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Deformations and dynamics of an elastic string in a periodic potential
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We study the dissipative dynamics of a driven elastic string subject to a periodic potential. The deformations
of the elastic string are determined in the static and dynamic situations for various geometries. We find the
average velocity of the string, particularly the dependence of the velocity on the mean angleq between the
string and the potential. Our theoretical analysis produces both a sharp drop in the average velocity at small
angles due to the trapping of the elastic string in the potential and a crossover from free motion to a pinning-
inhibited motion at the critical driving force.@S0163-1829~97!05525-2#
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I. INTRODUCTION

Recent interest has concentrated on dynamical aspec
driven elastic manifolds subject to a pinning potential. Bo
periodic1 and random2,3 potentials have been studied in va
ous contexts. Typical questions addressed are the rela
between the average velocity and the underlying driv
force,3 the critical behavior at depinning,2 the dynamical re-
establishing of order,4–6etc. In this paper we present a mod
study of one of the simplest problems in this conte
namely, the dissipative motion of a driven elastic string s
ject to a periodic~washboard! potential. Besides its educa
tional character, this problem is relevant for the understa
ing of vortices in layered high-Tc superconductors. The
problem has been addressed before by Bu¨ttiker and
Landauer,1 who calculated the energy for kink-antikink pro
duction and determined the activated dynamics through
solution of the Fokker-Planck equation. Recently, Koshe
and Vinokur7 have determined the corrections to the Ohm
resistivity at large driving force, making use of the dynam
cal approach.8,9

Here, we consider the flow of an elastic string in a pe
odic ~washboard! potential subject to a constant transver
driving forceF. The mean angleq between the string and
the potential is fixed through the boundary conditions;
Fig. 1. The basic task consists in solving the partial differ
tial equation describing the balance between the driv
force and forces due to the elasticity, the friction, and
potential. To investigate small forces, we determine the
formations of the string in the static situation for vario
geometries and use these results to compute the dynam
At large forces, we make use of the dynamical approach
order to study the strongly driven string. A numerical ana
sis finally solves the problem in the intermediate regime.

Our analysis yields both a sharp drop in the velocity
small angles pointing to the trapping of the elastic string
the potential wells and the velocity-force characteristic o
560163-1829/97/56~1!/416~9!/$10.00
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the entire range of applied driving forces, where the line
regimes at small and large driving forces are connec
through a nonlinear crossover at forces close to the de
ning forceFc ; see Fig. 2.

In Sec. II, we present our model of the elastic string in t
periodic ~washboard! potential. The static solution to thi
model is determined in Sec. III. In Sec. IV we introduce t
partial differential equation describing the driven string. Th
equation is solved analytically for small and large drivin
forcesF in comparison with the critical forceFc due to the
potential. A numerical evaluation finally determines the d
formations of the elastic string and the average velocity
all driving forcesF.

FIG. 1. Elastic string zl(x) in the pinning potential
V(z)5v l@12cos(2pz/d)#. The x axis lies in a potential valley,
whereas thez axis threads the potential hills perpendicularly . T
mean angleq between the string and thex axes is fixed through
periodic boundary conditions.m and n denote theslope of the
string in the valleys and on the hills, respectively.
416 © 1997 The American Physical Society
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56 417DEFORMATIONS AND DYNAMICS OF AN ELASTIC . . .
II. MODEL

We consider a string with elasticity« l in a potential of the
form V(z)5v l@12cos(2pz/d)# with d the period andv l the
strength of the potential. We choose a coordinate sys
where the string comes to lie in thexz plane with a shape
given by the functionzl(x). The mean angleq of the string
with respect to the potential is fixed through the bound
conditions; see Fig. 1. The string is driven by a transve
force F (F is locally orthogonal to the string and has th
constant magnitudeF) and its motion is impeded by th
friction forceFh52h l v̂, whereh l is the friction coefficient
andv̂ denotes the local velocity orthogonal to the string. O
model describes an idealized vortex line with constant l
tension« l in a layered superconductor. The potentialV(z)
then corresponds to the intrinsic pinning potential due to
layered structure withd denoting the distance between la
ers. The constant transverse forceF corresponds to the Lor
entz forceFL5(F0 /c) j`n, wheren is the unit vector along
the vortex,F05hc/2e'231027 Gcm2 is the flux quantum,
and j denotes an external applied current density. The f
tion coefficient h l is given by the Bardeen-Stephe
expression10 h l5F2/2pc2rnj

2, with rn the normal-state re
sistivity of the material andj the coherence length. Th
mean angleq between the vortex line and the layers is fix
in a nontrivial way through the external magnetic fieldH;
see Ref. 11.

