three different values of
the parametera251,2,5 ~triangles, asterisks, diamonds!. Continu-
ous line is the adiabatic limit result.

FIG. 7. Electron-phonon local correlation function scaled w
the strong coupling result 2a vs l for three different values of the
parametera251,2,5 ~triangles, asterisks, diamonds!. Continuous
line is the adiabatic limit result.
c

a

h,

r
-
n

l

e

a2 only asymptotically for very large coupling. As a gener
property, one must stress that the Holstein values for all
above quantities are obtained assuming alocal lattice defor-
mation. The gradual behavior we find towards these value
due to the finite extension of the polaron, i.e., of the elect
wave function and lattice deformation over several shells
lattice neighbors. This is also true in thed→` limit, and in
particular causes the kinetic energy to be nonzero, eve
the adiabatic limit forl.lc ~see Appendix!.

Recently, a numerical study34 by diagonalization on smal
clusters has led to the conclusion that the polaron cross
occurs when both conditionsa2.1 andl.1 are fulfilled.
According to this interpretation, to have a polaron one
quires thatl.1 for g,1 or a2.1 for g.1. CFE results
are in qualitative agreement with this statement since
observe no appreciable crossover for any value ofl provided
a2,1, and in the opposite case the crossover is found
around l;1 and becomes sharper asa2 is increased. A
better understanding of this behavior can be gained by p
ting the effective mass in the whole parameter spaceg,
l), Fig. 9~a!. The isolines corresponding to large effectiv
mass define the polaron region. We see that for largel and
g the effective mass depends only ona2 as predicted by the
strong coupling theory. Asg decreases, the crossover ge
sharper until it becomes a real first-order localization tran
tion for g50 at the adiabatic critical valuelc . Finally it
must be remarked that all these results are in qualita
agreement with Monte Carlo simulations,20,32 which show
thatat finite phonon frequencythe ground-state properties i
the polaron crossover are not very dependent on the dim
sionality.

B. Spectral properties atT50

As in other strong coupling problems such as the Hubb
model, the standard mean-field or variational techniq
~based here on the Lang-Firsov approximation followed
phonon averaging! do not allow one to go beyond the low
energy properties. Instead, the dynamical mean-field the
provides a way to explore the whole electron spectrum.

The spectral properties are directly extracted from
knowledge of the local propagator, and reflect the struct

FIG. 8. Average number of phonons in the ground state vsl for
three different values of the parametera251,2,5 ~triangles, aster-
isks, diamonds!. Arrows mark the strong coupling resulta2.
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56 4505DYNAMICAL MEAN-FIELD THEORY OF THE SMALL POLARON
of the excited states. Formulas~8! and ~9!, valid in the case
of a local self-energy, obviously apply in the case of t
dynamical mean-field theory.

We focus here on the behavior of the spectral density
of the self-energy. In particular, a nonzero ImS reveals an
incoherent scattering due to emission and absorption
phonons. More precisely, given a band inN(v) of reduced
width t* we can determine if an excitation at a given fr
quency has a coherent or an incoherent character. To do
we expand the spectral function around the peak locate
v* 2ReS(v* )5e. This relation defines a polev* (e),
which, in the case of a translationally invariant lattice, giv
the band dispersion. Then assuming around the polev* an
effective mass inversely proportional to the effective ba
width and using Eq.~5! with E0→v* we get approximately
v2e2ReS(v).(t/t*)(v2v* ) and

A~e,v!.2
1

p

t*

t

G

~v2v* !21G2
, ~47!

whereG52(t* /t)ImS(v* ). Then the excitation is coheren
if its lifetime (1/G) is much greater than the characteris
time of the ~renormalized! hopping processes 1/t* , i.e.,
G!t* . This gives the coherence condition ImS(v* )!t ~and

FIG. 9. Both ground-state and spectral properties are sum
rized in thel,g plane.~a! Effective mass isolines~from left to right
m* 51.1,1.2,1.3,1.5,2,5,20!. In this picture a curve with constan
a2 is a straight line starting at the origin~see also Fig. 1!. ~b! The
number of gaps in the electron spectral density. Near the adiab
limit all the lines that separate regions of equal number of g
collapse tolc . On the right of the dashed line at least one point
which the self-energy diverges appears.

