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Small-polaron formation and optical absorption in Su-Schrieffer-Heeger and Holstein models
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The conditions leading to small-polaron formation for a single charge carrier in the Su-Schrieffer-Heeger
(SSH model are compared with the Holstein model. From analytic perturbation theory and exact numerical
diagonalization of small clusters different criteria are established, which however have a common physical
origin: Polaron formation requires a sizable mass enhancement and a lattice deformation energy gain larger
than the loss in the bare electron kinetic energy in both models. The optical absorption of the Su-Schrieffer-
Heeger model in the polaronic regime is also shown to exhibit an additional feature not present in the Holstein
model. This additional feature arises due to the bond nature of small polarons in the SSH model, and is
determined by transitions from the ground state of the bonding character on a shortened bond to excited states
of the antibonding character on the same shortened §&0d.63-18207)02032-9

I. INTRODUCTION this regard. In general both forms @&ph coupling are
present in real materials, with the relative importance of each
Electrons acquire polaronic character in the presence of depending on the detailed structure of the matéfial.
sufficiently strong electron-phonone<ph) coupling when One goal of this paper is to provide a picture of small-
they displace the ions around them and move carrying alongolaron formation in the SSH model and to show that this
the lattice deformation. Being accompanied by the mucHpicture and the analogous one for the Holstein model can be
heavier lattice degrees of freedom, in the polaronic regiméinderstood in terms of the same physical concepts. We show
the carriers acquire large effective masses and, in som@at polaron formation in both models occurs when two
cases, may even be trapped in the potential well arising frophysical criteria are satisfied: A sizable mass enhancement,
the ionic displacement that they created. and lattice deformation energy gain larger than the loss in the
In the present work we investigate the Su-Schrieffer-bare electron kinetic energy.
Heeger (SSH model in comparison with the Holstein The second major goal of this paper is to demonstrate that
model? Due to their relative simplicity these models are thethe optical response of the SSH model exhibits some features
most frequently considered models for electrons andvhich are quite distinct from those of the Holstein model.
phonons interacting via a short-range potential and may well The SSH model is described by the Hamiltonian
be taken as a suitable paradigmatic basis for investigating the

physics of strongly interacting-ph systems. __ e T f. T
The concepts underlying polaron theory in these models H t% G CJ+w°Z & aﬁgZ [(CiCivaHCivaCi)

are long standing and have found various theoretical substan- . .

tiations over the last decad&ore recently the discovery X(ajytaii—a; —a)] (1)

of polarons in the insulating phases of high-temperature .

superconductofs has triggered numerical exact diagonal- and the Holstein model by

ization analyses on models with stroege interaction® 8

However, the strqng—coupling nature of the. poIarpnic state  3y= —t> Ci‘rcj+gz CiTCi(aiJfaiT)waoz ala;. (2)

does not allow reliable analytic approaches in the intermedi- {ij) i i

ate crossover region, which is of the greatest interest in order

to quantitatively investigate the conditions for polaron for- We use units such that the lattice spacargl and also

mation. On the other hand, the multiphononic essence oi=c=1.

polarons makes it difficult to approach the strong-coupling Since we will restrict ourselves to the single-electron case

regime from the numeric point of view. A landmark in this we will not consider electron spin indices throughout this

context was provided by quantum Monte Carlo calculationgpaper. Moreover, in short-range models, where only small

in Ref. 9 where an interpolation formula was presented depolarons can be formed in the strong-coupling regime, di-

scribing the criticale-ph coupling leading to polaron forma- mensionality is not a qualitatively relevant paraméter.

tion in the Holstein model. Therefore, for simplicity and for restrictions in our numerical
The polaronic properties of the Holstein model, where theanalysis, we confine ourselves to the one-dimensional case.

electron density is coupled to an optical phonon mode, havé&he first term in Eqs(1) and(2), proportional to the nearest-

been much studied, and a remarkable part of the work hageighbor hopping integral (which we will take as our unit

been devoted to the study of the optical response, which isf energy gives rise to a tight-binding band structure of the

reasonably well understod@-130n the other hand, the SSH form E(k)= —2tcosk). A dispersionless w(q)=wg] Ein-

or nonlocal coupling model has received little attention instein phonon is created by the fieddl and is coupled to the
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covalent bond variablec;, ;+c, ,c; in the SSH model so that polarons in the antiadiabatic regime of the Holstein
and to the local electronic density in the Holstein model. Formodel are formed as soon as=1. Notice that the condition
the Holstein model, the coupling arises from the dependence>1 in this specific case is not sufficient to determine a
of the local atomic energgi.e., the Madelung energpn the  polaronic crossover.

ionic position. This coupling is relevant when the screening On the other hand, a sizable lattice displacement is not
of the Madelung potential is poor, and is believed to be nonenpugh to give rise to a large mass enhancement in the
negligible in the superconducting cupratésOn the other nearly adiabatic regimea{y<t), because phonons can be
hand, the covalerg-ph coupling in the SSH model is due t0 created rather easily. Then the effective hopping matrix ele-
the dependence of the hopping integral on the relative disyent no longer arises only from the overlap of the phonon
tance between two adjacent iohdlotice that our SSH \acuum states on adjacent sites, but to a large extent it in-

model ((jjiff(fars from thﬁ convelr)lt(lonﬁl 0£e| In _havm% ?pt+cal volves the overlap of excited states also, whose spatial ex-
(instead of acoustjcphonons like the Holstein model: To tension is larger. Therefore, in this regime the reduction of

