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Anharmonic correlated Einstein-model Debye-Waller factors
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An anharmonic correlated Einstein model is derived for local vibrational amplitudes in x-ray-absorption fine
structure(XAFS) that takes into account all near neighbors of absorber and backscattering atoms. The model
is based on quantum thermodynamic perturbation theory and includes anharmonic effects based on empirical
potentials. Calculations are presented for the second and third cumulants in XAFS as well as the net thermal
expansion and thermal expansion coefficient. This model avoids full lattice dynamical calculations yet provides
reasonable agreement with experiment. The generalization to displacement-displacement correlation functions
and multiple-scattering Debye-Waller factors is also discud&@i163-18207)03125-]

[. INTRODUCTION potential are based on a phenomenological poterda.,
Morse potential that characterizes the interaction between

The Debye-WalleDW) factor e (P accounts for the each pair of atoms. The results of quantum thermodynamic
effects of the thermal vibration of atoms in the theory of perturbation theor}??° are then used to obtain the net ther-
x-ray-absorption fine structuréKAFS). The dominant term mal expansiorior first cumulant and the thermal expansion
w(p) =2p?c? depends on the mean square relative displacecoefficient(given by the derivative as well as the second
ment (MSRD) o of the bond between absorber and back-and third cumulants. Numerical results for Cu are found to
scattering atom;3wherep is the photoelectron wave num- be in good agreement with experimétt®®*and with those
ber. Anharmonicity in the potential yields additional terms in calculated by other theorié<:****This illustrates the advan-
the DW factors, which if ignored can lead to non-negligible tage and simplicity of the present correlated Einstein model
errors in structural parametéfél derived from XAFS spec- in describing anharmonic effects in XAFS. We also discuss
tra. The formalism for including anharmonic effects in how the displacement-displacement correlation functions and
XAFS is often based on the cumulant expansiovhere the = multiple-scattering DW factors can be obtained with similar
even cumulants contribute to the amplitude and the odd ondsinstein models.
to the phase of XAFS spectra, i.ew(p)=2ipo®
—2p??—(4/3)ip3%c®+.... Many efforts have been || ANHARMONIC CORRELATED EINSTEIN MODEL
madée 8 to develop this approach in order to include such
anharmonic contributions. At high temperatures the classical We consider the anharmonic correlated Einstein model
approach can work well:*! But this approach cannot be characterized by an effective potential
valid at low temperature due to zero-point vibratidrRe-
cent work by Frenkel and Refr(FR) derived relations be- 1
tween XAFS cumulants using a correlated Einstein model Ve(x)= Sk +kex+ - -+, @

2

and first-order thermodynamic perturbation theory. Their dis-

cussion is based on a local vibration picture that includesyherex is deviation of instantaneous bond length between
near'nEighbor Corr6|ati0n5, but phonon diSperSion is Nethe two atoms from equ|||br|un‘k is effective Spring con-
glected. It is not obvious that such an Einstein model Cal?stant, a_nd(3 the cubic anharmonicity parameter_ The pres-
I’easonably approximate anharmonic cumulants in Sa)‘hds ence Ofk3 gives an asymmetry or SkeW in the pair distribu_
Works by Miyanaga and Fujikaw&have been carried out tion function. The correlated Einstein model may be defined
using a more sophisticated, full lattice dynamical approachas the oscillation of a single bond pair of atoms with masses
but this approach requires extensive calculations. More rey;, and M, (e.g., absorber and backscattgrar a given
cently, an equation of motiofEM) approaches has also been system. Their oscillation is influenced by their neighbors. In
used-® On the other hand, a correlated Einstein model isthe center-of-mass frame of this bond the anharmonic Ein-

local and should be a reasonable approximation when corretein model is defined by the effective single spring potential
lations are short ranged.

This work is a next step to the approach of HRef. 12
for approximating cumulants in XAFS. Our further develop- VE(X):V(X)+E V(ixﬁlz- F}ij ) 2)
ment is the derivation of an anharmonic correlated Einstein i#i M;
model for a small cluster. Our present model includes only R
near-neighbor interactions between absorber and backscattavhereu=M M, /(M;+ M,), R is the bond unit vector; the
ing atoms and their immediate neighbors. These interactionsumi is over absorberiE& 1) and backscatterer £€2), and
are described by an effective pair potential instead of dhe sumj is over all their near neighbors, excluding the
single-bond modéf and must be summed to get the net po-absorber and backscatterer themselves. The latter contribu-
tential for a single bond. The parameters of our anharmonitions are described by the first term in the left side of this