FIG. 10. Spectral density~continuous line! and imaginary part
of the self-energy~dashed line! in the large phonon frequency re
gime g52, for l5~a! 0.08, ~b! 0.75, and~c! 4.0. In this and the
following spectra the energies are expressed in units oft.
d

of

his
at

s

-

not t*). If the coherence condition holds, the quasipartic
pole v* (e) is well defined since the spectral function has
sharply defined peak atv5v* (e) with a width much less
than the renormalized bandwidth.

The scenario for polaron formation can be analyzed fr
Figs. 10–12 where the spectral density and the imagin
part of the self-energy are shown in the large-, intermedia
and low phonon frequency regimes, respectively, for incre
ing values ofl. Generally speaking, in all regions of param
eters, the condition to form a~quasi!particle of large effec-
tive mass such as a small polaron is thata narrow coherent
band emerges at low frequency. We call it the zero-phonon
polaronic band. It is worth noticing that when a polaron with
a large effective mass is formed one always observes sev
bands in the spectra, and the one at lowest energy isperfectly
coherent(ImS50), since this band lies entirely below th
minimum energyE01v0 for inelastic scattering.39 Though
this feature is common to the spectra in all parameters
gions, the way in which polaronic behavior is exhibited
the spectral properties is very different according to the va
of the adiabatic ratiog.

Let us first discuss the large-phonon frequency regime
this case~see Fig. 10! the formation of the polaron from the
point of view of the spectral properties is a smooth cro
over. For g.2, the spectra always display a multipeak
structure@see also Fig. 9~b!# in which then50 polaron band
and the edges of the first excited bands are perfectly co
ent. These structures are subbands corresponding to po
states withn phonons excited, and can be easily understo
by switching on the hopping term from the atomic limit. F

a-

tic
s

FIG. 11. Spectral density~continuous line! and imaginary part
of the self-energy~dashed line! in the intermediate phonon fre
quency regimeg50.5, for l5~a! 0.4, ~b! 1.0, and~c! 2.0.

FIG. 12. Spectral density~continuous line! and imaginary part
of the self-energy~dashed line! in the low phonon frequency regim
g50.125, forl5~a! 0.7, ~b! 1.0, and~c! 2.0. Thed-like divergen-
cies of the self-energy near the first four tiny bands are not repo
in this figure~see Fig. 13!.
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4506 56CIUCHI, de PASQUALE, FRATINI, AND FEINBERG
very largeg, all the subbands tend to have the same width
agreement with the predictions from Holstein
approximation;13 see Eq.~16!. For intermediate values o
g, increasingl causes the shrinking of the width of th
low-energy bands and decreases their spectral weight, w
higher-frequency bands become more important. The cr
over occurs forl;g (a2;1) @cf. Fig. 12~c! in which
a252#. One notices that the envelope of the peaks in
imaginary part of the self-energy tends to reproduce the
velope of the bands in the spectral density, shifted byv0, as
can be deduced from the CFE. Thus, fora2.1, both the
weight and the damping of the subbands tend to incre
with their index and then decrease following a roughly Po
sonian envelope, with a maximum atv;a2v01Ep.0.

