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Dynamical mean-field theory of the small polaron
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A dynamical mean-field theory of the small polaron problem is presented, which becomes exact in the limit
of infinite dimensions. The ground-state properties and the one-electron spectral function are obtained for a
single electron interacting with Einstein phonons by a mapping of the lattice problem onto a polaronic impurity
model. The one-electron propagator of the impurity model is calculated through a continued fraction expan-
sion, at both zero and finite temperature, for any electron-phonon coupling and phonon energy. In contrast to
the ground-state properties, such as the effective polaron mass, which show a continuous behavior as the
coupling is increased, spectral properties exhibit a sharp qualitative change at low enough phonon frequency:
beyond a critical coupling, one energy gap and then more open in the density of states at low energy, while the
high-energy part of the spectrum is broad and can be qualitatively explained by a strong coupling adiabatic
approximation. As a consequence, narrow and coherent low-energy subbands coexist with an incoherent
featureless structure at high energy. The subbands denote the formation of quasiparticle polaron states. Also,
divergencies of the self-energy may occur in the gaps. At finite temperature such an effect triggers an important
damping and broadening of the polaron subbands. On the other hand, in the large phonon frequency regime
such a separation of energy scales does not exist and the spectrum always has a multipeaked structure.
[S0163-182607)06931-7

[. INTRODUCTION: THE SINGLE The problem of a single polaron becomes relevant for low
POLARON PROBLEM carrier density, but also by itself, as a paradigm to study the
effect of strong coupling electron-phonon interactions. In the
The polaron problem is an old but not fully solved prob- jntermediate and strong coupling regimes, the small polaron
Ie_m of solid state physics. Themall polarontheory, which problem is already a nontrivial many-body probléhthe
will be considered here, assumes a short-range electrolyicy ity consists in describing the dressing of the electron
phonon interaction and explicitly includes the lattice by a coherent multiphonon cloud, moving coherently with it

periodicity: * We therefore aim to study systems where 0 as to form a quasiparticle. Perturbative techniques, start-
screening is effective. This addresses, for instance, the sitg2 as q P : - ques, St
ng either from the free-electron limit or from the atomic

ation of a metal consisting of different bands, one of them_ . : 21215 . ;
being narrow enough to allow for a strong coupling to!IMit (strong coupling expansioffs***fail to describe the

phonons. In fact, if the crystal can be considered as beinﬁressmg effect in the intermediate regimes. On the other
made of strongly deformable molecularlike units with Nand, nonperturbanz\a/e solutions based, for instance, on a
narrow-band electrons hopping from one to another, then thariational ansat?~*® are expected to give reliable results
conditions for a strong polaron effect can be realizdd. only for ground-state properties, such as the effective po-
realistic structures, for example, transition-metal oxides ofaron mass. But, to our knowledge, no satisfactory descrip-
organic metals, such units exist that provide lo@adcilla-  tion of the full spectral properties has been obtained so far.
tion) phonon modes and are indeed strongly coupled to well- Holstein’s molecular crystal modelinvolves tight-
defined electronic orbitals. Recently, interest in polaronbinding electrons coupled to dispersionless optical phonons.
theory has been revived, due to important classes of materAs a function of phonon frequency and electron-phonon cou-
als, including the high-temperature superconduétansi the pling, it displays a variety of interesting regimes. The strong
“colossal” magnetoresistance manganife8In fact, in the  coupling regime leads to the formation of small polarons,
insulating parent phase of superconducting cuprates, pavith a dramatic increase of the effective mass for low pho-
larons have been unambiguously detected by opticahon frequencieé!? On the other hand, for exactly zero pho-
measurements;® and some evidence of strong electron- non frequency, an adiabatic solution can be obtained with
phonon coupling effects has been given recently in the meself-trapping of the polarons appearing only above some
tallic phase'° In the manganites, on the other hand, strongeritical coupling value, in dimensions greater than bht:2°
static or dynamic Jahn-Teller distortions appear at the metal- In this context, the recent discovery of a nonperturbative
insulator transition§-® theory for interacting quantum problems, based on the limit
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of infinite lattice coordination(or dimensionality,34¢21=24  tive expansion, this can be clearly ascribed to high-order

opened a new way of attacking strong electron-phonon probvertex dressing. It is important to emphasize that even in an
lems. A few recent papers have addressed the problem dmtermediate _reglime_ of couplings a well-defined polaro_n qua-
superconductive and charge-density-wave instabilities of theiparticle excitation is present at low energy. Also, an impor-
metallic state, close to half filling, either in weak couplfitg, tant feature is the appearance of a discrete set of frequencies
using self-consistent techniqu&s’ or from the local impu-  Where the self-energy diverges within the low-energy gaps of
rity method?® also including a local electron repulsigthe  the spectrum. Those points are sensitive to disoftlerpar-
Holstein-Hubbard problejif® Also, a solution at finite den- ticular, at finite temperatures, they en_hanC(_e th.e. d_ampmg.and
sity in the adiabatic limit(zero phonon frequengywas thermal broadening of polaron states in their vicinity, leading
obtained® On the other hand, exact results for the spectraf® ?AQSS of coherence of ctjhe n:ca;ln polalronssubkljland. -
function of a single polaron at zero temperature were re- IS paper IS organized as 1ollows. In Sec. 1, we Intro-
cently reported by the authot$The aim of the present work duce the _qu_ste|n mole_cular g:ryst.al mo_del and we discuss
is to provide a complete description of the small polaronthe main limiting cases in a finite-dimensional lattice. In Sec.
crossover based upon the knowledge of spectral quantities fH we mtroduc_:e the_ impurity analogy and th.e.exact CFE
the whole range of parameters and also at nonzero temper olution of the impurity model, at zero and at finite tempera-

ture. The most striking features are found in an intermediat ure. In the same section the I|m|j[|ng re_sults (.)f the CFE are
coupling regime where no known approximation Schemeoresented and compared to the finite-dimensional case. Sec-

works tion IV presents the general results of the CFE solution of the

Similarly to the Hubbard model, the infinite-dimensional Impurity problem. Section Vis deyoted to cpnclusmns anpl to
limit allows one to map the Iattiée problem onto a self- 2 discussion of possible extensions of this method to finite
consistent local impurity model, here called “polaron density, in relation with a coherent potential approximation

impurity.” 3128 |t consists of a single-site electron-phonon (CPA) formulation of the CFE.
problem, embedded into a quantum effective medium char-
acterized by an effective “free” propagator, which has to be Il. THE HOLSTEIN MODEL

self-consistently determined. This mapping preserves all the In this section we shall summarize the main results con-

complexities of the quantum dynamics of the Ioroblem’cernin the Holstein model in finite dimensions, in the limit
namely, the interplay between electron and lattice fluctuas 9 '

tions at the local level The crucial point here is that for a in which analytical calculations can be performed. We espe-

single electron the impurity model can bpalytically solved gﬁ\él;;cfo dcigcszuc;rs] fgg:ﬂgv\?z)ﬂﬂﬁggon:ggh ﬁ?;ﬁnewéliln?e”r?yv
by a recursion formula for any noninteracting impurity siong can be compared with res'z)l(ts in finite-dimensional
propagator, leading to eontinued-fraction expansio{CFE) P

: : . attices.
solution for the fully dressed propagator. This unique featuré . . . - .
allows one to obtain at the end an exact solution for the The Holstein model consists of tight-binding conduction

lattice problem in the limit of infinite dimensions. This solu- electrons interacting with local dispersionless phonon modes.

tion provides directly, with modest computational efforts, theThe Hamiltonian is
ground state as well as the spectral properties in the thermo-

dynamic limit and at any temperature. Therefore it is some- H=_ > ¢ j(CiJraCj ,FHC)—g> ¢l i (a+a))

how complementary to numerical works performed in finite (iyo 7 o

dimensions, such as Monte Carlo simulatfdré or exact

diagonalization of finite clusterS:* Indeed, the former are + e, a'a;, (1)
1

limited to finite temperatures, and the latter have to deal with
finite-size effects. + . .

The main result of the present self-consistent impurityVherec; , (Ci ) creategdestroy$an electron with spim- at
approach is that, in the crossover regime, low- and highsitei, anda/ (a;) createsdestroy a phonon at sité. The
energy scales can be accurately described, as in the Mottopping matrix elements; ; connect nearest-neighboring
Hubbard transition probleif. Polaron states in the low- sites of a lattice ind dimensions and we assume they give
energy range appear as coherent strongly renormalizedse to a band of half bandwidth This model possesses two
quasiparticle states, while at higher energies the electron isdependent control parametéfsThe first one is the bare
incoherently scattered by a quasiclassical random distortiorgoupling constank = g% wot=|€,|/t, wheree,= — g%/ wq is
These features are clearly displayed in the low phonon frethe polaron energy obtained in the atomic lintit=Q0). The
guency regime, where the spectral density displays lowsecond one is the adiabatic parameger wy/t. A third pa-
energy peaks coexisting with a broad and incoherent highrameter can be conveniently introduced as a combination of
energy continuum. This provides a physically transparenthe above ones, as=g/wg, with @*>=\/y. While X and
representation of the polaron crossover. As the couplingg are commonly used as parameters in the perturbative
strength is increased, it proceeds through successive opeanalysis, the parametes, which measures the strength of the
ings of gaps in the spectral density, separating polaron subattice deformation involved in the polaron effect, will show
bands. At intermediate couplings, and decreasing the phondp be crucial in the strong coupling regime. Let us stress that
frequency, one finds that the dressing of electron states bythese parameters are defined from the bare energy scales
multiphonon coherent cloud drastically reduces the effectiveog,g,t in the Hamiltonian, contrarily to usual definitions in
electronic energy scales and leads to an adiabaticity “cataghe theory of electron-phonon interaction in metals where in
trophe” in the low-energy spectrum. In terms of a perturba-particular the dressed phonon frequency is used. It is worth



4496 CIUCHI, de PASQUALE, FRATINI, AND FEINBERG 56

At zero density, the following simplifications hold) A
general self-energy diagram consists of a single electron line
first emitting and then absorbing phonofis) The emission
(absorption of a phonon consists in subtractiigdding a
quantum of phonon frequeney, to the energy of the propa-
gating electron line.

The first statement comes from the absence of density
fluctuations in the zero density limito bubble diagrams, no
phonon renormalization Moreover, in the zero-temperature
limit all the phonons must be created from vacuum before
being absorbed. To illustrate the second statement, we first
notice that in a generic self-energy diagram involvishgpho-
non lines, it is always possible to choose an integration con-
tour that avoids all the poles and cuts of the electron Green’s
function, since the retarded electron propagator is analytic in
the upper half plane. Then the only contribution comes from
the poles associated to the phonon lines.