The investigation of driven vortex lines in layered sup
conductors is supposed to explain a number of interes
phenomena. In order to establish dissipation-free cur
flow, the vortex lines have to be pinned such thatv50 in
spite ofFLÞ0. Therefore, the possibility of intrinsic pinnin
and the trapping of vortices in the potential wells has
cently attracted a great deal of attention.7,12 Experimentally,
these features can be investigated by performing resis
measurements at small misalignments of magnetic field w
respect to the layers. Precise angular measurements o
linear resistivity have been carried out by Kwoket al.13 for
YBa2Cu3O72d ~YBCO! single crystals and by Iyeet al.14 for
thin films of Bi2Sr2Ca7Cu2O8 ~BiSCCO!.

III. STATIC SOLUTION

In a first attack we consider a stringzl(x) with elasticity
« l in the potentialV(z)5v l@12cos(2pz/d)#. The mean angle

FIG. 2. Average transverse string velocityv' vs applied driving
force F. The different lines correspond to increasing poten
strengthv l /« l50.001, 0.01, 0.03, 0.05, 0.1, and 1 at an an
q55°. The dashed line indicates the limitv l→`.
m
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q with respect to the potential is determined throu
the boundary conditionzl(x1Dx)5zl(x)1d with Dx
5d/tanq. The shape of the string is determined by the co
petition between its elasticity and the energy gain in the
tential. We then have to minimize the energy functional

F@zl #5E dxA11zl8
2H « l1v lF12cosS 2pzl

d D G J , ~1!

whereA11zl8
2dx gives the length of a line elementds and

the prime denotes the derivative with respect tox. Variation
of this functional with respect to the functionzl(x) furnishes
the equation determining the shape of the string,

2
zl9

~11zl8
2!3/2

H « l1v lF12cosS 2pzl
d D G J

1
1

~11zl8
2!1/2

v l
2p

d
sinS 2pzl

d D50. ~2!

Multiplying Eq. ~2! by zl8 and integrating yields

d

dxS 1

A11zl8
2H « l1v lF12cosS 2pzl

d D G J D 50, ~3!

and integrating Eq.~3! once more@we make use of the
boundary conditionszl(0)5d/2 and ]zl /]xux50[n# pro-
duces the relation

A11zl8
25

A11n2

112v l /« l
F11

2v l
« l
sin2S pzl

d D G . ~4!

The slopem of the string in a potential valley is then dete
mined through the equation

11m25
11n2

~112v l /« l !
2 . ~5!

Sincem has to be larger than zero, the range ofn is restricted
through the condition

n>2Av l
« l
A11

v l
« l
, ~6!

where the limit m50, 11n25(112v l /« l)
2 describes a

string with only one kink, in the following referred to
q501.

The integration of Eq.~4! determines the shape of th
string in the potential through

x~zl !5E
d/2

zl
dzF ~11n2!S 112~v l /« l !sin

2~pz/d!

112~v l /« l !
D 221G21/2

.

~7!

The relation between the slopen and the mean angleq of
the string with respect to the potential is determined throu
the boundary condition

tanq5
2d

x~2d/2!
. ~8!

In thesmall-angle limitq501 we find the following results:

l
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418 56ZISWILER, GESHKENBEIN, AND BLATTER
x~zl !5
d

2p
A« l

v l
E

p/2

pzl /d dt

sintA11 ~v l /« l !sin
2t

>H d

2p
A« l

v l
lnF tanS pzl

2d D G , v l
« l

!1,

2
d

2p

« l
v l

cotS pzl
d D , v l

« l
@1,

~9!

or, after inversion, the line shapezl(x) reads

zl~x!>H 2d

p
arctanS expF2pAv l

« l

x

dG D , v l
« l

!1,

d

p
arccotS 22p

v l
« l

x

dD , v l
« l

@1.