clarify more ea_sny _the common mechanisms gnderlymg th(?he hopping matrix element is less severely affected by large
polaron formation in the two models we avoided unneces-

sary differences between them, thus focusing on the rol\e/alu(ﬁ Ofa. I:\hthls tgasbe,twhe;e; (;)Or,n:hfi rrr:orr? rrestrlct:\ée nd
played by the differengé-ph couplings. Moreover, despite the E.On ition on Ie ratio elwee elo 6; OI € ne)dglylgg a
completely different origin of the-ph coupling in the two inetic energy loss-t1) plays a relevant role anki~1 de-

models, we choose the same notatiprto emphasize the termines the onset of polaron formation. This also establishes
generic character of the physical processes that we are goirfy direct connectich between the polaronic intermediate-

to present. coupling regime and the standard Fermi-liquid perturbation
theory’® where the mass enhancement is given by
m*=m(1+1\).
Il. CRITERION FOR POLARON FORMATION .
In summary the simultaneous occurrence of the two con-
A. General considerations ditionsA>1 and «>1 is needed to characterize and to de-

Before addressing the problem of the single polaron for{€rMine polaron formation in the Holstein modéi particu-
mation in a more formal way within the above models, we!@" One can immediately recognize from the definitiorhof
first would like to provide simple and intuitive argumerati ~ @nd @ that a crucial role is played by the adiabatic ratio
the following general arguments apply in a generic dimen—“’O/t-2 If wo/t is small, the condition for a large
sionality d). As mentioned above, the setting in of a po- =@ @o/2td is more difficult to realize tham>1, and po-
laronic regime is characterized byptha strong reduction of laron formation will be determined by the more restrictive
the effective hopping matrix element due to a sizable local =1 condition. The opposite is true when the system is in
displacement of the ionic positiomsid a lattice deformation  the antiadiabatic regimeo/t>1. o .
energy gain larger than the loss of bare kinetic energy. Th_ls intuitive argumer!t was already |mpI!C|t in the |nt¢r—

Before considering the SSH model, we consider how théolation formula Eq(4.1) in Ref. 9 once this is expanded in
fulfilling of these two conditions occurs in the Holstein the two opposite limitay,/t>1 andwg/t<1.
model. For the Holstein model, these effects are directly re- On the other hand, it will be shown that in the SSH model
lated to two parameters which are often introduced in thighe value of\ still determines the energetic advantage in
field: \=g%(2dtw,) and a=g/w,. \ represents the ratio deforming the lattice {and losing kmet!c energy. Howe_ver, the
between the polaronic binding energy):—gz/wo in the Mass enhancement is ruled by a different mechanlsm with
strong-coupling limit and theare average kinetic energy of espect to the Holstein modésee Eq.(14) below] and is
the electrons of the order of half the bandwidth + 2td). dlrgctly related ton regardles§ of the value of thg adiabatic
Notice that the bare hoppinghas to be used here. In fact ratio g)olt. The'refore)\ determlne:boththe'energetlc advgn—
this is of the order of the kinetic energy actually lost whent@ge in deforming a bonandthe suppression of the hopping
the polaron is formed. Then the value dfdetermines the integral associated with the lattice d_|st_ort|0n and it will be
convenience for the system to give up the kinetic energy gaif’€ relevant parameter for the description of the system for
arising from the hopping to gain the lattice deformation en-@ny value ofwo/t. All these intuitive arguments will be sub-
ergy induced by the loca-ph potential. On the other hand, s;antlate_d bglow by analytic calculations and numerical exact
as is clear from a standard Lang-Firsov transformation of th&liagonalization of small clusters.

Holstein model® « represents half the ionic displacement in
units of (2M wg) Y2, whereM is the ionic mass. It is intui-
tive that the strong reduction of the effective hopping matrix
element is governed by the amount of lattice displacement. The above arguments may be made more formally precise
However, a crucial role in this regard is played by the adia-within a perturbative analytic calculation in the limit of small
batic ratio wq/t. In particular, in the antiadiabatic regime e-ph coupling @<t,wp). In this case we evaluated the
wo>t, phonons are energetically costly and only theirsecond-order correction to the electronic self-energy repre-
vacuum state couples effectively to the low-energy hoppingsented in the diagram of Fig. 1.

processes. Then the small overlap of phononic ground-state To explore both the adiabatic and the antiadiabatic re-
wave functions on neighboring sites exponentially reducegimes, we cannot apply Migdal's theorem to discard vertex
the hopping amplitud&’ In this case it is apparent that  corrections: Our approximation only relies on the small
governs the mass enhancement. The energetic ratialue ofg. This also allows for the simplification of using
A= awy/2td>1 is also in favor of the lattice deformation, the bare electronic Green function instead of carrying out a

B. A first insight from perturbative calculations
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LammTmTE. .y o
‘v" ~“~~ m*:m 1+ 6)\ T (1)0<t, (7)
/" \‘
K \‘ m*=m(1+8\+2a?) wy>t. (8
14 bY
- @ The electrons in the SSH model in the fully adiabatic limit

