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Deformations and dynamics of an elastic string in a periodic potential
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We study the dissipative dynamics of a driven elastic string subject to a periodic potential. The deformations
of the elastic string are determined in the static and dynamic situations for various geometries. We find the
average velocity of the string, particularly the dependence of the velocity on the meanjabgteveen the
string and the potential. Our theoretical analysis produces both a sharp drop in the average velocity at small
angles due to the trapping of the elastic string in the potential and a crossover from free motion to a pinning-
inhibited motion at the critical driving forc¢ S0163-18287)05525-7

I. INTRODUCTION the entire range of applied driving forces, where the linear
regimes at small and large driving forces are connected
Recent interest has concentrated on dynamical aspects @frough a nonlinear crossover at forces close to the depin-
driven elastic manifolds subject to a pinning potential. Bothning forceF.; see Fig. 2.
periodic and randorfi® potentials have been studied in vari-  In Sec. Il, we present our model of the elastic string in the
ous contexts. Typical questions addressed are the relatigiriodic (washboarg potential. The static solution to this
between the average velocity and the underlying drivingﬂOdpl is determlned in 'Sec. . In 'Sec. IV we mtroduce th_e
force? the critical behavior at depinnirfgthe dynamical re- partla! dlff_erentlal equation describing the driven str|ng._T_h|s
establishing of ordet;® etc. In this paper we present a model €quation is solved analytically for small and large driving
study of one of the simplest problems in this context,forcesF in comparison with the critical forcé. due to the
namely, the dissipative motion of a driven elastic string subPotential. A numerical evaluation finally determines the de-
ject to a periodic(washboaryl potential. Besides its educa- forme.m.ons of the elastic string and the average velocity for
tional character, this problem is relevant for the understand@ll driving forcesF.
ing of vortices in layered high- superconductors. The
problem has been addressed before byttiger and z
Landauer: who calculated the energy for kink-antikink pro-
duction and determined the activated dynamics through the
solution of the Fokker-Planck equation. Recently, Koshelev
and Vinokuf have determined the corrections to the Ohmic
resistivity at large driving force, making use of the dynami-
cal approachi:®
Here, we consider the flow of an elastic string in a peri-
odic (washboaryl potential subject to a constant transverse
driving force F. The mean angleé} between the string and
the potential is fixed through the boundary conditions; see
Fig. 1. The basic task consists in solving the partial differen-
tial equation describing the balance between the driving
force and forces due to the elasticity, the friction, and the
potential. To investigate small forces, we determine the de-
formations of the string in the static situation for various
geometries and use these results to compute the dynamics.
At large forces, we make use of the dynamical approach in fig. 1. Elastic string z(x) in the pinning potential
order to study the strongly driven string. A numerical analy-v/(z)=y [1—cos(2rzd)]. The x axis lies in a potential valley,
sis finally solves the problem in the intermediate regime. whereas the axis threads the potential hills perpendicularly . The
Our analysis yields both a sharp drop in the velocity atmean angles between the string and the axes is fixed through
small angles pointing to the trapping of the elastic string inperiodic boundary conditionsu and v denote theslope of the
the potential wells and the velocity-force characteristic ovesstring in the valleys and on the hills, respectively.
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J with respect to the potential is determined through
the boundary conditionz(x+Ax)=z(x)+d with Ax
=d/tand. The shape of the string is determined by the com-
petition between its elasticity and the energy gain in the po-
tential. We then have to minimize the energy functional

f[z|]=f dxy1+z/*° 1—cos<?)

where \/1+z/ %dx gives the length of a line elemeds and
the prime denotes the derivative with respeckid/ariation
of this functional with respect to the functiay(x) furnishes
the equation determining the shape of the string,

8|+U|

], @

FIG. 2. Average transverse string velocity vs applied driving z/ 27z
force F. The different lines correspond to increasing potential _W)T/z gtv|l-co a
strengthv, /¢;=0.001, 0.01, 0.03, 0.05, 0.1, and 1 at an angle
9=5°. The dashed line indicates the linait—o°. 1 27 [2wz
IIl. MODEL T arzH™Y d oM T ) )