~10!

Equation ~10! gives the horizontal extension of the kin
through the length scale

Lk'H dA« l
v l
,
v l
« l

!1,

d
« l
v l
,
v l
« l

@1.

~11!

In addition we obtain the kink energy

Ekink5E
2`

` F S « l12v lsin
2
pzl
d DA11zl8

22« l Gdx, ~12!

where zl(x) denotes the shape of the string in the lim
q501. The integration in Eq.~12! can most easily be per
formed with the help of Eq. ~4! in the limit
11n25(112v l /« l)

2 and by carrying out the substitutio
z̃5pzl(x)/d,d z̃5@pzl8(x)/d#dx with zl(2`)50 and
zl(`)5d. With a few algebraic manipulations we arrive a

Ekink5
2d

p FAv l« l1~« l1v l !arcsin
1

A11« l /v l
G

>5
4d

p
Av l« l F12

v l
3« l

1OS v l2« l
2D G , v l

« l
!1,

dv l F11
« l
v l

1OS « l
3/2

v l
3/2D G , v l

« l
@1.

~13!

The results~11! and ~13! for small ratiosv l /« l!1 can also
be obtained from a dimensional comparison of the tilt ene
with the potential energy,

Etilt'« l
d2

Lk
'v lLk'Epot ⇒ Lk'dA« l

v l
,

Ekink'dAv l« l . ~14!

Second, we investigate thelarge-angle domainq&p/2.
Here, we can expand Eq.~7! for largen and find
y

x~zl !>
112v l /« l

n E
d/2

zl dz

11~2v l /« l !sin
2~pz/d!

5
dA112v l /« l

pn H arctanFA112v l /« l tanS pzl
d D G2

p

2 J .
~15!

Using the boundary conditionx(0)52d/2tanq and invert-
ing, we determine the line shape as

zl~x!>
d

p
arctanF 1

A112v l /« l
tanS ptanq

d
x1

p

2 D G
~ tanq@1,2d/tanq,x,0!. ~16!

In the limit v l /« l!1, Eq. ~16! reduces to a straight line
zl(x)5xtanq1d/2. An estimate for the crossover ang
qk , separating the domain where the string is kinked fro
that where it remains straight, can most simply be obtain
from Eq. ~11!:

qk'H arctanS dLkD5arctanSAv l
« l

D , v l
« l

!1,

arctanS v l« l
D , v l

« l
@1.

~17!

A few line shapes at different anglesq are shown in Fig. 3.

IV. DRIVEN SOLUTION

Consider the motion of an elastic string in the potent
V(z) resulting from the transverse driving forceF and the
counteracting friction forceFh52h l v̂. Our goal is to deter-
mine the mobilitya defined through the equation

v'5aF, ~18!

wherev' is the average transverse string velocity.
To derive a differential equation for this situation, we l

the string move with constant velocityv in the x direction,
assuming its shape to be preserved during motion,
zl(x,t)[zl(x2vt). The equation of motion is found by ba
ancing the driving force against the sum of friction, elast
and potential forces acting on the line elementds,

FIG. 3. Static string configurations at different angl
q510°,20°,30°, and 40° forv l /« l50.1.
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F5h l~v–n'!2
dF
dzl

. ~19!

Here,

n'5
1

A11zl8
2 S zl8

21D
is a vector of unit length perpendicular to the line elem
ds in the direction ofF, v5(v,0), and thevariational deriva-
tive of the functional~1! gives the forces orthogonal to th
line due to the elasticity and the potential. Multiplying E
~19! by zl8, we obtain an equation analogous to Eq.~3!,
which additionally accounts for the driving and frictio
forces,

d

dxS 1

A11zl8
2H « l1v lF12cosS 2pzl

d D G J D
5h lv

zl8
2

A11zl8
2

2Fzl8. ~20!

In the following, we first derive some analytical results f
the differential equation~20! in the limit of small and large
driving forcesF and then solve it numerically in a secon
step.