- . . )
FIG. 1. Lowest-order self-energy diagram of the electron propa-.w‘r)]._ 0 afr?hcog'lpletelﬁl fre(tam f m). Tﬁ“ts IS dfue tg the Vant
gator. The solid line is the bare electron Green function; The dashel' 19 OF the bares-ph vertex for Small transierred momenta

line is the bare phonon propagator. The dots represene-le q [cf. Eq'(_4)]’ Whi_Ch overcompensates th_e diverg_ent density
coupling. of states in the integral of Eq5). Physically this effect

arises because many electronic states lie close tkth@

self-consistent evaluation including the full Green functionPint, but the phonon-mediated scattering between them oc-
inside the self-energy diagram. curs at low momentum transfer, which is less effective in tht_a

For the sake of simplicity and to allow for a more direct SSH model, where phonons decouple from the electrons in
comparison with the numerical results on small clusters, wéhe long-wavelength limit. _
only deal with one-dimensional systems. Nevertheless, we Equation(7) shows that the effective mass enhancement
explicitly checked in the easier case of the Holstein modeis governed by\ in the adiabatic limit. The extra factor of
that our analytic results apply to multidimensional cases as/®o/t arises from the vanishing value of teeph vertex(4)

well. at the bottom of the one-dimensional band, as can be
For our purposes we only need the perturbative correcchecked by considering a finite density of electrons with a
tions to the effective mass Fermi energyu away from the bottom of the band. We will
come back to this point when we will compare this behavior
m*  1-9JReX(K,w)/dw|y=—ot k=0 with the Holstein model. In the antiadiabatic limit the mass

3 enhancement in the SSH modélg. (8)] involves botha?

] ] ) ) ) and\. In this limit A> «? and therefore the mass correction
It is quite obvious that the polaronic regime cannot be atis gominated by also in the antiadiabatic regime. This be-
tained within our lowest-order perturbative approach: Theyayior is a consequence of the specific localization mecha-
cloud dressing the electrons in a polaronic excitation innism that occurs in the SSH modeve defer the discussion
volves multiphononic processes, which are not included iy this point after the numerical analysis presented in the
the diagram of Fig. 1. Nevertheless valuable indications omaxt sectiopand can be contrasted with the different behav-

the beginning of the polaronic crossover can be extractegy of the Holstein model, for which the self-energy for a
from the above expression. In particular, one can determingingle particle ind=1 is given by°

the parameters for which the effective mass starts to grow

[(m* —m)/m~1], also marking the region where perturba- Ao

tion theory is no longer applicable. S(w)= 0 , (9)
In the SSH model the baeeph vertex ind=1 associated V(0= w)/2t]~1

with scattering of an electron fromlato ak+ q Bloch state

has the following form:

F: l+ (?ReE(k,w)/(?Ek|w=,2tyk=0 '

where the real part of the square root has the same sign as
(w— wq). Notice that the self-energy is momentum indepen-
O+ q=2ig[sin(k+q) —sin(k)]. (4)  dent becaus_e the baeeph vertex i_s also momentum inde-_
pendent. This feature allows the introduction of the density
Consequently, once a frequency integration is carried oUlf states in the momentum integrals, thus leading to a
the self-energy is given by straightforward extension of our results above one dimen-

sion.
1 .
=402 2‘ From Egs.(9) and(3) we find
2(k,w)=4g"/N T W~ wo— €qtid

X [irf(k+q) + sirf(k) — 2 sir(k)sin(k+ q)]. mt_ A2t o)

=1+ =
(5) m \/‘U—O(4t + wg) 32

To obtain the effective mass and the ground-state energy of Also in this case we evaluate the mass correction in the adia-
single electron in the bottom of the band, we only need tdatic and in the antiadiabatic limits
evaluate RE(k=0,0w) and its derivatives in th&=0 state

(10

and for w=E(k=0)=—2t, finding PR /L) ot 11
- 2 (O] 0 !
m* _1+)\ 8(1)0 +2(1)0/ 2t+(1)o 1
m [02+8twg b | \witate, m*=m(1+a?) w>t. (12)

©®) In agreement with the intuitive arguments presented at the
By expanding the perturbative correction in E) in the  end of the previous section, the antiadiabatic result shows
two opposite, adiabatica{y<t) and antiadiabati¢ (wy>t) that the mass enhancement is driven by the condition
limits, we get a>1, which is more restrictive than>1.
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On the other hand, as expected, the adiabatic result for the 0.5
mass enhancement is proportional\toThis contribution is . ——— =02t
also proportional ta/t/w,, which is large in this limit, which 04 TN o=
seems to contrast with the usual perturbative calculations S \ o w§= 5t
within Fermi-liquid theory® where only a correction of or- 03 / | ~_ _we=10t
der\ is predicted. This feature arises from the singular den- b ' / L - wo =20t
sity of states at the bottom of a one-dimensional band, as can < 02 S \‘\\
be checked by considering a finite density of electrons with a S T w
finite Fermi energyu away from the bottom of the band. In ,’//,/' N
this latter case the coefficient of the mass correction becomes 01 (',;1/' R Y ‘;‘\\\
Jt/(wo+ w) and is no longer singular in the adiabatic lirfiit. /o T R S
This specific, nongeneric result is the price that we have to 905 o1 07 o3 oz 0.5
pay in order to take advantage of the simpler analytic treat- ' ' TN ' ’

ment in one dimension, but it does not hide the important o . .

finding that only thex parameter rules the polaron formation ~ FIG. 2. Local density-displacement correlation functjpsy for
when wy<t. Moreover it is worth noting that our simple, the SSH model and one electron in a four-site lattice with periodic
lowest-order perturbative calculation already gives a stron?‘oundary conditions. The curves are labeleddgy't: Curves with
indication that one electron in a fully adiabdfic(ie., 'a9er maxima correspond to smaller valuesugft.

