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Auxiliary boson approach for electronic states in the two-dimensional Hubbard model
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Electronic states in the two-dimensional Hubbard model are studied in the doped paramagnetic states by use
of the auxiliary boson approach. Four auxiliary bosons are introduced by means of the Hubbard-Stratonovich
transformation within the functional integral treatment. These bosons correspond to one charge and three spin
fluctuations. An effective model is formulated. Going beyond the boson fluctuations around the saddle point,
the single-electron Green’s function including one-loop self-energy effects of fermion-boson interaction is
derived. The behavior of the fermion self-energy, spectral functions, and density of states are investigated for
several values of the Coulomb interactionU within the limit imposed by the Stoner criterion and also for small
and moderate doping concentrationsd. For small doping (d50.2), asU approaches a value determined by the
Stoner criterion, the spin-boson spectrum has a striking low-energy enhancement aroundq;2kF . This en-
hancement of the spin fluctuation causes a non-Fermi-liquid-like low-energyv linear dependence in the
imaginary part of the self-energy. Due to the self-energy effects, band splittings and a band narrowing are
produced in the spectral functions. As a consequence of this, the density of states has pseudogap structures
around the quasiparticle band with a narrow bandwidth on the Fermi energy. These features seem to be
precursors of the metal-insulator~Mott-Hubbard! transition and they might be related to the spin-gap phenom-
ena observed in high-Tc materials. Our results for the density of states, the spectral function, and the band
dispersions show qualitative agreement with the data of finite-size cluster simulations.
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I. INTRODUCTION

High-Tc materials have a number of unusual physi
properties1 that are not easy to understand within the fram
work of the Fermi-liquid theory. There are many open qu
tions concerning these materials. For example, the origin
the pseudogap~spin-gap! in the spin excitation spectrum,2,3

the pseudogap in the normal-state excitation spectrum,4,5 and
finally the possibility of the spin-charge separation6–8 in the
two-dimensional strongly correlated electron systems. Th
phenomena must be closely related to the anomalous m
lic states near the metal-insulator transition due to the str
Coulomb interaction between two electrons on each Cu s
To understand the anomalous metallic states and to s
these questions, we must get a better physical picture of
electronic states of these materials. It is a basic problem
understand the essential features of the strongly correl
electron systems.

After the discovery of high-Tc materials, the single-ban
Hubbard model, the three-band CuO2 model, and thet-J
model have been studied intensively to investigate the or
of the above-mentioned phenomena and also to calculate
high superconducting transition temperature. Among the
the single-band Hubbard model is the most fundame
model to describe the metal-insulator transition due to
strong electron-electron interaction on the lattice elect
system and also to investigate the nature of the anoma
metallic state near the metal-insulator transition. The H
bard model seems to be oversimplified to describe the e
tronic states of the high-Tc materials. However, this mode
560163-1829/97/56~8!/4464~15!/$10.00
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contains the correct nature of the strongly correlated sys
and it provides very useful information for more realist
models, which are more favorable to study the properties
the high-Tc cuprates.

Though the Hamiltonian is of a simple form, because
the large Coulomb interaction, it is difficult to pursue d
tailed investigation of the electronic states near the me
insulator transition. As in the early investigations of the Hu
bard model, two methods are known well. One is t
Hubbard approximation,9 based on the equation of motio
method, and the other is the Gutzwiller variational functi
method.10 At first sight the two approaches seem to gi
different descriptions of the metal-insulator transition. In t
former approach the density of states~DOS! shows the band
gap~Mott-Hubbard gap! at the critical value of the Coulomb
interaction. The latter explains the metal-insulator transit
by the band narrowing effects, i.e., by the localization of t
quasiparticle band. These two different explanations of
metal-insulator transition have been shown to be esse
features of the metal-insulator transition described by
Hubbard model.

This has been shown theoretically using the slave-bo
method11 and was also demonstrated clearly by the num
cal simulation approaches12–19 and thed5` method.20 By
the recent progress in the capability of computers many
teresting results have been obtained in the numerical sim
tions of the finite-size cluster systems.12–19 Although a re-
striction on the size of the system and temperature ex
these methods seem to simulate to some extent, in a co
manner, the essential properties of the single-particle sp
4464 © 1997 The American Physical Society
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56 4465AUXILIARY BOSON APPROACH FOR ELECTRONIC . . .
trum in the Hubbard model. Thed5` method is also one o
the most effective methods to study strongly correla
systems.20 This method is particularly useful in revealing th
nature of the density of states in the infinite-dimensio
Hubbard model. At half filling and for a critical Coulom
interactionUC the physical system becomes insulating. Fro
these approaches one realizes that there are some com
properties in the electronic states of the Hubbard model~i!
for 0!U,UC the DOS has three characteristic band str
tures; one lower and one upper Hubbard band in the h
energy region and one narrow quasiparticle band on
Fermi level; ~ii ! for hole ~electron! dopings, quasiparticle
band structure appears at the top~bottom! of the lower~up-
per! Hubbard band. Recently, these features have been
tained also by the composite operator expansion meth
which take into account the two-site correlation effect.21

In this paper we investigate the evolution of the electro
states of the two-dimensional Hubbard model with t
change of the Coulomb interactionU and the doping con-
centrationd. Our main purpose in this study is to investiga
the detailed behavior of the single-particle spectra taking
account the effects of the charge and spin fluctuations.
introduce four auxiliary bosons to consider both charge
spin fluctuations in the interaction term of the Hubba
Hamiltonian. One effective model is constructed in the fun
tional integral formulation. The boson fluctuations arou
the saddle point are taken into account and the Dyson e
tions for both the boson propagators and the fermion Gre
function are derived by the explicit calculation of the se
energies up to one-loop order. Within the critical value of t
Coulomb interaction controlled by the Stoner instabil
criterion,22 we calculate the real and the imaginary parts
the self-energies, the spectral functions, and the densit
states. For largeU, the energy dependence of the imagina
part of the self-energy at the wave vector near the Fe
surface becomes linear in energy around the Fermi ene
The effective band dispersion deduced from the data of
spectral function demonstrates the onset of gap formatio
the high-energy region. This effect reflects itself in the de
sity of states since there appears a pseudogap stru
around the narrow quasiparticle band for largeU. These fea-
tures in the single-particle spectrum coincide qualitativ
with results obtained in the numerical simulations, t
d5` method, and also by the composite operator metho
will be shown that the strong enhancement of the low-ene
spin excitation nearq;2kF for the low doping concentration
causes a non-Fermi-liquid-like behavior in the electro
states in the Hubbard model.

II. AUXILIARY BOSON APPROACH

We consider the interacting electron system in a tw
dimensional square lattice with unit lattice constant at z
temperature. The system is described by the following H
bard Hamiltonian:

H5H01H8, ~2.1!