Let us now turn to the low phonon frequency regime,
which the formation of polaronic bands is qualitatively d
ferent and exhibits novel features. From Fig. 12 we see
a polaronic band emerges from anincoherentband around
l.1. Increasing the value of the coupling, more and m
bands emerge, having very small bandwidth. Notice that
low-energy structures are not resolved on the scale of
12~c!, but they can in fact be accurately calculated by
CFE and are shown in detail in Fig. 13. As we shall s
below, the relative distance between polaron subbands is
pected to be less thanv0, due to lattice displacements e
fects. The inverse lifetime ImS, on the opposite, reproduce
the pattern of the polaron subbands at energies shifted
v0. Therefore, if the bandwidth renormalization is stro
enough, eachnth-order excited band splits further into a do
blet of bands separated by a gap, where the main on
coherent and the secondary one is incoherent. The cohe
subbands turn out to have equivalent heights and can
interpreted as coherent quantum tunneling out of a disto
lattice site: they correspond tocoherent polaronbands with
n50,1, . . . excited phonons.

A qualitative understanding of the low- and high-ener
excitations at smallg can be deduced from a compariso
with the adiabatic limit results~Appendix!. Figure 14 shows

FIG. 13. Spectral density and ImS with the parameters of Fig
12. The low-energy part of the spectrum is shown, illustrating
nth substructures withn51, . . . ,4 (0, . . . ,3excited phonons!. For
each givenn>1, the coherent and incoherent states are separ
by a gap. Thed peaks in ImS are revealed by adding a sma
imaginary part to the frequencyv. The width of each structure ha
been reported using different scales to compare the shape of
peak. The bandwidths of the four coherent peaks are respect
from left to right: 7.231027, 9.831026, 8.3331025, and
5.013431024. The widths of the incoherent structures are from l
to right 6.131027, 9.6731026, and 8.32331025.
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the spectrum of Fig. 12~c!, in correspondence with the adia
batic potential relative to the same value of the couplingl. It
is clear from Fig. 14 that a low-energy scale can be defin
as the region where the spectrum consists of separated
bands. The separation of energy scales can be understoo
considering the effect of finite phonon frequency, i.e.,
considering quantum corrections to the classical lattice
proximation. This yields a series of low-energy bands t
are roughly centered around the position of the quanti
levels of the ground-state adiabatic potentialVad

(b)(X) given
in Eqs. ~A11! and ~A12! and Fig. 14. As the energy is in
creased fromE0, hese levels become more and more hybr
ized with the excited adiabatic continuum associated to
undistorted lattice starting atVad

(a)(0)52t. In the real spec-
trum, one actually observes that the very narrow ba
merge into a broad structure just around this energy le
thus defining the amplitude of the low-energy region
uE0u2t. One can also evaluate from the data shown in F
12~c!, 13, and 14 a small negative deviation of about 2%
the first band spacings fromv0, and in general the first fou
narrow bands in the figure are not exactly equally spac
This can be explained in terms of the adiabatic poten
picture by noticing that the curvature of the total adiaba

e

ed

ch
ly

t

FIG. 14. In the upper panel is shown the spectral density~con-
tinuous line! near the adiabatic limit (l52,g50.125) compared
with the adiabatic strong coupling result~dashed line!. In the lower
panel the continuous line is the ground-state adiabatic total en
as a function of the lattice displacement~see Fig. 3!, the dashed line
represents the lowest excited adiabatic level, which is at the bot
of a continuum~shaded area!. The zero-point energy is omitted
here. See also the Appendix.
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56 4507DYNAMICAL MEAN-FIELD THEORY OF THE SMALL POLARON
energy near the distorted minima is smaller than near
undistorted position. In fact, a prediction based upon line
ization of the adiabatic potential yields a 1.65% deviati
from v0 for the distance of the first excited level from th
ground state of the adiabatic potential.

The nature of the high-energy part of the spectrum is
plained using a strong coupling adiabatic approximati
namely thev→0 limit of the CFE~Ref. 56! @see Eq.~46!#.
This approximation describes the broad structure as an e
lope of resonances separated by a vanishingly smallv0. The
resulting spectrum is shown in Fig. 14~upper panel! and fits
very well the high-energy part of the spectral density. This
deteriorates at intermediate energies where spiky struct
appear, due to the effect of a finitev0. The self-energy ob-
tained from Eq.~46! indicates that all the states at interm
diate and high energies have an incoherent character.

