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Auxiliary boson approach for electronic states in the two-dimensional Hubbard model
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Electronic states in the two-dimensional Hubbard model are studied in the doped paramagnetic states by use
of the auxiliary boson approach. Four auxiliary bosons are introduced by means of the Hubbard-Stratonovich
transformation within the functional integral treatment. These bosons correspond to one charge and three spin
fluctuations. An effective model is formulated. Going beyond the boson fluctuations around the saddle point,
the single-electron Green’s function including one-loop self-energy effects of fermion-boson interaction is
derived. The behavior of the fermion self-energy, spectral functions, and density of states are investigated for
several values of the Coulomb interactidrwithin the limit imposed by the Stoner criterion and also for small
and moderate doping concentratiohd=or small doping §=0.2), asU approaches a value determined by the
Stoner criterion, the spin-boson spectrum has a striking low-energy enhancement @roRkgd. This en-
hancement of the spin fluctuation causes a non-Fermi-liquid-like low-enerdinear dependence in the
imaginary part of the self-energy. Due to the self-energy effects, band splittings and a band narrowing are
produced in the spectral functions. As a consequence of this, the density of states has pseudogap structures
around the quasiparticle band with a narrow bandwidth on the Fermi energy. These features seem to be
precursors of the metal-insulat@vott-Hubbard transition and they might be related to the spin-gap phenom-
ena observed in high; materials. Our results for the density of states, the spectral function, and the band
dispersions show qualitative agreement with the data of finite-size cluster simulations.
[S0163-182697)05031-3

I. INTRODUCTION contains the correct nature of the strongly correlated system
and it provides very useful information for more realistic
High-T. materials have a number of unusual physicalmodels, which are more favorable to study the properties of
propertied that are not easy to understand within the frame-the highT, cuprates.
work of the Fermi-liquid theory. There are many open ques- Though the Hamiltonian is of a simple form, because of
tions concerning these materials. For example, the origin athe large Coulomb interaction, it is difficult to pursue de-
the pseudogapspin-gap in the spin excitation spectruf®  tailed investigation of the electronic states near the metal-
the pseudogap in the normal-state excitation specfriand  insulator transition. As in the early investigations of the Hub-
finally the possibility of the spin-charge separafidhin the  bard model, two methods are known well. One is the
two-dimensional strongly correlated electron systems. Theslubbard approximatioh,based on the equation of motion
phenomena must be closely related to the anomalous metahethod, and the other is the Gutzwiller variational function
lic states near the metal-insulator transition due to the strongethod'® At first sight the two approaches seem to give
Coulomb interaction between two electrons on each Cu sitdifferent descriptions of the metal-insulator transition. In the
To understand the anomalous metallic states and to soliermer approach the density of stat&0S) shows the band
these questions, we must get a better physical picture of thgap(Mott-Hubbard gapat the critical value of the Coulomb
electronic states of these materials. It is a basic problem tmteraction. The latter explains the metal-insulator transition
understand the essential features of the strongly correlatdaly the band narrowing effects, i.e., by the localization of the
electron systems. quasiparticle band. These two different explanations of the
After the discovery of highF. materials, the single-band metal-insulator transition have been shown to be essential
Hubbard model, the three-band Cu@®nodel, and thet-J  features of the metal-insulator transition described by the
model have been studied intensively to investigate the origitdubbard model.
of the above-mentioned phenomena and also to calculate the This has been shown theoretically using the slave-boson
high superconducting transition temperature. Among thesenethod* and was also demonstrated clearly by the numeri-
the single-band Hubbard model is the most fundamentatal simulation approach&s®®and thed=c« method?® By
model to describe the metal-insulator transition due to thehe recent progress in the capability of computers many in-
strong electron-electron interaction on the lattice electrorieresting results have been obtained in the numerical simula-
system and also to investigate the nature of the anomalou®ns of the finite-size cluster systerfs!® Although a re-
metallic state near the metal-insulator transition. The Hubstriction on the size of the system and temperature exists,
bard model seems to be oversimplified to describe the eledthese methods seem to simulate to some extent, in a correct
tronic states of the highiz materials. However, this model manner, the essential properties of the single-particle spec-
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trum in the Hubbard model. Thet=~ method is also one of

the most effective methods to study strongly correlated H’=UZ NitNi| (2.3
systemg? This method is particularly useful in revealing the '

nature of the density of states in the infinite-dimensionalwhere CiT(r (ci,) represents the electron creatiéannihila-
Hubbard model. At half filling and for a critical Coulomb tion) operator on an orbital of thith lattice site with spin
interactionU ¢ the physical system becomes insulating. Frome, t is the nearest-neighbor hopping energy, ands the
these approaches one realizes that there are some commgtiemical potential. The indexof the summation of the first
properties in the electronic states of the Hubbard ma@el: term in H, runs all over the lattice sites arjdruns over
for 0<U<U the DOS has three characteristic band strucnearest-neighbor sites of eaéth site. In the interaction
tures; one lower and one upper Hubbard band in the highyamiltonianH’, U is the coupling constant of the Coulomb
energy region and one narrow quasiparticle band on thgteraction between two electrons with opposite spin direc-
Fermi level; (ii) for hole (electron dopings, quasiparticle tions on a same lattice site;, = ¢/ c;,, is the number opera-

band structure appears at the tpttom of the lower(up-  tor of electrons on théth site with spine. Using the charge-
pen Hubbard band. Recently, these features have been obrnsity operaton; defined by

tained also by the composite operator expansion methods,
which take into account the two-site correlation efféct.

In this paper we investigate the evolution of the electronic n=2> ni, (2.4
states of the two-dimensional Hubbard model with the 7
change of the Coulomb interactidg and the doping con- and the spin-density vector opera® (s ,s{? s de-
centrations. Our main purpose in this study is to investigate fined by
the detailed behavior of the single-particle spectra taking into
account the effects of the charge and spin fluctuations. We _EE + 5
introduce four auxiliary bosons to consider both charge and ST & CieTooCior 2.9
spin fluctuations in the interaction term of the Hubbard 77
Hamiltonian. One effective model is constructed in the func-Where is the Pauli matrix with components
tional integral formulation. The boson fluctuations around

(2.6

2

2

I a

0

the saddle point are taken into account and the Dyson equa- 1 01 2 0 —i 3) 10

tions for both the boson propagators and the fermion Green’s 7= 1 0 7= i 0| 7%= 0 1/
function are derived by the explicit calculation of the self-

energies up to one-loop order. Within the critical value of the

Coulomb interaction controlled by the Stoner instability we rewrite the interaction term as

criterion?? we calculate the real and the imaginary parts of

the self-energies, the spectral functions, and the density of H’—UZ [(ni 32] @
states. For largéJ, the energy dependence of the imaginary ) S X
part of the self-energy at the wave vector near the Fermi

surface becomes linear in energy around the Fermi energy. Furthermore, by introducing the X2 unit matrix
The effective band dispersion deduced from the data of the{®)=1 the interaction Hamiltonian can be written in a sim-
spectral function demonstrates the onset of gap formation ipler form as

the high-energy region. This effect reflects itself in the den-

sity of states since there appears a pseudogap structure U 3 @ )

around the narrow quasiparticle band for lakgeThese fea- H'=% ; S\” MabSi (2.8
tures in the single-particle spectrum coincide qualitatively T
with results obtained in the numerical simulations, thewhere

d= method, and also by the composite operator method. It

will be shown that the strong enhancement of the low-energy S(a)zlz of 7@ o 2.9
spin excitation neag~ 2k for the low doping concentration b2, e to’ '
causes a hon-Fermi-liquid-like behavior in the electronic

states in the Hubbard model. and 7, is an element of the matriy defined by
1 0 0 0
Il. AUXILIARY BOSON APPROACH 0 —1 0 0
We consider the interacting electron system in a two- = 0O 0 -1 o0 (2.10

dimensional square lattice with unit lattice constant at zero
temperature. The system is described by the following Hub-

bard Hamiltonian: In the functional integral formulatidA®* the partition

function Z of the system is given by

z=f D\Iﬁoxpexp(if dtZ E) (2.11)

with the Lagrangian densit{ defined by

H=Ho+H', (2.1)