H052t (
^ i , j &,s

cis
† cj s2m(

i ,s
nis , ~2.2!
d
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H85U(
i

ni↑ni↓ , ~2.3!

where cis
† (cis) represents the electron creation~annihila-

tion! operator on an orbital of thei th lattice site with spin
s, t is the nearest-neighbor hopping energy, andm is the
chemical potential. The indexi of the summation of the firs
term in H0 runs all over the lattice sites andj runs over
nearest-neighbor sites of eachi th site. In the interaction
HamiltonianH8, U is the coupling constant of the Coulom
interaction between two electrons with opposite spin dir
tions on a same lattice site.nis5cis

† cis is the number opera
tor of electrons on thei th site with spins. Using the charge-
density operatorni defined by

ni5(
s

nis ~2.4!

and the spin-density vector operatorsi5(si
(1) ,si

(2) ,si
(3)) de-

fined by

si5
1

2 (
s,s8

cis
† tss8cis8 ~2.5!

wheret is the Pauli matrix with components

t~1!5S 0 1

1 0D , t~2!5S 0 2 i

i 0 D , t~3!5S 1 0

0 21D ,

~2.6!

we rewrite the interaction term as

H85
U

2(
i

H S ni

2 D 2

2si
2J . ~2.7!

Furthermore, by introducing the 232 unit matrix
t(0)51 the interaction Hamiltonian can be written in a sim
pler form as

H85
U

2(
i

(
a,b50

3

si
~a!habsi

~b! , ~2.8!

where

si
~a!5

1

2 (
s,s8

cis
† tss8

~a! cis8, ~2.9!

andhab is an element of the matrixh defined by

h5F 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21

G . ~2.10!

In the functional integral formulation23,24 the partition
function Z of the system is given by

Z5E DC†DCexpS i E dt(
r
LD ~2.11!

with the Lagrangian densityL defined by
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L5(
s

Cs
†~r ,t !~ i ] t1m!Cs~r ,t !1t (

j 5x,y
(
s

Cs
†~r ,t !

3Cs~r6ej ,t !2
U

2 (
a,b50

3

s~a!~r ,t !habs
~b!~r ,t !,

~2.12!

whereC†,C are Grassmann fields,ej is the unit lattice vec-
tor for j direction, and

s~a!~r ,t !5
1

2 (
s,s8

Cs
†~r ,t !tss8

~a! Cs8~r ,t !. ~2.13!

We introduce four auxiliary bosonic operatorsf (a)(r ,t)
for the charge-density (a50) and the spin-density
(a51,2,3) operators through the Hubbard-Stratonovich re
tion

E df~a!expi F1

2
f~a!habf

~b!1AUf~a!habs
~b!G

5const expF2 i
U

2
s~a!habs

~b!G . ~2.14!

Performing a Hubbard-Stratonovich transformation we
tain

Z5E DC†DCDfexpS i E dt(
r
L8D ~2.15!

with the Lagrangian density

L85(
s

Cs
†~r ,t !~ i ] t1m!Cs~r ,t !

1t (
j 5x,y

(
s

Cs
†~r ,t !Cs~r6ej ,t !

1
AU

2 (
s,s8

(
a,b

habf
~a!~r ,t !Cs

†~r ,t !tss8
~b! Cs8~r ,t !

1
1

2(a,b
f~a!~r ,t !habf

~b!~r ,t !. ~2.16!

Thus, we consider the system of fermions and bosons wi
Yukawa-type interaction between fermions and bosons
stead of the quartic order term of fermion fields.24

By integrating out the Grassmann fields we immediat
obtain effective action for the boson system as follows:

Z5E Dfexp@ iSeff~f!#, ~2.17!

Seff~f!5E dt(
r

1

2 (
a,b50

3

f~a!~r ,t !habf
~b!~r ,t !

2 i lndet@ i ] t1m2M ~f!#. ~2.18!

Here we define the matrix element ofM (f) by
-

-

a
-

y

^r ,t,suM ~f!ur 8,t8,s8&52t (
j 5x,y

ds,s8d r8,r6ej
d~ t2t8!

2
AU

2 (
a,b

habf
~a!~r ,t !

3tss8
~b! d r ,r8d~ t2t8!. ~2.19!

And using the relation lndetA5trlnA that holds for an arbi-
trary operatorA we obtain

Seff~f!5E dt(
r

1

2 (
a,b50

3

f~a!~r ,t !habf
~b!~r ,t !

2 i tr$ ln@ i ] t1m2M ~f!#%. ~2.20!

III. FERMION AND BOSON GREEN’S FUNCTIONS

The discussion of the previous section is quite general.
choosing a boson field that represents a suitable space
figuration corresponding to some ordered state one can
cuss a chosen magnetic state.23 In this paper we restrict ou
discussion to the case of the paramagnetic state. Inves
tion on the antiferromagnetic state has already been
formed using the same formulation by one of the author25

and detailed results will be presented in another publicat
At first we derive the saddle-point solution of the effe

tive action~2.20! in the paramagnetic states. From Eq.~2.20!
we obtain the following saddle point~mean-field! equation:

dSeff

df~a!~r ,t !
5haaf0

~a!~r ,t !2 i trF 21

i ] t1m2M ~f0!

dM ~f!

df~a!~r ,t !G
50. ~3.1!

For eacha, we have the solution

f0
~a!~r ,t !5AU (

s,s8
iGss8~r ,t;r ,t;f0!

ts8s
~a!

2
. ~3.2!

Here we have a defined single-electron Green’s function

Gss8~r ,t;r 8,t8;f![^r ,t,suS 1

i ] t1m2M ~f! D ur 8,t8,s8&

~3.3!

and Gss8(r ,t;r 8,t8;f0) is the mean-field Green’s function
Using the relation

^s~a!~r ,t !&52 i (
s,s8

Gss8~r ,t;r ,t;f0!
ts8s

~a!

2
, ~3.4!

we obtain

f0
~a!~r ,t !52AU^s~a!~r ,t !&. ~3.5!

Since we consider the system in the paramagnetic s
^s(0)(r ,t)&Þ0 holds for a50 and ^s(a)(r ,t)&50 for
a51,2,3. Thus, the saddle-point values of boson fields
f0

(0)52AUn/2 for a50 andf0
(a)50 for a51,2,3.

In the (k,v) representation the mean-field Green’s fun
tion can be written as
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G0~k,v!5
1

v1m2@«k1~U/4!n#1 ihsgn~v!
, ~3.6!

where«k522t(coskx1cosky) is the energy dispersion of th
tight-binding model on the two-dimensional square latti
The symbol ‘‘sgn’’ means the sign function. The mean-fie
Green’s function is just the noninteracting Green’s funct
with the single-particle energy shifted byUn/4. That is simi-
lar to the usual Hartree-Fock approximation. The factorU/4
originates from the form of our starting expression of t
interacting HamiltonianH8 of Eq. ~2.7!. This form is par-
ticularly suitable to consider electrons in the strong inter
tion regime although the conventional form is perhaps m
useful to calculate the total ground-state electronic energ
the system. For simplicity we introduce the chemical pot
tial m0 in the mean-field approximation asm05m2Un/4.
Then we have

G0~k,v!5
1

v1m02«k1 ihsgn~v!
. ~3.7!