wo=0) one-dimensional Holstein lattice is localized . . :
(m* —o0). In light of our calculation, this well-known To extract information on the values gf at which the

result® can easily be attributed to the singular density Ofpolaron crossover begms' we aqalyzed th'(.a correlatl'on.func-
state< tlpn between the electronic density on a sitand the ionic
displacement on the siie- 6

— T t
C. Exact diagonalization analysis Xi,s=(olcici(ai-s+ai_ )| o), (13

In order to set the above scheme for the single-polarovhere|¢y) is the ground state of the system.
formation in the SSH model on more solid ground, we per- For the SSH model we specifically investigated the be-
formed exact numerical calculations on small clusters byhavior of the density-displacement correlation functigng
means of the Lanczos algorithm. As ustfalye truncate the andy; ; for different values of the adiabatic parameigy/t
phononic Hilbert space so as to include only a finite numbegs a function of thee-ph coupling constant. The calculation
of phonons per lattice site. To reliably explore the strong-was performed on a four-site lattice with open boundary con-
coupling regimes, we had to include up to 50 phonons pe€litions. The density-displacement correlation functions, as
site (and check the convergence of the results by varying th@ll physical quantities, are smooth functions of &ph cou-
phonon number Due to the huge enlargement of the Hilbert pling for all finite phonon frequencies. Wheregs, always
space induced by the presence of the lattice degrees of fre#ficreases witly, ; , first increases and then decreases in the
dom, we have only been able to investigate small clusters uptrong-coupling regime. This agrees with the well-known re-
to four sites?® In such small clusters finite-size effects are sult that polarons are small in models with short-rapggh
obviously relevant. However, we checked that as far as théteractions: Well formed polarons are so local that the pres-
criterion for polaron formation is concerned, our results areence of a fermion on a site is uncorrelated with the ionic
rather insensitive to the boundary conditions and no qualitadisplacements on neighboring sites. We also found that the
tive changes occur in passing from three- to four-site latticesadiabatic regime is characterized by a rather sharp crossover,
In the short-range models considered here, polaron formatiowhereas the crossover for larger phonon frequency is in-
is a local, high-energy phenomenon. Small bond-polaron forcreasingly smooth as the phonon frequency increases. Since
mation in the SSH model is characterized by the shrinking ofolaron formation is a crossover without symmetry changes
the bond on which the electron is localized due to the enbetween two phases, some arbitrariness is unavoidable in
hancement of the effective hopping between the two sites. Adefining a criterion separating the free-electron and the po-
the same time the neighboring bonds are stretched and ti@ronic regimes. In particular we choose the critigalrom
hopping between the two occupied sites and the surroundindge point of maximum of the nearest-neighbor density-
ones is reduced resulting in a tendency towards localizatiordiplacement correlation functiog; ;. We checked that dif-
Eventually the hopping between the two sites and the rest derent criteria(like, e.g., the maximum slope of the local
the lattice vanishes and may even change sign. This pathelensity-displacement correlation functiono) provide the
logical situation is a well-known feature of the SSH model,same qualitative results.
which in real systems never occurs due to higher-order cor- In Fig. 2 we display the result fo; ; as a function ok in
rections to the expansion of the hopping parameteterms  the SSH model for various values @f /t. It is apparent that,
of the ionic displacement. For all couplings where we findwhile the position of the maximum is substantially indepen-
polaron formation in the SSH model, we checked that thesdent of the phonon frequency, the width of the curve sub-
pathologies do not occur. We also notice that, by increasingtantially broadens with increasing, /t.
the phonon frequency, the effective hopping is relatively less The phase diagram of Fig.(&@ is calculated using the
affected, so that larger values ®fcan be reached before the results for the correlation functions as shown in Fig. 2. The
zero-hopping pathology is found. As a consequence, the resritical A as a function ofwg/t is indicated with a solid line.
gion with substantial polaronic character is enlarged. We also show the crossover region, defined as the range of
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20 Iytic solution is possible givingy/=4 for the constant appear-
,l ing in Eq. (14). Thus\ determines the reduction of the ef-
15 Cross-over | @) fective hopping when the lattice displacement is sizable.

- Region - As for the Holstein model case, another condition needs
=10 Small | to be satisfied in order to have a polaronic regime: The en-
3 Polaron /' ergy gain due to the polaron formation, i.e., the typical en-
s , ) ergy of a self-trapped carrier has to be larger than the loss in
. ] /Unphysical bare kinetic energy associated with the self-trapping. Since
. | Region in the strong-coupling regime the electron localizes on a
0.0 02 0.4 0.6 single bond the polaronic binding energy is given by the

strong-coupling energy of a two-site cluster. The solution of
the two-site cluster shows that the polaron energy for the

10 (b) SSH model still contains a contribution from the free-
electron hopping, arising from the delocalization of the elec-
- tron between the two sites of the bond. Then the ground-state
=1 energy is given bfE,= —t—2g°%/ wo. We divide this energy
3 by the free-electron energy 2t to obtain the ratio of the
energy gain associated with polaron formation to the energy
o1 loss associated with the decrease of electronic mofflit§.
we explicitly evaluate the range af values for which
0.1

b o (—t—20% wg)/(—2t)>1, (15)