Ho=—t<,2> c{i,cjg—uiE Nie s 2.2
ij),o o
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L= Vi vo+wP,rn+t > > ¥l (FLaM(Br o) =—t X 85582 8(t—t")
o =Xy o =Xy
3
U Ju
XW(rrg,)— 5 > s@(r,1)nes®(r,), — 52 napd (1,1
2ab=0 2 3p
(2.12 X 72, 8 8(t—t'). (2.19
whereW", ¥ are Grassmann fields; is the unit lattice vec-  And using the relation Indét=trinA that holds for an arbi-
tor for j direction, and trary operatorA we obtain
(a) _ 12 T (a) 13
S (I’,t)—io 2 W (rt)yr, W (r,t). (2.13 Seff(d’):f dtZr _abE:O (1, 1) 9apd®(r,1)
We introduce four auxiliary bosonic operatogé®(r,t) —itr{In[ig+p—M(e)]}. (2.20
for the charge-density a=0) and the spin-density
(a=1,2,3) operators through the Hubbard-Stratonovich rela- |j|. FERMION AND BOSON GREEN'S FUNCTIONS
tion

The discussion of the previous section is quite general. By
choosing a boson field that represents a suitable space con-
figuration corresponding to some ordered state one can dis-
cuss a chosen magnetic statén this paper we restrict our
discussion to the case of the paramagnetic state. Investiga-
. (2.149  tion on the antiferromagnetic state has already been per-

formed using the same formulation by one of the authors
Performing a Hubbard-Stratonovich transformation we Ob_and detailed results will be presented in another publication.
tain At first we derive the saddle-point solution of the effec-
tive action(2.20 in the paramagnetic states. From E220
we obtain the following saddle poirimean-field equation:

1
5 ¢(a) 7]ab¢(b)+ \/U¢(a) nabs(b)

f dop@exp

U
=const ex;[)—i §s<a>77abs(b)

zzf D\IITD\IfDqSeX[{if dt>, LZ’) (2.15

S o , -1 SM( )
3@ = e (1) —it ————p 5@ 1
with the Lagrangian density ¢ (r,1) 10+ 1 =M(¢o) 6'%(r,1)
=0. (3.1
E':g WI(r 0 (i g+ p) W, (r,1) For eacha, we have the solution
7_(a')
+t X X WP, (rxe,t) $ED=VUZ iG, (1 tintido) 57, (3.2
j=xy o oo
U Here we have a defined single-electron Green’s function b
+§2 2 7apd @OV T V(1Y) ° ’
r a,b
o,0 ’ 1
Gy (1,51t 0)=(rt,0|| ————————||r',t",0")
1 T 19+ u—M(o)
+52 (1,0 7ap (1 1), (2.1 O (3.3
2a,b

. . .. and G, (r,t;r',t";¢) is the mean-field Green’s function.
Thus, we consider the system of fermions and bosons with 6sing the relation

Yukawa-type interaction between fermions and bosons in-

stead of the quartic order term of fermion fiefds. ey
By integrating out the Grassmann fields we immediately (s@(r,H)=—i> G (GG do) 22, (3.4
obtain effective action for the boson system as follows: i 2
we obtain
Z=f D ¢pexdiSer(#)], (2.17)
) @(r,t)=—JU(s¥(r,b). (3.5
138 Since we consider the system in the paramagnetic state,
Seﬁ(gb):Jth 5 > 6@, t) a0 (r,1) (sO(r,t))#0 holds for a=0 and (s®(r,t))=0 for
r “ab=0 a=1,2,3. Thus, the saddle-point values of boson fields are
—ilndefi g+ u—M()]. 218  ¢8)=—Uni2 fora=0 and{=0 fora=1,2,3.

In the (k,w) representation the mean-field Green’s func-
Here we define the matrix element Bf(¢) by tion can be written as
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1 we obtain an expansion expression of the effective action
Golk,@)= w+u—[e+(U/)n]+insgnw)’ 36 Sy
whereg, = — 2t(cok,+co,) is the energy dispersion of the Ser=SptS1+S+ -+, (3.13

tight-binding model on the two-dimensional square lattice.
The symbol “sgn” means the sign function. The mean-field
Green’s function is just the noninteracting Green'’s function;
with the single-particle energy shifted kin/4. That is simi-

lar to the usual Hartree-Fock approximation. The fatio4
originates from the form of our starting expression of the 13

interacting HamiltoniarH' of Eq. (2.7). This form is par- Sz=f dt>, = > 6@ (r,t) 9andd®(r,t)
ticularly suitable to consider electrons in the strong interac- T 2abo
tion regime although the conventional form is perhaps more
useful to calculate the total ground-state electronic energy of
the system. For simplicity we introduce the chemical poten-
tial wg in the mean-field approximation gs,=u—Un/4.
Then we have

‘whereS, is thenth-order fluctuation termS; is a mean-field
contribution and sinc&, involves only a single fluctuation,

it vanishes identically. The second-order term can be written
as

+itr{3[G( o) SM(5¢) 1} (3.14
Using Eq.(3.11) and the definition ofp,;,, we obtain that

S= | dtX §5¢<a><r,t>naa5¢<a><r,t>
1 r,a

w+ po—et+igsgnw)’

Such redefinition of the chemical potential does not affect

Go(k,w)= (3.7

i
+§E 77aa77a’a’UJ dtlE dt
a,a’ r

the electronic states of the system. We determine the chemi- @
cal potentialug to be consistent with the electron number Toy05
conservation. The electron number per a lattice site is Xz 0012,:2 s Coo, (111,15 do)—— 2
given by
Y]
— 737 o ,(a) (')
n=" 60(uo—sy) (3.9 X Gy (M1, 13N L o) 8 (11, 1) 6 (1,1,
. . i (3.19
at zero temperature. By solving this for fixedwe get the ) )
chemical potentiau, for specified dopings=1—n. Elec- BY @ Fourier transformation we then have
tronic states in the saddle-point approximation are trivial. dv 1
Next we take into account the fluctuations of bosons g — f v 5¢*<a) (0, ¥)Daa(0, )80 (q, v)
around the saddle point. To this end we replace the boson a
fields ¢ by a sum of mean-field pagh, and fluctuation part (3.16
8¢. Then we haveM () =M (¢pg) + M (5¢). In the effec- hereD is the boson bropaaator given b
tive action S (2.20 we can rewrite the logarithm in the W aal@7) 1 propagator given by
trace of the last term as 1
Daa(q,v)= (3.17
IN[i 3+ — M (o) — SM(S5¢) ] Naat (U/2) xo(q,v)
. and the electron-hole polarization function(q,v) is de-
=In{[i 3+ m—M (o) 111~ G( o) SM(5¢) 1} fined by
=In[id;+ u—M(do)]+IN[1—-G(py) SM(S4)] (3.9 , do
‘ ’ ’ oA ) =1 f2—60<k,w>eo<k+q,w+v>.
with k i
(3.18
G(po)=[id+u—M(¢o)] ! (3.10  Figure Xa) shows the diagram that represegtgq, v).