Such redefinition of the chemical potential does not aff
the electronic states of the system. We determine the ch
cal potentialm0 to be consistent with the electron numb
conservation. The electron numbern per a lattice site is
given by

n5(
k,s

u~m02«k! ~3.8!

at zero temperature. By solving this for fixedn we get the
chemical potentialm0 for specified dopingd512n. Elec-
tronic states in the saddle-point approximation are trivial

Next we take into account the fluctuations of boso
around the saddle point. To this end we replace the bo
fields f by a sum of mean-field partf0 and fluctuation part
df. Then we haveM (f)5M (f0)1dM (df). In the effec-
tive action Seff ~2.20! we can rewrite the logarithm in th
trace of the last term as

ln@ i ] t1m2M ~f0!2dM ~df!#

5 ln$@ i ] t1m2M ~f0!#@12Ĝ~f0!dM ~df!#%

5 ln@ i ] t1m2M ~f0!#1 ln@12Ĝ~f0!dM ~df!# ~3.9!

with

Ĝ~f0!5@ i ] t1m2M ~f0!#21 ~3.10!

and the matrix element ofdM (df) is given by

^r ,t,sudM ~df!ur 8,t8,s8&52
AU

2 (
a,b

habdf~a!~r ,t !

3tss8
~b! d r ,r8d~ t2t8!. ~3.11!

By expanding the last term of Eq.~3.9! as

ln@12Ĝ~f0!dM ~df!#52 (
n51

`
1

n
@Ĝ~f0!dM ~df!#n,

~3.12!
.

n

-
e
of
-

t
i-

s
on

we obtain an expansion expression of the effective ac
Seff

Seff5S01S11S21•••, ~3.13!

whereSn is thenth-order fluctuation term.S0 is a mean-field
contribution and sinceS1 involves only a single fluctuation
it vanishes identically. The second-order term can be writ
as

S25E dt(
r

1

2 (
a,b50

3

df~a!~r ,t !habdf~b!~r ,t !

1 i tr$ 1
2 @Ĝ~f0!dM ~df!#2%. ~3.14!

Using Eq.~3.11! and the definition ofhab , we obtain that

S25E dt(
r ,a

1

2
df~a!~r ,t !haadf~a!~r ,t !

1
i

2(
a,a8

haaha8a8UE dt1(
r1

E dt

3(
r

(
s,s1 ,s2 ,s3

Gss1
~r ,t;r1 ,t1 ;f0!

ts1s2

~a!

2

3Gs2s3
~r1 ,t1 ;r ,t;f0!

ts3s
~a8!

2
df~a!~r1 ,t1!df~a8!~r ,t !.

~3.15!

By a Fourier transformation we then have

S25(
a

(
q
E dn

2p

1

2
df* ~a!~q,n!Daa~q,n!21df~a!~q,n!

~3.16!

whereDaa(q,n) is the boson propagator given by

Daa~q,n!5
1

haa1~U/2!x0~q,n!
~3.17!

and the electron-hole polarization functionx0(q,n) is de-
fined by

x0~q,n!5 i(
k
E dv

2p
G0~k,v!G0~k1q,v1n!.

~3.18!

Figure 1~a! shows the diagram that representsx0(q,n).
To make the following discussion clear, here we chan

the notation of the boson propagators intoDc for the charge-
boson propagatorD00 andDs for the spin-boson propagator
Daa for a51,2,3. At the same time we introducehc51 and
hs521 instead ofhaa . As a result, the boson propagator
written as

Da~q,n!5
1

ha1~U/2!x0~q,n!
, ~3.19!

where the subscripta takesc or s.
The denominator of theDs has a pole in some value ofU

for a fixed electron numbern and the divergence due t



et
en

y

s
e in

he
ex-
by

il-
inal
the
the

on,
Eq.

ma-

m

on
on

4468 56T. SAIKAWA, A. FERRAZ, P. E. de BRITO, AND H. KAGA
the pole relates to a magnetic instability of the paramagn
system. It is an important point that, in the present treatm
the Stoner condition becomes 15(U/2)Rex0(q,0). In ordi-
nary random-phase approximation~RPA! based on theU
perturbation theory the condition is given b

FIG. 1. One-loop Feynman diagrams that represent~a! the
mean-field polarization functionx0(q,n) and ~b! the fermion self-
energyS(k,v). The solid line represents the mean-field fermi
Green’s functionG(k,v). The dashed line represents the bos
propagatorDa(q,n).
ic
t,

15URex0(q,0).22 The Stoner criterion in our case i
weaker than the usual one and this works as an advantag
our calculation.

The interacting fermion Green’s function beyond t
mean-field approximation is calculated by expanding the
pression of the definition of the Green’s function given
Eq. ~3.3!:

Ĝ~f!215 i ] t1m2M ~f0!2dM ~df!

5Ĝ21~f0!2dM ~df0!

5Ĝ21~f0!$12Ĝ~f0!dM ~df!% ~3.20!

and

Ĝ~f!5$12Ĝ~f0!dM ~df!%21Ĝ~f0!

5 (
n50

`

$Ĝ~f0!dM ~df!%nĜ~f0!. ~3.21!

Since we have introduced auxiliary boson fields, our H
bert space has been enlarged and it consists of the orig
fermion space and the auxiliary boson space. From
physical meaning of the boson fluctuations, we introduce
relation that^GndudfuGnd&50 with uGnd& being a boson
ground state in the enlarged Hilbert space. By this relati
we see that the odd-order terms in the expansion series
~3.21! vanish. Then, we can write the series as the sum
tion of the even-order terms:

Ĝ~f!5 (
n50

`

$Ĝ~f0!dM ~df!%2nĜ~f0!. ~3.22!

From the definition of the fermion Green’s function, the ter
of the second order indf of Eq. ~3.22! becomes
^r ,t,suĜ~2!~f!ur 8,t8,s8&5^r ,t,suĜ~f0!dM ~df!Ĝ~f0!dM ~df!Ĝ~f0!ur 8,t8,s8&. ~3.23!

Using the relation

(
s

E dt(
r

ur ,t,s&^r ,t,su51 ~3.24!

and also Eqs.~3.7! and ~3.11!, the second-order Green’s function is written as

i(
s9

E dt1dt2 (
r1 ,r2

U

4
G~r ,t;r1 ,t1 ;f0!G~r1 ,t1 ;r2 ,t2 ;f0!G~r2 ,t2 ;r 8,t8;f0! (

a50

3

tss9
~a! ts9s8

~a! Daa~r2 ,t2 ;r1 ,t1!, ~3.25!

where we have defined the boson propagator as

Dab~r ,t;r 8,t8!52 i ^Gndudf~a!~r ,t !df~b!~r 8,t8!uGnd&. ~3.26!