A. Weak coupling and adiabatic limit

O ] o0 The perturbation expansion of the self-energy to second
7L order ing gives a local(k-independentself-energy:
FIG. 1. A schematic plot of the regions of parameter space Ez(a)):gzgo(w—wo), (4)

(N\,y) for the Holstein model in an infinite-dimensional Bethe lat- . .
tice. Below the dashed lineaf=1) multiphonon processes are Wheregy is the local free propagator obtained by the knowl-
important. On the bold horizontal axis the adiabatic limit holds. The€dge of the free particle density of stat€30S) N(e) as
point in the upper right corner is reached at the atarsi® limit. I~ Go=JdeN(€)(w—e€) 1. Notice that dimensionality enters
the shaded area perturbation thetsgnall\) or Holstein’s approxi- ~ only through the free DO The electron effective mass, in
mation (large y) are valid. Notice that perturbation theory extends the case of a local self-energy, is easily calculated via
its validity up to the adiabatic critical value for localizatiap (see
text). m* dRe> (w)
=l 5)
m dw E

defining the following regimes and limits, which are relevant 0
to the Holstein model(i) weak (strong coupling A<1  whereE, is the ground-state energy.
(>1); (i) small (large phonon frequency<1 (>1); (iii) Let us first consider the low phonon frequency regime. In
multiphonon regimex?>1; (iv) adiabatic limitwy,=0, finite  this case for electron states lying at the bottom of a band,
\. Figure 1 shows the corresponding regions in theyj dimensionality effects enter through the band shape near the
plane. band bottom and control both the behavior of the effective

Throughout this paper we shall concentrate on the probmass and the spectral properties. We assume that near the
lem of one electron in interaction with phonons, i.e., a syshand bottom é=—t) N(e)~ (1+ e/t)¥?~/t, then one has
tem in which density is zero in the thermodynamic limit. To from Eqgs.(4) and(5) for 0<d<4 (Ref. 40
analyze the perturbative behavior of the model we shall first
discuss the simplifications due to this limit. The discussion is
restricted to the zero-temperature limit but can be easily gen-
eralized to finite temperaturgsee Sec. Il B For a single

electron the Green's function in the site representation can b&¥herekq is a numerical constafit. It is not surprising that
defined as we do not recover the expected “Migdal” resulttI\. In

fact this last result is obtained by assuming an infinite flat
G ()= —i<0|TCj(t)CiT(0)|0>, 2) band,_which could _be the_qas_e of a metal Whose_Fermi en-
_ ergy lies far from singularitieglike Van Hove onekin the
where|0) is the vacuum for phonons and electrons and thepOS. From Eq.(6) we can define an effective coupling
unessential spin indices are omitted. One observes that thef};e:m(EoJr wolt as in the case of Van Hove singularifiéin

is only one possible ordering>$0) of theT product, so that . = . .
the function is purely retardet. Then the standard perturba- grder to writem*/m=1+ . The effective coupling strength

tion theory is introduced in the site representation by definA tends to zero for vanishing phonon frequency in dimen-

ing the electron self-enerdy 3 ;(w) through the Dyson sionsd>2 (keeping\ constany, while it goes to infinity for
equation d<2. Surprisingly, aperturbative analysis provides non-

trivial information about the adiabatic limit: fod>2 we
expect free-electron behavior while fd# 2 the perturbation
Gij=[%]Ii+ ; [GoliiE kGl 3 expansioraround a delocalized solutidiails in the adiabatic
' limit for any finite \. This is consistent with the nonpertur-
whereg, is the free-electron propagator. bative findings of Ref. 19, where it is shown that renormal-

*

H=1+)\kd’yd/271, (6)



56 DYNAMICAL MEAN-FIELD THEORY OF THE SMALL POLARON 4497

ization effects are absent up tofiaite value of A=\, for  electron density of states. This property will be revealed in
d=2, while ind=1 the behavior is polaronic for any finite detail by the self-consistent local impurity theory analyzed in

value of\.*3 Secs. Il and V.
In the opposite case of large phonon frequency, calculat-
ing the self-energy in Eq4) for large w, and taking advan- B. Atomic and large-phonon-frequency limits

tage of the asymptotical behavior of the free propagator at

high energy, it is easy to get The atomic limit is defined as the zero hopping case

(t=0). It can be understood also as an infinite coupling limit
m* N—o. One considers a single electron on a single site lattice
— =1+a2 (7y  (atom whose Hamiltonian is given by Ea_jl) with t=0. In
m the case of zero bandwidth the Hamiltonian of El.can be

] o diagonalized by the unitary Lang-FirsoyLF) trans-
It appears as a first-order expansion in powewdf As we  formationt2

shall see this expansion is actually resummed, in the large-
phonon-frequency limit, by the use of the Lang-FirSov U=exdac’c(a—ah]. (10)
transformation.

It is worth comparing the spectral properties obtained ailhe effect of this transformation is to shift the phonon op-
finite bandwidth and zero density with those derived up toerators by a quantityr so that the electron-phonon interac-
second order irg in the classical work of Engelsberg and tion is eliminated. It introduces a new fermion, the polaron,
Schrieffef? in the case of an infinite bandwidth. Since the which carries this phonon field shift
self-energy is local one can define the spectral function as a
function of energye and frequencyw (Ref. 39 c—Xc, (13)

where X=expa(a—a'). Once the transformation is per-
(8) formed, the Hamiltonian becomes diagonal and the ground-
state energy is the polaronic energy= — 9%/ w,, the excited
_ . _ polaron states having an energy+ nwg.
where e runs over the noninteracting band energigsf a Due to the presence of an electron at a given site, the
translationally invariant lattice. The electron spectral densityjattice is deformed. The magnitude of this effect is measured
Muw)=—(1/m)ImG(w) is derived from Eq(8) by integrat- by the local part of the static electron-displacement correla-

1

1
A(e,(u)=—;|m m,

ing over the energy distribution. tion function defined as
In agreement with Ref. 39, one easily obtains a quasipar-
ticle excitation spectrum(with ImX=0) at energies Co=(ni(a;+a). (12
Eo<w=<Ey+wy and an incoherent broad spectrum at larger
energies. In the atomic limit one get€,=2a, which means that the

In the low phonon frequency case the spectral density ofitomic ground state is that of a localized polaron, i.e., an
the low-energy quasiparticle states can be determined by trglectron surrounded by a “cloud” represented by a coherent
low-energy properties of the free DOS. A band of coherentGlaubej phonon state, with an average numiafa)= a?
excitations could separate from incoherent states, dependirgf phonons. The electron propagator can also be calculated
on the dimensionality. The equation that determines the banafter the LF transformatio
edges is

* a,2ne7 a? 1
w—ReS(w)=~t. ©) G(w)=2 — P vt (13)

The minus sign determines the band bottoroluding the  The resulting spectral density appears as a Poissonian distri-
ground-state energwhile the plus sign determines the band bution of § peaks separated by the phonon frequengyBy
top. Using the self-energy of E() it is easy to see that near exploiting the Lehmann representation of the Green’s func-
Eo+ @y, RES diverges ind=1 andd=2 as w Y2 and  tion one can see that such a distribution is due to the projec-
In(w), respectively, while it is well behaved fai>2. In  tion of a localized zero-phonon state onto thephonon
contrast with Ref. 39 the finite-bandwidth effects taken intopolaron eigenstates of the Hamiltonian. This can be usefully
account by Eq(9) generate a gap id=1,2. More precisely understood from a gedanken x-ray or optical absorption ex-
the amplitude of the gafin units of the bandwidthbetween  periment, where the wave function of the localized electronic
coherent and incoherent states scales with)¢ ind=1 and  final state(with undistorted latticeis expanded onto th@at-
with exp(~1/Avy) in d=2. In d=3 the real part of the self- tice relaxed polaron eigenstates, which builds the electron
energy does not diverge B+ wg so that a sufficiently large spectral function. From Eq13) we see that the Green'’s
coupling is necessary to fulfill E49). In this case we expect function has a spectral weight close to the ground-state en-
the appearance of a gap only fargreater than a certain ergy that is exponentially small in the interaction strength,
value, which depends on the phonon frequency and explicitlyhile the spectral weight is maximum for excitations involv-
on the whole band shape. ing approximatelyn~ «? phonons.

The discussion of this subsection suggests that, in dimen- Let us now consider the action of the hopping. An ap-
sions larger than 2, perturbative expansions fail beyond somgroximation valid for large phonon frequencies is derived
critical coupling above which gaps open up in the one-from the LF transformation, applied to the Hamiltonian with
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a nonzero hopping term. The hopping term, modified by thediagonalizatiof® show that the adiabatic ratio,/t must in-

transformation, represents the hopping of fiadaron crease asy? to ensure the validity of the Holstein approxi-
mations(see Fig. 1
tiiCl oS ot XIXiC! ¢ 0 (14) Finally, let us give the result for the electron propagator in

. L L i the atomic limit, at finite temperature. The Green’s function
The Holstein approximatiénconsists in averaging the po- is then defined generally by averaging on phonons i

laron kinetic energy on the free phonon variables, thus obpohiem is that of a “cold” electron in a thermalized phonon
taining at zero temperature an effective hopping amplitude p4t1y | the atomic limit, it is obtained in the same way as at

T=0, yielding the pole representatitn

ti'j<O|X;er|0)=ti’jef‘“2 (15)
+
for i,j nearest neighbors. This approximation amounts to ne- Glw)= > 67(2N+1>a2|n{2a2[N(N+ 1)]42
glecting phonon emission and absorption during the hopping n=—o
process. It is believed to give correct results whepis the
largest energy scafé. « @Nwo/2T 1 (20)
In the same spirit, following Alexandrov and Ranninger, o—Nwg— €’

one can go further and use the same approximation to calcu-

late theelectronpropagator, also for finite electron densify, WhereN=exp(—w,/T) is the phonon thermal weight and
which gives I.{z} are the Bessel functions of complex argument.

Comparing this expression with E(L3), we remark that

oo F 1 gPe— P atT#0 tr_le corresponding spectral function displays peal_<s at
S — _E - frequencies below the polaron ground-state energy, with a
w—€—€, n=1 N*g n! spectral weight that is exponentially small at low tempera-

tures. This apparent paradox of having electron states at
lower energy than the ground state can be explained if one
interprets these states as polaron states formed after absorb-
ing n thermal phonons from the thermal bath, with a prob-
where €f = e,exp(—a?) runs over the renormalized band- ability exp(— Bnwo/2). This reduces the cost in lattice en-
width obtained by replacing the free hopping parametey  ergy required to form the polaron. Since the polaron energy
t* =texp(—?). This solution shows a coherent low-energy results from a balance between tfiositive) cost and the
quasiparticle band describing a polaron of effective mass (negativg electron-lattice coupling energy, it is possible to
create states lying below the zero-temperature ground-state
m* o2 level. The price to be paid is that these states are incoherent,
H—e 1 due to the incoherenttherma) phonon distribution. Also,
the chemical potential goes to minus infinity, allowing the
located arounck,, together with an incoherent structure at fermion occupation number to be zero at any energy for one
higher energies. particle at finiteT.