FIG. 3. Phase diagram for one electron in a four-&itelattice ~ we readily obtainA>0.25. This value coincides with the
with open boundary conditions for the SSH mode); for the Hol-  value at which the hopping matrix element vanishes accord-
stein model(periodic boundary conditionsThe solid line is the ing to Eqg.(14) and to the adiabatic limit of the parameter
critical value of\ for the polaronic crossover; The crossover region y=4_ This implies that whemwo— 0, the system will have
is shaded and its boundary is indicated by the dashed lines. Thgg energetic advantage in localizing the electron on a bond,
dot-dashed line irfa) is the boundary of the pathological region for | njess the pathological conditid#i =0 is reached. Accord-
the SSH model. ing to the physical idea thatoth a sizable lattice displace-

_ o i _ mentand an energy gain from deformation larger than the
parameters for whicly; ; significantly changes. This region inetic energy loss are required to realize a polaronic state,
is estimated by the "width” at half the maximum of the one should not expect polarons in the adiabatic limit of the
same function. The pathological region of parameters agsH model. Indeed, we carried out the exact diagonalization
largeg’s is associated with the negative value)af;, as @  of |arge clusterd100 sites in the extreme adiabatic limit
consequence of the unphysical negative value of the effectiVﬁ:nding that the SSH model does not present any marked

hopping matrix element. . . _ polaronic behavior for couplings smaller than the “patho-
As expected from the perturbative calculation, we findjggical” g's at which the hopping changes sign.

that the polaronic regime is determined by the condition "o finite phonon frequencies this picture is modified by
A= constant both in the adiabatic and the antiadiabatighe |attice dynamics. The numerical study shows that the
regmes’: The specific mechanism of hopping reduction giv- ground-state energy is not strongly effected by the lattice
ing rise to localization in the SSH model, accounts for th'sdynamics: regardless of the value @f/t, N larger than
difference with respect to the Holstein model. 0.25 remains the condition to obtain an energetic advantage

For clarity we _bzg‘g'” this discussion by considering thefom |ocalization. On the other hand, the effective hopping
fuIIy adiabatic limit=< In th|s. case, at first order the hopping matrix element is less severely reduced by the coupling to
is reduced by the stretching of the bonds By=t—gu, e Jattice fluctuations and the value offor which the ef-
where u is the (dimensionless value of the bond length factive hopping becomes zero increases wigit [from Fig.
variation in units of (Mawg) Y (Qoyicgzthat forog—0,9  3(a), one sees thag~2 for wy/t~20]. Therefore, for finite
has to vanish butgu stays finite.”> We can write , it is always possible to find a regime where the lattice
u=yg/wg for the SSH model even if the Lang-Firsov result geformation becomes energetically favorable and a substan-
u=g/wg is not valid for this model. Numerical calculations tjg| |attice displacementi.e., hopping reductionis present
show thaty is a weakly decreasing function ak/t, so that,  wjithout having a nonphysical vanishing of the hopping. In
aF least t(_) leading order the reduction of the effective hopyhig region, which is larger for large phonon frequendisee
ping matrix element is governed by the valueof Fig. @], the electron has a polaronic character for values of
N larger thank.~0.2. Finite-size effects easily account for
the small quantitative discrepancy between this value and the
fully adiabatic estimaté .~0.25.

The above result shows thatdetermines both the reduc-

In the-strong coupling regime the electron is localized ontion of the hopping integral associated with the lattice distor-
a single bond and the many-site model becomes equivaletipn and the tendency towards localization driven by the en-
to a two-site cluster. Then, for such a small system, an anargetic advantage in deforming the lattice. It is then natural

2

t*=t—gu=t(1—y J )=t(1—y)\). (14)

2(1)01:
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to considen as the relevant parameter for polaron formationfrequency part of Eq(16) has previously been studied by
regardless of the value of the adiabatic ratig/t. Notice ~ Alexandrovet al? for the Holstein model.
that this finding was also suggested by the perturbative result We have used both periodic and open boundary condi-
(7) and(8), showing that the main corrections to the effectivetions for our numerical calculations. With open boundary
mass are proportional t» both in the adiabatic and in the conditions(OBC) the system is like a molecule; in this case
antiadiabatic regime. free acceleration is impossible and the Drude weights

For the numerical analysis also, the results for the SSHilways zero. With PBCD may be determined either by
model can be contrasted with the findings in the Holsteinstudying the dependence of the ground-state energy on an
model, for which the phase diagram is reported in Figp).3 adiabatic change of boundary condition, equivalent to a static
In this case one sees that the condition leading to a polaronigniform vector potentiat® or by making use of thé sum
regime is given byh>\.~1 only whenwy<t. At larger  rule which relates the integrated conductivity to a ground-
values of the adiabatic ratio polarons are formed forstate expectation value. For the Holstein model the latter is

A>(wglt). thus implying a>1. Also in the case of the
2

Holstein model, then, the numerical analysis provides a sub- o e
stantiation to the general arguments of Secs. Il A and Il B. 0 o()do=— T<Ht>v (20
. OPTICAL ABSORPTION while, given the explicit form for the current for the SSH

A Formalism model Eq.(19) the sum rule for the SSH model is given by
The real part of the conductivity for a one-dimensional o me?

tight-binding model at zero temperature may be expressed in f o(w)do=— T<Ht+ Hepw- (21

terms of the Kubo formula 0

The e-ph coupling term appears in the sum rule for the SSH
J 0> , (1)  model in the same way the hopping term does: this is a direct

consequence of the origin of this term, arising from a modu-
lation of the hopping integral. We have made use of the sum
rule to determineD.

_ t
o(w) D5(w)+3<0 J o HVEg_i5
whereJ is the current operator.