We can assume that the expression of the boson propagator is the same as the one already given by Eq.~3.19!. After Fourier
transformation, we have

iG0~k,v!
U

4 (
a50

3

(
q
E dn

2p
G0~k1q,v1n!Daa~q,n!G0~k,v!. ~3.27!
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The second-order Green’s function has the one-lo
fermion-boson bubble self-energy. By calculating high
order terms in the same way, we can derive arbitrary orde
the Green’s function with a corresponding self-energy
cluding a vertex correction. In this work we consider t
partial summation of the Green’s function including only t
one-loop fermion-boson bubble. Neglecting vertex corr
tions at this stage, we have the following Dyson equation
the fermion Green’s function.

G~k,v!215G0~k,v!212S~k,v!, ~3.28!

S~k,v!5Sc~k,v!13Ss~k,v!, ~3.29!

where the fermion self-energies are written as

Sa~k,v!5 i
U

4(
q
E dn

2p
G0~k1q,v1n!Da~q,n!,

~3.30!

wherea5c,s for the charge and spin components, resp
tively. The corresponding Feynman diagram is shown in F
1~b!.

IV. FERMION SELF-ENERGIES AND SPECTRA
OF THE BOSON PROPAGATORS

In this section we show the results of our numerical ana
sis of the fermion self-energies. The real and imaginary p
of the fermion self-energies for both charge and spin co
ponents are obtained from Eq.~3.30!. By substituting Eq.
~3.7! into Eq.~3.30! and performing then integral, we obtain
the imaginary part of the self-energy in the following form

ImSa~k,v!52
U

8(
q

@sgn~«k1q2m02v!

2sgn~«k1q2m0!#

3ImDa~q,«k1q2m02v!, ~4.1!

wherea5s,c correspond to the spin and charge fluctuatio
respectively. If we have ImSa(k,v), the real part of the
fermion self-energy is obtained by the Kramers-Kron
transformation,

ReSa~k,v!5
P

pE dv8
sgnv8ImSa~k,v8!

v82v
. ~4.2!

As we easily see from the expression of the fermion s
energy, the behavior of the boson spectrum ImDa is a deter-
minant for the fermion self-energies. From Eq.~3.19!,
ImDa is given by

ImDa~q,n!

5
2~U/2!Imx0~q,n!

@11ha~U/2!Rex0~q,n!#21@~U/2!Imx0~q,n!#2 . ~4.3!

The imaginary part of the polarization functionx0(q,n) is
calculated from Eq.~3.18! using the mean-field Green’
function Eq.~3.7!. We have that
p
-
of
-

-
f

-
.

-
ts
-

,

f-

Imx0~q,n!5psgn~n!(
k

@u~«k1q2m0!2u~«k2m0!#

3d~n2«k1q1«k!. ~4.4!

We calculated this formula numerically using the techniq
explained in the Appendix. The real part ofx0(q,n) is again
obtained from the Kramers-Kronig relation as

Rex0~q,n!5
P

pE dn8
sgn~n8!Imx0~q,n8!

n82n

5(
k

u~«k2m0!2u~«k1q2m0!

n2«k1q1«k
. ~4.5!

In Fig. 2 we show the low-energy behavior of the bos
spectral functions calculated forU/t53.0 and 6.0 and for
several wave vectorq’s at hole dopingd50.2. For this dop-
ing concentration, the criticalU evaluated from the Stone
condition isUcr /t56.3. In the present approximation the e
ergy range, in which the boson spectrum is meaningful
the same as that of the particle-hole individual excitat
obtained from the mean-field fermion bubble diagram. As
well known, if we consider the doped system, the sin
excitations have a gap in the regionq.2kF around zero
excitation energy. In the case of the two-dimensional Hu
bard model, the maximum value of the gap is 2um0u at
q5(p,p). For hole dopingd50.2, the Fermi momentum
kF in the (1,1) direction becomeskF /p5(0.47,0.47) and
the corresponding chemical potential ism0520.43. In the
inset of Fig. 2 the gap is observed in our data as expect

For the change of the value of the Coulomb interact
from U/t53.0 toU/t56.0, the charge boson spectra have
significant change. It behaves linearly by energy and thq
dependence is also weak. On the other hand, the spin-b
spectrum shows a drastic change asU/t approaches the criti-
cal value determined by the Stoner condition. Ne
q52kF , the spin-boson spectrum has a strong enhancem
which corresponds to the paramagnon excitation26 that char-
acterizes the onset of the magnetic instability. Contrary
this, at smallq, there is no sign of enhancement. For sm
dopings, such a strong enhancement in the spin excita
takes place nearq5(p,p) and it implies that the system i
close to the antiferromagnetic instability.

In the gap of the spin-boson spectral function f
q.2kF there exists another structure for a certain range
the Coulomb interaction. This can be understood as follo
Because of the rapid drop of Imx0(q,n) near the gap,
Rex0(q,n) has a peak structure near the low-energy edge
the individual excitation. When the peak maximum is
(qc ,nc), if U becomes large enough to satisfy the conditi
Rex0(qc ,nc).2/U.Rex0(qS,0) with qS being the wave
vector for the critical point of the Stoner condition, the re
part of the denominator of ImDs has two poles. Because o
this, the spin excitation has two peaks with one of the
inside the gap. This means that the paramagnon peak is
into two peaks by the Coulomb interaction. This paramagn
split seems to be a precursor phenomenon of the antife
magnetic instability in the doped two-dimensional Hubba
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FIG. 2. Low-energy behavior
of the boson spectral function
calculated for severalq’s in the
~1,1! direction (qx5qy) at
d50.2: the charge-boson spectr
ImDc(q,n) for ~a! U/t53.0 and
for ~b! U/t56.0; the spin-boson
spectra ImDs(q,n) for ~c!
U/t53.0 and for ~d! U/t56.0.
The inset in~d! shows the sharp
peak of ImDs(q,n) for large q
close to q5(p,p). For
qx /p(5qy /p)50.95, the gap
~see the text! is observed. Note the
difference of the scale of the in
tensity in these figures.
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model. A similar behavior to this exists in the parabolic ba
model and also in models with dimension higher than tw
The paramagnon split has a resemblance to the appearan
the zero sound mode. Within the RPA, the paramagnon s
appears in the magnetic susceptibility while the zero so
mode is manifest in the charge susceptibility. Note that
paramagnon split is not a Goldstone mode and the same
for the spin sound mode.27 In the present approximation th
paramagnon split has ad-function structure. However, th
excitation peak should be weaker than that if we take i
account higher-order contribution to the self-energies of
mions or if we solve the Dyson equation self-consistently.
our numerical calculation of the fermion self-energy we co
sidered the paramagnon-split structure in the spin-fluctua
boson spectral function assuming that it has a Lorenz
form with a width of the order of an integral unit of th
numerical integration.