In the intermediate frequency regime, the structure of
low-energy bands when these are well separated is cur
and follows some rules that can be deduced directly from
CFE expansion@see Fig. 11~d!#: the lowest-energy band i
always coherent (ImS50) and its shape resembles the orig
nal semielliptical unrenormalized DOS even if some asy
metry is observed towards its upper edge. This is not
tained by the usual ~Holstein! strong coupling
approximation, and could be depicted by a much larger
fective mass at the top band edge. On the other hand,
higher-order bands acquire a complexity that can be lab
by the number of ‘‘substructures’’ that can be recognized
the band shape and that increases with increasing ene
Moreover, by comparison of Figs. 12 and 11 we see that
transition with increasingl from a single band structure to
multipeaked structure at low frequencies is much m
abrupt for small than for intermediateg, and in the former
case it turns out to occur around the adiabatic critical va
of the couplinglc .

Let us now focus in more detail on the mechanism for g
opening in the low and intermediate phonon frequency
gimes (g,2). The number of well-separated subbands
shown in Fig. 9~b! as a function of the parametersl and
g. One notices that there is a large region of the parame
space in which the spectral density consists of only t
structures: a single coherent polaronic band and a h
energy band, which is mostly incoherent. In this region,
proximation~16!, which, apart from the low-energy cohere
peak, displays an incoherent spectrum made of separ
subbands, is not correct. The extent of this region reduce
the adiabatic ratio is reduced and for very low phonon f
quency the system undergoes a rapid crossover to a m
peaked structure at aroundlc . The emergence of a cohere
band, separated by a finite energy gap from the continu
can be seen asl increases on Fig. 15. As a critical value
l is approached, a pseudogap appears together with a
damping of the states in the same energy range. At hig
l, the gap is formed and keeps increasing until a second
is formed at higher energy, and so on. By the way, let
underline that the total spectral weight carried by the pola
bands, when they are well separated, is in general diffe
from that obtained in the atomic limit. For instance, t
n50 band spectral weight is always larger thane2a2

.
An effect related to the formation of subbands, whi

arises in the intermediate coupling regime, is the diverge
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of the self-energy at one and subsequently more frequen
located in the gaps as the coupling strength is increased
the presence of disorder, external excitations, or at finite t
perature, a nonzero spectral density can appear around
energies. We thus expect such excited states within the g
to have a huge damping and to be localized, while
ground state can keep its delocalized character. For that
tivation the authors35 who found such behavior in the conte
of the Holstein-Hubbard model named itdynamical localiza-
tion. We must stress that the relevance of such a phen
enon concerning the mobility properties such as the ac c
ductivity cannot be tested using the CFE formalis
However, we draw attention to the fact that this is a ve
general phenomenon, which occurs here for a single elec
as a polaronic feature; i.e., is related to the multipeak
structure of the Green’s function.

The occurrence of such self-energy divergencies requ
that the states at the edges of two consecutive bands hav
infinite lifetime (ImS50) at zero temperature. In this cas
the self-energy fulfills the Eq.~9! at the extrema of the en
ergy gap, so that the real part ofv2S changes sign within
the gap without crossing the values6t. As a consequence
divergency in ReS occurs at a pointvL located in the gap. In
the Bethe lattice we have the condition

vL2
t2

4
G~vL2v0!2S~2!~vL!50, ~48!

where S (2)(vL) is the second stage expansion of the se
energy in the CFE of Eq.~38!. Equation~48! may have more
than one solution; i.e., many such points are expected
large values ofl ~see Fig. 13!. In the atomic limit (l→`)
there is an infinite number of them, located in the gaps
tween the peaks of the atomic spectral density.

