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Anharmonic correlated Einstein-model Debye-Waller factors
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An anharmonic correlated Einstein model is derived for local vibrational amplitudes in x-ray-absorption fine
structure~XAFS! that takes into account all near neighbors of absorber and backscattering atoms. The model
is based on quantum thermodynamic perturbation theory and includes anharmonic effects based on empirical
potentials. Calculations are presented for the second and third cumulants in XAFS as well as the net thermal
expansion and thermal expansion coefficient. This model avoids full lattice dynamical calculations yet provides
reasonable agreement with experiment. The generalization to displacement-displacement correlation functions
and multiple-scattering Debye-Waller factors is also discussed.@S0163-1829~97!03125-1#
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I. INTRODUCTION

The Debye-Waller~DW! factor e2w(p) accounts for the
effects of the thermal vibration of atoms in the theory
x-ray-absorption fine structure~XAFS!. The dominant term
w(p)52p2s2 depends on the mean square relative displa
ment ~MSRD! s2 of the bond between absorber and bac
scattering atoms,1–3wherep is the photoelectron wave num
ber. Anharmonicity in the potential yields additional terms
the DW factors, which if ignored can lead to non-negligib
errors in structural parameters4–11 derived from XAFS spec-
tra. The formalism for including anharmonic effects
XAFS is often based on the cumulant expansion,7 where the
even cumulants contribute to the amplitude and the odd o
to the phase of XAFS spectra, i.e.,w(p)52ips (1)

22p2s22(4/3)ip3s (3)1•••. Many efforts have been
made7–18 to develop this approach in order to include su
anharmonic contributions. At high temperatures the class
approach can work well.5–11 But this approach cannot b
valid at low temperature due to zero-point vibration.14 Re-
cent work by Frenkel and Rehr12 ~FR! derived relations be-
tween XAFS cumulants using a correlated Einstein mo
and first-order thermodynamic perturbation theory. Their d
cussion is based on a local vibration picture that inclu
near-neighbor correlations, but phonon dispersion is
glected. It is not obvious that such an Einstein model c
reasonably approximate anharmonic cumulants in solid14

Works by Miyanaga and Fujikawa14 have been carried ou
using a more sophisticated, full lattice dynamical approa
but this approach requires extensive calculations. More
cently, an equation of motion~EM! approaches has also bee
used.19 On the other hand, a correlated Einstein mode
local and should be a reasonable approximation when co
lations are short ranged.

This work is a next step to the approach of FR~Ref. 12!
for approximating cumulants in XAFS. Our further develo
ment is the derivation of an anharmonic correlated Eins
model for a small cluster. Our present model includes o
near-neighbor interactions between absorber and backsc
ing atoms and their immediate neighbors. These interact
are described by an effective pair potential instead o
single-bond model12 and must be summed to get the net p
tential for a single bond. The parameters of our anharmo
560163-1829/97/56~1!/43~4!/$10.00
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potential are based on a phenomenological potential~e.g.,
Morse potential! that characterizes the interaction betwe
each pair of atoms. The results of quantum thermodyna
perturbation theory12,20 are then used to obtain the net the
mal expansion~or first cumulant! and the thermal expansio
coefficient ~given by the derivative!, as well as the second
and third cumulants. Numerical results for Cu are found
be in good agreement with experiment3,15,23 and with those
calculated by other theories.1,2,14,19This illustrates the advan
tage and simplicity of the present correlated Einstein mo
in describing anharmonic effects in XAFS. We also discu
how the displacement-displacement correlation functions
multiple-scattering DW factors can be obtained with simi
Einstein models.

II. ANHARMONIC CORRELATED EINSTEIN MODEL

We consider the anharmonic correlated Einstein mo
characterized by an effective potential

VE~x!>
1

2
kx21k3x

31•••, ~1!

wherex is deviation of instantaneous bond length betwe
the two atoms from equilibrium,k is effective spring con-
stant, andk3 the cubic anharmonicity parameter. The pre
ence ofk3 gives an asymmetry or skew in the pair distrib
tion function. The correlated Einstein model may be defin
as the oscillation of a single bond pair of atoms with mas
M1 and M2 ~e.g., absorber and backscatterer! in a given
system. Their oscillation is influenced by their neighbors.
the center-of-mass frame of this bond the anharmonic E
stein model is defined by the effective single spring poten

VE~x!5V~x!1(
jÞ i

VS m

Mi
xR̂12•R̂i j D , ~2!

wherem5M1M2 /(M11M2), R̂ is the bond unit vector; the
sum i is over absorber (i51) and backscatterer (i52), and
the sum j is over all their near neighbors, excluding th
absorber and backscatterer themselves. The latter cont
tions are described by the first term in the left side of t
43 © 1997 The American Physical Society
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equation. Thus in the second term of Eq.~2! only part of the
valuex contributes to the interaction potential.