Using Eqs.~4.1!–~4.5!, we calculated the fermion self
energy atd50.2 forU/t53.0 andU/t56.0 and obtained the
following results. We compare the charge componentSc and
the spin componentSs of the real and imaginary parts of th
self-energy at k5(p/2,p/2) in Fig. 3. For small U
(U/t53.0), the difference of the charge and the spin co
ponents is not remarkable. For largeU (U/t56.0), clear
differences between them appears in both the imaginary
and the real part of the self-energies. The difference
caused by the effect of strong enhancement of the param
non peak that appears in ImDs in the low boson-energy re
gion nearq52kF . The most important point in the behavio
of the imaginary part of the self-energy concerns perh
their low-energy limits. For largeU and energy range aroun
v50, ImSc shows the Fermi-liquid-likev2 behavior. In
contrast, ImSs behaves linearly inv. This implies that the
charge fluctuations persists with Fermi-liquid propert
while the spin fluctuation acts to break the Fermi-liquid
gime.
d
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These energy dependences of the imaginary part of
fermion self-energy can be understood by analyzing thq
summation in Eq.~4.1!. Firstly, we change theq summation
into a q integral,

ImSa~k,v!52
U

8 E dq

~2p!2 @sgn~«k1q2m02v!

2sgn~«k1q2m0!#ImDa~q,«k1q2m02v!.

~4.6!

The contribution to the integral comes from the region sa
fying sgn(«k1q2m02v)2sgn(«k1q2m0)Þ0 and
ImDa(q,«k1q2m02v)Þ0, for some given values ofk and
v. ImDa(q,v) has a finite value in the region correspondi
to particle-hole excitations. If we considerv.0, from the
restriction of the sign function, we find two conditions; on
is the restriction of the boson energyn written as
n5«k1q2m02v,0 and the other is«k1q2m0.0. In Fig.
4, we schematically plot these conditions in the (q,n) space
for k5kF wherekF /p5(0.35,0.35). For simplicity, we con
sider only the (1,1) direction ofq. In the region surrounded
by dashed lines ImDa(q,n) has a finite value. The dotte
line represents «kF1q2m0. For v52.0 and 5.0,

n5«kF1q2m02v are drawn as solid curves. The thick par

of the solid curves give the valid ranges of ImDa(q,n) to the
q integration of ImSa(k,v). From the figure, we see that fo
smallv and fork nearkF , the important contribution to the
imaginary part of the self-energy comes from the low-ene
regions of ImDa(q,n) nearq;22kF andq;0.

In the following, using the above analysis and the beh
ior of the calculated boson spectra, we roughly evaluate
low-energy behavior of the charge and spin components
the imaginary part of the self-energy. From the results of
calculation of the energy dependence of both the charge-
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FIG. 3. Energy v/t depen-
dence of the spin~solid line! and
charge~dashed line! components
of the fermion self-energy a
k5(p/2,p/2) for dopingd50.2:
the real parts for~a! U/t53.0 and
for ~b! U/t56.0; the imaginary
parts for~c! U/t53.0 and for~d!
U/t56.0. Dotted curves in~c! and
~d! represent the approximat
form of ImSc(k,v) ~see the text!
using r(m0)50.18, ~c! Ac50.10,
and ~d! Ac50.12.
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spin-boson propagator spectra, we find that both spectra
proportional ton for smalln, and the ImDc depends weakly
on q, contrary to ImDs , which has a sharp enhancement
q52kF . Since the boson propagator is a symmetrical fu

FIG. 4. Schematic explanation of the contribution range to
q integral of the imaginary part of the self-energy ImSa(k,v). The
area surrounded by the dashed line represents the meaningful r
of the individual excitation and also of ImDa(q,n). The dotted line
is «kF1q2m0. The solid curves correspond ton5«kF1q2m02v

for v52.0 and forv55.0. The thick parts of the solid curve
represent the contribution range to theq integral. For explanation, a
large value ofm0 @m0521.82,kF /p5(0.35,0.35)# has been used
in this figure.
re

t
-

tion of q, the sharp paramagnon enhancement appears al
the q522kF . Then, we assume the following forms of th
boson spectra for smalln:

ImDc~q,n!;2Ac~q!unu ~4.7!

and

ImDs~q,n!;2 d̃ q,22kF
As~2kF!unu, ~4.8!

where Ac and As are q-dependent positive factors for th
charge and spin excitations, respectively, and to take s
account of broadening effects we have introducedd̃ q,22kF

,

which is equal to 1 forq around22kF and is 0 for other
values of q. Using the relation sgn(x)52u(x)21 in Eq.
~4.6!, we have

ImSa~k,v!52
U

4 E dq

~2p!2 @u~«k1q2m02v!

2u~«k1q2m0!#ImDa~q,«k1q2m02v!.

~4.9!

For the charge components, from the weakq dependence of
ImDc(q,n), we takeAc(q);Ac5const. Using this and the
above assumption, we obtain

ImSc~k,v!;
U

4 E dq

~2p!2 @u~«k1q2m02v!

2u~«k1q2m0!#Acu«k1q2m02vu.

~4.10!

By changing the variableq to q2k in theq integral, we have

e
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ImSc~k,v!;
U

4
AcE dq

~2p!2 @u~«q2m02v!

2u~«q2m0!#u«q2m02vu. ~4.11!

This result shows that ImSc(k,v) does not depend onk and
it agrees with our numerical result that the charge com
nents of the imaginary part have a weak dependence ok.
Furthermore, we can change the aboveq integral to the en-
ergy integral by introducing the density of statesr(«) of the
noninteracting tight-binding band with the band dispers
«k . The integration range is the energy region from the ba
bottom 24t to the band top 4t of the noninteracting band
Thus,

ImSc~k,v!;
U

4
AcE

24t

4t

d«r~«!@u~«2m02v!

2u~«2m0!#u«2m02vu. ~4.12!

By considering the step function we restrict the integrat
range. Forv.0, using«2m02v,0 we have

ImSc~k,v!;
U

4
AcE

m0

m01v

d«r~«!$«2~m01v!%.

~4.13!

Since our main interest is its behavior around the Fermi
ergy v50, we can approximater(«) by r(m0) and put it
outside of the integral. If we now complete the integratio
we find thev2 dependence for the charge components of
imaginary part of the self-energy

ImSc~k,v!;2
U

4
Acr~m0!v2/2. ~4.14!

By generalizing also for the negativev,0, finally we have

ImSc~k,v!;2sgn~v!
U

4
Acr~m0!v2/2. ~4.15!

Next, we turn to the spin components. By substituting E
~4.8! into ~4.6! for a5s andk5kF , we find

ImSs~kF ,v!;
U

4 E dq

~2p!2 @u~«kF1q2m02v!

2u~«kF1q2m0!# d̃ q,22kF
As~2kF!

3u«kF1q2m02vu. ~4.16!

For v.0, u(«kF1q2m02v)2u(«kF1q2m0) gives21 and
as discussed above, the main contribution to the inte
comes from aroundq522kF . Then, we have

ImSs~kF ,v!;2
U

4
DAs~2kF!u«2kF

2m02vu, ~4.17!

whereD represents the width aroundq522kF in q space.
Using «2kF

5m0, we find the linear dependence of ImSs ,

ImSs~kF ,v!;2
U

4
DAs~2kF!v. ~4.18!
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For v,0, we obtain the same expression as this. Note
the above derivation does not apply fork far form kF be-
cause the contribution to theq integral that comes from the
other regions is different from in this case and is similar
the case of the charge components. For this, we have tha
v2 dependence follows for the other location.