FIG. 15. Evolution of the spectral density and imaginary part
the self-energy at low energy for growingl ~upper panel! for
g50.25 and, from left to right:l50.7,0.78,0.84,0.9. The lowe
panel showsv2ReS.
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4508 56CIUCHI, de PASQUALE, FRATINI, AND FEINBERG
In the (l,g) plane, at least one self-energy divergen
exists on the right of the dashed line in Fig. 9~b!. We note
that a self-energy divergency is formed only in a preexist
energy gap. Accordingly, when increasing the coupl
strength a gap appears first, separating a coherent pola
peak from an incoherent excited band, and then a self-en
divergency occurs in the gap when the states at the botto
the excited band become coherent.

This phenomenon should affect the spectral propertie
the presence of disorder35 or at finite temperatures~see be-
low!. In fact, whenever there is a mechanism that is able
give rise to excited states in the proximity of those spec
points ~this can be due to the Lorentzian tails induced
disorder! the singularity in the imaginary part of the sel
energy becomes a finite broadening Lorentzian, which
plies a loss of coherence of the neighboring states. The
sequences on the electronic spectra at finite temperatures
be analyzed in the following section.

C. Spectral properties at finite temperatures

In this section we present the results obtained at fin
temperature using the CFE formulation of Eq.~39! and fol-
lowing. The analysis focuses on the intermediate reg
where no ‘‘classical’’ schemes of approximation are ava
able.

In Holstein’s original treatment of polaron motion,2,37 a
distinction is made between transition amplitudes that
diagonal in the phonon number, contributing to the polar
coherent motion around the ground-state energy, and th
that are nondiagonal, giving rise to hoppinglike motion
While the former decrease in the presence of thermal di
der, the latter are thermally activated. This allows one
determine a crossover temperatureT;0.4v0 where the po-
laron crosses over from coherent to hopping like moti
which is believed to hold at strong coupling or in the larg
phonon frequency regime.

This crossover can also be observed in the one-elec
Green’s function. To this purpose, we show the spectra in
intermediate coupling regime for increasingT ~see Fig. 16!.
The effect is twofold: first, as is already known from th
atomic limit37 @see Eq.~20!#, polaron peaks appear at neg
tive energies. Secondly, scattering by thermally popula
phonon states causes finite lifetime effects, in addition to
zero-temperature scattering processes~see Sec. IV B!, as can
be seen by inspecting the imaginary part of the self-ene
Indeed, one notices that the negative-n subbands are incoher

FIG. 16. Evolution of the low-energy spectral density a
imaginary part of self-energy with temperature in the intermed
regime g50.25 andl51.0. From left to rightT50,0.2,0.4,0.8.
Arrows mark points in which the self-energy diverges atT50.
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ent. Moreover, at lowT, a small peak appears in ImS, close
to the upper boundary of then50 polaron band. For large
T, some spectral weight develops in this region and cont
utes to gradually broaden this band, until the gap eventu
disappears.This effect is enhanced in the vicinity of a se
energy divergency, which is extremely sensitive to therma
disorder. This gives rise to an inhomogeneous broadenin
the main polaron band.

By evaluating the number of coherent states~with
ImS!t) within the low-energy subbands in the intermedia
coupling regime, one can qualitatively confirm the validity
Holstein’s prediction for the crossover temperature, i
T;0.320.4v0. On the other hand, the high-energy part
the spectra is slightly smoothed by the temperature.

A different scenario holds for other values of the para
eters. Results are presented in Figs. 17–19 where the
energy part of the electronic spectra is shown for the sa
parameter values as in Figs. 10–12, forT50.4v0. One no-
tices that in the high phonon frequency regime, the g
between polaron bands exist even at high temperatures,
temperature weakly affects the overall shape of the posi
nth order polaron subbands~see Fig. 17!. On the contrary,
for low phonon frequencies, the shape of the polaron s
bands is drastically modified~see Fig. 19!: the spectral
weight of each of them is roughly conserved~for not too
largeT), but they are noticeably enlarged, and conseque
their height diminishes. One must underline that at tho
temperatures the gaps are not destroyed by thermal fluc
tions, apart from vanishingly small spectral density tails.

