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Small-polaron formation and optical absorption in Su-Schrieffer-Heeger and Holstein models

M. Capone, W. Stephan,* and M. Grilli
Istituto Nazionale di Fisica della Materia and Dipartimento di Fisica, Universita` di Roma ‘‘La Sapienza,’’

Piazzale Aldo Moro 2, 00185 Roma, Italy
~Received 7 June 1996; revised manuscript received 2 April 1997!

The conditions leading to small-polaron formation for a single charge carrier in the Su-Schrieffer-Heeger
~SSH! model are compared with the Holstein model. From analytic perturbation theory and exact numerical
diagonalization of small clusters different criteria are established, which however have a common physical
origin: Polaron formation requires a sizable mass enhancement and a lattice deformation energy gain larger
than the loss in the bare electron kinetic energy in both models. The optical absorption of the Su-Schrieffer-
Heeger model in the polaronic regime is also shown to exhibit an additional feature not present in the Holstein
model. This additional feature arises due to the bond nature of small polarons in the SSH model, and is
determined by transitions from the ground state of the bonding character on a shortened bond to excited states
of the antibonding character on the same shortened bond.@S0163-1829~97!02032-8#
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I. INTRODUCTION

Electrons acquire polaronic character in the presence
sufficiently strong electron-phonon (e-ph! coupling when
they displace the ions around them and move carrying al
the lattice deformation. Being accompanied by the mu
heavier lattice degrees of freedom, in the polaronic reg
the carriers acquire large effective masses and, in s
cases, may even be trapped in the potential well arising f
the ionic displacement that they created.

In the present work we investigate the Su-Schrieff
Heeger ~SSH! model1 in comparison with the Holstein
model.2 Due to their relative simplicity these models are t
most frequently considered models for electrons a
phonons interacting via a short-range potential and may w
be taken as a suitable paradigmatic basis for investigating
physics of strongly interactinge-ph systems.

The concepts underlying polaron theory in these mod
are long standing and have found various theoretical subs
tiations over the last decades.3 More recently the discovery
of polarons in the insulating phases of high-temperat
superconductors4,5 has triggered numerical exact diagona
ization analyses on models with stronge-e interactions.6–8

However, the strong-coupling nature of the polaronic st
does not allow reliable analytic approaches in the interme
ate crossover region, which is of the greatest interest in o
to quantitatively investigate the conditions for polaron fo
mation. On the other hand, the multiphononic essence
polarons makes it difficult to approach the strong-coupl
regime from the numeric point of view. A landmark in th
context was provided by quantum Monte Carlo calculatio
in Ref. 9 where an interpolation formula was presented
scribing the criticale-ph coupling leading to polaron forma
tion in the Holstein model.

The polaronic properties of the Holstein model, where
electron density is coupled to an optical phonon mode, h
been much studied, and a remarkable part of the work
been devoted to the study of the optical response, whic
reasonably well understood.10–13On the other hand, the SSH
or nonlocal coupling model has received little attention
560163-1829/97/56~8!/4484~10!/$10.00
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this regard. In general both forms ofe-ph coupling are
present in real materials, with the relative importance of e
depending on the detailed structure of the material.14

One goal of this paper is to provide a picture of sma
polaron formation in the SSH model and to show that t
picture and the analogous one for the Holstein model can
understood in terms of the same physical concepts. We s
that polaron formation in both models occurs when tw
physical criteria are satisfied: A sizable mass enhancem
and lattice deformation energy gain larger than the loss in
bare electron kinetic energy.

The second major goal of this paper is to demonstrate
the optical response of the SSH model exhibits some feat
which are quite distinct from those of the Holstein model

The SSH model is described by the Hamiltonian

H52t(̂
i j &

ci
†cj1v0(

i
ai

†ai1g(
i

@~ci
†ci 111ci 11

† ci !

3~ai 11
† 1ai 112ai

†2ai !# ~1!

and the Holstein model by

H52t(̂
i j &

ci
†cj1g(

i
ci

†ci~ai1ai
†!1v0(

i
ai

†ai . ~2!

We use units such that the lattice spacinga51 and also
\5c51.

Since we will restrict ourselves to the single-electron ca
we will not consider electron spin indices throughout th
paper. Moreover, in short-range models, where only sm
polarons can be formed in the strong-coupling regime,
mensionality is not a qualitatively relevant paramete9

Therefore, for simplicity and for restrictions in our numeric
analysis, we confine ourselves to the one-dimensional c
The first term in Eqs.~1! and~2!, proportional to the nearest
neighbor hopping integralt ~which we will take as our unit
of energy! gives rise to a tight-binding band structure of th
form E(k)522tcos(k). A dispersionless@v(q)5v0# Ein-
stein phonon is created by the fieldai

† and is coupled to the
4484 © 1997 The American Physical Society
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56 4485SMALL-POLARON FORMATION AND OPTICAL . . .
covalent bond variableci
†ci 111ci 11

† ci in the SSH model
and to the local electronic density in the Holstein model. F
the Holstein model, the coupling arises from the depende
of the local atomic energy~i.e., the Madelung energy! on the
ionic position. This coupling is relevant when the screen
of the Madelung potential is poor, and is believed to be n
negligible in the superconducting cuprates.15 On the other
hand, the covalente-ph coupling in the SSH model is due t
the dependence of the hopping integral on the relative
tance between two adjacent ions.1 Notice that our SSH
model differs from the conventional one in having optic
~instead of acoustic! phonons like the Holstein model: T
clarify more easily the common mechanisms underlying
polaron formation in the two models we avoided unnec
sary differences between them, thus focusing on the
played by the differente-ph couplings. Moreover, despite th
completely different origin of thee-ph coupling in the two
models, we choose the same notationg to emphasize the
generic character of the physical processes that we are g
to present.