We consider a string with elasticiey in a potential of the  Multiplying Eq. (2) by z/ and integrating yields
form V(z) =v,[1—cos(2rz/d)] with d the period and), the
strength of the potential. We choose a coordinate system d ( 1 21z,
1—cos<—) ] =0, 3
d
nd integrating Eq{(3) once more[we make use of the

where the string comes to lie in thez plane with a shape —| —
given by the functiorg,(x). The mean anglé of the string dx Vitz :

oundary conditionsz;(0)=d/2 and dz,/9x|,_,=v] pro-
duces the relation

8|+U|

with respect to the potential is fixed through the boundary.
conditions; see Fig. 1. The string is driven by a transvers
force F (F is locally orthogonal to the string and has the
constant magnitud€) and its motion is impeded by the

frlct|9n forceF,=—nv, wher_e 7, is the friction coefﬂ.ment - 12 20, [z
andv denotes the local velocity orthogonal to the string. Our V1ltz/°= 1120 7ol 1+—sir? < 4
model describes an idealized vortex line with constant line vite i

tensiong, in a layered superconductor. The potentidlz)  The slopeu of the string in a potential valley is then deter-
then corresponds to the intrinsic pinning potential due to thenined through the equation

layered structure witld denoting the distance between lay-

ers. The constant transverse fofe€orresponds to the Lor- 14 12

entz forceF, = (dy/c)j/\n, wheren is the unit vector along 1+ pl=—r—r——. (5)
the vortex®,=hc/2e~2x 107 Gcnt is the flux quantum, (1+2v /e

andj denotes an external applied current density. The fricsincey has to be larger than zero, the range-ds restricted
tion coefficient 7, is given by the Bardeen-Stephen tyrough the condition

expressiotf 5= ®?/2mwc?p, &2, with p,, the normal-state re-

sistivity of the material and the coherence length. The vl v,

mean angle¥ between the vortex line and the layers is fixed =2 \/:\/ 1+ —, (6)
in a nontrivial way through the external magnetic fie¢id &l &l

see Ref. 11. where the limit u=0, 1+ 1?=(1+2v,/¢)? describes a

The investigation of driven vortex lines in layered super-
conductors is supposed to explain a number of interestin
phenomena. In order to establish dissipation-free curren
flow, the vortex lines have to be pinned such thatO in
spite of F_ #0. Therefore, the possibility of intrinsic pinning

string with only one kink, in the following referred to
+

The integration of Eq(4) determines the shape of the
string in the potential through

and the trapping of vortices in the potential wells has re- : 2 12
cently attracted a great deal of attentioff. Experimentally,  y(z)= fz' d7 (1+?) 1+2(v, /sl)s'nz(”Z/d)) _ 1} _
these features can be investigated by performing resistive dr2 1+2(v,/e))

measurements at small misalignments of magnetic field with (7

respect to the layers. Precise angular measurements of t .
linear resistivity have been carried out by Kwekal® for 1he refation between the slopeand the mean anglé of

YBa,Cw,0;_ 5 (YBCO) single crystals and by lyet al* for the string with respect to the potential is determined through
thin films of Bi,SrL,CaCW,0s (BISCCO. the boundary condition

ll. STATIC SOLUTION _
tand= X(—di2)”