We show the above approximate expression
ImSc(k,v) as dotted curves in Figs. 3~c! and 3~d!. The fac-
tor Ac is estimated from the calculated values
ImDc(q,n). We have chosenAc50.10 and 0.12 for
U/t53.0 and 6.0, respectively, and alsor(m0)50.18 for the
doping d50.2. As seen from these figures, the agreem
between the explicit calculation and the approximate form
good aroundv50.

We also calculated the total self-energy for severalk’s. In
Fig. 5 we show the imaginary part of the total self-energy
U/t53.0 ~dotted line! andU/t56.0 ~solid line!. We plot the
value divided byU to make the comparison between the
easier. In the case ofU/t56.0, thek dependence is charac
teristic especially around the Fermi energyv50. In this
case, at thek points far from the Fermi momentum
kF'(p/2,p/2), thev dependence around the Fermi ener
resembles the behavior of a Fermi liquid. However, as
position ofk approaches to the Fermi momentum the ran
of the v2-like behavior becomes narrow. Contrary, f
U/t53.0, v2 behavior holds in a relatively wider range an
k dependence is weak.

We plot also the energy dependence of ReS(k,v)2m*
for severalk’s in Fig. 6. ForU/t56.0, as thek approaches
the Fermi momentum, the slope of ReS(k,v)2m* around
the Fermi energy becomes large. ForU/t53.0 there is not a
notable change of slope. The behavior is deeply connecte
what happens to the imaginary part.

From all these results we see that the drastic enhancem
of the low-energy spin excitation due to strong Coulom
interaction produces the modification of the properties of
Fermi liquid near the Fermi surface.

V. FERMION SPECTRAL FUNCTIONS
AND DENSITY OF STATES

The fermion spectral function is obtained from the ima
nary part of the single-particle Green’s function as

A~k,v!52
1

p
sgn~v!ImG~k,v!. ~5.1!

From Eqs.~3.7! and ~3.28! we have

ImG~k,v!5
ImS~k,v!

$v1m* 2«k2ReS~k,v!%21$ImS~k,v!%2 .

~5.2!

The chemical potentialm* contains interaction effects effec
tively and it has a different value fromm0 in the mean-field
approximation. By calculating the following electron numb
conservation relation numerically, we can determine the p
cise value ofm* :

n52E
2`

0

dvN~v!, ~5.3!
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where the factor 2 is due to spin andN(v), the density of
states per spin, is defined by

N~v!5(
k

A~k,v!. ~5.4!

We calculate the density of states performing the summati
of the spectral functionA(k,v) in k space. In Fig. 7 the
evolution of the density of states is shown for several valu
of the interaction U/t for fixed doping d50.2. For
U/t53.0 the overall structures of the DOS is almost th

FIG. 5. Energyv/t dependence of the imaginary part of the
total self-energy scaled byU for several k’s at d50.2, for
U/t53.0 ~dotted line! and forU/t56.0 ~solid line!.
n

s

same as the noninteracting (U/t50.0) DOS, except for the
existence of the band tails, which appear both at the top a
at the bottom of the band. As the interactionU becomes
large, the band tails are spread out and total bandwidth a
become wider. As we will mention in more detail later in the
discussion about the spectral function, the development
the band in both positive and negative high-energy regio
corresponds to the formation of the upper and the low

FIG. 6. Energyv/t dependence of the real part of the tota
self-energy for severalk’s at d50.2, forU/t53.0 ~dotted line! and
for U/t56.0 ~solid line!. The dashed line representsv2«k . We
plot ReS(k,v)2m* for the purpose of comparison of the poles o
the Green’s function for bothU ’s. The calculated values of the
chemical potentialm* are 20.49 for U/t53.0 and 20.92 for
U/t56.0.
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Hubbard bands. In the low-energy region there exists a b
crossing the Fermi energyv50 for all values ofU. As U
becomes large, the bandwidth becomes narrower. Physic
we recognize that this corresponds to the quasiparticle b
in the interacting system as expected on general ground
the Fermi-liquid theory. ForU/t55.0 a pseudo-gap-like
structure comes out nearv50.8. For U/t56.0, the
pseudogap becomes wider and, furthermore, another w
dent appears atv520.25. The pseudogap of the DOS in th
two-dimensional Hubbard model has already been discu
by Kampf and Schrieffer28 in the framework of a random
phase approximation. Their approximation scheme for
perturbation theory is perhaps close to our treatment des
the difference in coupling constant and the fact that th
considered only the spin fluctuation effects. However, th
results differ from ours in one important point. In their a
proach the pseudogap arises from the negative side of
energyv and the sharp structure of the quasiparticle ban
not observed. The absence of the clear quasiparticle struc
in their data might be interpreted as a precursor phenome

FIG. 7. Density of states atd50.2, for U/t50.0 ~dotted line!,
3.0 ~dashed line!, 5.0 ~dashed-dotted line!, and 6.0~solid line!.
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of the breakdown of the Fermi-liquid theory. However, w
should note that the parameters used by them areU/t52.0,
at most, and the chemical potentialm520.375, which cor-
responds to a dopingd;0.18 for the noninteracting
(U/t50.0) system. These parameters are too weak to s
the formation of the pseudogap in our scheme.

In Fig. 8 we plot the spectral functionA(k,v) for the
~1,1! direction in the Brillouin zone for several values of th
interactionU. Besides, in Fig. 9, we also plot the peak po

FIG. 9. Band dispersions ford50.2, for ~a! U/t53.0, ~b! 5.0,
and ~c! 6.0. The dispersion dots were extracted from data of
spectral functions. The error bar on each dot represents a broa
ing of the spectral function around the point. The solid circles r
resent points corresponding to relatively large intensity.
FIG. 8. Spectral functions
A(k,v) for the (1,1) direction
calculated at d50.2, for ~a!
U/t53.0, ~b! 5.0, and ~c! 6.0.
Each spectral function is shifted
and the top~bottom! corresponds
to k5(0,0) „k5(p,p)….
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tions that are extracted from the results obtained for the s
tral functions. The sequence of the peak points may roug
correspond to band dispersions. The vertical line on e
point indicates the relative intensity of the spectral funct
at the peak point. ForU/t53.0, in the low-energy region
around the Fermi energy, the spectral function has a fi
width but is sharply peaked. In contrast, in the high-ene
region, the spectral function becomes broad. This produ
the already mentioned band tails of the density of state
the high-energy region. The band dispersion is almost sim
to that of the noninteracting tight-binding band for this p
rameter. ForU/t55.0, the broadening of the band edg
becomes larger and the band dispersion has some discon
ous points. ForU/t56.0, only near the Fermi energy, w
observe a sharp spectral weight and, in the high-energy
gion a new peak structure appears. The splitting in the
persion becomes clear. The dispersion splits into th
branches. Two of them, located in high-energy regions, c
respond to the lower and the upper Hubbard band. The o
crossing the Fermi energy, is the quasiparticle band and
dispersion around the Fermi energy is much narrower t
that forU/t53.0. We emphasize that for largeU/t, the qua-
siparticle band is no longer specified by a single continu
dispersion with a sharp clear peak, unlike the noninterac
band. The spectrum of the quasiparticle band has a c
sharp structure only near the Fermi surface.