II. CRITERION FOR POLARON FORMATION

A. General considerations

Before addressing the problem of the single polaron f
mation in a more formal way within the above models, w
first would like to provide simple and intuitive arguments~all
the following general arguments apply in a generic dim
sionality d). As mentioned above, the setting in of a p
laronic regime is characterized bybotha strong reduction of
the effective hopping matrix element due to a sizable lo
displacement of the ionic positionsanda lattice deformation
energy gain larger than the loss of bare kinetic energy.

Before considering the SSH model, we consider how
fulfilling of these two conditions occurs in the Holste
model. For the Holstein model, these effects are directly
lated to two parameters which are often introduced in t
field: l[g2/(2dtv0) and a[g/v0. l represents the ratio
between the polaronic binding energyEp52g2/v0 in the
strong-coupling limit and thebare average kinetic energy o
the electrons of the order of half the bandwidth (;22td).
Notice that the bare hoppingt has to be used here. In fac
this is of the order of the kinetic energy actually lost wh
the polaron is formed. Then the value ofl determines the
convenience for the system to give up the kinetic energy g
arising from the hopping to gain the lattice deformation e
ergy induced by the locale-ph potential. On the other hand
as is clear from a standard Lang-Firsov transformation of
Holstein model,16 a represents half the ionic displacement
units of (2Mv0)21/2, whereM is the ionic mass. It is intui-
tive that the strong reduction of the effective hopping mat
element is governed by the amount of lattice displacem
However, a crucial role in this regard is played by the ad
batic ratio v0 /t. In particular, in the antiadiabatic regim
v0.t, phonons are energetically costly and only th
vacuum state couples effectively to the low-energy hopp
processes. Then the small overlap of phononic ground-s
wave functions on neighboring sites exponentially redu
the hopping amplitude.17 In this case it is apparent thata
governs the mass enhancement. The energetic
l5a2v0/2td@1 is also in favor of the lattice deformation
r
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so that polarons in the antiadiabatic regime of the Holst
model are formed as soon asa'1. Notice that the condition
l.1 in this specific case is not sufficient to determine
polaronic crossover.

On the other hand, a sizable lattice displacement is
enough to give rise to a large mass enhancement in
nearly adiabatic regime (v0,t), because phonons can b
created rather easily. Then the effective hopping matrix e
ment no longer arises only from the overlap of the phon
vacuum states on adjacent sites, but to a large extent i
volves the overlap of excited states also, whose spatial
tension is larger. Therefore, in this regime the reduction
the hopping matrix element is less severely affected by la
values ofa. In this case, wheret.v0, the more restrictive
condition on the ratio between deformation energy gain a
kinetic energy loss (;t) plays a relevant role andl'1 de-
termines the onset of polaron formation. This also establis
a direct connection3 between the polaronic intermediate
coupling regime and the standard Fermi-liquid perturbat
theory18 where the mass enhancement is given
m* 5m(11l).

In summary,the simultaneous occurrence of the two co
ditions l.1 and a.1 is needed to characterize and to d
termine polaron formation in the Holstein model. In particu-
lar, one can immediately recognize from the definition ofl
and a that a crucial role is played by the adiabatic ra
v0 /t. If v0 /t is small, the condition for a large
l5a2v0/2td is more difficult to realize thana.1, and po-
laron formation will be determined by the more restricti
l.1 condition. The opposite is true when the system is
the antiadiabatic regimev0 /t.1.

This intuitive argument was already implicit in the inte
polation formula Eq.~4.1! in Ref. 9 once this is expanded i
the two opposite limitsv0 /t@1 andv0 /t!1.

On the other hand, it will be shown that in the SSH mod
the value ofl still determines the energetic advantage
deforming the lattice and losing kinetic energy. However,
mass enhancement is ruled by a different mechanism w
respect to the Holstein model@see Eq.~14! below# and is
directly related tol regardless of the value of the adiaba
ratio v0 /t. Thereforel determinesboth the energetic advan
tage in deforming a bondand the suppression of the hoppin
integral associated with the lattice distortion and it will b
the relevant parameter for the description of the system
any value ofv0 /t. All these intuitive arguments will be sub
stantiated below by analytic calculations and numerical ex
diagonalization of small clusters.

B. A first insight from perturbative calculations

The above arguments may be made more formally pre
within a perturbative analytic calculation in the limit of sma
e-ph coupling (g!t,v0). In this case we evaluated th
second-order correction to the electronic self-energy rep
sented in the diagram of Fig. 1.

To explore both the adiabatic and the antiadiabatic
gimes, we cannot apply Migdal’s theorem to discard ver
corrections: Our approximation only relies on the sm
value of g. This also allows for the simplification of usin
the bare electronic Green function instead of carrying ou
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4486 56M. CAPONE, W. STEPHAN, AND M. GRILLI
self-consistent evaluation including the full Green functi
inside the self-energy diagram.