FIG. 18. Spectral density~continuous line! and imaginary part
of self-energy~long dashed line! for g50.5 atT50.4. The spectral
density atT50 is shown for comparison~short dashed line!. Panels
~a!–~c! refer to the samel ’s as Fig. 11.

e FIG. 17. Spectral density~continuous line! and imaginary part
of self-energy~long dashed line! for g52 at T50.4. The spectral
density atT50 is shown for comparison~short dashed line!. Panels
~a!–~c! refer to the samel ’s as Fig. 10.
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V. CONCLUSION

We have shown how the dynamical mean-field theory
be successfully used to solve the single polaron problem
any temperature. The form of the propagator as a contin
fraction expansion, together with the self-consistency con
tion for the noninteracting local impurity propagator, sho
that this theory yields ananalytic solution of the problem,
even if some elementary numerics is required to obtain
full spectrum. We have also presented in Sec. II some res
in the limiting regimes in the infinite-dimensional case
order to show that the use of a semielliptic free DOS giv
sensible results, in agreement with the usual thr
dimensional solutions. This gives confidence that the res
from the dynamical mean-field theory quite reliably refle
the actual physics in dimension larger than two. On the c
trary, in the one-dimensional case, one or more gaps
always present in the spectrum; i.e., polarons form at
coupling.33

The properties we find for the ground state are in agr
ment with the conventional wisdom, in particular the abse
of a phase transition, as soon as quantum fluctuations o
lattice are taken into account. The crossover gets sharpe
the phonon frequency is decreased for fixedl, and becomes
an abrupt transition from a free electron state to a locali
small polaron state atg50. This comes directly from the
first-order nature of the transition in the adiabatic lim
clearly displayed by the direct solution.

Beyond the ground-state properties, the full electro
spectrum clarifies the nature of the polaron crossover.
low and intermediate phonon frequencies, as the couplin
increased, several energy gaps successively open up in
spectrum, leaving at low energies coherent or quasicohe
polaronic subbands. These bands can be followed up to
large couplings or large phonon frequencies towards
atomic limit. Therefore they are the manifestation of nonp
turbative processes, as is clearly demonstrated by the in
pretation of the CFE in terms of a diagrammatic expansi
Thus, even if the ground-state properties show a continu
crossover, some higher-energy features show a qualita
change of behavior, the phenomenon of gap opening.

Let us make more precise the ‘‘lattice’’ interpretation
these polaronic subbands. Once the self-energyS(v) is
known, and for a given noninteracting lattice DOS, an eff
tive dispersion relation can be found for each well-separa

FIG. 19. Spectral density~continuous line! and imaginary part
of self-energy~long dashed line! for g50.125 atT50.4. The spec-
tral density atT50 is shown for comparison~short dashed line!.
Panels~a!–~c! refer to the samel ’s as Fig. 12.
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subband, by finding the poles of the spectral function Eq.~8!.
This corresponds to what is commonly understood as
laron states, i.e., bound states of an electron with a pho
cloud, a numbern of phonons being excited in addition. Fo
a translationally invariant finite-dimensional lattice the qua
tum numbers underlying the local~integrated! spectral func-
tion are thetotal momentumK of the polaron18 and the
excited phonon numbern. This obviously holds only if the
subbands are coherent, i.e., only for low enoughn, according
to the values ofl andg.

The low phonon frequency regime exhibits in the cro
over region a coexistence of extremely narrow polaronic s
bands at low energy and a broad featureless continuum
high energy. While the low-energy features directly follo
from the atomic or high phonon frequency limit, the co
tinuum is directly related to the adiabatic solution. The b
havior near the critical point (l5lc ,g50) can be under-
stood as follows: increasingg, the discontinuity in the low-
energy properties becomes a sharp crossover, due to
weak coherent tunneling between small polaron states
quasifree states of the equivalent impurity model. Transla
into the language of the lattice problem, it leads to the em
gence of coherent ‘‘heavy’’ polaron quasiparticle sta
~‘‘resonances’’!. However, the high-energy part of the spe
trum does not reveal any qualitative change in this region
parameters.