To make the following discussion clear, here we change

and the matrix element ofM(5¢) is given by the notation of the boson propagators ibtg for the charge-

\/U boson propagatdd o andD for the spin-boson propagators
(r,t,a|SM(8¢)|r' ',y =— > Papdd@(r,1) D,, for a=1,2,3. At the same time we introdueg=1 and
2 3b ns= — 1 instead ofy,,. As a result, the boson propagator is
written as

X728 8(t—t'). (3.1D

By expanding the last term of E¢3.9) as D,(q,v)= 3.19

| +(U/2) xo(a,v)’

A 1a here the subscript tak
InM1— SM(sh)1=— = SM(SH) where the subscript takesc or s.
N[1=Glo)oM(6¢)] n§=:l n [G(do)M(5)T", The denominator of thB¢ has a pole in some value bf

(3.12 for a fixed electron nhumben and the divergence due to
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(a) 1=UReyo(q,0)?* The Stoner criterion in our case is
Go(k,0) weaker than the usual one and this works as an advantage in
' our calculation.
The interacting fermion Green’s function beyond the
mean-field approximation is calculated by expanding the ex-
4.V v pression of the definition of the Green’s function given by
""" - - Eq. (3.3):
G(¢) '=id+u—M(do)— M(5¢)
Go(k+q,0r+V) =GN ¢ho) — M (o)
=G H($o){1-G(¢o)M(5¢)}  (3.20
and
(b) De(q,v) 3 ] o
. G(¢)={1-G(¢o)oM(5¢)} "G(¢o)
=2 {G(ho)oM(64)}"G(o). (3.2
k,(O ‘/: \“ k,(,l) n=0
—¢ -  — Since we have introduced auxiliary boson fields, our Hil-

bert space has been enlarged and it consists of the original
fermion space and the auxiliary boson space. From the
physical meaning of the boson fluctuations, we introduce the
FIG. 1. One-loop Feynman diagrams that repres@ntthe  relation that(Gnd §¢|Gndy=0 with [Gnd) being a boson

mean-field polarization functiogo(q,) and (b) the fermion self- ~ ground state in the enlarged Hilbert space. By this relation,
energy 3 (k,w). The solid line represents the mean-field fermion we see that the odd-order terms in the expansion series EQ.
Green’s functionG(k,w). The dashed line represents the boson(3.21) vanish. Then, we can write the series as the summa-
propagatoD ,(q,v). tion of the even-order terms:

U2 Goktqory) U2

the pole relates to a magnetic instability of the paramagnetic
system. It is an important point that, in the present treatment,
the Stoner condition becomes=1U/2)Rey,(q,0). In ordi-
nary random-phase approximati@gRPA) based on theJ From the definition of the fermion Green'’s function, the term
perturbation theory the condition is given by of the second order id¢ of Eg. (3.22 becomes

é<¢>=n§0{é<¢o>5M<6¢>}2”é<¢o). (3.22

(r,t,0|Gay ()"t 0"y =(r,t,d|G( o) SM(5¢) G( o) SM (8¢) G (o)1, 1", o). (3.23
Using the relation

> f dt, |r.t,o)r to|=1 (3.24
o r
and also Egs(3.7) and(3.11), the second-order Green’s function is written as
3

, U
i | dudt, > ZG(r,t;rl,tl;¢O)G<r1,t1;r2,t2;¢O>G<rz,t2:r',t';¢o)gori,a;miﬁ?(,,Daauz,tz;rl,m, (3.25

ri1.rp

where we have defined the boson propagator as
Dap(r,t;r',t')==i(Gnd 8¢'®(r,t) 64°'(r',t')|Gnd). (3.26

We can assume that the expression of the boson propagator is the same as the one already givehli8y. Bter Fourier
transformation, we have

ul d
iGO(k,w)ZaZO % f%Go(k-l—q,w-l—V)Daa(q,v)GO(k,w). (3.27)
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The second-order Green’s function has the one-loop

fermion-boson bubble self-energy. By calculating higher- |mXo(q,V)=7TSQF(V); [0(ektq— to) — O(ek— po)]
order terms in the same way, we can derive arbitrary order of

the Green’s function with a corresponding self-energy in- X S(v—exsqter)- (4.9
cluding a vertex correction. In this work we consider the

partial summation of the Green’s function _mcludmg only theWe calculated this formula numerically using the technique
one-loop fermion-boson bubble. Neglecting vertex correc-

tions at this stage, we have the following Dyson equation ofaxplgmed in the Appendix. The r_eal parp@é(q,v) IS again
- , - obtained from the Kramers-Kronig relation as
the fermion Green’s function.

G(kvw)71:GO(kvw)il_E(k!w)! (32& Sgr(V,)ImXo(q,V,)

v —v

P
ReXo(q'V):;f dv’
S(k,w)=2Kk,w)+32(k,w), (3.29

where the fermion self-energies are written as

S 0(ex— po) = 0(ek+q— Ho)
" V=g gt e '

4.9

U dv
2a(kiw)=i 4% f 27 ColkF a0t rDa(q.), In Fig. 2 we show the low-energy behavior of the boson
(3.30 spectral functions calculated faJ/t=3.0 and 6.0 and for
several wave vectay's at hole dopings=0.2. For this dop-
ing concentration, the criticdl evaluated from the Stoner
condition isU/t=6.3. In the present approximation the en-
ergy range, in which the boson spectrum is meaningful, is
the same as that of the particle-hole individual excitation
IV. FERMION SELF-ENERGIES AND SPECTRA obtained from the mean-field fermion bubble diagram. As is
OF THE BOSON PROPAGATORS well known, if we consider the doped system, the single

In this section we show the results of our numerical analy-eic::a::ozs Ea;/e alng?r? in the rfe?r:miwzk_zir%ro#r;dnzlerg b-
sis of the fermion self-energies. The real and imaginary part citation energy. ne case of the two ensio u
bard model, the maximum value of the gap ifug at

of the fermion self-energies for both charge and spin com ) .

ponents are obtained from E¢.30. By substituting Eq. g=(mr,m). For hole dopings=0.2, the Fermi momentum

(3.7) into Eq.(3.30 and performing the integral, we obtain Ke in the (1,1) direction becomels:/7=(0.47,0.47) and

the imaginary part of the self-energy in the following form: f[he correspondlng Chem'cal potentl_al,u%z —0.43. In the
inset of Fig. 2 the gap is observed in our data as expected.