®
In a first attack we consider a strirggyx) with elasticity
g, in the potentiaV(z) =v,[1— cos(27Z/d)]. The mean angle In thesmall-angle limit3=0" we find the following results:
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) d \Ffwzﬂd dt
X(z)=5=-\/—
V27 Vo sinty1+ (o)fe)sirt
d \/8\|| mZ U|<1
27 Vg, M@ 2a) | 5 =h =
= (9) =

d €| t(’7TZ|) 4]
—-——cof —|, —>1,
2 U]

or, after inversion, the line shagx) reads

2d v X U]
—arctanexp 27 \/—=||, —<1,
T g d £
z)(x)= d (10 FIG. 3. Static string configurations at different angles
9 arccot —2220 %) Yag 9=10°,20°,30°, and 40° foo, /e =0.1.
T gd)’ g
Equation (10) gives the horizontal extension of the kink x(z) 1+20'/8'F' dz
X(z))= -
through the length scale ! v a2l + (2v)/e))sinf(wz/d)
d\/1+21)|/8| mZ o
g v = ————— {arctany1+2v,/gitan —| |— 5 -
di/=— Z“<1 TV d 2
U|' €| !
L~y ’ 11 (15
dv—', 8—'>1. Using the boundary condition(0)= —d/2tand and invert-
(]

ing, we determine the line shape as

In addition we obtain the kink energy d 1 tand o
Z(X)= p arcta mta d X+ 5

Eink= J
- (tany>1,— d/tand<x<0). (16)

where z,(x) denotes the shape of the string in the limit In the limit v,/e,<1, Eq. (16) reduces to a straight line
9=07. The integration in Eq(12) can most easily be per- z(x)=xtand+d/2. An estimate for the crossover angle
formed with the help of Eg.(4) in the limit 9, separating the domain where the string is kinked from
1+v%=(1+2v,/g))? and by carrying out the substitution that where it remains straight, can most simply be obtained
z=mz(x)/d,dz=[ 7z (x)/d]dx with z(—=)=0 and from Eq.(11):

z()=d. With a few algebraic manipulations we arrive at

T
s|+20|sin27|

\/l+Z|, _8|

dx, (12

d V| V|
arctan — | =arctal —, —<1,
1 . Ly €| g 17)
5kink=_ \/U|8|+(8|+U|)arCSiH— k™
& V1te /v, arctar{? , ?>1.
[ [

4d v vi\] v . . —
?\/v|s| 1- §+O 2] | 8—<1, A few line shapes at different anglésare shown in Fig. 3.

[ | [

(13
g £ v, IV. DRIVEN SOLUTION
dv| 1+U—I+O UW?) y 8_|>1
|

Consider the motion of an elastic string in the potential
V(2) resulting from the transverse driving foréeand the

Th lts(11 13) f Il rati <1 | . L ~ .
e results(11) and (13) for small ratiosu, /e, can aso ounteracting friction forc&, = — »,v. Our goal is to deter-

be obtained from a dimensional comparison of the tilt energf

with the potential energy, mine the mobilitya defined through the equation
2 U= aF, (18)
d €
Eﬁ,t%s,L—wv,Lkapm = Ly~d U—' wherev , is the average transverse string velocity.
k [

To derive a differential equation for this situation, we let
the string move with constant velocity in the x direction,
Ekmﬁdm. (14 assuming its shape to be preserved during motion, i.e.,
z(x,t)=z(x—vt). The equation of motion is found by bal-
Second, we investigate thkarge-angle domaind=</2.  ancing the driving force against the sum of friction, elastic,
Here, we can expand E¢?) for large v and find and potential forces acting on the line elemdst
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F=mvn)— o (19 = I
=q(v-n)——. =—| = dX——>7 23
7 L 5ZI v 7 d A2 (1+262)1/2 ( )
Here, Note that only the static solution contributes to the velocity
v; i.e., the parameters and » do not appear in the shape
1 z/ Zo(x) of the line. Equation23) is our solvability condition
n .= /—1+z|’2 -1 for steady motion and is exact to linear order in the velocity

v. If we directly integrate Eq(20) over a period of the

is a vector of unit length perpendicular to the line elementstring, we obtain the same expression for the velogigx-
dsin the direction ofF, v=(v,0), and thevariational deriva-  cept that we have to replace the static solutigfx) by the