For the sake of simplicity and to allow for a more dire
comparison with the numerical results on small clusters,
only deal with one-dimensional systems. Nevertheless,
explicitly checked in the easier case of the Holstein mo
that our analytic results apply to multidimensional cases
well.

For our purposes we only need the perturbative corr
tions to the effective mass

m*

m
5

12]ReS~k,v!/]vuv522t,k50

11]ReS~k,v!/]Ekuv522t,k50
. ~3!

It is quite obvious that the polaronic regime cannot be
tained within our lowest-order perturbative approach: T
cloud dressing the electrons in a polaronic excitation
volves multiphononic processes, which are not included
the diagram of Fig. 1. Nevertheless valuable indications
the beginning of the polaronic crossover can be extrac
from the above expression. In particular, one can determ
the parameters for which the effective mass starts to g
@(m* 2m)/m;1#, also marking the region where perturb
tion theory is no longer applicable.

In the SSH model the baree-ph vertex ind51 associated
with scattering of an electron from ak to ak1q Bloch state
has the following form:

gk,k1q52ig@sin~k1q!2sin~k!#. ~4!

Consequently, once a frequency integration is carried
the self-energy is given by

S~k,v!54g2/N(
q

1

v2v02ek1q1 id

3@sin2~k1q!1sin2~k!22 sin~k!sin~k1q!#.

~5!

To obtain the effective mass and the ground-state energy
single electron in the bottom of the band, we only need
evaluate ReS(k50,v) and its derivatives in thek50 state
and forv5E(k50)522t, finding

m*

m
511lF 8v0

Av0
214tv0

1
2v0

t S 2t1v0

Av0
214tv0

21D G .

~6!

By expanding the perturbative correction in Eq.~6! in the
two opposite, adiabatic (v0!t) and antiadiabatic19 (v0@t)
limits, we get

FIG. 1. Lowest-order self-energy diagram of the electron pro
gator. The solid line is the bare electron Green function; The das
line is the bare phonon propagator. The dots represent thee-ph
coupling.
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m* 5mS 116lAv0

t D v0!t, ~7!

m* 5m~118l12a2! v0@t. ~8!

The electrons in the SSH model in the fully adiabatic lim
v050 are completely free (m* 5m). This is due to the van-
ishing of the baree-ph vertex for small transferred momen
q @cf. Eq. ~4!#, which overcompensates the divergent dens
of states in the integral of Eq.~5!. Physically this effect
arises because many electronic states lie close to thek50
point, but the phonon-mediated scattering between them
curs at low momentum transfer, which is less effective in
SSH model, where phonons decouple from the electron
the long-wavelength limit.

Equation~7! shows that the effective mass enhancem
is governed byl in the adiabatic limit. The extra factor o
Av0 /t arises from the vanishing value of thee-ph vertex~4!
at the bottom of the one-dimensional band, as can
checked by considering a finite density of electrons with
Fermi energym away from the bottom of the band. We wi
come back to this point when we will compare this behav
with the Holstein model. In the antiadiabatic limit the ma
enhancement in the SSH model@Eq. ~8!# involves botha2

andl. In this limit l@a2 and therefore the mass correctio
is dominated byl also in the antiadiabatic regime. This b
havior is a consequence of the specific localization mec
nism that occurs in the SSH model~we defer the discussion
on this point after the numerical analysis presented in
next section! and can be contrasted with the different beha
ior of the Holstein model, for which the self-energy for
single particle ind51 is given by20

S~v!5
lv0

A@~v2v0!/2t#221
, ~9!

where the real part of the square root has the same sig
(v2v0). Notice that the self-energy is momentum indepe
dent because the baree-ph vertex is also momentum inde
pendent. This feature allows the introduction of the dens
of states in the momentum integrals, thus leading to
straightforward extension of our results above one dim
sion.

From Eqs.~9! and ~3! we find

m*

m
511

2lt~2t1v0!

Av0~4t1v0!3/2
. ~10!

Also in this case we evaluate the mass correction in the a
batic and in the antiadiabatic limits

m* 5mS 11
l

2
A t

v0
D v0!t, ~11!

m* 5m~11a2! v0@t. ~12!

In agreement with the intuitive arguments presented at
end of the previous section, the antiadiabatic result sho
that the mass enhancement is driven by the condi
a.1, which is more restrictive thanl.1.

-
ed
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On the other hand, as expected, the adiabatic result fo
mass enhancement is proportional tol. This contribution is
also proportional toAt/v0, which is large in this limit, which
seems to contrast with the usual perturbative calculati
within Fermi-liquid theory,18 where only a correction of or
derl is predicted. This feature arises from the singular d
sity of states at the bottom of a one-dimensional band, as
be checked by considering a finite density of electrons wit
finite Fermi energym away from the bottom of the band. I
this latter case the coefficient of the mass correction beco
At/(v01m) and is no longer singular in the adiabatic limit.21

This specific, nongeneric result is the price that we have
pay in order to take advantage of the simpler analytic tre
ment in one dimension, but it does not hide the import
finding that only thel parameter rules the polaron formatio
when v0,t. Moreover it is worth noting that our simple
lowest-order perturbative calculation already gives a str
indication that one electron in a fully adiabatic22 ~i.e.,
v0[0) one-dimensional Holstein lattice is localize
(m*→`). In light of our calculation, this well-known
result23 can easily be attributed to the singular density
states.24