The coefficient of the zero-frequendyfunction contribu-
tion D is usually called the Drude weight: it is given by

2
Z M_ (17 The optical excitation of a small polaron for the Holstein
n70  En—Eo model has been studied by Erhirby means of general ar-
guments in the adiabatic limit and calculated by means of
exact diagonalization by Alexandroet all? for the more
general case. The physical origin of the optical absorption of
a small polaron can be easily described in the adiabatic limit
wo=0 invoking the Franck-Condon principle. The ground
state is given by an electron localized on a single site, which
is strongly displaced from its equilibrium position, while all

B. The optical excitation of small polarons: simple limits

me?
D=-—-(H)-

If the Drude weightD is nonzero the system is a perfect
conductor®® this will generally be the case in such models
with periodic boundary conditiond®BC) and no disorder at
zero temperature.

In the Holstein model is

Jy= ietz (¢l ,ci—cleii), (18 the other sites are not displaced. The electron can be excited
! to a neighboring site without changing the lattice configura-
while for the SSH model it is tion by the application of the current operator. The difference

in energy between the two states is the lowering of the elec-
) " " ‘ ‘ tronic energy associated with the small-polaron formation
JSSHzleiz [t—9g(ai 1 tai+1— 8 —a)](C11Ci—CiCiv1).  2E,, whereE,= 2\t is the small-polaron binding energy.
7 (19) The physical mechanism we have described is not pecu-
liar to the extreme adiabatic limiby=0, and is not strongly
The fact thatlsgy contains an explicit coupling to the pho- affected by the introduction of the lattice dynamics via a
non degrees of freedom is physically simple to understandfinite value of the phonon energy,. Note that the current
in this case the bond length is modified by the lattice distoroperator(18) acts only on the electronic degrees of freedom.
tion, so that the change in electric dipole moment associatedence the current operator connects only states having the
with the hopping of an electron is modified proportionally. same lattice configuration, or at least having a nonzero over-
Here we have neglected in both cases the direct coupling aép as far as the phononic state is concerned. Thus the physi-
the electric field to the ions which is of ordgm/M, where  cal picture we introduced for the extreme adiabatic limit can
m andM are the electron and ion masses. We are interestege extended to finite frequencies.

only in the features resulting from theeph coupling, not in The SSH model optical conductivity can also be studied
the direct excitation of the bare phonons. Equati¢tf®—  starting from adiabatic arguments invoking the Franck-
(19) may be derived following the standard approach usedCondon principle, but now taking into account the bond na-
for example, in the case of the Hubbard motel. ture of the polaronic state. The ground state is characterized

The use of the Lanczos algorithm to evaluate correlatiorby a short bond on which the electron is localized. The short
functions such as Eq16) is well established® The finite-  bond is generated by the shift of two neighboring sites to-
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wards one another by equal amounts. The electronic ground
state is the even combination of the two local states.

The optical absorption can happen in two different chan-
nels: a “Holstein-like” one in which the electron is excited
onto a different bond that is not shortened, and a local chan-
nel in which the electron is excited from the even symmetry
ground state into the local odd symmetry state on the short
bond. The first kind of excitation is analogous to the excita- —24 |
tion of the Holstein polaron and is expected to generate a
band similar to the one previously described, centeredegt 2
(even if in this caseE, is not simply given by the Lang-
Firsov resultg?/ w). The local excitation energy is given by
the difference in electronic energy between the even-parity 0.0
ground state and the odd-parity state, keeping the lattice con- 24} 4 Sites 11 4 Sites 1
figuration fixed. While the “Holstein-like” excitation is
characterized by the fact that the electron is excited from a 16t
state in which it gains an energyeg from the local distor-
tion to a state in which the electron energy is not affected by
the lattice configuration, the “local” transition carries the
electron from a state in which the distortion lowers the en-
ergy by an amount B, to a state in which the electron
energy is raised by the same amouf,2 Hence the energy

difference involved in the optical transition isEg. If we . )
. . . . he Holstein modelH, left column with g/t=0.55 and the SSH
introduce a finite phonon frequency this absorption pealEmodel withg/t=0.3 (SSH, right columinfor one electron on OBC

broadens into 6} band” exhibiting phonon features Sepa'clusters of different lattice sizes: from top to bottom two, three, and
rated by the typical phonon frequenay,.

. . four sites.
For the special case of only two sites the SSH model can

Eg daE:E’;'_CSIrlgoio,!;’ae:;g:n?;zgf%gtbgc?;eggSj[hog %omngd\ll-mi-the lattice configuration unaltered, expecially if the phonon
able. After performing the modified Lang-Firsov transforma-frequency 's comparable to or even greater than the hopping

. ; . integral. This point will be discussed further in light of the
tion we obtain for the two-site cluster numerical results.