tive of the functional(1) gives the forces orthogonal to the unknown driven solutiorz;(x). Alternatively, the solvability
line due to the elasticity and the potential. Multiplying Eq. condition can be obtained from a comparison between the
(19 by z/, we obtain an equation analogous to E8), dissipated power and the power fed into the string through
which additionally accounts for the driving and friction the driving forceF, i.e.,

forces,
Ax/2 Ax/2
f ds[#z(v-n)](v-n,)= dsF(v-n,). (24)
d ( 1 [ old cos(zwzl) ]) —Ax/2 —AxI2
dx| Aoz &rTU T d o
dx 1+z 2 d The driving forceF does not depend on the shape of the
string. On the contrary the friction force depends on the local
z|’2 velocity and is large for segments orthogonal to the potential
=MV Fz. (20) but small in the opposite case. The different behavior of the

1+z friction and driving forces will give rise to a large-angle
In the following, we first derive some analytical results for @homaly to be discussed in Sec. IVB below.

the differential equatior20) in the limit of small and large ~ In the following we are mainly interested in the response
driving forcesF and then solve it numerically in a second @=v. /F=vsind/F normal to the string. For a small poten-
step. tial v,/e,<<1 and for large angles) the string is almost

straight providing us with the approximation

A. Linear response toF <(2#/d)v,

1
Let us first consider a small driving forde. We then Zo(X)~xtany = a=ao=1 (29

follow an approach introduced by Gorkov and Kophif® o . )
(see also Dorseéy) to obtain a solvability condition. The I-€., the motion is not disturbed by the potentiéz). The

solutionz,(x) will be close to the static solutiozy(x) with other extremg i's realized for the Ia_rge—po_tential or for the
the velocityy being the small parameter in our analysis. WeSmall-angle limit, where only the kinks with steep slopes
consider perturbations from the static solution by expandingo contribute to the integral. In this case we obtain

the function z(x) in powers of the velocity v, '

2/(X)=2o(X) +21(X). zo(X) then solves the equilibrium fAX/Z q Z" dx7—d

equation(3) andz;(x) gives the correction of order due to Ax2 X\/1+—262_ Kink X%=

the driving force, with theD(v) equation taking the form

F .
d z; 21z, =v=—, a=agsind
d_X(_<1+z(32>3’2 el 1_005( d H ! !
U V|
v(27/d)sin(27zq/d) z{? 19<arctan8—|, 8—|>1), (26)

7 Fzg.

(1+Z(’)2)1/2 :WIU(1+262)1/2_

where the angular domain is restricted by the conditibr)
(21)  derived in the static situation. For the general case we ex-

In the next step, we integrate E@1) over a periodAx of Eressz(’, in termsgfzo by using Eq(4). With the substitution
the string. In doing so, we impose the boundary conditionZ=7Zo(X)/d , d z=[7z5(x)/d]dx, we arrive at the result
z;(— Ax/2)=z;(Ax/2) and make use of the periodic bound-

ary conditions forzg(x). The left-hand side of Eq21) be- a=ag———
comes zero, leaving only the integral over the friction and (v ley,v)’
driving forces,

sind

2 J<U| ) ZIW/2d~\/1 1 / 1+21)|/8|
Ax/2 2z V| == z - 2 o~ |
OZJ dx 7]|U+1/2—F26 . (22 € m™Jo 1+v \1+2(v|/8|)SIn22
—AX/2 (1+ZO ) (27)
Performing the integration of the second term with the helpwvhere v is related tod via Eq. (8). In Fig. 4 we show the

of the boundary values fog,(x), we finally obtain the renormalization factod(v,/e|,v) as a function of the angle
steady-state velocity J. We recognize two characteristic domains, one at large
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1.0 1.0 I l ' !
% v/e = 1 Jov./€)
2
S 0.5 - -
g e = 0.1 0.5
2
~
A u/e, = 0.01
0.0l l I
0 30 60 90 0.0 | I ' .
U (deg) 0.0 v/ €, 10.0

FIG. 4. J(v /e, v(9)) as a function of the anglé. J is roughly FIG. 5. J, as a function of the ratio, /e, . Forv,/e,>1, Jg is
equal to sirf at large angles and becomes constant at small angleg; oyqer unity.