C. Exact diagonalization analysis

In order to set the above scheme for the single-pola
formation in the SSH model on more solid ground, we p
formed exact numerical calculations on small clusters
means of the Lanczos algorithm. As usual,20 we truncate the
phononic Hilbert space so as to include only a finite num
of phonons per lattice site. To reliably explore the stron
coupling regimes, we had to include up to 50 phonons
site ~and check the convergence of the results by varying
phonon number!. Due to the huge enlargement of the Hilbe
space induced by the presence of the lattice degrees of
dom, we have only been able to investigate small clusters
to four sites.25 In such small clusters finite-size effects a
obviously relevant. However, we checked that as far as
criterion for polaron formation is concerned, our results
rather insensitive to the boundary conditions and no qua
tive changes occur in passing from three- to four-site lattic
In the short-range models considered here, polaron forma
is a local, high-energy phenomenon. Small bond-polaron
mation in the SSH model is characterized by the shrinking
the bond on which the electron is localized due to the
hancement of the effective hopping between the two sites
the same time the neighboring bonds are stretched and
hopping between the two occupied sites and the surroun
ones is reduced resulting in a tendency towards localizat
Eventually the hopping between the two sites and the res
the lattice vanishes and may even change sign. This pa
logical situation is a well-known feature of the SSH mod
which in real systems never occurs due to higher-order
rections to the expansion of the hopping parametert in terms
of the ionic displacement. For all couplings where we fi
polaron formation in the SSH model, we checked that th
pathologies do not occur. We also notice that, by increas
the phonon frequency, the effective hopping is relatively l
affected, so that larger values ofl can be reached before th
zero-hopping pathology is found. As a consequence, the
gion with substantial polaronic character is enlarged.
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To extract information on the values ofg at which the
polaron crossover begins we analyzed the correlation fu
tion between the electronic density on a sitei and the ionic
displacement on the sitei 2d

x i ,d[^f0uci
†ci~ai 2d1ai 2d

† !uf0&, ~13!

whereuf0& is the ground state of the system.
For the SSH model we specifically investigated the b

havior of the density-displacement correlation functionsx i ,0
andx i ,1 for different values of the adiabatic parameterv0 /t
as a function of thee-ph coupling constant. The calculatio
was performed on a four-site lattice with open boundary c
ditions. The density-displacement correlation functions,
all physical quantities, are smooth functions of thee-ph cou-
pling for all finite phonon frequencies. Whereasx i ,0 always
increases withg, x i ,1 first increases and then decreases in
strong-coupling regime. This agrees with the well-known
sult that polarons are small in models with short-rangee-ph
interactions: Well formed polarons are so local that the pr
ence of a fermion on a site is uncorrelated with the io
displacements on neighboring sites. We also found that
adiabatic regime is characterized by a rather sharp crosso
whereas the crossover for larger phonon frequency is
creasingly smooth as the phonon frequency increases. S
polaron formation is a crossover without symmetry chan
between two phases, some arbitrariness is unavoidabl
defining a criterion separating the free-electron and the
laronic regimes. In particular we choose the criticalg from
the point of maximum of the nearest-neighbor densi
diplacement correlation functionx i ,1 . We checked that dif-
ferent criteria~like, e.g., the maximum slope of the loca
density-displacement correlation functionx i ,0) provide the
same qualitative results.

In Fig. 2 we display the result forx i ,1 as a function ofl in
the SSH model for various values ofv0 /t. It is apparent that,
while the position of the maximum is substantially indepe
dent of the phonon frequency, the width of the curve su
stantially broadens with increasingv0 /t.

The phase diagram of Fig. 3~a! is calculated using the
results for the correlation functions as shown in Fig. 2. T
critical l as a function ofv0 /t is indicated with a solid line.
We also show the crossover region, defined as the rang

FIG. 2. Local density-displacement correlation functionx2,1 for
the SSH model and one electron in a four-site lattice with perio
boundary conditions. The curves are labeled byv0 /t: Curves with
larger maxima correspond to smaller values ofv0 /t.
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4488 56M. CAPONE, W. STEPHAN, AND M. GRILLI
parameters for whichx i ,1 significantly changes. This regio
is estimated by the ‘‘width’’ at half the maximum of th
same function. The pathological region of parameters
largeg’s is associated with the negative value ofx i ,1 , as a
consequence of the unphysical negative value of the effec
hopping matrix element.

As expected from the perturbative calculation, we fi
that the polaronic regime is determined by the condit
lc5constant both in the adiabatic and the antiadiab
regimes.26 The specific mechanism of hopping reduction g
ing rise to localization in the SSH model, accounts for t
difference with respect to the Holstein model.

For clarity we begin this discussion by considering t
fully adiabatic limit.22 In this case, at first order the hoppin
is reduced by the stretching of the bonds byt* 5t2gu,
where u is the ~dimensionless! value of the bond length
variation in units of (2Mv0)21/2 ~notice that forv0→0, g
has to vanish butgu stays finite!.22 We can write
u5gg/v0 for the SSH model even if the Lang-Firsov resu
u5g/v0 is not valid for this model. Numerical calculation
show thatg is a weakly decreasing function ofv0 /t, so that,
at least to leading order the reduction of the effective h
ping matrix element is governed by the value ofl

t* 5t2gu5tS 12g
g2

2v0t D5t~12gl!. ~14!