A. Linear response toF!„2p/d…v l

Let us first consider a small driving forceF. We then
follow an approach introduced by Gor’kov and Kopnin15,16

~see also Dorsey17! to obtain a solvability condition. The
solutionzl(x) will be close to the static solutionz0(x) with
the velocityv being the small parameter in our analysis. W
consider perturbations from the static solution by expand
the function zl(x) in powers of the velocity v,
zl(x)5z0(x)1z1(x). z0(x) then solves the equilibrium
equation~3! andz1(x) gives the correction of orderv due to
the driving force, with theO(v) equation taking the form

d

dxS 2
z08

~11z08
2!3/2

H « l1v lF12cosS 2pz0
d D G J z18

1
v l~2p/d!sin~2pz0 /d!

~11z08
2!1/2

z1D 5h lv
z08

2

~11z08
2!1/2

2Fz08 .

~21!

In the next step, we integrate Eq.~21! over a periodDx of
the string. In doing so, we impose the boundary condit
z18(2Dx/2)5z18(Dx/2) and make use of the periodic boun
ary conditions forz0(x). The left-hand side of Eq.~21! be-
comes zero, leaving only the integral over the friction a
driving forces,

05E
2Dx/2

Dx/2

dxH h lv
z08

2

~11z08
2!1/2

2Fz08J . ~22!

Performing the integration of the second term with the h
of the boundary values forz0(x), we finally obtain the
steady-state velocity
t

g

n

d

p

v5
F

h l
S 1dE2Dx/2

Dx/2

dx
z08

2

~11z08
2!1/2D 21

. ~23!

Note that only the static solution contributes to the veloc
v; i.e., the parametersF andh l do not appear in the shap
z0(x) of the line. Equation~23! is our solvability condition
for steady motion and is exact to linear order in the veloc
v. If we directly integrate Eq.~20! over a period of the
string, we obtain the same expression for the velocityv ex-
cept that we have to replace the static solutionz0(x) by the
unknown driven solutionzl(x). Alternatively, the solvability
condition can be obtained from a comparison between
dissipated power and the power fed into the string throu
the driving forceF, i.e.,

E
2Dx/2

Dx/2

ds @h l~v–n'!#~v–n'!5E
2Dx/2

Dx/2

dsF~v–n'!. ~24!

The driving forceF does not depend on the shape of t
string. On the contrary the friction force depends on the lo
velocity and is large for segments orthogonal to the poten
but small in the opposite case. The different behavior of
friction and driving forces will give rise to a large-ang
anomaly to be discussed in Sec. IVB below.

In the following we are mainly interested in the respon
a5v' /F[vsinq/F normal to the string. For a small poten
tial v l /« l!1 and for large anglesq the string is almost
straight providing us with the approximation

z0~x!'xtanq ⇒ a>a0[
1

h l
; ~25!

i.e., the motion is not disturbed by the potentialV(z). The
other extreme is realized for the large-potential or for t
small-angle limit, where only the kinks with steep slop
z08 contribute to the integral. In this case we obtain

E
2Dx/2

Dx/2

dx
z08

2

A11z08
2

>E
kink

dxz085d

⇒ v>
F

h l
, a>a0sinq

S q,arctan
v l
« l
,

v l
« l

@1D , ~26!

where the angular domain is restricted by the condition~17!
derived in the static situation. For the general case we
pressz08 in terms ofz0 by using Eq.~4!. With the substitution

z̃5pz0(x)/d , d z̃5@pz08(x)/d#dx, we arrive at the result

a5a0

sinq

J~v l /« l ,n!
,

JS v l« l
,n D5

2

pE0
p/2

d z̃A12
1

11n2S 112v l /« l
112~v l /« l !sin

2 z̃
D 2,
~27!

wheren is related toq via Eq. ~8!. In Fig. 4 we show the
renormalization factorJ(v l /« l ,n) as a function of the angle
q. We recognize two characteristic domains, one at la
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420 56ZISWILER, GESHKENBEIN, AND BLATTER
angles whereJ is roughly equal to sinq and another domain
at small angles whereJ(v l /« l ,n)[J0(v l /« l) is constant,
most easily determined in the limitq501,

J0S v l« l
D5

4Av l /« l
p E

0

p/2

d z̃
sinz̃

112~v l /« l !sin
2 z̃
A11

v l
« l
sin2 z̃ ;