Let us give a physical interpretation of this result by
showing that at least for the low-energy states it corresponds
to substituting the exact self-energy with the atomic one.
This is valid in the casevy>t where a generic scattering
process will lead electrons through intermediate states out of The dynamical mean-field theory is developed as the ex-
the band. In this scattering process the system can be thoughtt solution of an infinite-dimensiorfdlor infinite connec-
of as a flat band “atomic” system in interaction with high- tivity lattice. It has been showf*that to have a finite free-
energy phonons. For frequencies near the polaron grounelectron kinetic energy the hopping matrix elements must be

1
A(Ek,w):_glm

1
X

: (16)

— *_ —
w— € —Nwo— €

Ill. THE IMPURITY ANALOGY AND THE EXACT
SOLUTION FOR A SINGLE ELECTRON

state energy,, the atomic self-energy reads scaled with the square root of the lattice dimensionality or
lattice coordinatior?® A second point to deal with is the
z(w):w(l_ea2)+ea2€p, (18) proper choice of the infinite coordination lattice in order to
get a finite value of the ground-state energy. In fact, a prob-
Using the definition Eq(8) we get the spectral function lem arises, for example, in the case of a hypercubic lattice,

which has a Gaussian DOS with an infinite tail towards low

1 e energy*® For large but finite dimensions the scaling of the
Ale,w)=— —Im———, (19 hopping matrix elements implies that the ground-state energy
of one electron is proportional tgd. Therefore, the forma-
where €* =eexp(—a?) describes the renormalized band. tion of a small polaron requires an electron-phonon coupling
Thus one recovers the low energy part of Etg) from an  energy of the same order of magnitude and a coupling con-
approximation to the self-energy that is justified in the largestant\, which diverges with/d. Indeed, just like the forma-
phonon frequency regime anaear the quasiparticle po- tion of a bound state from an external potential, polaron for-
laronic peak However, fora?>1, i.e., when multiphonon mation by self-trapping requires an infinite coupling strength
effects are important, the validity of the Holstein approxima-in an ordinarily connected lattice in infinite dimensiojsee
tion is questionable even in the case of lalge finitepho-  Ref. 3). To overcome this difficulty we consider a Bethe
non frequency. Results from small cluster exactlattice of infinite coordinationd. The hopping matrix ele-
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ments in Eq(1) have been scaled &s; =t/2\/d with t being  effective “free” impurity propagatorG,, while local pro-

the half bandwidth of the lattice. In the Bethe lattit®ee  cesses at the impurity site are taken into account by the self-

Ref. 47, Sec. 5.3)only self-retracing paths are allowed. A energys, in Eq. (23).

restriction of the possible paths to go from one site to another This impurity problem can be made more physical by

allows this lattice to mimic a finite-dimensional one also in parametrizing it as a “polaron” Anderson impurity model

the limit of infinite coordination, giving rise to a finite band- involving a localized ‘d” level coupled to a local phonon,

width semielliptical free DOS, and hybridized with a fictitious conduction electron band
“c” of dispersionE,:

2
__Z 22— 2
N(e) 2 e (21) Himp= > Excic— > Vi(ctd+dic)+wpa'a
k k
which correctly simulates the low-energy features of a three- —gdtd(a+ah), (24)

dimensional lattice. More generally, in interacting fermion
problems, with this particular choice, localization phenom-with new impurity parameterg, andE, being related to the
ena can be found even in the infinite-dimension limit; for propagatoiG, by
instance, the Mott-Hubbard transition is correctly obtained at
a finite coupling for the half-filled Hubbard mod#!. G Yw)=w— f = _A(E)
L . 0 (w)=w dE—— (25)

Let us now come to the essential simplification occurring « w—E
in the limit of infinite dimensions, namely, the fact that the
electron self-energy isocal in space. The usual argument
that holds for local electron interactidfi€?°can be worked 1
out also in the context of the Holstein model. One can carry A(E)= =, VZS(E—Ey). (26)
on the standard argument but taking into account also the Nk

phonon self-energies and electron-phonon vertices instead gt originallattice Green’s function is that of thel level.
the electron-electron four leg vertic&This gives the scal- Therefore, solving the problem defined by the impurity
ing of the real-space propagator with the intersite “Manhat-pamiitonian of Eq.(24) for a givenG, and applying the
tan” distanceR=|i — || aS_G(R)“l/\/aR- Using this scaling  self-consistency conditions Eq&22) and (23) one has the
and the skeleton expansion of the vertex funct|0_n one Ccago-called local impurity self-consistent approximation
prove that the self-energy is not only local but thfjepends (LISA), which is the exact solution of d—d problem. In-
only on local phonon and electron propagatdf$*in prac-  terestingly enough, the above impurity Hamiltonian has been
tice in a generic self-energy diagram all the internal lines argged in the past to model core-level relaxation in the x-ray
local propagators. _ problem?® However, in the context of the LISA approach, its
Using the locality of the self-energy, the lattice propaga-sjgnificance becomes much more general. Just as the repul-
tor in the k space is then given byGi(w) sive Anderson impurity model for the Hubbard model, it
=[w—e—3(w)]"*, where ¢ is the tight-binding elec- plays the role of a “paradigm” impurity model for the phys-
tronic dispersion. WritingG;; =1/NX,Gy and introducing ics contained in the Holstein Hamiltonian. Though the ad-
the free DOS adN(e) =1/NZ, (e~ €) one has(dropping  vantages of using an impurity parametrization of the %

and

the site index foii = j) problem have been extensively reported in Ref(&4 also
refer to the original referencesve must stress, as a general
. N(e) fact, that such a parametrization is not unique in the LISA
Glw)= | de—a—. (22)
wo—2(w)—€ context.

Notice that in infinite dimensions the properties of the lattice
enter only through the free-electron DOS.

Having a local Se|f-energy, one can demonstrate follow- In the case of one Single electron the Green'’s function at
ing Ref. 22 the existence of an impurity model equivalent toZ€ro temperature in terms of the impurity operators is
the lattice problem. This can be readily seen by writing the .
real-space Dyson equation for thexal propagatoiG;; [Eq. G(t)=—16(t)(0[d(1)d"(0)[0). (27)
(3)] in two steps. The first one involves self-energy contri-This function describes the propagation amplitude of the im-
butions on siteg, with j#i. Once these contributions are purity electron created from the vacuum at time zero and
resummed, one is led with a modified local propagator, dedestroyed at time. Fourier transforming Eq(27) leads to
noted byG,. The latter can be used in the full Dyson equa-the resolvent
tion for G;; , reintroducing the missing self-energy contribu-
tions that involvethe same site. ilt leads to thdocal Dyson
equation forG;; =G (assuming translational symmelry

A. The zero-temperature formalism

G(w)=(0|d d'lo), (28)

w+iéd—H
G(w)=[Gy Hw)—3(w)]~ % (23)  Wwhich has the correct prescriptiafi>0 for convergence of
the time integrals. The vacuum energy is defined here to be
The problem is therefore that of an impurity embedded into &ero.
medium. All the electron-phonon scattering processes occur- Solving the lattice problem requires finding the solution
ring on sites other than the impurity site are contained in thef the impurity problem for any give®,. Let us separate the
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impurity Hamiltonian of Eq.(24) into Hy and H;, where leading to the recursion formula for ti&, .,'s

Hg alone leads to the effective free propagabyrandH, is

the local interaction term, then an operator identity for the

resolvent holds Gn,mZG0n5n,m—ng GonXn,pGp,m> (32

1 1 1 1
Z—H z—H, Tz Hy Hio—- (29 whereGy,=Go(w—nwy) is the diagonal element of the free
resolvent andX,, , are the phonon displacement matrix ele-
The diagonal matrix element of this operator on the impurityments:
zero-phonon statd'|0) is the Green’s function of Eq28).

To proceed further one needs to introduce the generalized
mat?ix element® ’ Xnp=\P+180 51+ VPO p-1. (33
an 1 (ahm Equation(32) is solved in matrix notation:
Gpm=(0| =d————d' 0) (30
' 1 w+id—H |
vt Vmt G =Gy 1+gX. (34)
so that the elemenG, will be the solution of theT=0
problem. One immediately recognizes that, due to the particular form

In the case oH, given by Eq.(24), to express the matrix of X, G~ is a tridiagonal matrix, so that the solution of the
element of the right term in Eq29) one takes advantage of problem is reduced to the inversion of a matrix in arbitrary
the linearity of the interaction term in the electron densitydimensions. Following the lines given in Ref. 4§ee alter-
operatom=d'd. Namely, introducing a set of zero-electron natively Ref. 48 one can express the diagonal element of the

p-phonon stateﬁ),p)z(aT)p/\/am) one can write G matrix in terms of the diagonal and nondiagonal elements
of G~ L. The local propagatofthe 0,0 element 06) is ob-
Hi= d'op)oplda+al), 31 tained in terms of a continued fraction expansion, as a func-
: % 10.p)(0pld( ) S tional of the “bare” propagatoG:
1
G(w)= >
1 g
Gp (w)— >
4 29
Gy (0= wg) — 392
Gy H(@—2wg) ———3
Go (@—3wg) =+ . (35

Due to the impurity analogyhis is also the local propagator of the original lattice problepmovided that Eqs22) and(23)

are fulfilled. As a special case, one notices that in the atomic limit, se®jf@) = » 1, Eq.(35) is nothing but an alternative
representation of the atomic propagator, B@). In the general case, the self-energy is immediately recognized as a functional
of Gy, from the self-consistency conditid@3)

g
S(w)= 27
Gy (0= wo)— =
Go w—2w)— —
Gy (w—3wg)—-". (36)
|
This allows one to solve the impurity problem in the dynami- . t2
cal mean-field theory. Once the self-energy is obtained for a Go (0)=w—7G(w), (37

given Gy, the local lattice propagator is calculated from Eq.

(22) and using Eq(23) a new G, is obtained. After few

numerical iterations a fixed poirsj is reached, and the which, replacing Eqs(22) and (23), simplifies the calcula-
lattice local propagatd® ~*=G} ~*—3[G} ] is determined. tion.