In the-strong coupling regime the electron is localized
a single bond and the many-site model becomes equiva
to a two-site cluster. Then, for such a small system, an a

FIG. 3. Phase diagram for one electron in a four-site~a! lattice
with open boundary conditions for the SSH model;~b! for the Hol-
stein model~periodic boundary conditions!. The solid line is the
critical value ofl for the polaronic crossover; The crossover regi
is shaded and its boundary is indicated by the dashed lines.
dot-dashed line in~a! is the boundary of the pathological region fo
the SSH model.
at
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lytic solution is possible givingg54 for the constant appear
ing in Eq. ~14!. Thusl determines the reduction of the e
fective hopping when the lattice displacement is sizable.

As for the Holstein model case, another condition nee
to be satisfied in order to have a polaronic regime: The
ergy gain due to the polaron formation, i.e., the typical e
ergy of a self-trapped carrier has to be larger than the los
bare kinetic energy associated with the self-trapping. Si
in the strong-coupling regime the electron localizes on
single bond the polaronic binding energy is given by t
strong-coupling energy of a two-site cluster. The solution
the two-site cluster shows that the polaron energy for
SSH model still contains a contribution from the fre
electron hopping, arising from the delocalization of the ele
tron between the two sites of the bond. Then the ground-s
energy is given byE052t22g2/v0. We divide this energy
by the free-electron energy22t to obtain the ratio of the
energy gain associated with polaron formation to the ene
loss associated with the decrease of electronic mobility.27 If
we explicitly evaluate the range ofl values for which

~2t22g2/v0!/~22t !.1, ~15!

we readily obtainl.0.25. This value coincides with th
value at which the hopping matrix element vanishes acco
ing to Eq. ~14! and to the adiabatic limit of the paramet
g54. This implies that whenv0→0, the system will have
no energetic advantage in localizing the electron on a bo
unless the pathological conditiont* 50 is reached. Accord-
ing to the physical idea thatboth a sizable lattice displace
ment and an energy gain from deformation larger than t
kinetic energy loss are required to realize a polaronic st
one should not expect polarons in the adiabatic limit of
SSH model. Indeed, we carried out the exact diagonaliza
of large clusters~100 sites! in the extreme adiabatic limi
finding that the SSH model does not present any mar
polaronic behavior for couplings smaller than the ‘‘path
logical’’ g’s at which the hopping changes sign.

For finite phonon frequencies this picture is modified
the lattice dynamics. The numerical study shows that
ground-state energy is not strongly effected by the latt
dynamics: regardless of the value ofv0 /t, l larger than
0.25 remains the condition to obtain an energetic advant
from localization. On the other hand, the effective hoppi
matrix element is less severely reduced by the coupling
the lattice fluctuations and the value ofl for which the ef-
fective hopping becomes zero increases withv0 /t @from Fig.
3~a!, one sees thatg'2 for v0 /t'20#. Therefore, for finite
v0, it is always possible to find a regime where the latti
deformation becomes energetically favorable and a subs
tial lattice displacement~i.e., hopping reduction! is present
without having a nonphysical vanishing of the hopping.
this region, which is larger for large phonon frequencies@see
Fig. 3~a!#, the electron has a polaronic character for values
l larger thanlc'0.2. Finite-size effects easily account fo
the small quantitative discrepancy between this value and
fully adiabatic estimatelc'0.25.

The above result shows thatl determines both the reduc
tion of the hopping integral associated with the lattice dist
tion and the tendency towards localization driven by the
ergetic advantage in deforming the lattice. It is then natu

he
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to considerl as the relevant parameter for polaron formati
regardless of the value of the adiabatic ratiov0 /t. Notice
that this finding was also suggested by the perturbative re
~7! and~8!, showing that the main corrections to the effecti
mass are proportional tol both in the adiabatic and in th
antiadiabatic regime.

For the numerical analysis also, the results for the S
model can be contrasted with the findings in the Holst
model, for which the phase diagram is reported in Fig. 3~b!.
In this case one sees that the condition leading to a polar
regime is given byl.lc'1 only whenv0,t. At larger
values of the adiabatic ratio polarons are formed
l.(v0 /t)c thus implying a.1. Also in the case of the
Holstein model, then, the numerical analysis provides a s
stantiation to the general arguments of Secs. II A and II

III. OPTICAL ABSORPTION

A. Formalism

The real part of the conductivity for a one-dimension
tight-binding model at zero temperature may be expresse
terms of the Kubo formula

s~v!5Dd~v!1IK 0UJ†
1

v2H1E02 id
JU0L , ~16!

whereJ is the current operator.
The coefficient of the zero-frequencyd-function contribu-

tion D is usually called the Drude weight: it is given by

D52
pe2

2
^Ht&2 (

nÞ0

u^f0uJufn&u2

En2E0
. ~17!

If the Drude weightD is nonzero the system is a perfe
conductor;28 this will generally be the case in such mode
with periodic boundary conditions~PBC! and no disorder a
zero temperature.

In the Holstein modelJ is

JH5 iet(
i

~ci 11
† ci2ci

†ci 11!, ~18!

while for the SSH model it is

JSSH5 ie(
is

@ t2g~ai 11
† 1ai 112ai

†2ai !#~ci 11
† ci2ci

†ci 11!.

~19!