U For the change of the value of the Coulomb interaction
Im2 ,(K,w)=— 52 [SONeksq— pmo— w) from U/t=3.0 toU/t=6.0, the charge boson spectra have no
q significant change. It behaves linearly by energy andghe
— S9N & s q— pro)] dependence is also weak. On the other hand, the spin-boson
q spectrum shows a drastic changd H$ approaches the criti-
XImD ,(0,e4q— Mo~ @), (4. cal value determined by the Stoner condition. Near
. ~ g=2kg, the spin-boson spectrum has a strong enhancement,
wherea'= s,c correspond to the spin and charge fluctuations,yhich corresponds to the paramagnon excitafiomat char-
respectively. If we have I&,(k,), the real part of the acterizes the onset of the magnetic instability. Contrary to
fermion self-energy is obtained by the Kramers-Kronigthjs, at smallg, there is no sign of enhancement. For small
transformation, dopings, such a strong enhancement in the spin excitation
takes place neay=(m,7) and it implies that the system is
RS _Ef ,Sgw’ImX, (K, @") close to the antiferromagnetic instability.
JK,w)= do y . (4.2 . .
iy o' —w In the gap of the spin-boson spectral function for
g>2kr there exists another structure for a certain range of
As we easily see from the expression of the fermion selfthe Coulomb interaction. This can be understood as follows.
energy, the behavior of the boson spectrunblyris a deter- Because of the rapid drop of lg(q,») near the gap,
minant for the fermion self-energies. From E(B.19, Reyy(q,») has a peak structure near the low-energy edge of

where a=c,s for the charge and spin components, respec
tively. The corresponding Feynman diagram is shown in Fig
1(b).

ImD,, is given by the individual excitation. When the peak maximum is at
(de,ve), if U becomes large enough to satisfy the condition
ImD ,(q,v) Rexo(dc, 7o) >2/U>Rey,(qs,0) with gs being the wave
vector for the critical point of the Stoner condition, the real
—(U/2)Imyo(q,v) part of the denominator of IBs has two poles. Because of

" [1+ 7.(UR2)Rexo(0, ») I+ [(U2)Imyo(q, ») ]2 (4.3 this, the spin excitation has two peaks with one of them
inside the gap. This means that the paramagnon peak is split
The imaginary part of the polarization functign(q,») is  into two peaks by the Coulomb interaction. This paramagnon
calculated from Eq.(3.18 using the mean-field Green’s split seems to be a precursor phenomenon of the antiferro-
function Eq.(3.7). We have that magnetic instability in the doped two-dimensional Hubbard
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model. A similar behavior to this exists in the parabolic band These energy dependences of the imaginary part of the
model and also in models with dimension higher than twofermion self-energy can be understood by analyzing ¢he
The paramagnon split has a resemblance to the appearancesaimnmation in Eq(4.1). Firstly, we change thg summation
the zero sound mode. Within the RPA, the paramagnon splinto a g integral,

appears in the magnetic susceptibility while the zero sound

mode is manifest in the charge susceptibility. Note that the dq

paramagnon split is not a Goldstone mode and the same goetm2. ,(k,w)=— §f ?[sgr(s“q—,uo— )

for the spin sound mod¥.In the present approximation the (2m)

paramagnon split has &-function structure. However, the —SONek+q— o)1MD 4(0, 81 q— Mo~ ®).
excitation peak should be weaker than that if we take into

account higher-order contribution to the self-energies of fer- (4.6

mions or if we solve the Dyson equation self-consistently. Ir'The contribution to the integral comes from the region satis-

our numerical calculation of the fermion self-energy we con- in SONE 1 g fho— ) — SANEL 2 q— f10) 0 and
sidered the paramagnon-split structure in the spin-fluctuatio 9 9N€k+q™ Ko INEk+q™ Ko
mD (0, &+ q— o~ ) #0, for some given values & and

boson spectral function assuming that it has a Lorenzian - X ) .
form with a width of the order of an integral unit of the @. IMD ,(q,w) has a finite value in the region corresponding

o e e
Using Egs.(4.1)—(4.5), we calculated the fermion self- 9 ' ’

energy aty=0.2 forU/t=3.0 andU/t=6.0 and obtained the 'S_ the ieStrft'OQO ?Indﬂlﬁe l(a)(t)sgrn.seneigy >w(r)|tt:3nn':.as
following results. We compare the charge comporignand ~ ©~ Zk+a H0— @ 1Bk+q— o0 IN FIG.

; ; : 4, we schematically plot these conditions in tligi) space
the spin componerX ; of the real and imaginary parts of the " . s
self-energy atk=(w/2,7/2) in Fig. 3. For small U for k=kg wherekg /7= (0.35,0.35). For simplicity, we con-

_ : : sider only the (1,1) direction df. In the region surrounded
g;{]tents;q)s :]r;et ?g;? :I?acgl ec?f Igrc])er f;@f?ui?i g.'g) ’spcllr;;:rom py dashed lines I ,(q,») has a finite_value. The dotted
differences between them appears in both the imaginary palf'€  'EPTESENtS ey .q~ to- For =20 and 50,

and the real part of the self-energies. The difference i9= =&k +q~ Mo~ w are drawn as solid curves. The thick parts
caused by the effect of strong enhancement of the paramagf the solid curves give the valid ranges ofn(q, v) to the

non peak that appears in Dy in the low boson-energy re- q integration of In® ,(k,®). From the figure, we see that for
gion nearg= 2k . The most important point in the behavior small » and fork nearkg, the important contribution to the

of the imaginary part of the self-energy concerns perhapsmaginary part of the self-energy comes from the low-energy
their low-energy limits. For large) and energy range around regions of InD (q,v) nearq~ —2kg andg~0.

0=0, ImE, shows the Fermi-liquid-likew? behavior. In In the following, using the above analysis and the behav-
contrast, InX.¢ behaves linearly inv. This implies that the ior of the calculated boson spectra, we roughly evaluate the
charge fluctuations persists with Fermi-liquid propertieslow-energy behavior of the charge and spin components of
while the spin fluctuation acts to break the Fermi-liquid re-the imaginary part of the self-energy. From the results of the
gime. calculation of the energy dependence of both the charge- and
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FIG. 3. Energy w/t depen-
dence of the spirgsolid line) and
charge (dashed ling components
of the fermion self-energy at

k= (m/2,7/2) for doping 6=0.2:
the real parts fofa) U/t=3.0 and
for (b) U/t=6.0; the imaginary

parts for(c) U/t=3.0 and for(d)
U/t=6.0. Dotted curves ifc) and
(d) represent the approximate
form of Im3 (k,w) (see the text
using p(uxo)=0.18, (c) A.=0.10,
and(d) A.=0.12.

w/t

spin-boson propagator spectra, we find that both spectra atgn of g, the sharp paramagnon enhancement appears also at
proportional tov for small v, and the InD . depends weakly
on g, contrary to InDg, which has a sharp enhancement athoson spectra for smail:
g=2kg . Since the boson propagator is a symmetrical func-

the g= — 2k . Then, we assume the following forms of the

ImD(q,v)~—Ac(a)|v| (4.7)

and

IMD (0, ¥)~ — Bq,— 2k As(2Kg) | 7], 4.9

where A; and A are g-dependent positive factors for the
charge and spin excitations, respectively, and to take some

account of broadening effects we have introdu'tﬁggLZKF,

which is equal to 1 forg around— 2k and is O for other
values ofq. Using the relation sg)=26(x)—1 in Eq.
(4.6), we have

U dq
Im2 (k@)= — ZJ W[ﬁ(swq—ﬁo— w)

= 0(ex+q— M0)1IMD (0,844 g~ Ko~ ).
(4.9

For the charge components, from the wep#lependence of
ImD.(q,»), we takeA.(q) ~A.=const. Using this and the

FIG. 4. Schematic explanation of the contribution range to theabove assumption, we obtain
g integral of the imaginary part of the self-energydn(k, ). The

area surrounded by the dashed line represents the meaningful region

of the individual excitation and also of Im,(q,»). The dotted line
iS &k +q~ Mo The solid curves correspond 0=e_.q— po— ®

for ®=2.0 and forw=5.0. The thick parts of the solid curves

represent the contribution range to tpéntegral. For explanation, a
large value ofug [uo=—1.82,ke /7=(0.35,0.35) has been used

in this figure.