The dashed line indicates sin

Figure 6 shows the scaled mobility/ «y. We observe a
sharp drop in the mobility for small anglés particularly for
small ratiosv,/e;<1. This drop is well described by the
renormalization factody(v,/g,)/sind as already pointed out

v, 4\/% w2 sinz v - above. Figure 6 shows further an unexpected effect of our
Jo<—) = —f dz ——1\/ 1+ —sirfz; model at large angles. We observe a string moving faster

el T Jo 1+2(v)/e))sir’z &l in the presence of the potential than in the undisturbed case,

(28) leading to a mobilitya> ay. We postpone a discussion of

see Fig. 5. The mobility: is thus given through the approxi- this large-angle anomaly to the following subsection.
mations

angles wherd is roughly equal to sift and another domain
at small angles wherd(v,/e,,v)=Jg(v,/g|) is constant,
most easily determined in the limi=0",

( B. Dynamic approach,F>(2#/d)v,
a ﬂ d<=arcsiily(v, /¢,), We proceed with a study of large driving forcéswhere
—~{ Jo(vi/e)) the potential leads to merely small perturbations away from
%o 1, 9>9,, the free motion. While the static solution determined the
shape in the linear response, the string is now well described
) by a straight line. Accordingly, we start from the free motion
(o vl . v and consider the potential as a small perturbation in our
N 1+ o sind, 0<8_|<11 G<y, analysis. An adequate way is to follow a dynamical approach
~ vifei similar to the one used by Koshelev and Vinokun a first
0.2399 v step, we rotate the coordinate system of Ek) such that
k 1+ Jorle, sind, 8_|>1’ I<d, the string is parallel to the new axis; see Fig. 7. Second,

we allow for an arbitrary time-dependent string shape
(29 Z,(X,t). The friction forceF , is given by
where we introduced the trapping angle separating the
two angular domains. Folt <1, the string is trapped in the
potential valleys andr decreases a# for 9—0, whereas 1.0
for 9> 9, the potential does not affect the motion. In com-
parison with the earlier discussion of E@3) we conclude
that for 9 =<, the motion is well described by the motion of
kinks and 13, gives only a correction factor of order unity to
this finding. In the limit of small ratio®,/e,<1, the trap-
ping angled, is of the same order as the crossover angle
I In the limit of large ratio| /¢/>1, however, the trap-
ping happens at angles smaller than the crossover angle
J. An expansion for the corresponding limits yields the [ L
following dependences: 0 30 60 90

1 (deg)
U U|
U~ \/: ~U, —<1,
€| €|

- 14 ———
9,=——0.69 ~| he=———, 8—I>l. (30

— sind/J(v/¢, ,v)
SO0 sind /T v,/¢€,)

FIG. 6. The mobilitya as a function of the anglé for the
ratiosv,/e,=0.01, 0.1, 1, and 10. The drop in the mobility becomes
sharper for decreasing ratios /e, and is well described by
sindJy(v, /) at small anglesd<,. The large-angle anomaly
(a>ay) is investigated within the dynamic approach.
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z In the following, we denote the right-hand side of E§4)

by Fin(U(X,t),X,1). In order to solve Eq(34), we introduce
the elastic Greens function

0% ~ dw dk ei(k;_‘"t) e(_ﬂ|/48|t);2
X G(X’t):Jﬂf (35)

27 oy —Ke Vame it

A%

el

T for the free problem

PG aG_5~5t
8l T Mg (x)6(t).

The deformatioru(x,t) is then given by

FIG. 7. Coordinate system used in the dynamic approach. The U(’)Z,t):J' dXdSC{;—X,t—S)Fpin(u(X,S),X,S). (36)
X axis is aligned with the string.