The fact thatJSSH contains an explicit coupling to the pho
non degrees of freedom is physically simple to understa
in this case the bond length is modified by the lattice dist
tion, so that the change in electric dipole moment associa
with the hopping of an electron is modified proportional
Here we have neglected in both cases the direct couplin
the electric field to the ions which is of orderAm/M , where
m andM are the electron and ion masses. We are intere
only in the features resulting from thee-ph coupling, not in
the direct excitation of the bare phonons. Equations~16!–
~19! may be derived following the standard approach us
for example, in the case of the Hubbard model.29

The use of the Lanczos algorithm to evaluate correlat
functions such as Eq.~16! is well established.30 The finite-
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frequency part of Eq.~16! has previously been studied b
Alexandrovet al.12 for the Holstein model.

We have used both periodic and open boundary con
tions for our numerical calculations. With open bounda
conditions~OBC! the system is like a molecule; in this cas
free acceleration is impossible and the Drude weightD is
always zero. With PBCD may be determined either b
studying the dependence of the ground-state energy on
adiabatic change of boundary condition, equivalent to a st
uniform vector potential,28 or by making use of thef sum
rule which relates the integrated conductivity to a groun
state expectation value. For the Holstein model the latter

E
0

`

s~v!dv52
pe2

2
^Ht&, ~20!

while, given the explicit form for the current for the SS
model Eq.~19! the sum rule for the SSH model is given b

E
0

`

s~v!dv52
pe2

2
^Ht1He2ph&. ~21!

Thee-ph coupling term appears in the sum rule for the S
model in the same way the hopping term does: this is a di
consequence of the origin of this term, arising from a mod
lation of the hopping integral. We have made use of the s
rule to determineD.

B. The optical excitation of small polarons: simple limits

The optical excitation of a small polaron for the Holste
model has been studied by Emin11 by means of general ar
guments in the adiabatic limit and calculated by means
exact diagonalization by Alexandrovet al.12 for the more
general case. The physical origin of the optical absorption
a small polaron can be easily described in the adiabatic l
v050 invoking the Franck-Condon principle. The groun
state is given by an electron localized on a single site, wh
is strongly displaced from its equilibrium position, while a
the other sites are not displaced. The electron can be exc
to a neighboring site without changing the lattice configu
tion by the application of the current operator. The differen
in energy between the two states is the lowering of the e
tronic energy associated with the small-polaron format
2Ep , whereEp52lt is the small-polaron binding energy.

The physical mechanism we have described is not pe
liar to the extreme adiabatic limitv050, and is not strongly
affected by the introduction of the lattice dynamics via
finite value of the phonon energyv0. Note that the current
operator~18! acts only on the electronic degrees of freedo
Hence the current operator connects only states having
same lattice configuration, or at least having a nonzero o
lap as far as the phononic state is concerned. Thus the ph
cal picture we introduced for the extreme adiabatic limit c
be extended to finite frequencies.

The SSH model optical conductivity can also be stud
starting from adiabatic arguments invoking the Franc
Condon principle, but now taking into account the bond n
ture of the polaronic state. The ground state is character
by a short bond on which the electron is localized. The sh
bond is generated by the shift of two neighboring sites
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wards one another by equal amounts. The electronic gro
state is the even combination of the two local states.

The optical absorption can happen in two different ch
nels: a ‘‘Holstein-like’’ one in which the electron is excite
onto a different bond that is not shortened, and a local ch
nel in which the electron is excited from the even symme
ground state into the local odd symmetry state on the s
bond. The first kind of excitation is analogous to the exci
tion of the Holstein polaron and is expected to generat
band similar to the one previously described, centered atEp
~even if in this caseEp is not simply given by the Lang
Firsov resultg2/v0). The local excitation energy is given b
the difference in electronic energy between the even-pa
ground state and the odd-parity state, keeping the lattice
figuration fixed. While the ‘‘Holstein-like’’ excitation is
characterized by the fact that the electron is excited from
state in which it gains an energy 2Ep from the local distor-
tion to a state in which the electron energy is not affected
the lattice configuration, the ‘‘local’’ transition carries th
electron from a state in which the distortion lowers the e
ergy by an amount 2Ep to a state in which the electro
energy is raised by the same amount 2Ep . Hence the energy
difference involved in the optical transition is 4Ep . If we
introduce a finite phonon frequency this absorption pe
broadens into a ‘‘band’’ exhibiting phonon features sep
rated by the typical phonon frequencyv0.

For the special case of only two sites the SSH model
be analytically solved for arbitraryv0 by means of a modi-
fied Lang-Firsov transformation that acts on the bond v
able. After performing the modified Lang-Firsov transform
tion we obtain for the two-site cluster

s2s~v!5
pe2

4 (
n50

`

~2t1nv0!e28a2 ~8a2!n

n!

3d„v2~2t1nv0!…. ~22!

The conductivity of the two-site cluster given by Eq.~22!
consists of a succession of Dirac delta functions at frequ
cies separated by the phonon frequencyv0. Once the Dirac
delta functions are substituted by Lorentzians the anal
formula ~22! gives the same result as the numerical calcu
tions: a single absorption band centered atv52t18g2/v0,
with width proportional tog/t and intensity proportional to
t/g14g/v0. Of course, the other ‘‘Holstein-like’’ absorptio
feature, which we argued should be present due to the tr
fer of the electron from the shortened bond to a neighbor
undistorted one, cannot occur for a two-site system wh
there is only one bond. This implies that the sum rule~21!
which is given by

E
0

`

s~v!dv5
pe2

2 S t1
4g2

v0
D ~23!

is exhausted by this feature. This is consistent with the wi
and intensity described above.