We emphasize that E§36) only involves adiscreteset of Let us now show diagrammatically how formua6) ex-
values ofG, and this turns out to be a drastic simplification actly sums up all of the self-energy contributions. It is indeed
of the calculation. Moreover, in the Bethe lattice the impurity possible to relate term by term the expansion of &6) in
and the local propagator are simply related: powers ofg consideringG, as a parameter in the skeleton
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_[I_\:/_\L whereG, , are the diagonal elements of the correlation ma-
= gZGO(l) = trix defined in Eq.(30) and calculated by means of the
) Dyson equatior(34).

2

0] g m_l_ 5:%:7 N The calculation of the diagonal elemei@s ,, follows the

= = lines given in Refs. 49 and 48. The inverse of each
-1 2
GO (1)-2g GO(2) b) <) Gpn(w) is now the sum of annfinite continued fraction,

which is similar to the result af=0 plus afinite fraction,
m TN which formally takes into account the absorption processes
+ + > > > > > +
\\,v\/‘/

at negative frequencies. This reads

1
+t§m+ x»f;AN\\\M,/ +. Gol(w)= ————— (40

Gy Hw)—A-B’

FIG. 2. The CFE expansion diagrams obtained by a truncatior\1Nhere
of the CFE at the first stage and some of those obtained at the
second stage. Diagranta), (b), and(c) represent respectively the 5
second and fourth order perturbation theory terms. In this case in- A= ng
ternal propagators are assumed to be fige 1 (n— 1)92

Gy (w+wp)— 5
expansion of the self-energy. The relation is obtained G51(w+ 2wg) — (n-2)g
through the following stepdi) first obtain a truncation to a g2
given formal ordergk of the skeleton expansion of the self- '
energy using the rules previously introducéd). Express the
internal fully interacting propagator of the skeleton expan- (41)
sion in terms of the “bare” impurity propagatdg, using and

the self-consistency conditiori22) and(23) and expand the

.._Gal(w-i- Nwg)

result togk. The result is equal to the expansion of the con- (n+1)g?
tinued fraction to thdormal orderg. B= (n+2)g2
It is now instructive to understand the meaning of a finite Ggl(w— wo) — g

truncation of the CFE. The self-energy given in [E8f) can G Y w—2w;) (n+3)g?

. . w— 4LWqg) —
be defined recursively, 0 0 Go Hw—3wg)—- - .

) (42
SPY(w)= — P9 ) , (38)  The solution of the problem now follows the same lines as
Gy (0= pwg) —3%P(w) the zero temperature case.

The relation between the CFE expansion and the pertur-
bation theory can be exploited using the simplification that
holds in the zero density limit at nonzero temperatures. The
rules for constructing a self-energy diagram at nonzero tem-

states|n) with n_sN appear as inte_rme_dia_te stateshis erature are easily obtained as a generalization of those ob-
operates a selection of diagrams, which is different from thal,inaq in sec. 1I B.(1) A general self-energy diagram con-

based on the perturbative expansion, which by contrast iSisis of a single electron line emitting and absorbing

related to the number of interaction vertices. Indeed, at eacghonons(Z) The emissior(absorption of a phonon consists
step of t_he trgncatlon an |nf|n|§e set of _dlagrams is re5p, subtractingadding a quantum of phonon frequenay, to
summed.including vertex correctiongsee Fig. 2 As oné  yhe energy of the propagating electron line. Associate to each

cr?n easily see ?y writing thehexpansmn for thfe at(I)r_nlﬁ IImIt'process a factor * fg(wg) when subtractingyg and a factor
the parameterr® measures the importance of multip onon ¢,y when addingwy to the electron line.

effects and the number of phonoNsneeded for an accurate The introduction of the temperature energy scale,

description of all the scattering processes should be mMuch os the truncation of the series of CFE £Q9). For any
larger thana?. It is interesting to note that a self-consistent finite n we also consider, in the practical evaluation of the

no_ncro_ssing_ approximatio_n such as a Migdal scheme,_ alWay?pectral function, a finite truncation d@ of size N. We
fails, since it can be put in a CFE context by changing all '

L n therefore have a maximum number of phondhsn in an
coefficients ofg” in Eq. (36) to 1. intermediate virtual state of whicN are emitted andh are
absorbed from the thermal bath. Therefore the criterion of
B. Generalization to a thermalized lattice truncation valid af=0 (N> a?) has to be supplemented by

The above formalism can be easily generalized to nonzer§!€ conditionn>T/wo.
temperature. The trace performed over free phonon states
gives C. Limiting cases in the LISA approach

where p is the stage index of the CFE f&. An N-stage
truncation of the CFE is defined by neglecti®f' ") in Eq.
(38). In the resulting diagrammatic expansionly phonon

We discuss here some limiting cases based upon the LISA
Glw)=(1—e B e , 39 approach and show that the main properties of the finite-
(@)=( )zn: nnl @) 39 dimensional polaron problem are captured by the infinite-
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dimensional limit. We also analyze the adiabatic limit,
which, when the polaron becomes localized, involves the
breaking of translational symmetry and consequently cannot
be achieved using the CFE, which assumes this symmetry.
By expanding to second order the LISA self-energy given

L.5
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by Eqg.(36) and substituting the free propagator for the self- 0.5
consisteniG, we obtain the perturbative relation of E@). <
Then from Eq(5) and using the semiellipticdBethe lattice > 0
DOS of Eq.(21) one gets the effective mass: 0.5
m =1-2\y|1 1y (43 1
m 1 Va 1)
. -1.5 —
In the low-phonon-frequency regime, this becomes -3 ) -1 0 1 2 3
m* X
F: 1+ \/2_77\’ (44 FIG. 3. The adiabatic potential fdg) A<\, (b) N{<A<A,

and(c) A>\. (see text
which shows the same behavior as in a regular three-

dimensional cas¢see Eq.(6)]. In the large phonon fre-
guency regime we obtain the same result as(E£g.
The fourth-order term in the self-energy expansion is

procedure from Eq(13), one recovers an expression that
agrees with the exact results only for large phonon frequen-
cies.

The Holstein approximation described in Sec. Il B can be
recovered at low energy by the CFE expansion of the local
propagator whenw is the largest energy scale in the self-
consistent propagatorG,. In this case, all the
Ggl(w—nwo) with n=0 appearing in Eq(35) can be re-
2(b)] plus a vertex correctiofFig. 2(c)]. In the zero density placed by their atomic value, giving an atomic self-energy
limit and in infinite dimensionsthe two contributions are that yields the exponential renormalization of the effective
exactly equal As a conseqguence, any noncrossing approxiiass as shown in Sec. lIl.
mation such as the self-consistent approximation of Engels- Another instructive formula can be derived from the CFE
berg and Schrieffé? is not valid here. In fact, this kind of in the limit wo—0. In this case all th&y(w—nwy) in Eq.
approximation can be justified by the conventional Migdal's(35) can be replaced b§,(w) and one recognizes the con-
argumer® restated for Einstein phonof%.This argument tinued fraction expansion of the complex error functién,
requires the conditiol wy/Er<1, whereEg is the Fermi  which can be expressed in terms of an integral:
energy*2 which is trivially invalidated in the zero density
limit where Ep=0. dx

Concerning the spectral properties, most of the perturba- f E
tive considerations of the three-dimensional cd&sec. I) are
valid. Due to the fact that the real part Bfto second order The physical interpretation of this formula is that the electron
does not diverge, a finite gap arises in the spectral density fanoves within a field of displacements with a Gaussian dis-
sufficiently large values of the phonon frequency tribution. Such a distribution can be understood as the “clas-
[y>2/(1+2\)]. sical” limit of the quantum probability distribution of local

In the atomic limit, all the self-consiste@, *(w—nw) lattice displacements when the phonon frequency goes to
in Eq. (35 must be substituted by their atomic value zero while keeping the elastic energy finite. Let us remark
w—Nw,. The resulting continued fraction can be also inde-that as long as the hopping self-energy term in &®) is
pendently obtained by solving directly the atomic modelneglected one recovers a Gaussian DOS as predicted for
through the resolvent technique described in the previougo—0 by the atomic limit.
section. The advantage of this formulation, compared to the The adiabatic limit is reached when baify andg go to
LF result[Eq. (13)] is to yield immediately the self-energy as zero, keeping\ fixed. In this case the CFE yields the free-

a functional of the free atomic propagator. The exact result aglectron propagator. The problem is that one needs to con-
finite hopping could then be understood as the result of &ider the possibility of translational symmetry breaking. We
coherent potential approximati@¢@PA) procedure. By CPA have developed an independent scheme presented in the Ap-
we mean the self-consistent approximation that amounts tpendix that allows an exact solution at zero phonon fre-
substituting in the CFE form of the atomic self-energy aguency,keepingh finite. The ground-state energy is deter-
self-consistent Green’s function for the atomic 6hdt is  mined by minimizing the total energy with respect to the
worth noting that although the “pole” and CFE expressionslattice displacement, described by a classical variable. Ac-
of the atomic propagator are equivalent, they give differencording to the shape of the total energy curve as a function of
results when extended to finite hopping through the CPAthe lattice displacemerisee Fig. 3 we find three different

For example, if one extracts the self-energy for the CPAregimesi(i) A<\(. The only stable minimum corresponds to

3 4(0)=29Gi(w— wg) Go @ — 2wp). (45)

From the previously stated rules, is the sum of two con-
tributions, e.g., a fourth-order noncrossing diagréfig.