~28!

see Fig. 5. The mobilitya is thus given through the approx
mations

a

a0
'5 sinq

J0~v l /« l !
, q,q t[arcsinJ0~v l /« l !,

1, q.q t ,

'5
p

4Av l /« l
F11

v l
« l

Gsinq, 0,
v l
« l

!1, q,q t ,

F11
0.2399

Av l /« l
Gsinq, v l

« l
@1, q,q t ,

~29!

where we introduced the trapping angleq t separating the
two angular domains. Forq,q t the string is trapped in the
potential valleys anda decreases asq for q→0, whereas
for q.q t the potential does not affect the motion. In com
parison with the earlier discussion of Eq.~23! we conclude
that forq&q t the motion is well described by the motion o
kinks and 1/J0 gives only a correction factor of order unity t
this finding. In the limit of small ratiosv l /« l!1, the trap-
ping angleq t is of the same order as the crossover an
qk . In the limit of large ratiosv l /« l@1, however, the trap-
ping happens at angles smaller than the crossover a
qk . An expansion for the corresponding limits yields t
following dependences:

q t;Av l
« l

;qk ,
v l
« l

!1,

q t>
p

2
20.69 S « l

v l
D 1/4, qk>

p

2
2

« l
v l
,
v l
« l

@1. ~30!

FIG. 4. J„v l /« l ,n(q)… as a function of the angleq. J is roughly
equal to sinq at large angles and becomes constant at small ang
The dashed line indicates sinq.
e

le

Figure 6 shows the scaled mobilitya/a0. We observe a
sharp drop in the mobility for small anglesq, particularly for
small ratiosv l /« l!1. This drop is well described by th
renormalization factorJ0(v l /« l)/sinq as already pointed ou
above. Figure 6 shows further an unexpected effect of
model at large anglesq. We observe a string moving faste
in the presence of the potential than in the undisturbed c
leading to a mobilitya.a0. We postpone a discussion o
this large-angle anomaly to the following subsection.

B. Dynamic approach,F@„2p/d…v l

We proceed with a study of large driving forcesF, where
the potential leads to merely small perturbations away fr
the free motion. While the static solution determined t
shape in the linear response, the string is now well descri
by a straight line. Accordingly, we start from the free motio
and consider the potential as a small perturbation in
analysis. An adequate way is to follow a dynamical approa
similar to the one used by Koshelev and Vinokur.7 In a first
step, we rotate the coordinate system of Eq.~19! such that
the string is parallel to the newx̃ axis; see Fig. 7. Second
we allow for an arbitrary time-dependent string sha
z̃ l( x̃ ,t). The friction forceFh is given by

s.
FIG. 5. J0 as a function of the ratiov l /« l . For v l /« l.1, J0 is

of order unity.

FIG. 6. The mobilitya as a function of the angleq for the
ratiosv l /« l50.01, 0.1, 1, and 10. The drop in the mobility becom
sharper for decreasing ratiosv l /« l and is well described by
sinq/J0(vl /«l) at small anglesq,q t . The large-angle anomaly
(a.a0) is investigated within the dynamic approach.
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Fh52
h l

A11 z̃ l8
2

] z̃ l~ x̃ ,t !

]t
. ~31!

The free energyF takes the form

F5E d x̃A11 z̃ l8
2$« l1v l @12cos~nz•r !#%, ~32!

wherenz is the unit vector along thez direction in the new
coordinate system,

nz5S sinqcosq D and r5
2p

d S x̃

z̃ l
D .

Upon rotation and making use of the friction force~31! and
the free energy~32!, the differential equation~19! takes the
form

« l z̃ l92h l ż̃ l~11 z̃82!5v lF2 z̃ l9@12cos~nz•r !#1
2p

d
~cosq

2 z̃ l8sinq!~11 z̃ l8
2!sin~nz•r !G

1F~11 z̃ l8
2!3/2, ~33!

where the primes and the overdots denote derivatives
respect to x̃ and t, respectively. Using the ansa
z̃ l( x̃ ,t)52v't1u( x̃ ,t) with v'[F/h l and expanding up
to order Fc /F @it turns out thatu,u8,u9;O(Fc /F) and
u̇;O(1), Fc[2pv l /d denoting the critical force associate
with the potential#, we obtain

« lu92h l u̇5v lF2u9@12cos~nz•r !#1uS 2p

d
cosq D 2

3cos~nz•r !1
2p

d
~cosq2u8sinq!sin~nz•r !G

1
1

2
Fu82,

nz•r5
2p

d
~ x̃sinq2v'tcosq!. ~34!