We expect the physics of the polaronic absorption for
SSH model to be much more dependent on the adiab
ratio than is the case for the Holstein model. The depende
of the current operator on the phonon operators make
possible to have an optical transition which does not le
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the lattice configuration unaltered, expecially if the phon
frequency is comparable to or even greater than the hop
integral. This point will be discussed further in light of th
numerical results.

C. Exact diagonalization results

In Fig. 4 we show the optical conductivity for the Ho
stein and SSH models for different lattice sizes for a phon
frequencyv050.2t. We have chosen the coupling for th
two different models in order to have the low-energy featu
for the SSH model centered at the same frequency as
feature in the Holstein model. For the Holstein model th
coupling is intermediate, which can be seen both from
asymmetry of the absorption band and the significant s
dependence of the spectrum.12 With a further increase in the
coupling strength this absorption band becomes very sim
to that expected from simple analytic approaches10,11 as was
previously found in Ref. 12. For the SSH model on the oth
hand, we are already deeper in the polaronic regime. Th
clear from the fact that the low-energy feature for the S
model does not change significantly from 3 to 4 sites, wh
the one in the Holstein case changes more noticeably. If
increases the coupling strength further, however, there is
risk of obtaining unphysical results for the SSH model
discussed in Sec. II C. We avoid the unphysical region
this simple version of the model by restricting the coupli
strength. The numerical calculations have been perform
with a maximum allowed number of phononsnmax550 for
the two- and three-site calculations andnmax520 for the
four-site calculations.

While the results for the Holstein model do not depe
qualitatively on the number of sites, the SSH two-site mo
has a very different behavior compared to the larger syste

FIG. 4. Finite frequency optical conductivity forv0 /t50.2 for
the Holstein model~H, left column! with g/t50.55 and the SSH
model withg/t50.3 ~SSH, right column! for one electron on OBC
clusters of different lattice sizes: from top to bottom two, three, a
four sites.
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The two-site SSH model, as we have anticipated in the p
ceding section shows just a single feature centered
v52t18g2/v0, associated with a local transition from th
even-parity ground state to odd-parity excited states. Incr
ing the number of sites a lower energy feature appears
tered at half the center of the high-energy ‘‘local’’ feature.
is generated by the excitation of the electron from one b
to a neighboring one. It is worth noting that the two featu
do not change significantly going from three sites to fo
sites, despite the fact that the model has a nonlocale-ph
coupling.

To summarize the results up to this point: the most
ticeable feature of the optical conductivity of a single SS
polaron in the~quasi-!adiabatic limit is the presence of tw
optical absorption bands generated by different optical e
tation processes, one corresponding to the feature foun
the Holstein model, and the other at twice the energy co
sponding to a local excitation on the distorted bond.

Further information about the different way in which th
polaron excitation occurs in the two models can be extrac
from an analysis of the optical spectra as functions of
e-ph coupling. This may be most clearly seen by examin
the various contributions to the sum rule. As a conseque
of the self-trapping, the electronic kinetic energy is stron
suppressed in the strong-coupling limit; Eq.~20! implies that
the total weight of optical excitations decreases with incre
ing coupling for the Holstein model. On the other hand,
optical sum rule for the SSH model Eq.~21! also involves
thee-ph term, which increases with increasing coupling co
stant.

In Fig. 5 we show for the Holstein model the total su
rule, the Drude weight, and the incoherent integrated we
as a function of thee-ph coupling forv050.2t. The total
sum rule sharply decreases as soon asl;1; this sharp de-
crease is driven by the fall of the Drude weight, which ra
idly approaches zero. Note further that even if, forl.1, the
finite frequency polaronic absorption appears besides
Drude weight, its weight also decreases ast/g asg increases
in the strong-coupling regime.

In Fig. 6 we present similar information for the SS
model. The total sum rule monotonically increases with

FIG. 5. Spectral weights for the Holstein model withv0 /t50.2
for a four-site cluster with PBC. The solid line is the total sum ru
Eq. ~20!; the dashed line is the Drude weight; the dotted line is
integrated weight of the finite frequency polaronic absorption f
ture.
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coupling, which indicates that the increase of thee-ph term
overcompensates the decrease of the hopping term.
Drude weight rapidly decreases for this kind ofe-ph cou-
pling as is the case for the Holstein model, whereas the
laronic structures increase their total weight as the coup
increases.

We have separately integrated the optical conductivity
the two different optical absorption bands characteristic
the SSH case, obtaining in both cases an increase in
optical weight with coupling. As far as the high-energy, loc
feature is concerned, this result is consistent with Eq.~22!,
which predicts an increasing value for the intensity of t
optical absorption as a function of thee-ph coupling. The
low-energy feature for the SSH model, on the other ha
which we attributed to the same kind of optical excitati
that generates the absorption band for the Holstein mo
also shows an increase of total weight with increasingg,
whereas the Holstein structure has a decreasing weight a
coupling increases. This difference does not undermine
similarity between the two features, but simply underlin
the nature of thee-ph coupling term for the SSH model: th
dipole moment associated with this type of transition is
increasing function of the coupling, so that quite natura
the absorption is expected to increase with coupling.