U dg
Im2(k,w)~ Zf (27)2[0(8k+q—,uo_w)

- 9(3k+q_ﬂo)]Ac|8k+q_l~L0_ w|-
(4.10

By changing the variablg to q—k in theq integral, we have
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U dq For <0, we obtain the same expression as this. Note that
Im2 (K, )~ ZACJ W[ﬁ(sq—uo—w) the above derivation does not apply forfar form kg be-
cause the contribution to thgintegral that comes from the
—0(eq—mo)lleq—mo—w|. (411  other regions is different from in this case and is similar to

. the case of the charge components. For this, we have that the
This result shows that I1B.(k,») does not depend dnand »? dependence follows for the other location.

it agrees with our numerical result that the charge compo- We show the above approximate expression of
nents of the imaginary part have a Wgak dependenck. on Im3..(k, ) as dotted curves in Figs(@ and 3d). The fac-
Furth_ermore, we can ch_ange the abqvmtegral to the en- tor A, is estimated from the -calculated values of
ergy integral by introducing the density of stajgs) of the ImD(q,»). We have chosenA.=0.10 and 0.12 for
noninteracting tight-binding band with the band dispersion /t:°3 0 and 6.0, respectively ancd alsbuo) = 0.18 for the
gy . The integration range is the energy region from the ban oping 5=0.2. A,s seen from ,these figures, the agreement

bottom —4t to the band top #of the noninteracting band. eqyeen the explicit calculation and the approximate form is
Thus, good aroundo=0.
U at We also calculated the total self-energy for sevkisl In
Im2 (K, )~ ZACJ dep(e)[6(e— po— ) Fig. 5 we show the imaginary part of the total self-energy for
—at U/t=23.0(dotted ling andU/t=6.0(solid ling). We plot the
—0(s— po)]|e — po— ). (4.12 value divided byU to make the comparison between them
easier. In the case &¥/t=6.0, thek dependence is charac-
By considering the step function we restrict the integrationteristic especially around the Fermi energy=0. In this
range. Forw>0, usinge — uo— <0 we have case, at thek points far from the Fermi momentum
U ke~ (m/2,7/2), the w dependence around the Fermi energy
Y #oTe _ resembles the behavior of a Fermi liquid. However, as the
Im2c(k,) 4 ACLO dep(z){z=(rot @)} position ofk approaches to the Fermi momentum the range
(4.13 of the w?-like behavior becomes narrow. Contrary, for

_ 2 . . . .
Since our main interest is its behavior around the Fermi enl-J/t_S'O’ «" behavior holds in a relatively wider range and

: . k dependence is weak.
ergy =0, we can approximatg(e) by p(ug) and put it _
outside of the integral. If we now complete the integration,, V€ plot also the energy dependence oERe,) — u,

we find thew? dependence for the charge components of th%Or severglk’s in Fig. 6. ForU/t=6.0, as thek approaches
imaginary part of the self-energy he Fermll momentum, the slope of R, w) — u, ground
the Fermi energy becomes large. Fbit=3.0 there is not a

U notable change of slope. The behavior is deeply connected to
Im3 (K, 0)~— ZAcp(,u.o)wZ/Z. (4.149  what happens to the imaginary part.
From all these results we see that the drastic enhancement
By generalizing also for the negative<0, finally we have Of the low-energy spin excitation due to strong Coulomb
interaction produces the modification of the properties of the
Fermi liquid near the Fermi surface.

+

U
ImEC(k,w)~—Sgr(w)ZACp(/.LO)wZ/Z. (4.15

V. FERMION SPECTRAL FUNCTIONS
Next, we turn to the spin components. By substituting Eq. AND DENSITY OF STATES

(4.9) into (4.6) for a=s andk=kg, we find ) o . i ]
The fermion spectral function is obtained from the imagi-

U dq nary part of the single-particle Green'’s function as
IM2 (kg , @)~ Zf (ZT)Z[H(SkF-%—q_MO_ w)

1
~ A(k,w)=— —sgn w)ImG(k,w). (5.0
- a(sk,:Jrq_MO)] 5q,72kFAs(2kF) ™
><|8kF+q—Mo—w|- (4.16 From Egs.(3.7) and(3.28 we have
Forw>0, 6(ey_+q— po— @) — O(sk_+q— Ko) gives—1 and IMG(K, @)= |m2(k1w)2 .
as discussed above, the main contribution to the integral {o+u, —ex—Re(k,w)} +{ImZ (K, 0)}
comes from around= — 2k . Then, we have (5.2)

U The chemical potentigk, contains interaction effects effec-
IMm2g(kKe )~ — ZAAS(ZKF)|8—kF_MO_w|! (417 tively and it has a different value from, in the mean-field
approximation. By calculating the following electron number
whereA represents the width arourgp= — 2Kk in g space. conservation relation numerically, we can determine the pre-
Using & _x_= o, We find the linear dependence of Xp, cise value ofu, :

0
ImES(kF,w)~—%AAS(2kF)w. (4.18 n=2f7mdwN(w), (5.3
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FIG. 5. Energyw/t dependence of the imaginary part of the
total self-energy scaled by for several k's at §=0.2, for

/'t

U/t=3.0 (dotted ling and forU/t=6.0 (solid line).

where the factor 2 is due to spin ah{w), the density of

states per spin, is defined by

N(w)=; AK, ).

(5.9
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ReX(k,0)—[Lx

3 =+
r (d)
| k=(31/4,31/4)
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FIG. 6. Energyw/t dependence of the real part of the total
self-energy for severdl’s at 5=0.2, forU/t= 3.0 (dotted ling and
for U/t=6.0 (solid line). The dashed line represenis-¢,. We
plot Re (k,w) — u, for the purpose of comparison of the poles of
the Green’s function for bottJ’s. The calculated values of the
chemical potentialw, are —0.49 for U/t=3.0 and —0.92 for
U/t=6.0.

same as the noninteracting {t=0.0) DOS, except for the
existence of the band tails, which appear both at the top and
at the bottom of the band. As the interactibh becomes