These features are a natural consequence of the ef
observed in the real and the imaginary parts of the s
energy. To see this we shall return to the plot
ReS(k,v)2m* shown in Fig. 6. The dashed line in th
figure representsv2«k at eachk. The v coordinate of the
intersection point of ReS(k,v)2m* and the line ofv2«k
gives thev pole of the Green’s function. In the same wa
the intersection ofv2«k and thev axis determines the pol
of the mean-field Green’s function. The shift of the pol
(v coordinate! represents roughly the shift of energy ba
from its mean-field value. Note that in the high-energy
gion the shift of poles forU/t56.0 is considerably large
than that obtained forU/t53.0. This shift gives the origin o
the upper and the lower Hubbard bands. Note that as
follow the poles from thev,0 to thev.0 regions, if the
direction of the shift of poles changes from negative to po
tive, the split of the band dispersion should take place at
point.

Moreover, we calculated the electronic states at the d
ing d50.5. Since the increase in doping loosens the Sto
criterion, we can calculate for larger values ofU/t. In Fig. 10
we show the DOS forU/t50.0 ~dotted line!, 6.0 ~dashed
line!, 8.0 ~dashed-dotted line!, and 10.0~solid line!. As U/t
becomes larger, the large pseudogap arises aroundv54.0.
For U/t510.0, a clear mini pseudogap appears
v520.4. The van Hove singularity moves toward the Fer
energy due to the band narrowing effect and the intensity
the peak becomes weaker due to the contribution of
imaginary part of the self-energy. In Fig. 11 we plot the ba
dispersion for the same doping and forU/t510.0. There are
clearly three dispersions that correspond to the upper and
lower Hubbard bands and to the quasiparticle band cros
the Fermi energy.
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VI. DISCUSSION

The density of states of the two-dimensional Hubba
model was calculated by Kampf and Schrieffer in a RP
treatment.28 They took into account the spin fluctuation e
fect in the fermion self-energy and their treatment is rela
to our approximation. The differences in both formulatio
are the coupling constants on the vertex of the self-ene
and the fact that we considered the charge fluctuation
they did not. It is interesting to compare their density
states with ours. The overall structures of the two density
states are similar but the quasiparticle peak on the Fe
energy is not observed in their data. In our results it can
seen that the quasiparticle band comes out into
pseudogap, which also appears in their results. Another
portant difference concerns the Stoner criterion. In our
proach this criterion is weaker than it would be in the us
RPA-type theory and because of this we can perform ca
lations for larger values ofU. This is an advantage of ou
method. Maybe one of the reasons why the quasipart
band does not appear in the previous spin-fluctuat
calculation28 is that this approach is too sensitive with r
spect to the change inU, moreover, as we have shown
Fig. 3, the charge components of the self-energy keeps
Fermi-liquid-like energy dependence.

In our numerical analysis we have used the maxim
values of the interactionU/t56.0 and 10.0 for the fixed
doping concentrationsd50.2 and 0.5, respectively. Becaus
of the Stoner criterion we can not take a largerU/t, at least
within the present approximate treatment of the Gree
function and their self-energies. In this sense, our treatm
is valid from the weak-coupling regime to the intermedia
coupling regime. To improve our approximation we shou
consider higher-order diagrams together with vertex corr
tions in the self-energies. In such a treatment the Coulo
interaction must be well renormalized and it will be replac
by the effective interaction. As a result, the Stoner criter
is weaker, and it will then be possible to investigate ele

FIG. 10. Density of states atd50.5, for U/t50.0 ~dotted line!,
6.0 ~dashed line!, 8.0 ~dashed-dotted line!, and 10.0~solid line!.
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FIG. 11. Band dispersions atd50.5 and for
U/t510.0. The dispersion dots were extract
from data of the spectral functions. The error b
on each dot represents a broadening of the sp
tral function around the point. The solid circle
represent points corresponding to relatively lar
intensity.
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our
tronic states at the very low dopings and largerU ’s, i.e.,
close to the metal-insulator transition. Another important i
provement is to solve the coupled Dyson equations of
fermion and the boson propagators self-consistently.
plan to investigate these directions in the future.

The energy dependence of the real part of the self-ene
is important in characterizing the properties of the Fer
liquid. The energy derivative of the real part of the se
energy at the Fermi energyv50 relates to the residuezkF

of
the quasiparticle Green’s function by

zkF
5S 12

]ReS~kF ,v!

]v Uv50D 21

5F12S 3
]ReSs~kF ,v!

]v Uv50

1
]ReSc~kF ,v!

]v U
v50

D G21

. ~6.1!

The band narrowing effect of the quasiparticle band is p
duced byzkF

. If we neglect the fact that ImSs(k,v) scales

linearly with v whenv→0, we find the following relations
From Fig. 3, we can see that the slope of the spin compo
is larger than that of the charge component and the differe
becomes larger asU/t becomes large. The quasiparticle ba
narrowing effect comes from the spin component of the r
part of the fermion self-energy. To see this more clearly
separatezkF

into their spin and charge parts. By defining t

z factors associated with the charge and spin fluctuation

zakF

21 5124
]ReSa~kF ,v!

]v U
v50

, ~6.2!

wherea5c, s, we find thatzkF
is given by

zkF

215
zckF

21 13zskF

21

4
, ~6.3!

or, equivalently,

zkF
5

4zckF
zskF

zskF
13zckF

. ~6.4!

Further by introducing the effective massm* in the form of
m* ;z21m0 with m0 being the noninteracting electro
-
e
e

gy
i

-

nt
ce

l
e

as

mass,29 from Eq.~6.3!, it follows that the quasiparticle effec
tive mass and its components coupled with the charge fl
tuation (mc* ) and spin fluctuation (ms* ) are related by

m* ;
mc* 13ms*

4
, ~6.5!

with m* ;zkF

21m0, mc* ;zckF

21 m0, andms* ;zskF

21m0. Thus, the

above-mentioned behavior of the slope in the real part of
self-energy, around the Fermi energy, produces the enha
ment of the quasiparticle mass coupled with the spin fluct
tion, which is much larger than that of the charge-fluctuat
counterparts, i.e.,ms* .mc* .

Recent angle-resolved photoemission spectr
experiments4,5,30for high-Tc materials provide important fea
tures of the low-energy spectral function in these materi
One of the remarkable features is the existence of the s
ingly ‘‘flat’’ dispersion of the band aroundk5(p,0). This
tendency of the quasiparticle band is observed in our res
as seen in Fig. 9~c!. In the present approach this is unde
stood as the band narrowing effect naturally arising by
self-energy effects. We should note that since the sing
band Hubbard model is rather simple, if we use the mode
explain experimental facts of the high-Tc materials, we have
to pay attention to the limits of its applicability. For a mo
detailed comparison with experimental data, it might be n
essary to exploit a more realistic model such as the Hubb
model including the next-nearest-neighbor hopping term18 or
the CuO2 (d-p) model.