0163-1829/97/5@.)/43(4)/$10.00 56 43 © 1997 The American Physical Society



44 BRIEF REPORTS 56

equation. Thus in the second term of E2). only part of the TABLE I. Formulas of o, ¢?, ¢, and a; in low-
valuex contributes to the interaction potential. temperature T—0) and high-temperatureTl () limits.
In this paper we will present the results for an anharmonic
Morse potentiaf>2®which is appropriate for metals like Cu. T—-0 T
Expanded to third order about its minimum this model be-_( o(1+22) 3K T/20D
comes p o2(1+22) ksT/5Da?
V(x)=D(e 2~ 2~ ™)=D(— 1+ a®®— a®3+ - - -), o oi(1+122) 3(kgT)%/50D20°
(3 ar a%z(In2%(1+22) al

wherex is the same value defined abow,is the dissocia-
tion energy, and I corresponds to the width of the poten- temperature, which is proportional to the anharmonic param-
tial. It is usually sufficient to consider weak anharmonicity eter o~ k4 /k. The second cumulant is given by
(i.e., first-order perturbation thegrgo that only the cubic
term in this equation must be kept.

We will illustrate the theory for a simple fcc cryst@.g., o
Cu), though the generalization to other structures or longer-
range interactions is straightforward. Applying the MorseFollowing Rabus' we may describe the temperature vari-
potential of Eq.(3) to first-near-neighbor bond vibrations, ablez=e™%'T in terms ofo?,

,1+z ) ho

ST 0T Ima? @

the effective interacting Einsten potential of E8) (ignoring s 2
the overall constantis given by _9 7090
Z=—-—2" 8
5 gtoy
Ve(x)=D 5012)(2— Za3X3+ e (4)  From Eq.(6) we derive the thermal expansion coefficient
Using Egs.(1) and(4) as well as the definitiolf y=x—a as e 5Da” 2(02)2[1_(02/02)2] WO 3kg
the deviation from the equilibrium value afat temperature 0T keT 0 7T 20Dar’
T we derivek andks, (9
3 5 and will see later thatvt become5a$ at high temperatures,
k=5Da2<1—§aa = pow?, k3=—ZDa3, (5  wherekg is Boltzmann's constant. Our third cumulant is
given by
wherea is net thermal expansion or first cumularft). Fol- - -
lowing FR(Ref. 12 and using the above results in first-order @_ (330 —2(0p) (3):g( 22 (19
thermodynamic perturbation theory we obtain 7 =0 (02)2 v 90 T 00

W itz o), 3« , where o) is the zero-point contribution to®. From the
a=o =00 757 ol o, 0o =74 %o 6 above results we obtain a simple relation between cumulants
in terms of a2,

where ") and o3 are zero-point contributions to* and

a2, respectively, and=e ™ ’e’T with 6 as the Einstein tem- oMo? _ 1 11
perature. Thus the ratie'")/ o2 is a constant, independent of o® T 2—(413) (% d?)?
0.02 : : : : : : The above formulas at low and high temperatures are pre-

sented in Table |. Note that EGL1) approaches the classical
expressiof® of 1/2 at high temperatures.

—— Present theory

--- EM theory (Ref. 19)

0.015 |
Th Ref. 14
X Theory (Ref. 14) Ill. RESULTS AND DISCUSSION
o & Expt. (Ref. 15)
% 001 @ Expt. (Ref. 3) T We now apply the formulas derived in the previous sec-

tion to numerical calculations of XAFS cumulants for fcc
Cu. The parameterd=0.343 eV (i.e.,, 3980 K and

«=1.359 A~1 of the Morse potential were taken from Ref.
22; they were obtained using experimental values for the
energy of sublimation, the compressibility, and the lattice
constant. The Morse potential parameters of Ref. 22 agree
with these values within about 10%. However the single

FIG. 1. Temperature dependence of our calculated second c§Pring  constartf obtained with these parameters
mulanto? (solid), in comparison with experimental valugRef. 3  Ks=2D a”=20.3 N/m is significantly smaller than the value
(O) and(Ref. 15 () as well as EM approach resuli®ef. 19 27.9 N/m needed to approximate the observed phonon spec-
(dashedl and another theoretical valu®ef. 14 (X). Our o? is tra with a single parameter. These differences are indicative
proportional toT at high temperatures and contains zero-point con-of the limitations of a single spring constant motfednd the
tributions at low temperatures. possible importance of next-neighbor interactions. The
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FIG. 2. Temperature dependence of our calculated third cumu- FIG. 3. Temperature dependence of our calculated thermal ex-
lant o® (solid), in comparison with an experimental res(Ref. pansion coefficien& (solid), in comparison with experimental val-
15) (¢) and another theoretical valy®ef. 14 (x). Our ¢® is ues(Ref. 23 (). Our a1 becomes constant at high temperatures
proportional toT2 at high temperatures and contains zero-point con-and is very strongly temperature dependent at low temperatures.
tributions at low temperatures.