We calculate the density of states performing the summatiotarge, the band tails are spread out and total bandwidth also
of the spectral functiorA(k,) in k space. In Fig. 7 the become wider. As we will mention in more detail later in the
evolution of the density of states is shown for several valuegliscussion about the spectral function, the development of

of the interaction U/t for fixed doping §=0.2. For

the band in both positive and negative high-energy regions

U/t=3.0 the overall structures of the DOS is almost thecorresponds to the formation of the upper and the lower
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Hubbard bands. In the low-energy region there exists a bant ;mﬂ}ﬂ"“
crossing the Fermi energy=0 for all values ofU. As U s el
becomes large, the bandwidth becomes narrower. Physically T T T

we recognize that this corresponds to the quasiparticle bani %09 (2,n2) () C) ©.0)
in the interacting system as expected on general grounds by k

the Fermi-liquid theory. ForU/t=5.0 a pseudo-gap-like £ 9. Band dispersions fo5=0.2, for (8) U/t=3.0, (b) 5.0,
structure comes out neaw=0.8. For U/t=6.0, the  and(c) 6.0. The dispersion dots were extracted from data of the
pseudogap becomes wider and, furthermore, another weajgectral functions. The error bar on each dot represents a broaden-
dent appears aé = —0.25. The pseudogap of the DOS in the ing of the spectral function around the point. The solid circles rep-
two-dimensional Hubbard model has already been discussagsent points corresponding to relatively large intensity.

by Kampf and Schriefféf in the framework of a random-

phase approximation. Their approximation scheme for thef the breakdown of the Fermi-liquid theory. However, we
perturbation theory is perhaps close to our treatment despitghould note that the parameters used by themdte-2.0,

the difference in coupling constant and the fact that theyat most, and the chemical potentjak —0.375, which cor-
considered only the spin fluctuation effects. However, theiresponds to a dopingd~0.18 for the noninteracting
results differ from ours in one important point. In their ap- (U/t=0.0) system. These parameters are too weak to show
proach the pseudogap arises from the negative side of thtbe formation of the pseudogap in our scheme.

energyw and the sharp structure of the quasiparticle band is In Fig. 8 we plot the spectral functioA(k,w) for the

not observed. The absence of the clear quasiparticle structu(g,l) direction in the Brillouin zone for several values of the

in their data might be interpreted as a precursor phenomendnteractionU. Besides, in Fig. 9, we also plot the peak posi-

4 _I T | LELELE L l LB | 1 I_ 4 _l 1 | LI 'r|_|—|_|_r_7_|_- 4 LI | LI LELLEL | T I_
L (@) {4 F ® 4 F © J
[ Ur=3.0 1 [ ur=so 1 [ ur=60 T
1| =02 Jd 5| #=02 Jd ;| s=02 I
B 1 C 1 [ ] FIG. 8. Spectral functions
- 1 F 4 F e A(k,w) for the (1,1) direction
2 F ) 1 ,[ 1., '__,/\\ 1o  Calculated at §=0.2, for (a)
2) : ' U/t=3.0, (b) 5.0, and (c) 6.0.
1 Each spectral function is shifted
in ——/J — and the top(botton) corresponds
! ! ! to k=(0,0) (k= (r,)).
0 1 3 o 11 0 171 ] (m,m0)
-5 0 5 -5 0 5 -5 0 5

w/t w/t o/t
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tions that are extracted from the results obtained for the spec 3
tral functions. The sequence of the peak points may roughly
correspond to band dispersions. The vertical line on eact

point indicates the relative intensity of the spectral function - 505 Ute0.0 T
at the peak point. FolJ/t=3.0, in the low-energy region i T il
around the Fermi energy, the spectral function has a finite - UI=6.0 1

width but is sharply peaked. In contrast, in the high-energy o2
region, the spectral function becomes broad. This produce
the already mentioned band tails of the density of states ir
the high-energy region. The band dispersion is almost similal
to that of the noninteracting tight-binding band for this pa-

rameter. ForU/t=5.0, the broadening of the band edges

becomes larger and the band dispersion has some discontin
ous points. FolU/t=6.0, only near the Fermi energy, we

observe a sharp spectral weight and, in the high-energy re
gion a new peak structure appears. The splitting in the dis:
persion becomes clear. The dispersion splits into three
branches. Two of them, located in high-energy regions, cor-
respond to the lower and the upper Hubbard band. The othe
crossing the Fermi energy, is the quasiparticle band and its
dispersion around the Fermi energy is much narrower than g 10, Density of states a=0.5, for U/t=0.0 (dotted ling,

that for U/t=3.0. We emphasize that for larg#/'t, the qua- 6.0 (dashed ling 8.0 (dashed-dotted lingand 10.0(solid line).
siparticle band is no longer specified by a single continuous

N(w)

0.1

o/t

dispersion with a sharp clear peak, unlike the noninteracting V1. DISCUSSION
band. The spectrum of the quasiparticle band has a clear 1pe density of states of the two-dimensional Hubbard
sharp structure only near the Fermi surface. model was calculated by Kampf and Schrieffer in a RPA

These features are a natural consequence of the effegigatment® They took into account the spin fluctuation ef-
observed in the real and the imaginary parts of the selffect in the fermion self-energy and their treatment is related
energy. To see this we shall return to the plot ofto our approximation. The differences in both formulations
ReX (k,w)— u, shown in Fig. 6. The dashed line in the are the coupling constants on the vertex of the self-energy
figure represents— ¢, at eachk. The w coordinate of the and the fact that we considered the charge fluctuation and
intersection point of RB(k,w) — w, and the line ofo—e,  they did not. It is interesting to compare their density of
gives thew pole of the Green’s function. In the same way, states with ours. The overall structures of the two density of
the intersection of»— ¢, and thew axis determines the pole States are similar but the quasiparticle peak on the Fermi
of the mean-field Green’s function. The shift of the poles€nergy is not observed in their data. In our results it can be
(@ coordinate represents roughly the shift of energy bandS€en that the quasiparticle band comes out into the
from its mean-field value. Note that in the high-energy re-PS€udogap, which also appears in their results. Another im-
gion the shift of poles folu/t=6.0 is considerably larger Portant difference concerns the Stoner criterion. In our ap-
than that obtained fdd/t=3.0. This shift gives the origin of proach this criterion is weaker than it would be in the usual
the upper and the lower Hubbard bands. Note that as WRPA—type theory and because of this we can perform calcu-

. . Eations for larger values of). This is an advantage of our
fO.IIOW. the poles fr.om thay <0 to thew>0 reglons, if the .method. Maybe one of the reasons why the quasiparticle
direction of the shift of poles changes from negative to POSiand does not appear in the previous spin-fluctuation

tive, the split of the band dispersion should take place at thi%alculatior?rs is that this approach is too sensitive with re-

point. spect to the change i), moreover, as we have shown in

. Moreover, we calcglated the.electr_onlc states at the dOpFig. 3, the charge components of the self-energy keeps its
ing §=0.5. Since the increase in doping loosens the Sto”elfermi-liquid-like energy dependence.

criterion, we can calculate for larger valueslft. In Fig. 10 In our numerical analysis we have used the maximum
we show the DOS folJ/t=0.0 (dotted ling, 6.0 (dashed values of the interactiot/t=6.0 and 10.0 for the fixed
line), 8.0 (dashed-dotted lingand 10.0(solid ling). As U/t doping concentrationd=0.2 and 0.5, respectively. Because
becomes larger, the large pseudogap arises araund.0.  of the Stoner criterion we can not take a larggt, at least