Let us compare our results with the data obtained in so
numerical simulations of the finite-size cluster Hubba
model. In the density of states studied in the quantum Mo
Carlo ~QMC! simulations by Bulut, Scalapino, and White,16

a narrow coherent band is observed on the Fermi energy
small dopingd50.13 for U/t54.0 and alsoU/t58.0. The
corresponding quasiparticle band in our data is narrower t
theirs. Since their results are at finite temperature, the ba
width must be broader than atT50. For small doping
d50.13 and forU/t58.0, their data show the existence
lower and upper Hubbard bands and also a pseudogap in
high-energy region. Similar structure has been obtained
in our results for moderate dopingd50.5 andU/t510.0.
However, a large pseudogap has not been observed in
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results ford50.2 andU/t56.0. Rather, our results for th
parameters are similar to their results ford50.13 and
U/t54.0. The origin will be our approximate treatment a
the relatively small value ofU/t.

In the exact-diagonalization calculation,13–15 a prominent
sharp band peak in the spectral function has been observ
the wave numberk around the Fermi surface. The intensi
of the peak becomes weaker ask goes further away from the
Fermi momentum. Here again, in the high-energy regi
there exists a broad band corresponding to the lower
upper Hubbard bands. These features were observed al
our results for the spectral functions. In our results of
density of states, a strong peak appears at the high-en
edge of the band. Such a strange peak is not seen in
numerical simulations. It is just the result of the weak tail
the imaginary part of the self-energy and is a result of
approximate method.

Very recently, Preusset al.19 calculated a band dispersio
of the Hubbard model for dopings very close to half fillin
by a QMC simulation with maximum-entropy method. The
data have shown that a ‘‘flat’’ band crosses the Fermi leve
k5(p,0) point when the doping concentration approach
half filling. If the Luttinger theorem of the Fermi surfac
volume holds in this case, the result means that the elect
like Fermi surface transforms into the holelike one by dop
reduction. In our results of the band dispersions shown
Fig. 9 band crossing is not seen. However, the ‘‘flat’’ ba
neark5(p,0) approaches the Fermi energy as the inter
tion becomes large. Furthermore, from Fig. 11, we find t
the bandwidth of the quasiparticle band can be estimate
being approximately 5J/t with J54t2/U. This is similar to
their results;4J/t calculated forU/t58.0 and atd50.05.
Although this similarity seems strange because our dopin
d50.5, this originates from the fact that in our calculati
the parameter is close to the Stoner condition. The ove
structure of our band dispersion is very similar to their
sults. In conclusion our results reproduce qualitatively
results obtained in the numerical simulations.

VII. SUMMARY AND CONCLUSIONS

In this paper we studied the behavior of the electro
states of the two-dimensional Hubbard model in the do
paramagnetic regime. We considered both the charge an
spin fluctuations on an equal footing. Auxiliary bosons we
introduced in our treatment for fluctuations. The fermio
boson interactions were taken into account up to the o
loop level in the self-energies. The single-particle Gree
function, which goes beyond the mean-field level, includ
the self-energy effects thorough the corresponding Dy
equation. By representing the interaction Hamiltonian us
both the charge- and the spin-density operators, the St
condition became weaker than the one based on the usuU
perturbation treatment. It allowed us to evaluate the sing
particle Green’s function for the moderately large interact
U. The evolution of the single particle spectrum was inv
tigated by numerical calculations of the boson propaga
and the Green’s function with the self-energy as we v
U/t.

As U approaches the critical value for the magnetic ins
bility, the low-energy spin excitation is strongly enhanced
at
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the paramagnon peak, which has the wave vectorq near
2kF . The sharp enhancement of the spin excitation modi
the energy dependence of both the imaginary part and
real part of the fermion self-energy around the Fermi ener
In particular, near the Fermi surface, the imaginary part
the self-energy shows the characteristicv linear dependence
of a non-Fermi liquid. The calculated spectral functio
shows the existence of the band splitting and the band
rowing on the Fermi energy. As a result of this, we ha
found the pseudogap in the density of states. This seem
be an important feature to understand the spin-gap phen
ena in the experimentally observed spin excitation spectr
These striking changes in the band structure are produce
the change of the energy dependence of the self-energy
to enhancement of the spin fluctuations close to the Sto
criterion. Our results on the single-particle spectra are
qualitative agreement with the data of the numerical calcu
tions of the finite-size clusters.
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APPENDIX CALCULATION OF Im x0„qn…

In this Appendix we illustrate briefly how to calculate th
imaginary part of the one-loop polarization function given
Eq. ~4.4!. We change thek summation into the integral in the
first Brillouin zone. Then we have

Imx0~q,n!5psgn~n!E dk

~2p!2 @u~«k1q2m0!

2u~«k2m0!#d~n2«k1q1«k!. ~A1!

Since thisk integral includes thed function that depends on
the two-dimensional wave vectork, it is rather difficult to
perform this integration numerically to a good accuracy. W
consider the way to avoid this difficulty.

When we fix bothq andn, the contribution to the integra
comes from a sequence of points on a curve in the first B
louin zone. The curve is obtained by the energy conserva
relation given by

n5«k1q2«k ~A2!

in the d function. It tells us that we can rewrite the two
dimensional integral as a contour integral on the line. P
forming the integral of one variable that is perpendicular
the contour, we have the contour integral as



4478 56T. SAIKAWA, A. FERRAZ, P. E. de BRITO, AND H. KAGA
Imx0~q,n!5psgn~n!E
n5«k1q2«k

dlk
~2p!2

u~«k1q2m0!2u~«k2m0!

ugradk~«k1q2«k!u
. ~A3!

The contour of the integral is obtained by solving Eq.~A2!. We find solution of this as

cosky5
2~12cosqy! f 16A~12cosqy!2f 122~12cosqy!~ f 1

22sin2qy!

2~12cosqy!
, ~A4!
n
u

in
ov

on

x-
bles

the
e

as a
e

where f 1 is given by

f 1~kx ,qx ,n!52
n

2t
1coskx~12cosqx!1sinkxsinqx .

~A5!

When we both fixq and n, we obtain a contour equatio
from this solution. Thus, we can perform the integral witho
dealing with the difficulty of the numerical treatment of thed
function. Strictly speaking, the exact contribution range
the k space is determined by the superposition of the ab
t

e

solution and the region that satisfies the conditi
u(«k1q2m0)2u(«k2m0)Þ0.

We can apply this method to the other model. For e
ample, Saikawa and Kaga have calculated fermion bub
of the three-band CuO2 model using this method.31 How-
ever, if we consider a complicated model such as
CuO2 model, we can not obtain the analytical form of th
contour of the integration because such a model often h
complicated~mean-field! band dispersion. In such a case w
need to obtain the contour numerically.
ev.
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