T HI
2 Sites 1

3 Sites [

oWy (te*

0.0 ; e
0 2 4 6 8 0 2 4 6 8 10
wit wht

FIG. 4. Finite frequency optical conductivity fes,/t=0.2 for

2(86¥2)n

ol C. Exact diagonalization results

2 o0
me
To(w)= —n§=)o (2t+nwg)e 8

In Fig. 4 we show the optical conductivity for the Hol-
X 8(w—(2t+nwg)). (22)  stein and SSH models for different lattice sizes for a phonon
frequencywy=0.2t. We have chosen the coupling for the
The conductivity of the two-site cluster given by E82)  two different models in order to have the low-energy feature
consists of a succession of Dirac delta functions at frequerfor the SSH model centered at the same frequency as the
cies separated by the phonon frequengy Once the Dirac feature in the Holstein model. For the Holstein model this
delta functions are substituted by Lorentzians the analyticoupling is intermediate, which can be seen both from the
formula (22) gives the same result as the numerical calculaasymmetry of the absorption band and the significant size
tions: a single absorption band centeredvat 2t+89%/ w,,  dependence of the spectrdfWith a further increase in the
with width proportional tog/t and intensity proportional to coupling strength this absorption band becomes very similar
t/g+4g/ we. Of course, the other “Holstein-like” absorption to that expected from simple analytic approacfiésas was
feature, which we argued should be present due to the trangreviously found in Ref. 12. For the SSH model on the other
fer of the electron from the shortened bond to a neighborindgiand, we are already deeper in the polaronic regime. This is
undistorted one, cannot occur for a two-site system wherelear from the fact that the low-energy feature for the SSH
there is only one bond. This implies that the sum {88  model does not change significantly from 3 to 4 sites, while
which is given by the one in the Holstein case changes more noticeably. If one
increases the coupling strength further, however, there is the
°° 2 g° risk of obtaining unphysical results for the SSH model as
fo U(w)d‘”:T t+w_o (23 giscussed in Sec. Il C. We avoid the unphysical region of
this simple version of the model by restricting the coupling
is exhausted by this feature. This is consistent with the widttstrength. The numerical calculations have been performed
and intensity described above. with a maximum allowed number of phonong,,=50 for
We expect the physics of the polaronic absorption for thehe two- and three-site calculations ang,,=20 for the
SSH model to be much more dependent on the adiabatiour-site calculations.
ratio than is the case for the Holstein model. The dependence While the results for the Holstein model do not depend
of the current operator on the phonon operators makes fjualitatively on the number of sites, the SSH two-site model
possible to have an optical transition which does not leavénas a very different behavior compared to the larger systems.
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FIG. 5. Spectral weights for the Holstein model witlg /t=0.2 FIG. 6. Spectral weights for the SSH model for a four-site clus-

for a four-site cluster with PBC. The solid line is the total sum rule ter with PBC and phonon frequenay,=0.2t. The solid line is the
Eq. (20); the dashed line is the Drude weight; the dotted line is thetotal sum rule Eq(21); the dashed line is the Drude weight; the
integrated weight of the finite frequency polaronic absorption feadotted line is the integrated weight of the low energy “Holstein-
ture. like” polaronic absorption feature; the dot-dashed line is the high-

. - . energy local bonding-antibonding transition.
The two-site SSH model, as we have anticipated in the pre- 9 g g

ceding section shows just a single feature centered at
w=2t+8g% w,, associated with a local transition from the coupling, which indicates that the increase of &ph term
even-parity ground state to odd-parity excited states. Increagvercompensates the decrease of the hopping term. The
ing the number of sites a lower energy feature appears cedrude weight rapidly decreases for this kind epbh cou-
tered at half the center of the high-energy “local” feature. It pling as is the case for the Holstein model, whereas the po-
is generated by the excitation of the electron from one bondaronic structures increase their total weight as the coupling
to a neighboring one. It is worth noting that the two featuresincreases.
do not change significantly going from three sites to four We have separately integrated the optical conductivity for
sites, despite the fact that the model has a nonleegh  the two different optical absorption bands characteristic of
coupling. the SSH case, obtaining in both cases an increase in total
To summarize the results up to this point: the most no-optical weight with coupling. As far as the high-energy, local
ticeable feature of the optical conductivity of a single SSHfeature is concerned, this result is consistent with 28),
polaron in the(quasijadiabatic limit is the presence of two which predicts an increasing value for the intensity of the
optical absorption bands generated by different optical excieptical absorption as a function of tleeph coupling. The
tation processes, one corresponding to the feature found iow-energy feature for the SSH model, on the other hand,
the Holstein model, and the other at twice the energy correwhich we attributed to the same kind of optical excitation
sponding to a local excitation on the distorted bond. that generates the absorption band for the Holstein model,
Further information about the different way in which the also shows an increase of total weight with increasing
polaron excitation occurs in the two models can be extractedvhereas the Holstein structure has a decreasing weight as the
from an analysis of the optical spectra as functions of thecoupling increases. This difference does not undermine the
e-ph coupling. This may be most clearly seen by examiningsimilarity between the two features, but simply underlines
the various contributions to the sum rule. As a consequencihe nature of the-ph coupling term for the SSH model: the
of the self-trapping, the electronic kinetic energy is stronglydipole moment associated with this type of transition is an
suppressed in the strong-coupling limit; E0) implies that  increasing function of the coupling, so that quite naturally
the total weight of optical excitations decreases with increasthe absorption is expected to increase with coupling.
ing coupling for the Holstein model. On the other hand, the A further aspect to be considered is the dependence of the
optical sum rule for the SSH model E(R1) also involves conductivity on the phonon frequency. As we already stated,
thee-ph term, which increases with increasing coupling con-the independence of the current operator for the Holstein
stant. model on the phonon operators is responsible for the “sur-
In Fig. 5 we show for the Holstein model the total sum vival” of the adiabatic small-polaron excitation process with
rule, the Drude weight, and the incoherent integrated weighincreasing phonon frequency. For the SSH model this argu-
as a function of thee-ph coupling forwy=0.2. The total ment does not work, so we expect that the physical picture
sum rule sharply decreases as soorn\ asl; this sharp de- we have drawn using the adiabatic approximation will not
crease is driven by the fall of the Drude weight, which rap-hold for a sufficiently large value of the adiabatic ragig/t.
idly approaches zero. Note further that even if, Xor 1, the = The dependence of the current operator on the difference of
finite frequency polaronic absorption appears besides th#he phonon displacements makes it possible to consider an
Drude weight, its weight also decreaseg/gsasg increases optical transition that modifies, even stronglygwif /t is size-
in the strong-coupling regime. able, the lattice configuration. The short bond can be en-
In Fig. 6 we present similar information for the SSH larged as the electron is excited to a neighboring bond and
model. The total sum rule monotonically increases with thethe adiabatic picture can break down.
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15 holds for infinite systems in higher dimensions as well. This
“universal” behavior is a natural consequence of the local
character of the small polarons in the Holstein model.
On the other hand, perturbative and numerical calcula-