In this paper we will present the results for an anharmo
Morse potential,22,26which is appropriate for metals like Cu
Expanded to third order about its minimum this model b
comes

V~x!5D~e22ax22e2ax!>D~211a2x22a3x31••• !,
~3!

wherex is the same value defined above,D is the dissocia-
tion energy, and 1/a corresponds to the width of the pote
tial. It is usually sufficient to consider weak anharmonic
~i.e., first-order perturbation theory! so that only the cubic
term in this equation must be kept.

We will illustrate the theory for a simple fcc crystal~e.g.,
Cu!, though the generalization to other structures or long
range interactions is straightforward. Applying the Mor
potential of Eq.~3! to first-near-neighbor bond vibrations
the effective interacting Einsten potential of Eq.~2! ~ignoring
the overall constant! is given by

VE~x!>DS 52a2x22
5

4
a3x31••• D • ~4!

Using Eqs.~1! and~4! as well as the definition12 y5x2a as
the deviation from the equilibrium value ofx at temperature
T we derivek andk3,

k55Da2S 12
3

2
aaD5mv2, k352

5

4
Da3, ~5!

wherea is net thermal expansion or first cumulants (1). Fol-
lowing FR~Ref. 12! and using the above results in first-ord
thermodynamic perturbation theory we obtain

a5s~1!5s0
~1!
11z

12z
5

s0
~1!

s0
2 s2, s0

~1!5
3a

4
s0
2 , ~6!

wheres0
(1) ands0

2 are zero-point contributions tos (1) and
s2, respectively, andz5e2uE /T with uE as the Einstein tem
perature. Thus the ratios (1)/s2 is a constant, independent o

FIG. 1. Temperature dependence of our calculated second
mulants2 ~solid!, in comparison with experimental values~Ref. 3!
(h) and ~Ref. 15! (L) as well as EM approach results~Ref. 19!
~dashed! and another theoretical value~Ref. 14! (3). Our s2 is
proportional toT at high temperatures and contains zero-point c
tributions at low temperatures.
c

-

r-

temperature, which is proportional to the anharmonic para
etera;k3 /k. The second cumulant is given by

s25s0
2 11z

12z
, s0

25
\v

10Da2 • ~7!

Following Rabus21 we may describe the temperature va
ablez5e2uE /T in terms ofs2,

z5
s22s0

2

s21s0
2 • ~8!

From Eq.~6! we derive the thermal expansion coefficient

aT5aT
0S 5Da2

kBT
D 2~s2!2@12~s0

2/s2!2#, aT
05

3kB
20Dar

,

~9!

and will see later thataT becomesaT
0 at high temperatures

where kB is Boltzmann’s constant. Our third cumulant
given by

s~3!5s0
~3!
3~s2!222~s0

2!2

~s0
2!2

, s0
~3!5

a

2
~s0

2!2, ~10!

wheres0
(3) is the zero-point contribution tos (3). From the

above results we obtain a simple relation between cumul
in terms ofs2,

s~1!s2

s~3! 5
1

22~4/3!~s0
2/s2!2

• ~11!

The above formulas at low and high temperatures are
sented in Table I. Note that Eq.~11! approaches the classica
expression10 of 1/2 at high temperatures.

III. RESULTS AND DISCUSSION

We now apply the formulas derived in the previous se
tion to numerical calculations of XAFS cumulants for fc
Cu. The parametersD50.343 eV ~i.e., 3980 K! and
a51.359 Å21 of the Morse potential were taken from Re
22; they were obtained using experimental values for
energy of sublimation, the compressibility, and the latt
constant. The Morse potential parameters of Ref. 22 ag
with these values within about 10%. However the sing
spring constant12 obtained with these paramete
ks52Da2520.3 N/m is significantly smaller than the valu
27.9 N/m needed to approximate the observed phonon s
tra with a single parameter. These differences are indica
of the limitations of a single spring constant model12 and the
possible importance of next-neighbor interactions. T

TABLE I. Formulas of s (1), s2, s (3), and aT in low-
temperature (T→0) and high-temperature (T→`) limits.

T→0 T→`

s (1) s0
(1)(112z) 3kBT/20Da

s2 s0
2(112z) kBT/5Da2

s (3) s0
(3)(1112z) 3(kBT)

2/50D2a3

aT aT
0z(lnz)2(112z) aT

0

u-

-
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Morse potential parmeters yield from Eq.~5! an effective
spring constantkeff550.7 N/m and, hence, a correlated Ei
stein temperatureuE>218 K at 295 K. For completeness, th
temperature dependence ofkeff was included in Eq.~5!, but
this dependence for Cu is very small. For examp
keff550.7 N/m at 30 K and 49.9 N/m at 295 K. Figure
shows the temperature dependence of our calculated se
cumulants2, in comparison with the experimental values,3,15

as well as with the results of the EM approach calculatio19

and another theoretical value14 at 295 K. The good agree
ment at low temperatures and small differences at high t
peratures between our results and the measured value
reasonable, given the simplicity of the method. Howev
anharmonic second order terms in perturbation theory
come important at high temperatures and yield a correc
to s2 given by a factor6 1136k3