1

Glw)= Gol@)—gx"

(46)
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an undistorted latticédelocalized solution, strictly free elec- -1 e
tron). (i) N.<A<\.. The delocalized solution is still a
stable minimum, but a relative minimum appears in the po-
tential at nonzero lattice deformation, corresponding to a 24
metastable localized solutiosmall polaron. (iii) A\>\;.
The stable minimum corresponds to a localized solution, ~3
wherex.=0.649, ... and\,=0.843, ... . e
Therefore in thedl— Bethe lattice a first-order localiza-  [I]
tion transition occurs at. from a delocalized free electron -4
to a localized polaron. Moreover, for finite values of the
coupling, the localized polaron extends over several lattice
shells of neighbors around a given localization site, just as in
finite dimensions? All these features are quite similar to
those found in regular two-dimensional and three- -6 s : L L
dimensional cubic lattices. 0 1 2 7\. 3 4 5
To summarize the discussion of this section, examination
of the various limiting regimes in the special case of an FIG. 4. Ground-state energy wsfor three different values of
infinite-dimensional Bethe lattice shows the consistency ofne parameter?=1,2,5 (triangles, asterisks, diamond<ontinu-
this limit with a three-dimensional situation. This is true asys line is the adiabatic limit; the dashed line is the strong coupling
well in the adiabatic regime as in the perturbative and larggesyit.
phonon frequency regimgshaded areas in Fig).1The dy-

namical mean-field solution, exact in infinite dimensions andviously derived by Gerlach and “ben5 However, the

presented in the following section, allows us to complete the i . o
phase diagram and can be thought of as a controlled interp(9_round state properties are quantitatively calculated here for

lation scheme valid at least qualitatively also in finite dimen-any value of the parameters.
siond>2 q y Let us discuss these results in more detail. Concerning the

ground-state energy depicted in Fig. 4 one sees that it is

bounded from above by the adiabatic result

IV. RESULTS FROM THE DYNAMICAL (wo=0,a?—) and from below by the large-phonon fre-
MEAN-FIELD THEORY quency result @,==,a?>=0,E,=—\). As the coupling in-

. . creases, the crossover occurs Xoof the order of\ ., where

Let us now turn to the self-consistent solution for the)\c is the critical coupling strength obtained in the adiabatic

infinite-dimensional lattice with a semielliptical density of |i it The pehavior of the effective mass is shown in Fig. 5.
states, by solving Eqs37) and (35). We first discuss the For large\ it increases witha?, but remains smaller than

ground-state properties, as deduced from the behavior qjlolstein’s prediction of Eq(17), which is attained asymp-
2 (w) close to the ground-state energy. '

totically only for very large coupling®

Notice also that fow?=1 we do not observe any change
A. Ground-state properties in the curvature of the effective mass, showing that no ap-
, Spreciable crossover occurs but rather a smooth increase of
t6he effective mass from 1 towards exp(42.7. On the other

The knowledge of the self-energy and of the Green
function allows access to the ground-state properties: th
ground-state energy, which is evaluated by solving @g.
the electron-latticdocal correlation function defined in Eq. ' ' ' ' —
(12), which can be evaluated using the Hellmann-Feynman 10 |
theoren® from the first derivative of the ground-state energy
with respect tog; the electron kinetic energy, i.e., the aver-
age over the ground state of the hopping term of the Hamil- é
tonian Eq.(1), which, using again the Hellmann-Feynmann E
theorem, is calculated as a derivative By with respect to
t; the average phonon number in the ground state, which can 10 }
be obtained as a derivative of the ground-state energy with
respect tow,.

The ground-state properties are summarized in Figs. 4-8.
They illustrate the above relevant quantities as functions of
the coupling constant for three different values of?, 1, 2,
and 5. The polaron crossover is seen as a continuous chang 1
from weakly dressed to quasilocalized electrons. The cross-
over almost disappears far’=1, while it becomes sharper
for large a®, approaching the first-order localization transi-  FiG. 5. Polaron effective mass in units of the bare electron mass
tion observed in the adiabatic limibo=0 (see Appendix s\ for three different values of the parametér=1,2,5(triangles,
The existence of a smooth crossover rather than an abrugsterisks, diamongls Arrows mark the Holstein’s approximation
transition (for finite wq) corroborates the general proof pre- result expé?).
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5

41

FIG. 6. Polaron kinetic energy \s for three different values of
the parameteu2=1,2,5(triangles, asterisks, diamond<ontinu-
ous line is the adiabatic limit result.

FIG. 8. Average number of phonons in the ground state f&r
three different values of the paramete‘°r=1,2,5 (triangles, aster-
isks, diamonds Arrows mark the strong coupling resutf.

hand, one notices that for<\., the effective mass dimin- @ only asymptotically for very large coupling. As a general
ishes asa? increases, in agreement with the adiabaticproperty, one must stress that the Holstein values for all the
(a2_>oo) prediction of having unrenormalized electrons for above quantities are obtained assumirgcal lattice defor-
small couplings. Therefore, the mass renormalization as gnation. The gradual behavior we find towards these values is
function of o> behaves in opposite ways for<\. and due to the finite extension of the polaron, i.e., of the electron
A>\.. For infinite a® (wo=0), m*/m jumps from 1 to Wwave function and lattice deformation over several shells of
0, lattice neighbors. This is also true in tde-o limit, and in

The spectral properties, discussed in the next paragrapRarticular causes the kinetic energy to be nonzero, even in
will clarify this singular behavior, which indeed reflects the the adiabatic limit folx>\. (see Appendix
breakdown of the perturbation theory foe>\. Recently, a numerical stufyby diagonalization on small

The ground-state kinetic energy is shown in Fig. 6. Againdusters has led to the conclusion that the polaron crossover
a crossover is found as a change of curvature only foPccurs when both conditions?>1 andA>1 are fulfilled.
a®>>1 and becomes sharper as the adiabatic limit is apAccording to this interpretation, to have a polaron one re-
proached. Figure 7 displays the electron-phonon correlatiofiuires that\>1 for y<1 or a®>1 for y>1. CFE results
function (i.e., the local deformation of the latticéTo make a  are in qualitative agreement with this statement since we
comparison with the well-defined adiabatic limit, it is conve- observe no appreciable crossover for any value pfovided
nient to scale this quantity by the strong coupling valuee®<1, and in the opposite case the crossover is found at
2a. A sharp crossover towards large electron-lattice locapround\~1 and becomes sharper &g is increased. A
correlations is found for large?. Similarly, the number of better understanding of this behavior can be gained by plot-
phonons in the ground state, shown in Fig. 8 attains the valuéng the effective mass in the whole parameter spage (
\), Fig. 9a). The isolines corresponding to large effective
mass define the polaron region. We see that for largand

1 y the effective mass depends only af as predicted by the
strong coupling theory. A% decreases, the crossover gets
081¢L sharper until it becomes a real first-order localization transi-
| tion for y=0 at the adiabatic critical valug.. Finally it
8 06 must be remarked that all these results are in qualitative
Or agreement with Monte Carlo simulatioffs>? which show
- thatat finite phonon frequendye ground-state properties in
04 the polaron crossover are not very dependent on the dimen-
] sionality.
0.2} B. Spectral properties atT=0
As in other strong coupling problems such as the Hubbard
00 1 2 3 4 5 model, the standard mean-field or variational techniques
}L (based here on the Lang-Firsov approximation followed by

phonon averagingdo not allow one to go beyond the low-
FIG. 7. Electron-phonon local correlation function scaled with €nergy properties. Instead, the dynamical mean-field theory
the strong coupling result®vs \ for three different values of the provides a way to explore the whole electron spectrum.
parametera®=1,2,5 (triangles, asterisks, diamondsContinuous The spectral properties are directly extracted from the
line is the adiabatic limit result. knowledge of the local propagator, and reflect the structure
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05 1 XI-S 2023 FIG. 11. Spectral densitgcontinuous ling and imaginary part
of the self-energy(dashed ling in the intermediate phonon fre-
FIG. 9. Both ground-state and spectral properties are summaguency regimey=0.5, forh =(a) 0.4, (b) 1.0, and(c) 2.0.
rized in the\,y plane.(a) Effective mass isoline@from left to right

m*=1.1,1.2,1.3,1.5,2,530In this picture a curve with constant not t+). If the coherence condition holds, the quasiparticle

o is a straight line starting at the origisee also Fig. XL (b) The o6 (% (¢) is well defined since the spectral function has a
number of gaps in the electron spectral density. Near the adiabat%arply defined peak ab=w* (€) with a width much less
limit all the lines that separate regions of equal number of 98P§han the renormalized bandwidth

\fv?::iﬁstﬁéoé‘éﬁ_eo:etrhe gigvhetrOfe;hZ dai;gd line at least one point in The scenario for polaron formation can be analyzed from
9y ges appears. Figs. 10—-12 where the spectral density and the imaginary
part of the self-energy are shown in the large-, intermediate-,

of the excited states. Formulé8) and(9), valid in the case and low phonon frequency regimes, respectively, for increas-

of a Io_cal self-en(_argy, obviously apply in the case of theing values of\. Generally speaking, in all regions of param-
dynamical mean-field theory.

. . ters, the condition to form @uas)particle of large effec-
We focus here on the bghawor of the spectral density anﬁve mass such as a small pg?aronpis thatarrow goherent
.Of the self—energy.. In particular, a'no.nzeroEmeveals an and emerges at low frequendye call it the zero-phonon
mr?g::;inﬁwi?:ttizzge?ue i:[/c;ne;nlbs;]c:j?man)d 0??:3[%;%” OEoIaronic band It is worth noticing that when a polaron with
pr . P Y, giv SV I@ X a large effective mass is formed one always observes several
width t* we can determine if an excitation at a given fre- bands in the spectra, and the one at lowest energgrigctly

guency has a coherent or an incoherent character. To do th&%herent(lm2=0), since this band lies entirely below the

we expand the spectral function around the peak located %inimum energyEq + w, for inelastic scattering® Though

* * = i i i * . . .
va\)/hi hR(iaE(tﬁ) )=e. 1;h|strrila}tlgnnd|(|9fl?r?vs r? ni)(I)ITt)i (6)’iv this feature is common to the spectra in all parameters re-
cn, € case ot a transiationally invariant 1attice, g esgions, the way in which polaronic behavior is exhibited in

the br_;md dlsper_S|on. Then assuming around the 96'@” the spectral properties is very different according to the value
effective mass inversely proportional to the effective band-

: . : X of the adiabatic ratioy.
width and using Eq(5) with E;— »* we get approximately ! : ) :
0~ €~ RS () =(Ut*)( w—o*) and Let us first discuss the large-phonon frequency regime. In

this case(see Fig. 1Dthe formation of the polaron from the
point of view of the spectral properties is a smooth cross-

Ae,w)=— EE r 47) over. Fory>2, the_spectr_a aIV\_/ays display a multipeaked

' Tt (w—*)2+T2’ structure{see also Fig. @)] in which then=0 polaron band
and the edges of the first excited bands are perfectly coher-

wherel’ = — (t*/t)ImX (»*). Then the excitation is coherent ent. These structures are subbands corresponding to polaron
if its lifetime (1) is much greater than the characteristic states withn phonons excited, and can be easily understood
time of the (renormalizedl hopping processes tt/, i.e., by switching on the hopping term from the atomic limit. For
I'<t*. This gives the coherence conditionJifw* )<t (and

0.8
0.8 06 ) b) 5]
0.6 a) b) o > 04
2 0.4 m ﬂ_ﬂ_f Lmv_/\ 0.2
02 0 e i o
0 LT Il (S amiand P 02 ! ’ ‘i )
w02 L g 04 ! il (
E -0.4 =~ 06 ‘
= 06 08 i
o L i B W R B B R [ %
Ao 4¢ —FT 6246 G035 46 o