To first order in the potential, we insert=0 in

o dz(X,t) Fpin(u(x,8),x,s) and determine the small corrections
Fo=- : (B uM(X,t) to the shape of the string,
=2 &t
Vi+z
~ F e
The free energyF takes the form uP(x,t)=C F—cos(nz. r+ v—lsinz‘}tanﬂsin(nz~ r)},
c |

]—"=J dxV1+7Z/?%{e+v, [1—cogn,- )]}, (32

wheren, is the unit vector along the direction in the new

coordinate system,
sind 27 X d
2= andr=—-| _ |. C=——

d\7zZ

27 .
n, r= F(xsmﬁ—vltcosﬂ),

2
+

g 21-1
v—sinﬁtanﬂ } . (37
|

- cosy

Upon rotation and making use of the friction for31) and  The motion is given by the trivial time dependence
the free energy32), the differential equatiori19) takes the z,(x,t)=—uv, t+u(X,t) describing a string moving with
form the constant velocity =v, /sind in the x direction. The
time dependence af(X,t) is thus periodic with the period

n 12\ n
gz/—nz(1+z'%)=v|| —z/[1—cogn, r)]+ q (cosy T determined by

T = H d d
_ZISInﬁ)(1+Z|2)S|mnz'r) Tvcosy=——F = T= .
sind v, cosd
+F(1+7/?%)%, (83)  Correctionsév, to the velocityv, =F/, are generated by

where the primes and the overdots denote derivatives witkhe forceF,i;(u(x,t),x,t) acting on the string. Since we are
respect to X and t, respectively. Using the ansatz interested in the mean velocity, , we have to calculate the

7,(X,t) = —v, t+u(X.t) with v, =F/7, and expanding up 2 rage value of the pinning forég,,

to order F./F [it turns out thatu,u’,u”~O(F./F) and o sing [ d/sing o
u~0(1), Fc=27v,/d denoting the critical force associated  (Fpin(U(X,t),X,t))= Tf Fpin(U(X,t),x,0)d .
with the potentia), we obtain 0

Note that the periodic time dependencergf, drops out by
this averaging. The correctiosv, to the velocityv, is
given by

2 ) 2
—CcosY

g U’ — qu=u| —u"[1—cogn, r)]+u d

2 ) )
xXcogn, r)+ F(cosﬁ—u smﬁ)sn"l(nz-r)} 7 6vi=(Fpm(u(l)(;,t),§,t)>.

1_, Performing the averaging, we finally arrive at
+§FU ,
Sv, siPd—2cogd[[F\? (g . 2171
2m P + v—lsmﬁtanﬁ
r=— i — i c
n,-r d (xsind—uv, tcosy). (39 (39)
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1.01 I I

1.00

o/

0.99

0.98

60 90
Y (deg)

FIG. 8. The mobilitya/ aq as a function of the anglé. Scaling
the driving forceF with the critical forceF.=2v,/d renders the
mobility at 9=0° independent of, . The dashed lines indicate the
numerical results. For large ratiag/e,, the dynamic approach
overestimates the large-angle anomaly.

FIG. 9. Deformations of a string with increasing driving force
F/F.=0.01,0.1,0.5, 1, 2,5, and 10. FBr<F the string keeps its
shape while being pushed against the potential wallg: AfF . the
string rapidly becomes straight.

With straight one at angle®>54.7°. Since the angular depen-
Sv dence of the mobility is determined through the dissipated
—LOCU|2005219|G(k=2775ih19/d,w=vj_kcot1f})|2, power_(the power fed into the §tring through the driving
Vi force is independent on the string shapthe large-angle

the correctiondu, is mainly determined through the compe- @nomaly occurs due to the fact that a class of bent strings
tition between the pinning potential and the intrinsic proper-dissipates less energy than straight ones. In the Appendix we

ties of the string as expressed through its Greens functiorfStimate the magnitude of this anomaly with a simple varia-
The prefactor sih9—2cog9 consists of a negative term tional ansatz. We find that the anomaly can occur at angles
due to the potential force in theZ direction 9=38.2° and can reach its largest value at an angle