This behavior demonstrates how the usual concept
‘‘adiabaticity,’’ as commonly employed in metals for sma
v0, fails in the present problem: the sharp transition atlc
and the occurrence of extremely narrow polaron features
dicates on the contrary the occurrence of an ‘‘adiabatic
catastrophe.’’ This is due to the relevance of high-order v
tex corrections in the perturbation expansion.

In this work the application of the LISA approach ha
been limited to the one-particle propagator. In fact, no ex
procedure has been found yet to calculate analytically,
instance, two particle propagators, which would allow one
compute the~dc and optical! conductivity of polarons. Al-
though at zero density it is impossible to access the corr
tion functions involved in the calculation of the optical co
ductivity, let us mention that our results suggest
interpretation of the infrared response of oxide supercond
ors in the insulating phase. In these materials,9 absorption
spectra for low carrier densities exhibit a discrete set of n
row peaks at low energies plus an incoherent backgroun
higher energies. From our point of view, this could be a
cribed to multiphonon excitations in the intermediate phon
frequency regime. On the other hand, a better understan
of the polaron crossover could be gained by calculating
dynamical electron-lattice correlation function.57

Let us finally comment on future extensions of this tec
nique to finite electron densities. As mentioned before,
CFE expansion keeps for the self-energy the same functi
structure as that of the atomic limit. Thus it is equivalent to
CPA approach, which could be extended at finite densitie
is, however, easy to show~by perturbation expansion! that
the CPA approximation fails even at the first nonvanish
order in the density. As far as spectral properties are c
cerned, the CPA failure is particularly evident in the low
energy part of the spectrum, as is well known from equiv
lent approximations for the Hubbard model. Neverthele
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our main result, i.e., the coexistence of low-energy cohe
and high-energy incoherent structures is a picture that sh
be qualitatively preserved at least at low carrier densities
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APPENDIX: THE ADIABATIC SOLUTION

In this appendix we will solve the problem of one electr
moving in an infinite coordinationstatic Bethe lattice. To
introduce the adiabatic limit~static lattice! one notices that
the free Einstein phonon Hamiltonian can be written as

Hph5(
i

Pi
2

2M
1

1

2
Mv0

2Xi , ~A1!

wherePi are the impulses,Xi are the coordinates of the ioni
motion, M is the ionic mass, andv0 the frequency of each
oscillator. The adiabatic limit is achieved asM→` keeping
k5Mv0

2 constant.
The electron-phonon interaction can be written as

Hph52g8(
i

niXi , ~A2!

where the coupling constant of Hamiltonian Eq.~1! is given
in terms of g8 by g5g8/A2Mv0. The polaron energy
ep52g2/v052g82/2k is then a well-defined quantity in
the adiabatic limit.

To perform an adiabatic calculation we have to perfo
the following steps:~i! calculate the electronic energy for
given set of ionic deformationsXi , ~ii ! minimize thetotal
energy, i.e., electronic energyplus lattice elastic energy with
respect to the parametersXi .

An essential relation that is useful in the adiabatic lim
comes from the application of the Hellmann-Feynman th
rem to the ground state of the static lattice. By deriving
ground-state energy of the Holstein model with respect to
lattice deformationXi one obtains

Xi5
g8

Mv0
2 ^ni&. ~A3!

From this relation it follows that in the case of a single ele
tron, due to charge conservation, only two situations are p
sible: ~a! delocalized solution withXi50 everywhere since
the total charge density per site is zero in the thermodyna
limit, ~b! localized solution with some finiteXiÞ0 around
one given site.