0]
FIG. 12. Spectral densiticontinuous ling and imaginary part

FIG. 10. Spectral densitgcontinuous ling and imaginary part of the self-energydashed lingin the low phonon frequency regime
of the self-energydashed lingin the large phonon frequency re- y=0.125, forn=(a) 0.7, (b) 1.0, and(c) 2.0. Thes-like divergen-
gime y=2, for A=(a) 0.08, (b) 0.75, and(c) 4.0. In this and the cies of the self-energy near the first four tiny bands are not reported
following spectra the energies are expressed in units of in this figure(see Fig. 13
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FIG. 13. Spectral density and Enwith the parameters of Fig.
12. The low-energy part of the spectrum is shown, illustrating the 0

nth substructures witn=1, ... ,4 (0, . .. ,3xcited phonons For

each givenn=1, the coherent and incoherent states are separated
by a gap. Thes peaks in Int are revealed by adding a small
imaginary part to the frequenay. The width of each structure has
been reported using different scales to compare the shape of each
peak. The bandwidths of the four coherent peaks are respectively
from left to right: 7.2<10°7, 9.8x10°%, 8.33x10°% and
5.0134x 10" 4. The widths of the incoherent structures are from left

to right 6.1x 1077, 9.67x 10 ¢, and 8.32% 107 °.

very largey, all the subbands tend to have the same width, in
agreement with the predictions from Holstein’s
approximation> see Eq.(16). For intermediate values of
v, increasing\ causes the shrinking of the width of the -3
low-energy bands and decreases their spectral weight, while
higher-frequency bands become more important. The cross- ) )
over occurs fora~y (a2~1) [cf. Fig. 12c) in which _ FIG. 1_4. In the upper_pane_l is shown the spectral der(siby-
«?=2]. One notices that the envelope of the peaks in thdnuous ling near the adiabatic limitX=2,y=0.125) compared
imaginary part of the self-energy tends to reproduce the enith the adiabatic strong coupling restitashed ling In the lower
velope of the bands in the spectral density, shiftedogyas panel the continuous line is the ground-state adiabatic total energy

as a function of the lattice displacemésée Fig. 3, the dashed line
can be deduced from the CFE. Thus, M>1’ both the represents the lowest excited adiabatic level, which is at the bottom

ngght gn'd the damping of the subbanQS tend to INCréasgy 5 continuum(shaded arga The zero-point energy is omitted
W|th_ their index and_then dec_rease foIIovlelng a roughly PoiSyore see also the Appendix.
sonian envelope, with a maximum at- a“wy+ Ey=0.

Let us now turn to the low phonon frequency regime, in ) . ) ]
which the formation of polaronic bands is qualitatively dif- the spectrum of Fig. 12), in correspondence with the adia-
ferent and exhibits novel features. From Fig. 12 we see thaatic potential relative to the same value of the coupNngs
a polaronic band emerges from &rcoherentband around IS clear from Fig. 14 that a low-energy scale can be defined
A=1. Increasing the value of the coupling, more and mores the region where the spectrum consists of separated sub-
bands emerge, having very small bandwidth. Notice that th&ands. The separation of energy scales can be understood by
low-energy structures are not resolved on the scale of Figconsidering the effect of finite phonon frequency, i.e., by
12(c), but they can in fact be accurately calculated by theconsidering quantum corrections to the classical lattice ap-
CFE and are shown in detail in Fig. 13. As we shall seddroximation. This yields a series of low-energy bands that
below, the relative distance between polaron subbands is eRre roughly centered around the position of the quantized
pected to be less tham, due to lattice displacements ef- levels of the ground-state adiabatic potenWal(X) given
fects. The inverse lifetime I, on the opposite, reproduces in Egs.(Al1l) and (A12) and Fig. 14. As the energy is in-
the pattern of the polaron subbands at energies shifted bgreased fronk,, hese levels become more and more hybrid-
wq. Therefore, if the bandwidth renormalization is strongized with the excited adiabatic continuum associated to the
enough, eachth-order excited band splits further into a dou- undistorted lattice starting alg%)(O)z —t. In the real spec-
blet of bands separated by a gap, where the main one tsum, one actually observes that the very narrow bands
coherent and the secondary one is incoherent. The coheremierge into a broad structure just around this energy level,
subbands turn out to have equivalent heights and can bbus defining the amplitude of the low-energy region as
interpreted as coherent quantum tunneling out of a distortefEy| —t. One can also evaluate from the data shown in Figs.
lattice site: they correspond tmherent polarorbands with  12(c), 13, and 14 a small negative deviation of about 2% of
n=0,1, ... excited phonons. the first band spacings fromg, and in general the first four

A qualitative understanding of the low- and high-energynarrow bands in the figure are not exactly equally spaced.
excitations at smally can be deduced from a comparison This can be explained in terms of the adiabatic potential
with the adiabatic limit result§Appendi¥. Figure 14 shows picture by noticing that the curvature of the total adiabatic
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energy near the distorted minima is smaller than near the 08 ——————p——————
undistorted position. In fact, a prediction based upon linear- -
ization of the adiabatic potential yields a 1.65% deviation 04 |
from wq for the distance of the first excited level from the
ground state of the adiabatic potential. 0.0
The nature of the high-energy part of the spectrum is ex-
plained using a strong coupling adiabatic approximation,
namely thew— 0 limit of the CFE(Ref. 56 [see Eq.(46)]. é
This approximation describes the broad structure as an enve:  -038 i i i
lope of resonances separated by a vanishingly smgallThe NAPIES SN RN PP PENENIPNS S SN
resulting spectrum is shown in Fig. 1dpper pangland fits 15 |
very well the high-energy part of the spectral density. This fit 10|
deteriorates at intermediate energies where spiky structures
appear, due to the effect of a finitey. The self-energy ob- W

. .. h A I

tained from Eq.(46) indicates that all the states at interme- Q"é 0.0

diate and high energies have an incoherent character. 3 0.5 ¢ I T - ]
In the intermediate frequency regime, the structure of the — -1.0 ¢ T 1

-0.4 ¢

low-energy bands when these are well separated is curious -1.5 |
and follows some rules that can be deduced directly fromthe L. .. .. . L
CFE expansiorjsee Fig. 11d)]: the lowest-energy band is L1097 L0907 110907 110907
always coherent (Ild=0) and its shape resembles the origi- )]

nal semielliptical unrenormalized DOS even if some asym-

. . . FIG. 15. Evolution of the spectral density and imaginary part of
metry is observed towards its upper edge. This is not Obfhe self-energy at low energy for growing (upper pandl for

tained by the usual (Holstein strong coupling v=0.25 and, from left to rightA=0.7,0.78,0.84,0.9. The lower

approximation, and could be depicted by a much larger efbanel showsw— RES..
fective mass at the top band edge. On the other hand, the

higher-order bands acquire a complexity that can be Iabelegf the self-energy at one and subsequently more frequencies

?getgzggrgﬁgr gfaﬁgbtit;t:citnucrreesasiatv\;:i&n iairree;gﬁmzeide:nlocated in the gaps as the coupling strength is increased. In
Moreover. b gom arison of Eias. 12 and 11 we seegthat th ie presence of disorder, external excitations, or at finite tem-
over, by compar 9s.. perature, a nonzero spectral density can appear around these
trangltlon with increasing from a single bgnd structure toa energies. We thus expect such excited states within the gaps
multipeaked structure at low frelquenues. is much more "1ove a huge damping and to be localized, while the
abrup_t for small than for intermediate, a|_’1d n the.f.ormer round state can keep its delocalized character. For that mo-
case it turns out to occur around the adiabatic critical valu vation the author® who found such behavior in the context

of the couplingh... of the Holstein-Hubbard model namedlignamical localiza-

Let us now focus in more detail on the mechanism for 938]ion. We must stress that the relevance of such a phenom-

opening in the low and intermediate phonon frequency reenon concerning the mobility properties such as the ac con-
gimes (y<2). The number of well-separated subbands is

h in Fig. %) funci f th texs and ductivity cannot be tested using the CFE formalism.
shown in g. as a lunction of the parametexs an However, we draw attention to the fact that this is a very

r&eneral phenomenon, which occurs here for a single electron

space in which the spectral density consists of only WOs a polaronic feature; i.e., is related to the multipeaked

structures: a single coherent polaronic band and a highs'tructure of the Green’s function

energy b'and, Wh'Ch. is mostly incoherent. In this region, ap- The occurrence of such self-energy divergencies requires
prOX|maF|on(16), Wh'.Ch’ apart from the low-energy coherent that the states at the edges of two consecutive bands have an
peak, displays an incoherent spectrum made of separatggei,ie jifetime (ImX%=0) at zero temperature. In this case,

subbands, is not correct. The extent of this region reduces gg, self-energy fulfills the Eq9) at the extrema of the en-

the adiabatic ratio is reduced and for very low phonon fre—ergy gap, so that the real part o3 changes sign within

quency the system undergoes a rapid crossover to a mu'?ﬁe gap without crossing the valueg. As a consequence a
peaked structure at around. The emergence of a coherent divergency in RE occurs at a poinis, located in the gap. In

band, separated by a finite energy gap from the continuurﬂ1e Bethe lattice we have the condition
can be seen as increases on Fig. 15. As a critical value of

\ is approached, a pseudogap appears together with a large
damping of the states in the same energy range. At higher
\, the gap is formed and keeps increasing until a second gap
is formed at higher energy, and so on. By the way, let us
underline that the total spectral weight carried by the polarofyhere 3.(?)(w|) is the second stage expansion of the self-
bands, when they are well separated, is in general differerdnergy in the CFE of Eq38). Equation(48) may have more
from that obtained in the atomic limit. For instance, thethan one solution; i.e., many such points are expected for
n=0 band spectral weight is always larger thearrt”. large values oh (see Fig. 13 In the atomic limit A — o)

An effect related to the formation of subbands, whichthere is an infinite number of them, located in the gaps be-
arises in the intermediate coupling regime, is the divergencyween the peaks of the atomic spectral density.

t2
wL_ZG(wL_wo)_2(2>(wL):Ov (48)
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FIG. 16. Evolution of the low-energy spectral density and (O

imaginary part of self-energy with temperature in the intermediate FIG. 17. Spectral densitgcontinuous ling and imaginary part
regime y=0.25 andA=1.0. From left to rightT=0,0.2,0.4,0.8.  of self-energy(long dashed lingfor y=2 at T=0.4. The spectral
Arrows mark points in which the self-energy divergesTat0. density afT =0 is shown for comparisoshort dashed line Panels
(a)—(c) refer to the sama’s as Fig. 10.
In the (\,y) plane, at least one self-energy divergency

exists on the right of the dashed line in Fighp We note ent. Moreover, at lowl, a small peak appears in iy close

that a self-energy divergency is formed only in a preexistin
energy gap. A?cycordingly, zvhen increasir):g thg coupliné]Jto the upper bounda.ry of the=0 pqlarqn baqd. For Iarger_
some spectral weight develops in this region and contrib-

strength a gap appears first, separating a coherent polaronTc ; i
peak from an incoherent excited band, and then a self-enerd{f€S to gradually broaden this band, until the gap eventually
divergency occurs in the gap when the states at the bottom gfSaPpearsThis effect is enhanced in the vicinity of a self-
the excited band become coherent. energy divergengywhich is extremely sensitive to thermal