Nf;l‘o tions for the SSH model lead to the conditian>X irre-

= spective of the adiabatic ratio. This result, apparently con-
§ trasting with the corresponding criterion in the Holstein
®

©
i

model, may be very naturally understood in terms of a physi-
cal argument again based on the kinetic energy reduction and
energetic convenience to enhance the electronic mass to gain
lattice deformation energy. Therefore, although the final cri-
2 4 6 8 10 12 teria are different, the same physical picture underlies the
wit formation of a single polaron in the two models. In carrying
out the investigation of the SSH model we also demonstrated
FIG. 7. Finite frequency optical conductivity of the SSH model the crucial role played by the phonon dynamics in order to
for a four-site cluster using\=0.225. The solid line is for have a polaronic regime within this model, avoiding its pa-
wo/t=0.2 and the dashed line is fary/t=0.8. thologies.
The optical absorption of a polaron arising freaph cou-
pling of the SSH type has been shown to exhibit marked

In Fig. 7hwe St!"d>|/ thedeffch 0‘; incr(;,\asing phanon Ifre'differences from the well-known Holstein polaron. These
quency on the optical conductivity for a four-site OBC clus- yitterences can be understood in terms of the simple picture

}Senalffipg]r%ucohntséagﬁblvhagueo?;tgfif?gstlhnrgf |Cr)1 '%ﬁg)a di of the Holstein small polaron consisting of an electron bound
arge enoug earp . 0 a single distorted site, whereas the SSH polaron may be
batic regime. The two optical features are very evident for

the smaller of the two frequencies showm/t=0.2 described as an electron localized on a shortened bond. The
whereas for the larger phonon frequenﬁy/t=0% the ab absorption in the Holstein model is due to processes where

sorption bands are broadened and overlap significantl;}he electron is excited from the distorted site to a neighbor-
Larger phonon frequency also results in a more evident phd'_ng undistorted site. A feature in_ the optical conductivity
non structure, which contributes to hide the two features. Fofentéred at a frequency=2E,, i.e., twice the polaron

an adiabatic ratiavy/t=1 there is almost no sign of two binding energy, is associated with this kind of process. In the
distinct optical structures. Note that for larger phonon fre-SSH model, corresponding processes exist where the elec-
quency size effects are also more important: dgr/t=0.8  tron is transferred from the distorted bond to a neighboring
the difference between the high-energy region of the fourundistorted bond, leading to a very similar absorption fea-
site result shown and the two-site case is much larger than fsire. On the other hand, a different channel for the polaron

0.0
0

the case for the results fes,/t=0.2 in Fig. 4. excitation in the SSH model is available. The ground state is
an even parity, bonding state localized on a shortened bond.
IV. CONCLUSIONS Due to the existence of local excited states of antibonding

(odd) symmetry on the “short” bond, there is an additional

In the present paper we addressed the issue of polarQfiqng ahsorption feature at twice the energy of the familiar
formation in Iﬁttlggﬁodglsh wll_tihlextlremedsTorgrarg@rll “Holstein-like” absorption. The higher energy of this fea-
Interactions, the and the Holstein models. Our work wag, o, may be understood to arise from the antibonding nature

devoted tp comparing th? propertlgs of the SSH m.odel mef these final states with respect to the shortened bond. This
the more intensively studied Holstein model. In particular we

clarified, both from analytic qualitative arguments and fromam'_bondlng character leads to the raising of the energy of
numerical exact calculations, thator « are not by them- the state by the same amount by Whlch‘ the po'largms grour]d-
selves independent parameters which determine the fre«§,Eate energy is lowered, whereas the "Holstein-like” transi-
electron or the polaronic regimes in taeph models. Indeed 10N occurs from a low-energy state to a zero-energy state as
we showed for the Holstein model that both conditions,far as the electron_-phonon mt_eractlon energy is concerned.
A>N~1 and a>a.~1 have to be satisfied in order to A_Ithoug_h all numerical calculations were performed for one-
realize both the mass enhancement and the energetic advgfimensional systems, due to the local nature of the physics
tage to accept the loss in kinetic energy, which characteriz®€ have described, the dimensionality is not expected to play
the polaronic state. Depending on the adiabatic raijdt, a_cruuall role a}nd similar features would be expected also in
the condition for the polaronic regime is determined byhigher dimensional systems.
A>\. whenwy<t and bya>a, when wy>t.

Comparing our findings with the results of a dynamical
mean-field theory calculation, which is exact in the limit of ACKNOWLEDGMENTS
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