For U/t=10.0, a clear mini pseudogap appears atwithin the present approximate treatment of the Green's
w=—0.4. The van Hove singularity moves toward the Fermifunction and their self-energies. In this sense, our treatment
energy due to the band narrowing effect and the intensity ofs valid from the weak-coupling regime to the intermediate-
the peak becomes weaker due to the contribution of theoupling regime. To improve our approximation we should
imaginary part of the self-energy. In Fig. 11 we plot the bandconsider higher-order diagrams together with vertex correc-
dispersion for the same doping and foft=10.0. There are tions in the self-energies. In such a treatment the Coulomb
clearly three dispersions that correspond to the upper and theteraction must be well renormalized and it will be replaced
lower Hubbard bands and to the quasiparticle band crossinigy the effective interaction. As a result, the Stoner criterion
the Fermi energy. is weaker, and it will then be possible to investigate elec-
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........ l I . i e FIG. 11. Band dispersions &=0.5 and for

ion T U/t=10.0. The dispersion dots were extracted
from data of the spectral functions. The error bar
on each dot represents a broadening of the spec-
tral function around the point. The solid circles
A represent points corresponding to relatively large
-5 intensity.
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tronic states at the very low dopings and largé’s, i.e., mass?® from Eq.(6.3), it follows that the quasiparticle effec-
close to the metal-insulator transition. Another important im-tive mass and its components coupled with the charge fluc-

provement is to solve the coupled Dyson equations of theuation (m*) and spin fluctuationr?) are related by
fermion and the boson propagators self-consistently. We

plan to investigate these directions in the future.
The energy dependence of the real part of the self-energy m* +3m*
is important in characterizing the properties of the Fermi m*~ == (6.5
liquid. The energy derivative of the real part of the self- 4
energy at the Fermi energy=0 relates to the residug_ of

the quasiparticle Green'’s function by

IRES, (K, )
O P

with m* ~ 2z, tmo, mg ~zg2mo, andm ~zg m,. Thus, the

-1 above-mentioned behavior of the slope in the real part of the
w—O) self-energy, around the Fermi energy, produces the enhance-
ment of the quasiparticle mass coupled with the spin fluctua-
tion, which is much larger than that of the charge-fluctuation

|:1_(3(9Re25(k|: ,w)

dw ©=0 counterparts, i.emj >m .
Recent  angle-resolved photoemission spectrum
N IRES (kg ,0) }_1 6.0 experiment$®®for high-T, materials provide important fea-
dw "0 ' ' tures of the low-energy spectral function in these materials.

) o ] One of the remarkable features is the existence of the strik-
The band narrowing effect of the quasiparticle band is Proingly “flat” dispersion of the band arouné= (i,0). This
duced byz_. If we neglect the fact that Ii(k,w) scales  engency of the quasiparticle band is observed in our results
linearly with ® whenw—0, we find the following relations. as seen in Fig. @). In the present approach this is under-
From Fig. 3, we can see that the slope of the spin componertood as the band narrowing effect naturally arising by the
is larger than that of the charge component and the differencself-energy effects. We should note that since the single-
becomes larger dd/t becomes large. The quasiparticle bandband Hubbard model is rather simple, if we use the model to
narrowing effect comes from the spin component of the reakxplain experimental facts of the high-materials, we have
part of the fermion self-energy. To see this more clearly weto pay attention to the limits of its applicability. For a more
separate,_ into their spin and charge parts. By defining the detailed comparison with experimental data, it might be nec-
z factors associated with the charge and spin fluctuations agssary to exploit a more realistic model such as the Hubbard
model including the next-nearest-neighbor hopping t&ion
the CuG, (d-p) model.

Let us compare our results with the data obtained in some
numerical simulations of the finite-size cluster Hubbard
wherea=c, s, we find thatz,_is given by model. In the density of states studied in the quantum Monte

Carlo (QMC) simulations by Bulut, Scalapino, and Whifg,
. Zc_le+3Zs_ki a narrow coherent band is observed on the Fermi energy for
=7 (6.9  small dopingd=0.13 forU/t=4.0 and alsdJ/t=8.0. The
corresponding quasiparticle band in our data is narrower than
or, equivalently, theirs. Since their results are at finite temperature, the band-
width must be broader than a&&=0. For small doping
AZek Zok, 6=0.13 and forU/t=8.0, their data show the existence of
T 7. 137, " (6.4) lower and upper Hubbard bands and also a pseudogap in the
sk cke R . L. N
high-energy region. Similar structure has been obtained also
Further by introducing the effective mas® in the form of  in our results for moderate doping=0.5 andU/t=10.0.
m*~z"'m, with m, being the noninteracting electron However, a large pseudogap has not been observed in our

R )

akF_ &(1) w=0’

(6.2



56 AUXILIARY BOSON APPROACH FOR ELECTRONIC ... 4477

results for6=0.2 andU/t=6.0. Rather, our results for the the paramagnon peak, which has the wave vegtorear
parameters are similar to their results fé==0.13 and 2k.. The sharp enhancement of the spin excitation modifies
U/t=4.0. The origin will be our approximate treatment andthe energy dependence of both the imaginary part and the
the relatively small value of)/t. real part of the fermion self-energy around the Fermi energy.
In the exact-diagonalization calculatibit,">a prominent  In particular, near the Fermi surface, the imaginary part of
sharp band peak in the spectral function has been observedtak self-energy shows the characterisiidinear dependence
the wave numbek around the Fermi surface. The intensity of a non-Fermi liquid. The calculated spectral function
of the peak becomes weakerlagoes further away from the shows the existence of the band splitting and the band nar-
Fermi momentum. Here again, in the high-energy regionrowing on the Fermi energy. As a result of this, we have
there exists a broad band corresponding to the lower anfbund the pseudogap in the density of states. This seems to
upper Hubbard bands. These features were observed alsoli@ an important feature to understand the spin-gap phenom-
our results for the spectral functions. In our results of theena in the experimentally observed spin excitation spectrum.
density of states, a strong peak appears at the high-energyhese striking changes in the band structure are produced by
edge of the band. Such a strange peak is not seen in thRe change of the energy dependence of the self-energy due
numerical simulations. It is just the result of the weak tail ofto enhancement of the spin fluctuations close to the Stoner
the imaginary part of the self-energy and is a result of ourcriterion. Our results on the single-particle spectra are in
approximate method. qualitative agreement with the data of the numerical calcula-
Very recently, Preusst al!® calculated a band dispersion tions of the finite-size clusters.
of the Hubbard model for dopings very close to half filling
by a QMC simulation with maximum-entropy method. Their
data have shown that a “flat” band crosses the Fermi level at
k=(m,0) point when the doping concentration approaches We would like to acknowledge useful discussions with
half filling. If the Luttinger theorem of the Fermi surface Dr. S. L. Garavelli, Dr. X. Xue, and other members of the
volume holds in this case, the result means that the electrorinternational Center of Condensed Matter Physics. We
like Fermi surface transforms into the holelike one by dopingwould like to thank C. Ohmori for his useful advice on the
reduction. In our results of the band dispersions shown ircomputer program. We also would like to thank Professor H.
Fig. 9 band crossing is not seen. However, the “flat” bandMatsumoto for his useful suggestion. This work was sup-
neark=(,0) approaches the Fermi energy as the interacported by the Conselho Nacional de Desenvolvimento Cienti
tion becomes large. Furthermore, from Fig. 11, we find thafico e Tecnolgico (CNPg and by the Financiadora de Estu-
the bandwidth of the quasiparticle band can be estimated afs e ProjetogFINEP). One of us(T.S,) would like to ac-
being approximately &t with J=4t?/U. This is similar to  knowledge support by the Kasuya Research Fund, Japan,
their results~4J/t calculated forU/t=8.0 and ats=0.05. before coming to Brazil. The numerical calculations were
Although this similarity seems strange because our doping iperformed by use of the supercomputing system at the Insti-
5=0.5, this originates from the fact that in our calculation tute for Materials Research, Tohoku University, Japan.
the parameter is close to the Stoner condition. The overall
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structure of our band dispersion is very similar to their re- APPENDIX CALCULATION OF Im  xo(qw)
sults. In conclusion our results reproduce qualitatively the _ _
results obtained in the numerical simulations. In this Appendix we illustrate briefly how to calculate the

imaginary part of the one-loop polarization function given by

Eq. (4.4). We change th& summation into the integral in the
VII. SUMMARY AND CONCLUSIONS first Brillouin zone. Then we have