This phenomenon should affect the spectral properties irchisorder. This gives rise to an inhomogeneous broadening of
t

the presence of disorderor at finite temperatureee be- € Main polaron band.

low). In fact, whenever there is a mechanism that is able to By e"a_'“?‘“”g the number of cohe_rent fstat(aalth_
give rise to excited states in the proximity of those special™><t) within the low-energy subbands in the intermediate

points (this can be due to the Lorentzian tails induced byC0UPling regime, one can qualitatively confirm the validity of
disordej the singularity in the imaginary part of the self- Holstein’s prediction for the crossover temperature, i.e.,
energy becomes a finite broadening Lorentzian, which imJ ~0-3~0.4w,. On the other hand, the high-energy part of
plies a loss of coherence of the neighboring states. The cofil® SPectra is slightly smoothed by the temperature.

sequences on the electronic spectra at finite temperatures wil| A différent scenario holds for other values of the param-
be analyzed in the following section. eters. Results are presented in Figs. 17—-19 where the low-

energy part of the electronic spectra is shown for the same
parameter values as in Figs. 10—12, 1o 0.4wy. One no-
tices that in the high phonon frequency regime, the gaps

In this section we present the results obtained at finitthetween polaron bands exist even at high temperatures, and
temperature using the CFE formulation of E§9) and fol-  temperature weakly affects the overall shape of the positive
lowing. The analysis focuses on the intermediate regimeith order polaron subbandsee Fig. 1Y. On the contrary,
where no “classical” schemes of approximation are avail-for low phonon frequencies, the shape of the polaron sub-
able. bands is drastically modifiedsee Fig. 1% the spectral

In Holstein’s original treatment of polaron motiér’ a weight of each of them is roughly conservédr not too
distinction is made between transition amplitudes that argargeT), but they are noticeably enlarged, and consequently
diagonalin the phonon number, contributing to the polarontheir height diminishes. One must underline that at those
coherent motion around the ground-state energy, and thosemperatures the gaps are not destroyed by thermal fluctua-

that are nondiagonal giving rise to hoppinglike motion. tions, apart from vanishingly small spectral density tails.
While the former decrease in the presence of thermal disor-

der, the latter are thermally activated. This allows one to 03

C. Spectral properties at finite temperatures

determine a crossover temperatdre 0.4w, where the po- 06| o
laron crosses over from coherent to hopping like motion, ST
which is believed to hold at strong coupling or in the large- 02}
phonon frequency regime. 0

This crossover can also be observed in the one-electror?Y 2}
Green’s function. To this purpose, we show the spectra in the.g 047

intermediate coupling regime for increasimg(see Fig. 16 06 ¢

The effect is twofold: first, as is already known from the 08T |

atomic |imi137 [See EQ-(ZO)]a polaron peaks appear at nega- B 3.5-325 -‘2-1.5 -'1 0.5 -3'.5 3-25-2-15 1 05 35325 ;I2-1I15-1 0.5
tive energies. Secondly, scattering by thermally populated )

phonon states causes finite lifetime effects, in addition to the FiG. 18. Spectral densitjcontinuous ling and imaginary part
zero-temperature scattering processee Sec. IV B as can  of self-energy(long dashed lingfor y=0.5 atT=0.4. The spectral
be seen by inspecting the imaginary part of the self-energyensity aff=0 is shown for comparisofshort dashed line Panels
Indeed, one notices that the negativeubbands are incoher- (a)—(c) refer to the sama’s as Fig. 11.
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08— subband, by finding the poles of the spectral function(Bg.
> 051 s Dol This corresponds to what is commonly understood as po-
0.4

laron states, i.e., bound states of an electron with a phonon
cloud, a numben of phonons being excited in addition. For
a translationally invariant finite-dimensional lattice the quan-
tum numbers underlying the loc@htegrated spectral func-
o6 i i tion are thetotal momentumK of the polaror® and the
o8| excited phonon number. This obviously holds only if the
e subbands are coherent, i.e., only for low enonghccording
) ; : ) ) to the values oi andy.
The low phonon frequency regime exhibits in the cross-
FIG. 19. Spectral densitgcontinuous ling and imaginary part OVer region a coexistence of extremely narrow polaronic sub-
of self-energy(long dashed lingfor y=0.125 atT=0.4. The spec- bands at low energy and a broad featureless continuum at
tral density atT=0 is shown for comparisofshort dashed line  high energy. While the low-energy features directly follow

02

-0.2
-0.4

ImX

Panels(@)—(c) refer to the sama’s as Fig. 12. from the atomic or high phonon frequency limit, the con-
tinuum is directly related to the adiabatic solution. The be-
V. CONCLUSION havior near the critical pointN\=\.,y=0) can be under-

stood as follows: increasing, the discontinuity in the low-
We have shown how the dynamical mean-field theory carenergy properties becomes a sharp crossover, due to very
be successfully used to solve the single polaron problem atveak coherent tunneling between small polaron states and
any temperature. The form of the propagator as a continuequasifree states of the equivalent impurity model. Translated
fraction expansion, together with the self-consistency condiinto the language of the lattice problem, it leads to the emer-
tion for the noninteracting local impurity propagator, showsgence of coherent “heavy” polaron quasiparticle states
that this theory yields a@analytic solution of the problem, (“resonances’). However, the high-energy part of the spec-
even if some elementary numerics is required to obtain thérum does not reveal any qualitative change in this region of
full spectrum. We have also presented in Sec. Il some resulisarameters.
in the limiting regimes in the infinite-dimensional case in  This behavior demonstrates how the usual concept of
order to show that the use of a semielliptic free DOS gives‘adiabaticity,” as commonly employed in metals for small
sensible results, in agreement with the usual threee,, fails in the present problem: the sharp transitiorhat
dimensional solutions. This gives confidence that the resultand the occurrence of extremely narrow polaron features in-
from the dynamical mean-field theory quite reliably reflectdicates on the contrary the occurrence of an “adiabaticity
the actual physics in dimension larger than two. On the coneatastrophe.” This is due to the relevance of high-order ver-
trary, in the one-dimensional case, one or more gaps anex corrections in the perturbation expansion.
always present in the spectrum; i.e., polarons form at any In this work the application of the LISA approach has
coupling® been limited to the one-particle propagator. In fact, no exact
The properties we find for the ground state are in agreeprocedure has been found yet to calculate analytically, for
ment with the conventional wisdom, in particular the absencénstance, two particle propagators, which would allow one to
of a phase transition, as soon as quantum fluctuations of tr@ompute the(dc and optical conductivity of polarons. Al-
lattice are taken into account. The crossover gets sharper #@sough at zero density it is impossible to access the correla-
the phonon frequency is decreased for fixedand becomes tion functions involved in the calculation of the optical con-
an abrupt transition from a free electron state to a localizedluctivity, let us mention that our results suggest an
small polaron state ay=0. This comes directly from the interpretation of the infrared response of oxide superconduct-
first-order nature of the transition in the adiabatic limit, ors in the insulating phase. In these materfaisorption
clearly displayed by the direct solution. spectra for low carrier densities exhibit a discrete set of nar-
Beyond the ground-state properties, the full electronicrow peaks at low energies plus an incoherent background at
spectrum clarifies the nature of the polaron crossover. Fanigher energies. From our point of view, this could be as-
low and intermediate phonon frequencies, as the coupling isribed to multiphonon excitations in the intermediate phonon
increased, several energy gaps successively open up in tfrequency regime. On the other hand, a better understanding
spectrum, leaving at low energies coherent or quasicoherenf the polaron crossover could be gained by calculating the
polaronic subbands. These bands can be followed up to veryynamical electron-lattice correlation functidh.
large couplings or large phonon frequencies towards the Let us finally comment on future extensions of this tech-
atomic limit. Therefore they are the manifestation of nonpernique to finite electron densities. As mentioned before, the
turbative processes, as is clearly demonstrated by the inteEFE expansion keeps for the self-energy the same functional
pretation of the CFE in terms of a diagrammatic expansionstructure as that of the atomic limit. Thus it is equivalent to a
Thus, even if the ground-state properties show a continuouSPA approach, which could be extended at finite densities. It
crossover, some higher-energy features show a qualitativis, however, easy to showy perturbation expansigrthat
change of behavior, the phenomenon of gap opening. the CPA approximation fails even at the first nonvanishing
Let us make more precise the “lattice” interpretation of order in the density. As far as spectral properties are con-
these polaronic subbands. Once the self-en€idw) is  cerned, the CPA failure is particularly evident in the low-
known, and for a given noninteracting lattice DOS, an effec-energy part of the spectrum, as is well known from equiva-
tive dispersion relation can be found for each well-separatetént approximations for the Hubbard model. Nevertheless,
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our main result, i.e., the coexistence of low-energy coherent In the case of the Bethe lattice, a Dyson equation for the
and high-energy incoherent structures is a picture that shoulldcal propagator can be written in the adiabatic limit,
be qualitatively preserved at least at low carrier densities. )
t
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seph Fourier, Grenoble. In case(b) (localized solutioh the d—co limit together
with Eq. (A3) implies that only one site is appreciably dis-
APPENDIX: THE ADIABATIC SOLUTION torted. Calling O the center-of-deformation site it is easy to

see that the nearest-neighbor deformation is of the order
In this appendix we will solve the problem of one electron1/d, the next-nearest-neighbor deformation is?l/and so
moving in an infinite coordinatiorstatic Bethe lattice. To on, so that the total Charge can be Spread on several shells of
introduce the adiabatic limitstatic lattice one notices that neighbors even in thé— o limit. The main simplification of
the free Einstein phonon Hamiltonian can be written as  the d— o limit is then that the elastic enerdy solely deter-
) mined by thé-site deformationfor it depends on(iz. Con-
H :2 i+ EM 02X (A1) sequently we have two kinds of local propagators: one that
ph o propagates the electron from site 0 back to site 0, which