FIG. 7. Coordinate system used in the dynamic approach.

x̃ axis is aligned with the string.
th

In the following, we denote the right-hand side of Eq.~34!
by Fpin„u( x̃ ,t), x̃ ,t…. In order to solve Eq.~34!, we introduce
the elastic Greens function

G~ x̃ ,t !5E dv

2pE dk

2p

ei ~k x̃2vt !

ivh l2k2« l
5
e~2h l /4« l t ! x̃

2

A4p« lh l t
~35!

for the free problem

« l
]2G

] x̃2
2h l

]G

]t
5d~ x̃ !d~ t !.

The deformationu( x̃ ,t) is then given by

u~ x̃ ,t !5E dxdsG~ x̃2x,t2s!Fpin„u~x,s!,x,s…. ~36!

To first order in the potential, we insertu[0 in
Fpin„u(x,s),x,s… and determine the small correction
u(1)( x̃ ,t) to the shape of the string,

u~1!~ x̃ ,t !5CF FFc
cos~nz•r !1

« l
v l
sinqtanqsin~nz•r !G ,

nz•r5
2p

d
~ x̃sinq2v'tcosq!,

C52
d

2p F S FFc
D 21S « l

v l
sinqtanq D 2G21

. ~37!

The motion is given by the trivial time dependen
z̃ l( x̃ ,t)52v't1u( x̃ ,t) describing a string moving with
the constant velocityv5v' /sinq in the x direction. The
time dependence ofu( x̃ ,t) is thus periodic with the period
T determined by

Tvcosq5
d

sinq
⇒ T5

d

v'cosq
.

Correctionsdv' to the velocityv'5F/h l are generated by
the forceFpin„u( x̃ ,t), x̃ ,t… acting on the string. Since we ar
interested in the mean velocityv' , we have to calculate the
average value of the pinning forceFpin ,

^Fpin„u~ x̃ ,t !, x̃ ,t…&[
sinq

d E
0

d/sinq

Fpin„u~ x̃ ,t !, x̃ ,t…d x̃.

Note that the periodic time dependence ofFpin drops out by
this averaging. The correctiondv' to the velocity v' is
given by

h ldv'5^Fpin„u
~1!~ x̃ ,t !, x̃ ,t…&.

Performing the averaging, we finally arrive at

dv'

v'

5
sin2q22cos2q

4 F S FFc
D 21S « l

v l
sinqtanq D 2G21

.

~38!

e
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With

dv'

v'

}v l
2cos2quG~k52psinq/d,v5v'kcotq!u2,

the correctiondv' is mainly determined through the comp
tition between the pinning potential and the intrinsic prop
ties of the string as expressed through its Greens funct
The prefactor sin2q22cos2q consists of a negative term
due to the potential force in the z̃ direction
@}v lcos

2qcos(nz•r )# and a positive term arising from th
nonlinear contribution12F^u82&. The potential force in the
x̃ direction @}v lsinqsin(nz•r )# cancels with the force aris
ing from the curvature of the string in the presence of
potential„}v l@12cos(nz•r )#…. We further recognize that th
friction coefficienth l does not appear in Eq.~38!. The cor-
rectiondv' is only important forq'0 and becomes negli
gible for increasing anglesq. This feature is particularly
pronounced for small ratiosv l /« l!1; see Fig. 8.