2kBT/k
3>119kBT/20D,

which is an increase of about 3% at 295 K and 8% at 700
This explains why at 10 K and 77 K the agreement is be
than at high temperatures, and also suggests that the ph
fit spring constant 27.9 N/m may give a better fit than t
value 20.3 N/m from single-bond compressibility data.
any case the value ofk can also be used as a fitting param
eter. Figure 2 illustrates the temperature dependence of
calculated third cumulants (3), in comparison with

FIG. 2. Temperature dependence of our calculated third cu
lant s (3) ~solid!, in comparison with an experimental result~Ref.
15! ~L) and another theoretical value~Ref. 14! (3). Our s (3) is
proportional toT2 at high temperatures and contains zero-point c
tributions at low temperatures.
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measured15 and theoretical14 values. Our result at 295 K
agrees well with the experimental value. The temperat
dependence of our calculated thermal expansion coeffic
aT and comparison with measured values

23 are shown in Fig.
3. Our results foraT at 77 K and 100 K are close to th
experimental values.23 This temperature dependence has
same form as the specific heat.12,23,24 We also present in
Table II several values ofs2, s (3), andaT at different tem-
peratures calculated by our theory and those extracted f
experiments3,15,23or calculated by other theories.14 The sec-
ond cumulants2 describing MSRD and DW factors is pri
marily a harmonic effect plus small anharmonic contrib
tions which appear only at high temperatures. Buts (3) is
entirely an anharmonic effect, which is small and difficult
see at low temperatures~Fig. 2!.

By using similar Einstein models, we can calculate t
mean-square vibrational amplitudes at a given s
u25^ui

2& and the displacement-displacement correlat
function cR52u22s25^u0uR&. At high temperaturecR
amounts to roughly 40% ofu2, as in the Debye model,1,2 and
our value 0.21 at 14 K ofcR /u

2 is close to the result2 0.20 at
4 K. Multiple-scattering DW factorssG

2 can be obtained by
expanding the effective path length in XAFS to linear ord
in the fluctuationui at each sitei ,25

u-

-

FIG. 3. Temperature dependence of our calculated thermal
pansion coefficientaT ~solid!, in comparison with experimental val
ues~Ref. 23! (h). Our aT becomes constant at high temperatur
and is very strongly temperature dependent at low temperature
f Cu
TABLE II. Comparison of the thermal expansion coefficient and second and third cumulants o
calculated here in this work with those extracted from experiments and calculated by other theories.

s2 (31022 Å 2) s (3) (31023 Å 3) aT (31025 K21)
T ~K! Present Expt.a Otherb Present Expt.c Otherb Present Expt.d

10 0.298 0.292
77 0.333 0.325 0.010 0.584 0.59
100 0.365 0.014 0.745 0.80
295 0.803 0.774 0.520 0.131 0.13 1.070
300 0.817 0.136 0.12 1.072
683 1.858 1.823 1.090

aReference 3.
bReference 14.
cReference 15.
dReference 23.
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sG
25

1

4(i j ^~ui2ui 8!•R̂i i 8~uj2uj 8!•R̂j j 8&,

i 85 i11, j 85 j11, ~12!

which contain the componentŝuiuj&R̂i i 8•R̂j j 8. Therefore,
we can obtainsG

2 in terms of the displacement-displaceme
correlation functionŝuiuj& calculated above. Thus the co
related Einstein model can also be applied to calculations
multiple-scattering DW factors.

FIG. 4. Temperature dependence of the relations (1)s2/s (3) as a
criterion to identify the temperature above which this relation a
proaches the classical expression~Ref. 10! of 1/2 and the classica
limit is applicable. For Cu this temperature is about correlated E
stein temperature (uE 5 218 K!.
nt
-
of

The quantum theory works for any temperature, but
duces to the classical limit at high temperature wh
s2@s0

2. Our relations (1)s2/s (3) approaches the classica
result10 of 1/2 at high temperatures. Therefore, we can u
this relation as a criterion to identify the temperature abo
which the classical approach is applicable. Figure 4 sho
that below the Einstein temperature (uE5218 K! the classi-
cal result loses validity.

By using the above formulas and cumulants extrac
from XAFS experiment we can derive information abo
uE as well as anharmonic potential parameters. Our desc
tion of the anharmonic parameters in terms ofs2 is conve-
nient, since determination ofs2 allows one to predict the
other cumulants. This correlated Einstein model also avo
extensive full lattice dynamical calculation. The good agre
ment between our numerical results and experiment to wit
experimental uncertainty about 20% shows the advant
and simplicity of present model in approximating cumulan
and other anharmonic parameters in XAFS.
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