In this paper we studied the behavior of the electronic
states of the two-dimensional Hubbard model in the doped
paramagnetic regime. We considered both the charge and the
spin fluctuations on an equal footing. Auxiliary bosons were _ _ _
introduced in our treatment for fluctuations. The fermion- 0(ex=po)lo(r=eieqten. (A1)

boson interactions were taken into account up to the oneésince thisk integral includes the function that depends on
loop level in the self-energies. The single-particle Green'sphe two-dimensional wave vectdr, it is rather difficult to

function, which goes beyond the mean-field level, includes,erform this integration numerically to a good accuracy. We
the self-energy effects thorough the corresponding DysoRgnsider the way to avoid this difficulty.

equation. By representing thg interaption Hamiltonian using \wnen we fix bothg and», the contribution to the integral
both the charge- and the spin-density operators, the Stongpmes from a sequence of points on a curve in the first Bril-

condition became weaker than the one based on the Wsual |oin zone. The curve is obtained by the energy conservation
perturbation treatment. It allowed us to evaluate the singlesg|ation given by

particle Green'’s function for the moderately large interaction
U. The evolution of the single particle spectrum was inves-
tigated by numerical calculations of the boson propagators
and the Green’s function with the self-energy as we varnjin the § function. It tells us that we can rewrite the two-
u/t. dimensional integral as a contour integral on the line. Per-

As U approaches the critical value for the magnetic instaforming the integral of one variable that is perpendicular to
bility, the low-energy spin excitation is strongly enhanced atthe contour, we have the contour integral as

dk
'mXo(q'V):Tngr(V)f W[G(smq_ﬂo)

V=Ek4q Ek (A2)
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dly  6(exsq— mo) — 0(ek— o)

Im ,V)=TS A3
Xo(@)=mSe) | w2 Jgrad(ens g o] (A3)
The contour of the integral is obtained by solving E42). We find solution of this as
—(1—cogqy,)f1* \(1—coxyy)>f,—2(1—cogy, ) (f5—sir?
ok, — 1= C0h) s V(1—cosmy)*t; — 2(1 - com)(f3 —sirfa,). )
2(1—-cogyy)
|
wheref, is given by solution and the region that satisfies the condition
, O(&k+q— o) — O(ex— mo) #0.
__ _ ; ; We can apply this method to the other model. For ex-
f1(Ky,Qy,v)= + coK,(1—coqyy) + sink,singy . . -
k@) == 5 xl ) xSiMx ample, Saikawa and Kaga have calculated fermion bubbles

(A5)  of the three-band Cu@model using this methodf. How-
When we both fixq and », we obtain a contour equation €ver, if we consider a complicated model such as the
from this solution. Thus, we can perform the integral withoutCuO, model, we can not obtain the analytical form of the
dealing with the difficulty of the numerical treatment of the ~contour of the integration because such a model often has a
function. Strictly speaking, the exact contribution range incomplicatedmean-field band dispersion. In such a case we
thek space is determined by the superposition of the abov&eed to obtain the contour numerically.

“Present address: Department of Physics, Tokyo Institute of TecHOA. Georges, G. Kotliar, W. Krauth, and M. J. Rozemberg, Rev.

nology, Tokyo 152, Japan.
1For example, Physica €63 (1996.

2H. Yasuoka, T. Imai, and T. Shimizu, Btrong Correlation and
Superconductivityedited by H. Fukuyama, S. Maekawa, and A.

P. Malaozemoff(Springer-Verlag, Berlin, 1989
33. Rossat-Mignoet al, Physica C185-189 86 (1991.
4J. W. Loramet al, Physica C235-240 134 (1994.

S5A. G. Loeseret al, Science273 325(1996; A. G. Loeser, D. S.

Dessau, and Z.-X. Shen, Physica263 208 (1996.

Mod. Phys.68, 13 (1996, and references therein.

2'H. Matsumoto and F. Mancini, Phys. Rev.58, 2095(1997).

225ee for example, S. Doniach and E. H. SondheinGneen’s
Functions for Solid State Physicisi@\ddison-Wesley, New
York, 1974.

235ee, for example, E. Fradkifijeld Theories of Condensed Mat-
ter SystemgAddison-Wesley, New York, 1991In some parts
of our text we have followed the notations of this book.

24A. Ferraz and Nguyen Ai Viet, Phys. Rev.®, 10 548(1995;

6Y. Suzumura, Y. Hasegawa, and H. Fukuyama, J. Phys. Soc. Jpn. X. Xue and A. Ferraz, Nucl. Phys. 868 [FS|541 (1996.

57, 2768(1988.

"H. Fukuyama, Physica @63 35 (1996.

8Y. C. Chenet al, Phys. Rev. B50, 655 (1994.

9J. Hubbard, Proc. R. Soc. London, Ser2#6, 238 (1963; 277,
237 (1964); 281, 401(1964.

10w, F. Brinkman and T. M. Rice, Phys. Rev.B 4302(1970.

IR, Raimondi and C. Castellani, Phys. Rev48 11 453(1993.

12E. Dagotto, Rev. Mod. Phy$§6, 763 (1994.

13E. Dagotto,et al, Phys. Rev. B45, 10 741(1992.

14p. W. Leunget al, Phys. Rev. B46, 11 779(1992.

15H. Eskes and R. Eder, Phys. Rev5B, R14 226(1996.

16N, Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. LZ2.
705 (19949).

YN. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. L&3.
748 (1994.

18p. Duffy et al. (unpublishedl

19R. Preuss, W. Hanke, C. Gyer, and H. G. Evertaunpublishegl

25p_ E. de Brito, Ph.D. thesis, Universidade de Bias1996.

263, Doniach, Proc. Phys. Soc. Lond®h 86 (1967). See also, Ref.
22.

2’see for example, G. D. MahaMany-Particle Physics2nd ed.
(Plenum, New York, 1990

2. Kampf and J. R. Schrieffer, Phys. Rev.4, 6399(1990.

2The effective mass on the Fermi surface should be defined by
m/m*:(ﬁEk/ask)k:kF where E, is a quasiparticle band de-
fined as the solution of the equation given by
E+ u—e—ReS(k,E ) =0. From this definition, the effective
mass is given byn/m* =z, {1+[JReX (K, w)/deylk=k_ w=0}
[See, for exampleylany-Particle PhysicgRef. 27, Chap. 3} In
our discussion thé& derivative of R& (k,w) is omitted.

307 -X. Shen and D. S. Dessau, Phys. RS3 1 (1995, see also
references therein.

31T, saikawa and H. Kaga, Physicad17, 210 (1993; 221, 413
(1994.