A further aspect to be considered is the dependence o
conductivity on the phonon frequency. As we already stat
the independence of the current operator for the Hols
model on the phonon operators is responsible for the ‘‘s
vival’’ of the adiabatic small-polaron excitation process wi
increasing phonon frequency. For the SSH model this ar
ment does not work, so we expect that the physical pict
we have drawn using the adiabatic approximation will n
hold for a sufficiently large value of the adiabatic ratiov0 /t.
The dependence of the current operator on the differenc
the phonon displacements makes it possible to conside
optical transition that modifies, even strongly, ifv0 /t is size-
able, the lattice configuration. The short bond can be
larged as the electron is excited to a neighboring bond
the adiabatic picture can break down.

e
-

FIG. 6. Spectral weights for the SSH model for a four-site clu
ter with PBC and phonon frequencyv050.2t. The solid line is the
total sum rule Eq.~21!; the dashed line is the Drude weight; th
dotted line is the integrated weight of the low energy ‘‘Holstei
like’’ polaronic absorption feature; the dot-dashed line is the hig
energy local bonding-antibonding transition.
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In Fig. 7 we study the effect of increasing phonon fr
quency on the optical conductivity for a four-site OBC clu
ter keepingl constant. The value of the coupling (l50.225)
is large enough to show clear polaronic features in the a
batic regime. The two optical features are very evident
the smaller of the two frequencies shownv0 /t50.2,
whereas for the larger phonon frequencyv0 /t50.8 the ab-
sorption bands are broadened and overlap significan
Larger phonon frequency also results in a more evident p
non structure, which contributes to hide the two features.
an adiabatic ratiov0 /t51 there is almost no sign of two
distinct optical structures. Note that for larger phonon f
quency size effects are also more important: forv0 /t50.8
the difference between the high-energy region of the fo
site result shown and the two-site case is much larger tha
the case for the results forv0 /t50.2 in Fig. 4.

IV. CONCLUSIONS

In the present paper we addressed the issue of pol
formation in lattice models with extreme short-rangee-ph
interactions, the SSH and the Holstein models. Our work w
devoted to comparing the properties of the SSH model w
the more intensively studied Holstein model. In particular
clarified, both from analytic qualitative arguments and fro
numerical exact calculations, thatl or a are not by them-
selves independent parameters which determine the
electron or the polaronic regimes in thee-ph models. Indeed
we showed for the Holstein model that both condition
l.lc'1 and a.ac'1 have to be satisfied in order t
realize both the mass enhancement and the energetic ad
tage to accept the loss in kinetic energy, which characte
the polaronic state. Depending on the adiabatic ratiov0 /t,
the condition for the polaronic regime is determined
l.lc whenv0,t and bya.ac whenv0.t.

Comparing our findings with the results of a dynamic
mean-field theory calculation, which is exact in the limit
infinite connectivity,31 we find substantial agreement as f
as the value of the parameters ruling the single-polaron
mation in the Holstein model is concerned. This clearly
dicates that the same physical picture extracted here from
numerical calculation in small~one-dimensional! clusters

FIG. 7. Finite frequency optical conductivity of the SSH mod
for a four-site cluster usingl50.225. The solid line is for
v0 /t50.2 and the dashed line is forv0 /t50.8.
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holds for infinite systems in higher dimensions as well. T
‘‘universal’’ behavior is a natural consequence of the loc
character of the small polarons in the Holstein model.

On the other hand, perturbative and numerical calcu
tions for the SSH model lead to the conditionl.lc irre-
spective of the adiabatic ratio. This result, apparently c
trasting with the corresponding criterion in the Holste
model, may be very naturally understood in terms of a phy
cal argument again based on the kinetic energy reduction
energetic convenience to enhance the electronic mass to
lattice deformation energy. Therefore, although the final c
teria are different, the same physical picture underlies
formation of a single polaron in the two models. In carryin
out the investigation of the SSH model we also demonstra
the crucial role played by the phonon dynamics in order
have a polaronic regime within this model, avoiding its p
thologies.

The optical absorption of a polaron arising frome-ph cou-
pling of the SSH type has been shown to exhibit mark
differences from the well-known Holstein polaron. The
differences can be understood in terms of the simple pic
of the Holstein small polaron consisting of an electron bou
to a single distorted site, whereas the SSH polaron may
described as an electron localized on a shortened bond.
absorption in the Holstein model is due to processes wh
the electron is excited from the distorted site to a neighb
ing undistorted site. A feature in the optical conductivi
centered at a frequencyv52Ep , i.e., twice the polaron
binding energy, is associated with this kind of process. In
SSH model, corresponding processes exist where the e
tron is transferred from the distorted bond to a neighbor
undistorted bond, leading to a very similar absorption fe
ture. On the other hand, a different channel for the pola
excitation in the SSH model is available. The ground stat
an even parity, bonding state localized on a shortened b
Due to the existence of local excited states of antibond
~odd! symmetry on the ‘‘short’’ bond, there is an addition
strong absorption feature at twice the energy of the fami
‘‘Holstein-like’’ absorption. The higher energy of this fea
ture may be understood to arise from the antibonding na
of these final states with respect to the shortened bond.
anti-bonding character leads to the raising of the energy
the state by the same amount by which the polaronic grou
state energy is lowered, whereas the ‘‘Holstein-like’’ tran
tion occurs from a low-energy state to a zero-energy stat
far as the electron-phonon interaction energy is concern
Although all numerical calculations were performed for on
dimensional systems, due to the local nature of the phy
we have described, the dimensionality is not expected to p
a crucial role and similar features would be expected also
higher dimensional systems.
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