Investigating Eq.~38!, we find a positive correctiondv'

for

sin2q.2cos2q ⇒ q.arctanA2554.7°,

confirming the large-angle anomaly found in linear respo
~small v). The positive correction tov' occurs due to the
fact that the nonlinearities in the friction and the drivin
force do not cancel each other with the nonlinear~in u) term
1
2F^u82& remaining in the pinning force.
Alternatively, Eq. ~38! is obtained by transforming th

solvability condition ~23! into our new coordinate system
i.e.,

a

a0
5dsinqS E

2d/2sinq

d/2sinq ~sinq1 z̃8cosq!2

A11 z̃82
d x̃D 21

'12
2cos2q2sin2q

2dsinq E
2d/2sinq

d/2sinq

z̃82d x̃, z̃8!1,

~39!

and by insertingu(1)( x̃ ,t) for z̃( x̃ ). Equation~39! shows
that a slightly bent string (z̃8Þ0) moves faster than a

FIG. 8. The mobilitya/a0 as a function of the angleq. Scaling
the driving forceF with the critical forceFc52pv l /d renders the
mobility atq50° independent ofv l . The dashed lines indicate th
numerical results. For large ratiosv l /« l , the dynamic approach
overestimates the large-angle anomaly.
-
n.

e

e

straight one at anglesq.54.7°. Since the angular depen
dence of the mobility is determined through the dissipa
power ~the power fed into the string through the drivin
force is independent on the string shape!, the large-angle
anomaly occurs due to the fact that a class of bent stri
dissipates less energy than straight ones. In the Appendix
estimate the magnitude of this anomaly with a simple va
tional ansatz. We find that the anomaly can occur at ang
q*38.2° and can reach its largest value at an an
q'68.5° wherea/a0&1.055.

C. Numerical analysis

We have solved the differential equation~19! numerically
by a shooting method as described in Ref. 18. We are t
able to investigate the deformations of the string in the
namic situation and to find the dependence of the velo
over the full range of applied driving forcesF for different
ratiosv l /« l . We measure the driving forceF in units of the
critical forceFc52pv l /d. The velocityv' is measured in
units of the velocityvc describing the motion of a string
driven byFc at an angleq590°, and thusvc5Fc /h l ; sum-
marizing,

F

Fc
5

dF

2pv l
and

v'

vc
5

h lvsinq
F

F

Fc
5

a

a0

F

Fc
. ~40!

The deformations of the string with increasing drivin
forcesF are shown in Fig. 9. We observe a smooth crosso
from the static solution derived in Sec. III to a straight lin
for applied forcesF@Fc . As long as the driving forceF is
smaller thanFc , the string approximatly keeps its shape
given through the static solution. The only effect of the a
plied forceF is to push the string segments parallel to t
x axis against the potential wells. In the linear response
Sec. IVA we pointed out that the solvability condition~23! is
rendered exact by replacing the static through the driven
lution. Sincezl(x) does not much differ from the static so
lution z0(x) as long asF<Fc , we expect a good accuracy o
our linear response findings up to driving forces match
the potential forces.

Figures 2 and 10 show the dependence of the ave
velocity v' on the applied driving forceF for different

FIG. 9. Deformations of a string with increasing driving forc
F/Fc50.01, 0.1, 0.5, 1, 2, 5, and 10. ForF<Fc the string keeps its
shape while being pushed against the potential walls. AtF@Fc the
string rapidly becomes straight.
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anglesq and for different potential strengthv l /« l . We ob-
serve two Ohmic regimes for forcesF smaller and much
larger than the critical forceFc . The mobility at small forces
F<Fc is well determined through Eq.~27! of our linear
response, as we have already noted in the discussion o
previous figure. AtF5Fc the string is able to move over th
potential barriers leading to a rapidly growing velocity a
hence to a larger mobility. In the limit ofF@Fc the potential
has almost no effect on the mobility and we find the sim
expressiona5F/h l . For both increasing anglesq and de-
creasing ratiosv l /« l , we establish a crossover from th
kinked solution~large perturbation due to the potential! to
the undisturbed solution, where the force-velocity charac
istic is Ohmic for all applied forcesF.

In the limit q50°, the string is trapped forF,Fc .
Larger forces give rise to a steady motion determin
through the equation

h l

]zl
]t

52F2v l
2p

d
sinS 2pzl

d D . ~41!