[«v,codcosh, -r)] and a positive term arising from the ¥~ 68.57 wherea/a,=1.055.
nonlinear contribution3F(u’?). The potential force in the

X direction[ «<v,sindsin(n,-r)] cancels with the force aris-
ing from the curvature of the string in the presence of the We have solved the differential equatit®) numerically
potential(<v,[ 1—cosf,-r)]). We further recognize that the by a shooting method as described in Ref. 18. We are then
friction coefficient 5, does not appear in E¢38). The cor- able to investigate the deformations of the string in the dy-
rection dv, is only important ford=~0 and becomes negli- namic situation and to find the dependence of the velocity
gible for increasing angles}. This feature is particularly over the full range of applied driving forcds for different

C. Numerical analysis

pronounced for small ratios, /¢;<<1; see Fig. 8. ratiosv/e,. We measure the driving forde in units of the
Investigating Eq(38), we find a positive correctiodv | critical force F.=2mv,/d. The velocityv, is measured in

for units of the velocityv, describing the motion of a string

driven byF. at an angle}=90°, and thug .;=F./%,; sum-
sif9>2codd = 9>arctan/2=54.7°, marizing,

confirming the large-angle anomaly found in linear response F dE v, mqusind F  «

(smallv). The positive correction te, occurs due to the E. " 2w an . F EFaE- (40)

fact that the nonlinearities in the friction and the driving ¢ ! ¢ ¢ "ot

force do not cancel each other with the nonlingaru) term The deformations of the string with increasing driving

3F(u’?) remaining in the pinning force. forcesF are shown in Fig. 9. We observe a smooth crossover

Alternatively, Eq.(38) is obtained by transforming the from the static solution derived in Sec. lll to a straight line

Le., smaller thanF;, the string approximatly keeps its shape as
_ 1 given through the static solution. The only effect of the ap-
@ ) dizsing (sind+ z'cosd)? - plied forceF is to push the string segments parallel to the
— =dsind dx ; ; i i
ag _ dising \/1+'Z’2 X axis against the potential wells. In the linear response of

Sec. IVA we pointed out that the solvability conditi¢23) is
2c02 9 — St [di2sing _ rendered exact by replacing the static through the driven so-
~1— Wf ' z'2dx, z'<1, lution. Sincez(x) does not much differ from the static so-
- dizsing lution zo(X) as long aF<F ., we expect a good accuracy of
(39 our linear response findings up to driving forces matching
- —_— the potential forces.
and by insertingu®(x,t) for Z(x). Equation(39) shows Figures 2 and 10 show the dependence of the average
that a slightly bent string ¥’ #0) moves faster than a velocity v, on the applied driving force= for different
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v,/€,=0.1

1.0

v/,

0.0 :
0.0 1.0 2.0

F/F,

FIG. 10. Force-velocity characteristic at different angles FIG. 11. Comparison of driven string (F.=0.002, 0.6, and
9=2°,5°,10°, and 20° for the ratio, /e;=0.1. The dashed line 5 With our variational result(dashed ling for u=tand; and
indicates the limit9=0°. v—. The string leading to the largest anomly has a shape roughly

given through our variational result. Note that we shifegg(x) in

anglesd and for different potential strength /¢,. We ob-  thez direction due to the finite driving force.

serve two Ohmic regimes for forcds smaller and much

larger than the critical forcE.. The mobility at small forces result of the dynamic approach a#=0°. The limit
F<F. is well determined through Eq27) of our linear v,/e—< at finite anglesd is more difficult to investigate.
response, as we have already noted in the discussion of tlfes long asF<F. the string has the shape of a staircase
previous figure. AF =F_ the string is able to move over the leading to a purely kink motion, i.e.a/ag=sind. For
potential barriers leading to a rapidly growing velocity andF=F_. we interpolate between the result of the dynamic ap-
hence to a larger mobility. In the limit &> F_ the potential proach and Eq(44) to obtain

has almost no effect on the mobility and we find the simple

expressione=F/#,. For both increasing angle$ and de-

creasing ratios;/e;, we establish a crossover from the U—LZ\/(F/FC)Z—COSZ& vile;—w, F=F,, (45
kinked solution(large perturbation due to the potentiab Ue

the undisturbed solution, where the force-velocity character-

istic is Ohmic for all applied forces. in good agreement with our numerical results.