Therefore, for a single electron one is restricted to stu
ing electron energies for two different classes of ionic def
mations. Notice that the results quoted above are valid at
lattice dimensionality.
nt
ld

,
r

t
-

e
e

-
s-

ic

-
-
ny

In the case of the Bethe lattice, a Dyson equation for
local propagator can be written in the adiabatic limit,

S v1g8Xi2
t2

4(
j

Gj , j DGi ,i51, ~A4!

then the electronic energy can be derived from the kno
edge of the adiabatic electron propagator, which is the s
tion of Eq. ~A4! for a given set of deformations$Xi%.

In case~a! ~delocalized solution! the solution is trivially
the free-electron propagator in the Bethe lattice. The grou
state electron energy is thenEel52t.

In case~b! ~localized solution! the d→` limit together
with Eq. ~A3! implies that only one site is appreciably di
torted. Calling 0 the center-of-deformation site it is easy
see that the nearest-neighbor deformation is of the o
1/d, the next-nearest-neighbor deformation is 1/d2, and so
on, so that the total charge can be spread on several she
neighbors even in thed→` limit. The main simplification of
thed→` limit is then that the elastic energyis solely deter-
mined by the0-site deformation, for it depends onXi

2 . Con-
sequently we have two kinds of local propagators: one t
propagates the electron from site 0 back to site 0, wh
depends upon the deformation

G0,05
1

v1g8X02~ t2/4!G
~A5!

and one that propagates the electron from any to any o
site, which is free

G5
1

v2~ t2/4!G
. ~A6!

In the case~b! a pole in the local Green’s function of Eq
~A5! emerges out of a band. The position of such a p
determines the electronic ground state energy. Using E
~A5! and ~A6! we get the following equation:

Eel1g8X02 1
2 Re~Eel2AEel

2 2t2!50, ~A7!

whose solution is

Eel /t521 for x,1/2, ~A8!

Eel /t52
1

4x
2x for x.1/2, ~A9!

where x5g8X0 /t. We see that near the zero deformati
statex50 the two possible solutions~a! and ~b! coincide.
The total potential~rescaled to the hopping energyt) we
need to minimize in order to get the ground-state energ
obtained by adding to the solutions~a! and ~b! the elastic
term @which is zero in case~a!#. Namely,

Vad
~a!5

x2

4l
21, ~A10!

while in case~b!

Vad
~b!5

x2

4l
21 for x,1/2, ~A11!
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Vad
~b!5

x2

4l
1

1

4x
1x for x.1/2 ; ~A12!

the result is plotted in Fig. 3. There are three different
gimes determined by the following critical values for th
coupling constantl: lc850.650, . . . andlc50.844,. . . : ~i!
l,lc8—the delocalized solution is the stable minimum.~ii !
lc8,l,lc—the delocalized solution is the stable minimu
coexisting with a metastable minimum in the potentialV(b),
characteristic of the localized solution.~iii ! l.lc—the lo-
calized solution is the stable minimum.

In the latter case the delocalized solution corresponds
continuum of unrenormalized excited adiabatic sta
~shaded area in the lower panel of Fig. 14!.

By derivatives of the ground-state energy we obtain
relevant properties of the adiabatic ground state as funct
r

v

S

y

E

B
D

-

a
s

e
ns

of the coupling constant. All these functions can be e
pressed in terms of the derivative of the ground-state ene
E05Vad(X5Xmin) with respect to the scaled coupling pa
rameterx, namely,D5dE0 /dx.

The local electron-displacement correlation function a
the electron kinetic energy are determined by deriving
ground-state energy~Sec. II!

C0/2a52D, ~A13!

Ekin /t52E01xD. ~A14!

Finally, the elastic energy is calculated as a derivative w
respect tov0 and scaled to that parameter so as to get a fin
result in the adiabatic limit

Eph/v052xD. ~A15!
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