Note thatzl(x,t) is a constant function ofx, and therefore
Eq. ~41! describes the motion of a particle with zero ma
and friction coefficient h l in the potential
Fz1v l@12cos(2pz/d)#. Integrating Eq.~41!, we arrive at

t~z!52
1

vc
E
0

zl dz

F/Fc1sin~2pz/d!
, ~42!

where we imposed the boundary conditionzl(t50)50. The
time for moving over one period of the potential is th
given by

T5t~2d/2!2t~d/2!5
d

vcA~F/Fc!
221

. ~43!

The mean velocityv' in units ofvc is finally determined by

v'

vc
5

d

Tvc
5A~F/Fc!

221, q50°, F>Fc . ~44!

This result was also obtained by Aslamazov and Larkin19 in
their study of superconducting point contacts. If we expa
Eq. ~44! to first order inFc /F, F@Fc , we find again the

FIG. 10. Force-velocity characteristic at different ang
q52°, 5°, 10°, and 20° for the ratiov l /« l50.1. The dashed line
indicates the limitq50°.
the

e

r-

d

s

d

result of the dynamic approach atq50°. The limit
v l /« l→` at finite anglesq is more difficult to investigate.
As long asF<Fc the string has the shape of a stairca
leading to a purely kink motion, i.e.,a/a05sinq. For
F>Fc we interpolate between the result of the dynamic a
proach and Eq.~44! to obtain

v'

vc
5A~F/Fc!

22cos2q, v l /« l→`, F>Fc , ~45!

in good agreement with our numerical results.

V. CONCLUSION

We have presented a model of a driven, elastic string
periodic potential and have determined both the for
velocity characteristic and the angular dependence of the
bility over the entire range of applied driving forces. In th
limit of small potentialsv l!« l , the string motion is affected
only within the small-angle regimeq,Av l /« l , where a
sharp drop in the mobility is observed. Large potenti
v l@« l deform the string to produce a staircase shape lead
to a kink motion described by the mobilitya5a0sinq. In-
creasing the driving force leads to a crossover from
pinning-inhibited motion to the free motion at the depinni
force Fc . An unexpected effect appears in the large-an
limit, where the string can move faster than in the free si
ation.

A comparison of our findings with the experimental da
of driven vortex lines in layered superconductors show
qualitative agreement with the findings of Kwoket al.13 and
Iye et al.,14 who observed a trapping of the vortex lines b
tween the layers. Their results, however, exhibit a smoot
behavior around vortex trapping. Including thermal fluctu
tions, the interaction between neighboring vortices, and
internal structure of a vortex line~giving rise to an angle-
dependent friction coefficient and line tension! should lead to
the desired improvements of our results. The appearenc
the large-angle anomaly in the vortex mobility~velocity
overshooting! has to be checked in further experiments.

FIG. 11. Comparison of driven strings (F/Fc50.002, 0.6, and
5! with our variational result~dashed line! for m5tanq1 and
n→`. The string leading to the largest anomly has a shape roug
given through our variational result. Note that we shiftedzmn(x) in
the z direction due to the finite driving force.
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APPENDIX: MAGNITUDE OF THE ANOMALY

We determine the magnitude of the anomaly with
simple variational ansatzzmn(x) for the solvability condition
~23!, wherezmn(x) describes a string consisting of straig
pieces withm,n denoting the slope in the valleys and on t
hills, respectively~see the dashed line in Fig. 11!.

Evaluating the integral in the solvability condition~23!,
we arrive at

I ~m,n![E
2d/2tanq

d/2tanq zmn8 2

A11zmn8 2
dx

5
d

tanqF m2

A11m2

n2tanq

n2m
1

n2

11n2
tanq2m

n2m G
~m<tanq<n!. ~A1!
,

.

ll
In the regimeq>q1[arctan(AA521/A2)'38.2°, the in-
tegral I (m,n) has its absolute minimum in the limitn→`,

m5AA521/A2 independent ofq, whereas at smalle
angles the straight line yields the smallest value.20 At the

angle q5q2[arctan(AA511A2)'68.5°, the mobility
reaches its largest value given througha/a0'1.055. The
mobility determined for a string at an angleq is thus re-
stricted through the extremal values

a

a0
~q!u max55

1, q<q1 ,

sinq

12
1

tanq
A5A5211

2

, q>q1 ,

1.055, q5q2 .

~A2!

In Fig. 11 we compare our variational result with a strin
producing a large anomaly.
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