In the limit 9=0°, the string is trapped foF<F..
Larger forces give rise to a steady motion determined

through the equation V. CONCLUSION

We have presented a model of a driven, elastic string in a
(41) periodic potential and have determined both the force-
velocity characteristic and the angular dependence of the mo-
bility over the entire range of applied driving forces. In the
limit of small potentialy|<¢,, the string motion is affected
only within the small-angle regim&}<\v,/g|, where a
sharp drop in the mobility is observed. Large potentials
v,> ¢ deform the string to produce a staircase shape leading
1z dz “2 to a kink motion described by the mobility= a¢sind. In-
t(Z):——f : , 42 creasing the driving force leads to a crossover from the
veJo FIFctsin2mz/d) pinning-inhibited motion to the free motion at the depinning
where we imposed the boundary conditiptt=0)=0. The  force F.. An unexpected effect appears in the large-angle
time for moving over one period of the potentia| is then"mit, where the string can move faster than in the free situ-
given by ation.
A comparison of our findings with the experimental data
d 3 of driven vortex lines in layered superconductorsisshows a
T=t(—d/2)—t(d/2) = —F—————. 43 qualitative agreement with the findings of Kwek al.*> and
veV(FIF)®~1 lye et al,'* who observed a trapping of the vortex lines be-
The mean velocity , in units of v, is finally determined by ~tween the layers. Their results, however, exhibit a smoother
behavior around vortex trapping. Including thermal fluctua-
v d tions, the interaction between neighboring vortices, and the
U_i: o~ V(FIF)“=1, 9=0°, F=F.. (44 internal structure of a vortex linégiving rise to an angle-
¢ ¢ dependent friction coefficient and line tensiahould lead to
This result was also obtained by Aslamazov and Ldtkin  the desired improvements of our results. The appearence of
their study of superconducting point contacts. If we expandhe large-angle anomaly in the vortex mobilifyelocity
Eq. (44 to first order inF./F, F>F., we find again the overshooting has to be checked in further experiments.

(92| __F 2w . 2’7TZ|
7 &_t = V)| Tsm _d
Note thatz(x,t) is a constant function o, and therefore
Eqg. (41) describes the motion of a particle with zero mass
and friction coefficient #  in the potential
Fz+v,[1—cos(2rZ/d)]. Integrating Eq(41), we arrive at
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sorts of computational problems. u=V\5-1/\/2 independent ofd, whereas at smaller
angles the straight line yields the smallest valiét the

angle 9= d9,=arctan(y \/§+ 1\/§)~68.5°, the mobility
We determine the magnitude of the anomaly with areaches its largest value given throughay~1.055. The

simple variational ansatz, (x) for the solvability condition ~mobility determined for a string at an angte is thus re-

(23), wherez,,(x) describes a string consisting of straight Stricted through the extremal values

pieces withu,v denoting the slope in the valleys and on the

hills, respectively(see the dashed line in Fig. 11

APPENDIX: MAGNITUDE OF THE ANOMALY

Evaluating the integral in the solvability conditiq@3), (1, 0=,
we arrive at sing
) (&4 l ,82 ,811
a7, — ()] max= 3 1 [5y5-11 (A2)
I(u,v)= === dx ag 1—
—d2tand\1+27,,, tand 2
B d " ,LLZ V_tanﬂ_'— VZ tanﬂ_M \ 1055, 19: 192.
tanﬂ[,/1+p¢2 v—u 1+ v—pu _ o . _
In Fig. 11 we compare our variational result with a string
(p<tand=v). (A1) producing a large anomaly.
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