T 2M 2
) _ ~ depends upon the deformation
whereP; are the impulsesx; are the coordinates of the ionic

motion, M is the ionic mass, and, the frequency of each 1
oscillator. The adiabatic limit is achieved &s— keeping Goo= - 5 (AS5)
k=M w3 constant w+9'Xo—(174)G
The electron-phonon interaction can be written as and one that propagates the electron from any to any other
site, which is free
th:_Q'Z nXx, (A2) 1
= 5 . (AB)
where the coupling constant of Hamiltonian E#) is given w— (/4G

in terms of g by 9=9g'/v2Mw,. The polaron energy n the case(b) a pole in the local Green’s function of Eq.
€p=—0wo=—g'“/2k is then a well-defined quantity in (A5) emerges out of a band. The position of such a pole

the adiabatic limit. . determines the electronic ground state energy. Using Egs.
To perform an adiabatic calculation we have to perform(as) and(A6) we get the following equation:

the following stepsii) calculate the electronic energy for a

given set of ionic dgformationxi, (.ii) minimize thetota_l Eet 9’ Xo— sRe(Eq— VEZ—t?)=0, (A7)
energy, i.e., electronic energyus lattice elastic energy with o
respect to the parametexs. whose solution is

An essential relation that is useful in the adiabatic limit _
comes from the application of the Hellmann-Feynman theo- Ea/t=—1 for x<1/2, (A8)
rem to the ground state of the static lattice. By deriving the
gro_und—state energy of the Ho!stein model with respect to the Eglt=— i —x for x>1/2, (A9)
lattice deformatiorX; one obtains 4x

, where x=9'Xy/t. We see that near the zero deformation
Xizg—<ni>. (A3) statex=0 the two possible solution&) and (b) coincide.
M g The total potential(rescaled to the hopping energy we
need to minimize in order to get the ground-state energy is

From this relation it follows that in the case of a single elec-optained by adding to the solutiorta) and (b) the elastic
tron, due to charge conservation, only two situations are poserm [which is zero in cas¢a)]. Namely,

sible: (a) delocalized solution witi;=0 everywhere since
the total charge density per site is zero in the thermodynamic @ X2
limit, (b) localized solution with some finitX;#0 around Vad TN
one given site.

Therefore, for a single electron one is restricted to studywhile in case(b)
ing electron energies for two different classes of ionic defor- )
mations. Notice that the results quoted above are valid at any v = x
lattice dimensionality. ad A\

1, (A10)

-1 for x<1/2, (A11)
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x2 1 of the coupling constant. All these functions can be ex-
Vé%)=ﬂ PRES for x>1/2; (A12)  pressed in terms of the derivative of the ground-state energy
Eo=V.{X=Xnn) Wwith respect to the scaled coupling pa-
the result is plotted in Fig. 3. There are three different rerameterx, namely,A=dE,/dx.
gimes determined by the following critical values for the  The local electron-displacement correlation function and
coupling constank: A\;=0.650, ... and.=0.844,...:(i)  the electron kinetic energy are determined by deriving the
A<\ .—the delocalized solution is the stable minimugin) ground-state energ§Sec. 1))
A <A <A.—the delocalized solution is the stable minimum
coexisting with a metastable minimum in the poteny&?,
characteristic of the localized solutiofiii) A>\.—the lo-
calized solution is the stable minimur?m : : Eyin/t=—Eo+xA. (A14)
In the latter case the delocalized solution corresponds to Rinally, the elastic energy is calculated as a derivative with
continuum of unrenormalized excited adiabatic statesespect taw, and scaled to that parameter so as to get a finite

Col2a=—A, (A13)

(shaded area in the lower panel of Fig).14 result in the adiabatic limit
By derivatives of the ground-state energy we obtain the
relevant properties of the adiabatic ground state as functions Epn/ o= —XA. (A15)

*Present address: CNRS-LEPES Grenoble, 25 avenue des Marty?§P. G. J. Van Dongen and D. Vollhardt, Phys. Rev. L&H.1663

BP 166, 38042 Grenoble Cedex 9, Grenoble, France. (1990.
13, v. Tiablikov, Zh. Eksp. Teor. FiZ23, 381(1952. 24p, Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
2T. Holstein, Ann. Phys(Leipzig) 8, 325(1959; 8, 343 (1959. Mod. Phys.68, 13 (1996.
SLattice Effects in High Temperature Superconductedited by  2°S. Ciuchi, F. de Pasquale, C. Masciovecchio, and D. Feinberg,
Y. Bar-Yam, J. Mustre de Leon, and A. R. Bish@Yorld Sci- Europhys. Lett24, 575(1993.
entific, Singapore, 1992 263, Ciuchi, F. de Pasquale, C. Masciovecchio, and D. Feinberg, in
4A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Superconductivity and Strongly Correlated Electron Systems
Lett. 74, 5144(1995. edited by C. Noce, A. Romano, and G. Scarpéitorid Scien-

5T. A. Tyson, J. Mustre de Leon, S. D. Conradson, A. R. Bishop, tific, Singapore, 1994 p. 58.
J. J. Neumeier, H. Riter, and Jun Zang, Phys. Rev5B, 13985  27J. K. Freericks, Phys. Rev. B0, 748(1994.

(1996. 283, K. Freericks, M. Jarrell, and D. J. Scalapino, Phys. Re48B
Y. Yamada, O. Hino, S. Nohdo, R. Kanao, T. Inami, and S.  6302(1993.
Katano, Phys. Rev. Let%7, 904 (1996. 293. K. Freericks and M. Jarrell, Phys. Rev. L&, 2570(1995.
7Y. H. Kim, C. M. Foster, A. J. Heeger, S. Cox, and G. Stucky, 3°A. J. Millis, R. Mueller, and B. I. Shraiman, Phys. Rev. 5,
Phys. Rev. B38, 6478(1988. 5389(1996.
8C. Taliani, R. Zambone, G. Raum, F. C. Matacotta, and K. I.3!S. Ciuchi, F. de Pasquale, and D. Feinberg, Europhys. Bétt.
Pokhadnya, Solid State Commu6, 487 (1988. 151(1995.
9S. Lupi, P. Calvani, M. Capizzi, P. Maselli, W. Sadowski, and E. *H. de Raedt and Ad Lagendijk, Phys. Rev. L&8, 1522(1982;
Walker, Phys. Rev. B5, 12 470(1992; P. Calvani, M. Capizzi, Phys. Rev. B27, 6097(1983.
S. Lupi, P. Maselli, A. Paolone, and P. Rapjd. 53, 2756  3F. Marsiglio, Phys. Lett. AL8Q, 280 (1993; Physica C244, 21
(1996. (1995.

10A, Bianconi, M. Missori, H. Oyanagi, H. Yamaguchi, D. H. Ha, 34Mm. Capone, M. Grilli, and W. Stephafunpublishegl
Y. Nishiara, and S. Della Longa, Europhys. L&, 411(1995. 35T. Hotta and Y. Takada, Phys. Rev. Lelg, 3180(1996.
11| . D. Landau and S. I. Pekar, Zh. Eksp. Teor. i, 341(1946.  *Concerning the generality of thé—o Holstein model, let us

2|, G. Lang and Yu. A. Firsov, Zh. Eksp. Teor. Fi#3, 1843 remark that a dispersionless phonon spectrum is quite generic in
(1962 [Sov. Phys. JETR6, 1301(1963]. infinite dimensions. Actually, if we consider a hypercubic lattice
13A. S, Alexandrov and J. Ranninger, Phys. Rev4g 13 109 of linked springs the elastic constaiit must be scaled as
(1992; Physica C198 360(1992. K=K*/d in order to obtain a finite elastic energy per oscillator.
¥A. A. Gogolin, Phys. Status Solidi B09, 95 (1982. The resulting acoustic spectrum has a dispersion given by
5A. S. Alexandrov and H. Capellmann, Phys. Rev4B 2042 wi=w3[1-(1/d)28_ cok,] where k=(kq, ... kg is the
(199). wave vector if we choose a unit spacing. Except some special
18T D. Lee, F. Low, and D. Pines, Phys. R&Q, 297 (1953. vectors such ak=(0,0,...,0) or (m,m, ...,m), the summa-
17D, Emin, Adv. Phys.22, 57 (1973; D. Emin and T. Holstein, tion disappears asiﬁ in the limit of infinite d. In other words,
Phys. Rev. Lett36, 323(1976. the spectral weight of lattice phonons becomes a delta peak at a

18D, Feinberg, S. Ciuchi, and F. de Pasquale, Int. J. Mod. Phys. B finite frequencywz=K*/M.
1317 (1990; F. de Pasquale, S. Ciuchi, J. Bellissard, and D.%’G. D. Mahan Many-Particle Physicg§Plenum Press, New York,

Feinberg, Rev. Solid State S, 443 (1988. 1990, Chaps. 4 and 6, and references cited therein.
1%y, V. Kabanov and O. Yu. Mashtakov, Phys. Rev.4B, 6060  3®W. Metzner and D. Vollhardt, Phys. Rev. Le®2, 324 (1989.
(1993. 395, Engelsberg and J. R. Schrieffer, Phys. R84, 993 (1963.
20H. de Raedt and Ad Lagendijk, Phys. Rev3B, 1671(1984. “OFor d>4 the shape of the band enters in the determination of the
2. Georges and G. Kotliar, Phys. Rev.45, 6479(1992. effective mass that increases withas\ .

22\, Jarrell, Phys. Rev. Let69, 168(1992. = [5dxxd271(14x)2,



4512 CIUCHI, de PASQUALE, FRATINI, AND FEINBERG 56

42E. Cappelluti and L. Pietronero, Phys. Rev5B 932 (1996. Emery(World Scientific, Singapore, 1992

“3The cased=2 is marginal and we cannot gain any insight from 32Handbook of Mathematical Functiopedited by M. Abramowitz
the second order perturbation theory. and I. A. Stegur(Dover Publications, New York, 1972

44E. Cappelluti(private communication 5R. P. Feynman,Statistical Mechanics: A Set of Lectures

4SE. V. L. de Mello and J. Ranninggunpublishesl (Addison-Wesley, Redwood City, 1972

“°E. Muller-Hartmann, Z. Phys. B4, 507 (1989. 54B. Gerlach and H. [wen, Phys. Rev. B35, 4291 (1987; H.

*’E. N. Economou,Green's Functions in Quantum PhysicS | gwen, ibid. 37, 8661 (1988.
(Springer Verlag, Berlin, 1983

48M. Cini and A. D’Andrea, J. Phys. @1, 193(1988.

4%y, S. Viswanath and G. Mler, The Recursion Methogbpringer-
Verlag, Berlin, 1994

50A. B. Migdal, Zh. Eksp. Teor. FiZ34 (1958 [Sov. Phys. JETR,
996 (1958].

51D, Vollhardt, in Correlated Electron Systemsdited by V. J.

SSNotice that ifa? is fixed increasing. means going toward a large
phonon frequency limit.

*6Notice that in this limit\—o while in the adiabatic limit of the
Appendix\ is finite.

57See, for example, the review F. Yonezawa and K. Morigaki, Prog.
Theor. Phys. Suppb3, 3 (1973.