Morse potential parmeters yield from E¢5) an effective measuret? and theoreticaf values. Our result at 295 K

spring constank.;=50.7 N/m and, hence, a correlated Ein- agrees well with the experimental value. The temperature
stein temperatur6z=218 K at 295 K. For completeness, the dependence of our calculated thermal expansion coefficient
temperature dependence kg was included in Eq(5), but @7 and comparison with measured valtfere shown in Fig.
this dependence for Cu is very small. For example3- Our results foray at 77 K and 100 K are close to the
key=50.7 N/m at 30 K and 49.9 N/m at 295 K. Figure 1 experimental value® This temperature dependence has the

shows the temperature dependence of our calculated secof@me form as the specific héaf>** We also present in
cumulanto, in comparison with the experimental vali@, ~ Table Il several values af?, o!®), andar at different tem-

as well as with the results of the EM approach calculdfion peratures calculated by our theory and those extracted from
and another theoretical vaftfeat 295 K. The good agree- experimentd*>**or calculated by other theorie$The sec-
ment at low temperatures and small differences at high temPnd cumulanto® describing MSRD and DW factors is pri-
peratures between our results and the measured values dr@rily a harmonic effect plus small anharmonic contribu-
reasonable, given the simplicity of the method. Howeverfions which appear only at high temperatures. B is
anharmonic second order terms in perturbation theory begntirely an anharmonic effect, which is small and difficult to
come important at high temperatures and yield a correctiosee at low temperaturésig. 2).

to o2 given by a factdt 1+ 36k3kgT/k3=1+9kgT/20D, By using similar Einstein models, we can calculate the
which is an increase of about 3% at 295 K and 8% at 700 KMmean-square vibrational amplitudes at a given site
This explains why at 10 K and 77 K the agreement is bettet?=(u?) and the displacement-displacement correlation
than at high temperatures, and also suggests that the phonfimction cg=2u®—a?=(ugug). At high temperaturecg

fit spring constant 27.9 N/m may give a better fit than theamounts to roughly 40% af?, as in the Debye modét? and
value 20.3 N/m from single-bond compressibility data. Inour value 0.21 at 14 K ofz/u? is close to the resutt0.20 at
any case the value & can also be used as a fitting param-4 K. Multiple-scattering DW factors-2 can be obtained by
eter. Figure 2 illustrates the temperature dependence of oexpanding the effective path length in XAFS to linear order
calculated third cumulanta®®, in comparison with in the fluctuationu; at each site,?

TABLE Il. Comparison of the thermal expansion coefficient and second and third cumulants of Cu
calculated here in this work with those extracted from experiments and calculated by other theories.

a? (X102 A?) d® (x107% A3) ar (X107% K™Y
T (K) Present Expl.  OtheP Present Expt.  OtheP Present Expt.
10 0.298 0.292
77 0.333 0.325 0.010 0.584 0.59
100 0.365 0.014 0.745 0.80
295 0.803 0.774 0.520 0.131 0.13 1.070
300 0.817 0.136 0.12 1.072
683 1.858 1.823 1.090

%Reference 3.

bReference 14.
‘Reference 15.
dreference 23.
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FIG. 4. Temperature dependence of the relati®io?/o® as a
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The quantum theory works for any temperature, but re-
duces to the classical limit at high temperature when
o?> 2. Our relationa™o?/o(® approaches the classical
result!® of 1/2 at high temperatures. Therefore, we can use
this relation as a criterion to identify the temperature above
which the classical approach is applicable. Figure 4 shows
that below the Einstein temperaturé@-&218 K) the classi-
cal result loses validity.

By using the above formulas and cumulants extracted
from XAFS experiment we can derive information about
0 as well as anharmonic potential parameters. Our descrip-
tion of the anharmonic parameters in termsodfis conve-
nient, since determination af? allows one to predict the
other cumulants. This correlated Einstein model also avoids

criterion to identify the temperature above which this relation ap-€Xtensive full lattice dynamical calculation. The good agree-

proaches the classical expressi@tef. 10 of 1/2 and the classical

ment between our numerical results and experiment to within

limit is applicable. For Cu this temperature is about correlated Ein€Xperimental uncertainty about 20% shows the advantage

stein temperaturedez = 218 K).

1 . ~
U%:Z; ((ui=u;) - Ryjr(uj=ujr) - Ryjr),

i'=i+1, j'=j+1, (12

which contain the component;u;)R;; - R;j.. Therefore,

we can obtaim% in terms of the displacement-displacement

correlation functiongu;u;) calculated above. Thus the cor-
related Einstein model can also be applied to calculations
multiple-scattering DW factors.

and simplicity of present model in approximating cumulants
and other anharmonic parameters in XAFS.
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